
IMS 8431
Ethernet TRAM
Incorporating the IMS F006A support software.

~ SGS-1HOMSON
~"Ie ~D©OO@rn[1~©lJOO@~D©~
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TRN 23500 December 1991

2

Copyright INMOS Limited 1991. This document may not be copied, in whole or in
part, without prior written consent of INMOS.

tt. M1os, IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

72 TRN 235 00 December 1991

I Contents
1 Introduction ~ j

1.1 Document structure . 1
1.1.1 Conventions . 1

1.2 Background. 1

1.2.1 Prerequisites. 2

2 Installation. 3
2.1 IMS F006A software 3
2.2 IMS B431 Ethernet TRAM. 3
2.3 Connecting to Ethernet (10BASE5) . 4

2.3.1 AUI connection. 5
2.3.2 AUI power. 6

3 IMS F006A overview 7
3.1 Components. 7
3.2 IMS B431 device driver. 7

3.3 IMS F006A interface libraries 8
3.4 Example programs and source code ,. 9
3.5 Environments. 9

3.5.1 Development Environment 10
3.5.2 Target System Environment 10

4 IMS F006A libraries 13

4.1 Interface procedures . 13
4.1.1 B431_lnit_NormaIO. 14
4.1.2 B431_lnit_LoopbackO. 16
4.1.3 8431_Start_EtherO. 18
4.1.4 8431_Tx_Packet10. 19
4.1.5 8431_Tx_Packet20 20
4.1.6 B431_Reset_StatsO . 21
4.1.7 B431_Stop_EtherO . 21
4.1.8 B431_TerminateO . 22
4.1.9 B431_Ether_StatsO. 22
4.1.10 8431_Waitfor_EventO. 23

4.2 Diagnostic procedures. 26

4.2.1 B431_lnternal_LoopbackO 26
4.2.2 8431_External_LoopbackO. 28

4.3 IMS B431 Device Driver 29
4.3.1 Debugging support . 30

4.4 Using 8431_Load_DriverO 33

ii Contents

5 IEEE 802.3 CSMAlCD Ethernets 35

5.1 IEEE 802.3 CSMAlCD Ethemets .. 35

5.1.1 Packet structure 36
5.1.2 CRC algorithm 37
5.1.3 Addressing. .. 38
5.1.4 Retry algorithm .. 38
5.1.5 Ethernet statistics .. 39
5.1.6 Time domain reflectometer 40
5.1.7 Heartbeat monitor. .. 41
5.1.8 Performance. .. 41

6 Detailed hardware description . 43

6.1 Data structures. .. 43

6.1.1 Buffer and descriptor ownership 45
6.1.2 Data chaining 45

6.2 Software structure 45

6.3 Initialising. .. 47

6.3.1 The initialisation block. .. 47
6.3.2 CSRQ-CSR3 .. 49
6.3.3 Summary. .. 53

6.4 Receiving .. 54

6.4.1 The receive message descriptor 54
6.5 Size and number of receive buffers 57

6.6 LANCE actions during packet reception 57

6.7 Receive driver actions 58

6.7.1 ERRisO 58
6.7.2 ERR is 1 59
6.7.3 ENP is set (and ERR is clear) 59

6.8 Transmitting. .. 60

6.9 The Transmit message descriptor .. 60

6.9.1 Transmit message descriptor 0 (TMDO) 60
6.9.2 Transmit message descriptor 1 (TMD1) 61
6.9.3 Transmit message descriptor 2 (TMD2) 61
6.9.4 Transmit message descriptor 3 (TMD3) 62

6.10 LANCE actions during transmission. 63

6.10.1 Failure to transmit. .. 63
6.11 A typical transmit driver .. 64

6.11.1 BUFF and ERR are clear. 65
6.11.2 BUFF is set. .. 65
6.11.3 ERR is set. .. 65

Contents iii

6.12 Interrupts, errors and error handling 68
6.12.1 Interrupt handling . 68
6.12.2 Errors. 68

6.13 Self Testing 70
6.13.1 TheMODEregister 70
6.13.2 Loopback tests . 71

6.14 IMS 8431 TRAM engineering data 73
6.14.1 Connectors and pin allocations 73
6.14.2 Pin descriptions 73
6.14.3 Memory Map 76
6.14.4 Mechanical details 76

7 References. .. 77

Appendices 79

A Directory structure 81

B Example programs 83
B.1 IMS F006A example programs. 83

B.1.1 C Example. 83
B.1.2 occam Example 87

iv Contents

1 Introduction I

1.1 Document structure

This document is intended as asystems developers guide to using IMS F006A with
the IMS 8431 Ethernet TRAM. It is split into the following chapters.

Chapter 2 describes software and hardware installations.

Chapters 3 and 4 describe the software development environment and facilities
provided by the IMS F006A. Use of the IMS 8431 device driver in conjunction with
the procedural interface libraries is discussed, and for each library procedure a full
specification is given. ANSI C and occam programmers should find that all the in-,
formation required to produce application software is contained entirely within this
part of the manual.

Chapter 5 provides background information on the IEEE 802.3 CSMAlCD net
working standard (Ethernet). It describes packet format, addressing and the logical
address and CRC algorithms. It also specifies the exact meaning and interpreta
tion of the Ethernet statistics gathered by IMS F006A. Details of expected Ethernet
performance levels are also provided.

Chapter 6 describes the IMS 8431 Ethernet TRAM hardware in detail, it describes
the Ethernet interface chip and how it is programmed. This section will only be of
interest to programmers who wish to write their own device driver for the IMS 8431
TRAM - where special requirements preclude the use of the IMS F006A software.

1.1.1 Conventions

Throughout this manual reference to software routines and constants provided in
C and occam will be made using ANSI C syntax. Equivalent occam names may
be derived by substituting occurrences of the' '(underscore) character with a ' .'
(period) character as appropriate. -

1.2 Background

The IMS F006A is a software support package for the IMS 8431 Ethernet TRAM.
It is intended for those developers wanting to construct transputer systems incor
porating IEEE 802.3 Ethemet attachment, but who are not interested in the low lev
el programming details of the Ethernet interface hardware.

The IMS F006A software consists of a device driver for the IMS 8431 Ethernet
TRAM and procedural interface libraries for ANSI C and occam which access the
device driver via a transputer channel pair This facilitates the creation of transput
er programs to establish and engage in packet level communication on IEEE 802.3
Ethernet based local area networks (LANs).

72 TRN 23500 December 1991

2

IMS F006A is compatible with INMOS software development toolsets. Systems
developers incorporate IMS F006A with their own application software using an
appropriately selected toolse1.

1.2.1 Prerequisites

In order to develop with IMS F006A the following (minimum) environment is re
quired:-

Hardware

• IBM PC/AT or compatible personal computer

• IMS B008 IBM PC/AT TRAM Motherboard

• IMS B431 Ethernet TRAM (Size 2)

• A compute TRAM such as the IMS B404 (Size 2)

Software

• IMS 07214 ANSI C Toolset for IBM PC/AT

or

• IMS 07205 occam 2 Toolset for IBM PC/AT

72 TRN 235 00 December 1991

3

2 Installation I

2.1 IMS F006A software

The installation of IMS F006A requires at least 800 k8ytes of free disk space be
available on the host computer system hard disk.

To install IMS F006A from floppy disk drive A: onto hard disk drive c: of an IBM
PC/AT or compatible computer, proceed as follows:-

Insert the floppy disk into floppy disk drive A: .

2 Change the current working directory to C: \.

3 At the operating system command line, type a: install a c.

4 Respond as appropriate to prompts made by the install program.

2.2 IMS 8431 Ethernet TRAM

Since the IMS 8431 contains CMOS components, all normal precautions to pre
vent static damage should be taken.

The IMS 8431 may be supplied with spacer pin strips attached to the TRAM pins
on the underside of the board. These spacers perform two functions. Firstlythey
help to protect the TRAM pins during transit. Secondly, they can be used to space
the TRAMs off the motherboard. If there are no components mounted on the mo
therboard TRAM slot, then the spacer strips should be removed before the TRAM
is inserted.

Plug the IMS 8431 into the motherboard. Where the IMS 8431 is being used with
an INMOS motherboard, the yellow triangle marking pin 1 on the IMS 8431 (see
Figure 2.1) should be aligned with the silk screened triangle that appears in the
corner of the appropriate TRAM slot.

Should it be necessary to unplug the IMS 8431, it is advised that it is gently levered
out while keeping it as flat as possible. As soon as the IMS 8431 is removed, the
spacer pin strips should be refitted to the TRAM to protect the pins.

72 TRN 23500 December 1991

4

Mk 7990 IMS T222

12V power plug 20 way ribbon
connector male

Figure 2.1 IMS 8431 board layout

2.3 Connecting to Ethernet (10BASE5)

In an Ethernet (108ASE5) system, nodes are connected to the Ethernet coax by
means of an media access unit (MAU) and an attachment unit interface (AUI)
cable. The MAU is a specially designed housing incorporating a transceiver de
vice. The MAU is clamped to the Ethernet coax; it penetrates the coax making con
tact with the signal conductor without interrupting traffic on the LAN. The node is
connected to the MAU transceiver by means of an AUI cable. Ethernet supports
a maximum cable length (without repeaters) of 500 metres.

When connecting the IMS 8431 to an Ethernet system, the AUI connector on the
IMS 8431 is used to connect to a separate MAU. Figure 2.2 shows how the
IMS 8431 should be connected to an Ethernet system. It is intended that the
15-way D-type connector should be mounted in a suitable bulkhead or front panel
on the equipment into which the IMS 8431 is installed.

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 5

Ethemet coax

Mk 7990
LANCE

Power connector

Mk 68592 I~

IMS T222

15 way D-type
connector

D

AUI adaptor~
(ribbon) cable....---__----...

AUI connector

Figure 2.2 Connecting the IMS 8431 to an Ethernet system

2.3.1 AUI connection

To reduce the overall height of the IMS 8431, a 16-way male header is used in
stead of the standard 15-way D-type; the pinout of this connector is defined in
table 2.1. A short length of adaptor cable is supplied for connection to a standard
AUI cable. AUI cables should have a shielded, twisted pair for each signal or power
pair; each pair should have a characteristic impedance of 78 ± SQ.

The RX ±, TX ±and COll ±signals on the AUI connector are transformer iso
lated.

72 TRN 235 00 December 1991

6

Name Function Pin No.

COLL+ collision pair 4

COLL- 3

TX+ transmit pair 6

TX- 5

RX+ receive pair · 10

RX- 9

+12V power pair 11

OV 12

GND shield 1,2

Table 2.1 AUI connector pinout

2.3.2 AUI power

The Ethernet specification requires that the AUI cable must supply +12V at 0.5A
to the MAU. Since there is no +12V supply on the IMS 8431, this must come from
an external power source. A +12V power source capable of supplying O.SA should
be connected to the power connector on the IMS 8431. The IMS 8431 routes pow
er from this connector to the AUI connector. The pinout of the power connector is
shown in table 2.2.

Name Function Pin No.

+12V In AUI power pair 1

OVln 2

Table 2.2 Power connector pinout

Pins 1 and 2 connect directly to the AUI connector power pair pins.

72 TRN 235 00 December 1991

7

3 IMS F006A overview I

3.1 Components

IMS F006A consists of the following components:-

• IMS 8431 device driver

• ANSI C and occam interface libraries

• Include files

• Example programs and configuration files

• Source code of interface libraries

3.2 IMS 8431 device driver

The IMS 8431 device driver runs on the IMS 8431 Ethernet TRAM and is
responsible for:-

Controlling the Ethernet interface hardware.

2 Performing diagnostic tests upon the Ethernet interface hardware and buff
er memory areas.

3 Collecting and making available statistics concerning the operation and
performance of the Ethernet interface.

The device driver's primary role is to provide a buffered interface for transmitting
and receiving IEEE 802.3 structured Ethernet packets. Packets sent to the device
driver for transmission are buffered in a first in first out (fifo) queue where they wait
to be transmitted. Similarly, packets received by the Ethernet interface are queued
until read. Two transputer channels connect the device driver to application
software running on an adjacent transputer. Packets are sent to the device driver
by calling a procedure from the IMS F006A interface library with the channel to the
device driver passed in as a parameter. In the other direction, packets are received
by calling a different procedure to wait for their arrival.

Typically, application software will fork into two parallel processes to handle this
concurrent activity. The arrangement is shown in the following diagram, one
process is responsible for transmitting packets while the other handles their
reception.

72 TRN 23500 December 1991

8

Compute TRAM

Application program

Ethernet TRAM

IMS 8431

Transceiver

Ethernet _

Figure 3.1 Software elements for active ethernet

Statistics concerning operation of the Ethernet interface are gathered by the
device driver. They provide useful information relating to the performance and
loading characteristics of the Ethernet network. See Section 5.1.5 for a description
of these values. Application programs may request the current set of accumulated
statistics, from the device driver, at any time.

In order to establish confidence in the correct operation of the Ethernet interface
the device driver may be requested to perform diagnostic tests on the hardware
it controls. Testing occurs by transmitting test packets which are looped backed
either within the Ethernet interface hardware itself or via the attached network. An
additional diagnostic feature, which may be enabled during Ethernet interface
initialisation, tests for correct operation of the transmit and receive packet buffer
memory.

3.3 IMS F006A interface libraries

The IMS F006A ANSI C and occam interface libraries contain an equivalent set
of procedures. Procedures are provided to:-

• Initialise, start or stop the Ethernet interface

• Perform diagnostic loopback tests

• Transmit or receive IEEE 802.3 Ethernet packets

• Request or reset Ethernet statistics

• Download the IMS 8431 device driver via an EDGE link

72 TRN 23500 December 1991

IMS 8431 ethernet TRAM 9

Details of the interaction between the IMS 8431 device driver and client application
programs are hidden by the use of these procedures. Application programs supply
parameters which are packaged up and sent to the device driver for processing,
data received in the opposite direction is unpacked and returned to the application
program via a suitable procedure call.

The procedures for transmitting and receiving Ethernet packets are designed such
that they may be called from two separate, parallel, processes. In ANSI C this is
achieved by forking a new process with the ProcAlloc () and ProcRun ()
functions, while in occam the PAR construct achieves the same effect.

3.4 Example programs and source code

Example programs written in ANSI C and occam that demonstrate the use of the
IMS F006A interface libraries are provided in the directories
\F006A\CLIB\EXAMPLES and \F006A\OCCAMLIB\EXAMPLES. Configuration
files are also included which describe a fairly typical transputer network consisting
of a single IMS 8431 Ethernet TRAM and a general purpose compute TRAM
(which executes each example program). These can easily be modified to suite
more specifc hardware if necessary.

Source code of both the ANSI C and occam interface libraries are provided in the
directories \F006A\CLIB\SOURCE and \F006A\OCCAMLIB\SOURCE
respectively. Most of the procedures are quite simple. The source code is supplied
to demonstrate the low level interaction required to control the device driver from
an adjacent transputer, this should allow similar interfaces to be produced for
other, non-INMOS toolset, environments.

The files imsb431 .hand imsb431 . inc, also located in the source directories,
contain ANSI C and occam definitions of a constant byte array. This is a bootable
version of the IMS 8431 device driver. Copying the contents of the array down a
transputer link connected to a previously reset IMS B431 Ethernet TRAM will boot
the TRAM with device driver software. This too allows alternative schemes to be
developed for using the IMS B431 in other systems environments.

3.5 Environments

Transputer programs that incorporate the IMS F006A software and target a
particular transputer network topology are constructed, using INMOS toolset
utilities, in the conventional manner:- top level programs for each transputer in the
target network are compiled, linked and configured into a single bootable file for
the network. No software, other than the IMS B431 device driver, may execute on
the IMS B431 TRAM. The device driver is supplied in linked unit format and should
be placed on each IMS B431 TRAM in the network using the configurer tool.
Because the device driver uses a single transputer link each IMS 8431 TRAM will
be physically connected to only one othertransputer in the network. The remainder
of the network is configured to run application software.

72 TRN 23500 December 1991

10

A minimal target transputer system will consist of at least an IMS B431 Ethernet
TRAM and a compute TRAM. Larger systems may contain any number and
combination of Ethernet and compute TRAMs, depending on the intended
application. Embedded systems will probably also have a ROM TRAM to act as
a bootstrap master, this will contain code to be booted into the transputer network
at system startup time. IMS F006A, when used in conjunction with an INMOS
toolset, permits the development of both embedded and hosted systems.

3.5.1 Development Environment

A typical hosted development environment is shown in the diagram below. It
consists of an IBM PC/AT or compatible host computer installed with a TRAM
motherboard, the motherboard is fitted with an IMS B431 Ethernet TRAM and a
compute TRAM. The compute TRAM is used to run INMOS tools during
development and the application program during test phases. The Ethernet TRAM
executes the device driver. Interaction between the device driver and application
program occurs over the hard link connecting both TRAMs.

PC TRAM motherboard
Media

Attachment
Unit

...--.. MAU

(Transceiver)

D
11IIII1111 [Q

IBM PC/AT
development

host

Ethernet (LAN)
Coax or

'Cheapernet'

Figure 3.2 Example development environment

3.5.2 Target System Environment

The following diagram shows an example embedded system. The ROM TRAM
contains configured application code including copies of the IMS 8431 device
driver which it boots into the transputer network. In this example the target
transputer network consists ofa single compute TRAM and two IMS B431 Ethernet
TRAMs.

72 TRN 23500 December 1991

IMS 8431 ethernet TRAM

Ethernet _
Coax

(Transceiver)

Ethemet __---JL....--_---J _

Coax

Figure 3.3 Example embedded system featuring IMS 8431

11

72 TRN 23500 December 1991

12

72 TRN 235 00 December 1991

13

4 IMS F006A libraries I

To develop with the IMS F006A interface libraries:

ANSI C programmers should:-

1 Add \F006A\; \F006A\CLIB\; to the ISEARCH environment variable.

2 #include the header file b431io. h. Also include b431 test. h if using
the diagnostic loopback functions provided with the ANSI C interface li
brary.

3 Link against the library b431.lib.

4 Configure the target transputer network:- place the IMS 8431 device driver
on the IMS 8431 TRAM and application software on other TRAMs.

occam programmers should:-

Add \F006A\; \F006A\OCCAMLIB\; to the I SEARCH environment vari
able.

2 #INCLUDE the header file b431io. ine. Also include b431 test. inc if
using the diagnostic loopback procedures provided with the occam inter
face library.

3 fUSE and link against the library B431. LIB.

4 Configure the transputer network:- place the IMS 8431 device driver on the
IMS 8431 TRAM and application software on other TRAMs.

4.1 Interface procedures

This section describes the procedures used to interact with the IMS 8431 device
driver. Interaction with the device driver occurs in one of two modes, which reflect
the state of ~he Ethernet interface it controls, as follows:-

• The Ethernet interface is inactive (stopped), it ignores all activity on the
Ethernet network. Procedures are provided to initialise and then start the
interface. The device driver arranges for the Ethernet interface to be in this
state at startup time.

• The Ethernet interface is active (started), packet I/O proceeds
concurrently. Procedures are provided to transmit and receive packets,
request Ethernet statistics or revert the interface to the inactive state.

The Ethernet interface must be initialised before it can be started. Once started,
the application may fork into the separate parallel processes, described earlier, to
handle packet I/O. The device driver will attempt to deliver packets it receives from

72 TRN 23500 December 1991

14

the Ethernet interface on the from b431 channel, B431 Wai tfor Event ()
should be called to wait for and- receive them. B431 Tx Packetl () or
B431 Tx Packet2 () are used to transmit packets by sending them to the
devicedriver along the to b431 channel. B431 Wai tfor Event () is also used
to accept other events from the device driver suCh as notification of error conditions
or Ethernet statistics. The Ethernet interface may be subsequently stopped, in
order to alter initialisation parameters, or during software termination.

Description:

Initialise the Ethernet interface for normal operation (as opposed to diagnostic
loopback operation).

This sets the physical address and logical address filter (multicast address group)
. for the Ethernet interface. Packets transmitted by the Ethernet interface will carry

a source address equal to the physical address assigned by calling this procedure.
Packets will be received if they carry a destination address equal to either the
physical address or a multicast destination address matched by the logical
address filter (or a broadcast address). Section 5.1.3 describes Ethernet
addressing in detail.

Normal operation can be modified by enabling a number of optional mode flags.

Once initialised, the Ethernet interface can be started, see
B431_Start_Ether ().

c:
int B431_Init_Normal(

Channel

Channel

const unsigned char

const unsigned char

const long int

occam:

*from_b431,

*to_b431,

physical_address [PHYSICAL_ADDRESS_SIZE] ,

logical_address_filter[LOGlCAL_ADDRESS_FILTER_SIZE] ,

mode_flags)

PROC B431.Init.Normal(

CHAN OF ANY from.b431,

to.b431,

VAL [PHYSlCAL.ADDRESS.SIZE]BYTE physical.address,

VAL [LOGlCAL.ADDRESS.FILTER.SIZE]BYTE logical.address.filter,

VAL INT mode. flags,

BYTE resul t)

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 15

Parameter Comments

from b431 Channel from the B431 device driver

to b431 Channel to the B431 device driver

physical_address Physical address of the Ethernet interface

logical_address_filter Logical address filter for the Ethernet interface

mode_flags Mode flags bit mask

Mode flags:

mode flags is a bit mask. Bits are set to enable optional Ethernet interface
functions, or to modify the normal operating mode. The following bit masks are
defined:-

Enable execution of the packet buffer memory
check

Enable promiscuous mode packet reception. All
packets will be received, regardless of their desti
nation address, see Section 5.1.3.

Enable heartbeat monitoring, see Section 5.1.7.

Disable automatic transmit packet CRC field gener
ation, see Section 5.1.2.

Disable transmitter retries, see Section 5.1.4.

PROMISCUOUS RX

MEMORY CHECK

MONITOR HEARTBEAT

DISABLE TX CRC

DISABLE TX RETRY

Return codes:

resul t contains the completion code for B431 . Ini t. Normal () . It is returned
by B431_Ini t_Norma1 ().

A value of INIT SUCCESS indicates normal successful completion. Other result
codes indicate afailure to initialise the Ethernet interface as follows:-

INIT NOT STOPPED The Ethernet interface is active. It should be in the
stopped state, see B431_Stop_Ether ()

INIT_BARDWARE_FAILED The Ethernet interface hardware failed to initialise
correctly

INIT_MEMORY_FAULT A memory fault was discovered while executing the
packet buffer memory check.

Notes:

If automatic CRC field generation is disabled then packets supplied to the device
driver for transmission should contain a user supplied CRC field. Section 5.1.2
describes the algorithm specified in the IEEE 802.3 CSMAlCD Ethernet standard
for calculating the CRC value.

The heartbeat monitor function should only be enabled if the Media Attachment
Unit (MAU) generates the heartbeat signal. This is usually a jumper configured
option within the MAU (transceiver) box.

72 TRN 23500 December 1991

16

Description:

Initialise the Ethernet interface for loopback operation. When operating in
loopback mode the Ethernet interface will return any self addressed transmit
packets as received packets. This can occur within the Ethernet interface itself:
internalloopback, or via the network:- externalloopback.

Once initialised, the Ethernet interface can be started, see
B431_Start_Ether () .

Loopback operation is intended for diagnostic purposes only. Application
programs will normally use the supplied diagnostic procedures, described in
Section 4.2, to perform diagnostic tests and will not call this procedure. It is
provided in the interface library for users that wish to write their own diagnostic
software.

C:

int B431_Init_Loopback (

Channel *from_b431,
Channel *to_b431,
const unsigned char physical_address [PHYSICAL_ADDRESS_SIZE] ,
const long int mode_flags)

occam:

PROC B431.Init.Loopback(
CHAN OF ANY from.b431,

to.b431,
VAL [PHYSICAL .ADDRESS . SIZE] BYTE physical. address,
VAL INT mode. flags,
BYTE result)

Parameter Comments

from b431 Channel from the 8431 device driver

to b431 Channel to the 8431 device driver

physical_address Physical address of the Ethernet interface

mode_flags Mode flags bit mask

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 17

Mode flags:

mode flags is a bit mask. Bits are set to enable optional Ethernet interface
functions, or to modify the loopback operating mode. The following bit masks are
defined:-

MEMORY CHECK

INTERNAL LOOPBACK

FORCE COLLISION

MONITOR HEARTBEAT

DISABLE TX CRC

DISABLE TX RETRY

Return codes:

Enable execution of the packet buffer memory
check

Enable internal loopback mode, default is external
mode

Enable transmit collisions, packets will be forced to
collide. This tests the collision detection logic. Only
valid in internal loopback mode

Enable heartbeat monitoring, see Section 5.1.7.

Disable automatic transmit packet CRC field gener
ation, see Section 5.1.2.

Disable transmitter retries, see Section 5.1.4.

resul t contains the completion code for B431. Ini t .loopback (). It is
returned by B431_Ini t_loopback ().

A value of INIT SUCCESS indicates normal successful completion. Other result
codes indicate afailure to initialise the Ethernet interface as follows:-

INIT NOT STOPPED The Ethernet interface is active. It should be in the
stopped state, see B431_Stop_Ether ()

INIT_BARDWARE_FAlLED The Ethernet interface hardware failed to initialise
correctly

INIT_MEMORY_FAULT A memory fault was discovered while executing the
packet buffer memory check

Notes

If automatic CRC field generation is disabled then packets supplied to the device
driver for transmission should contain a user supplied CRC field. Section 5.1.2
describes the algorithm specified in the IEEE 802.3 CSMAlCD Ethernet standard
for calculating the CRC value.

The heartbeat monitor function should only be enabled if the Media Attachment
Unit (MAU) generates the heartbeat signal. This is usually a jumper configured
option within the MAU (transceiver) box.

72 TRN 235 00 December 1991

18

4.1.3 B431_Start_Ether()

Description:

Start the Ethernet interface. Packet 1/0 will be enabled.

The Ethernet interface must be initialised before it is started, see
B431_Ini t_Norma1 ().

C:
int B431_Start_Ether (
Channel *from_b431
Channel *to_b431)

occam:
PROC B431. Start. Ether (
CHAN OF ANY from.b431,

to.b431,
BYTE result)

Parameter Description

from b431 Channel from the 8431 device driver

to b431 Channel to the 8431 device driver

Return codes:

resul t contains the completion code for B431 . Start. Ether () . It is returned
by B431_Start_Ether ().

A value of START SUCCESS indicates normal successful completion. Other result
codes indicate a failure to start the Ethernet interface as follows:-

NO INIT DONE- - The Ethernet interface has not been initialised

Notes:

Once the Ethernet interface has started, the channels connecting the application
program to the 8431 device driver (to b431 and from b431) become
asynchronous. Commands to the device driver are issued by calling procedures
with the to b431 channel only. Eg:- B431 Tx Packet1 () or
B431 Ether Stats (). The device driver will respond (ifnecessary) by sending
results on fr~ b431. B431 Wai tfor Event () is used to wait for and decode
events generated by the device driver onthis channel, three types of event can be
expected:-

1 Received packets.

2 Report of an error condition.

3 A response to B431 Stop Ether(), B431_Ether_Stats() or
B431_Terminate(). - -

Application software should fork into two separate parallel processes after calling
B431_Start_Ether () . One process will be responsible for transmitting packets

72 TRN 23500 December 1991

IMS 8431 ethernet TRAM 19

and sending commands to the device driver, the other will continuously loop calling
B431 Waitfor Event() to receive packets or command responses. Source
code examples Ofthis are described in section 8.1.1 for ANSI C, and section 8.1.2
for occam.

Description:

Transmit an Ethernet packet. The packet is sent to the device driver where it is
buffered and then transmitted on the Ethernet. Packets are buffered in a first in first
out queue (fifo) where they wait to be transmitted. If the queue fills up then this
procedure will block until there is sufficient space for the new packet. This
behaviour does not affect the receive packet queue, which will continue to supply
packets, if any are received. See B431_Waitfor_Event ().

C:
void B431_Tx_Packetl (
Channel
const unsiqned char
const int

*to_b431,
*ethernet-packet,
ethernet-packet_lenqth)

occam:
PROC B431. Tx. Packetl (
CBAN OF ANY to.b431,
VAL [] BYTE ethernet. packet)

Parameter Description

to b431 Channel to the 8431 device driver

ethernetyacket Ethernet packet

etherntyacket_length Packet length

Notes:

ethernetyacket should contain a header (see Section 5.1.1). This will contain
a destination address, source address and type length field. The source address
should correspond to the address assigned to the Ethernet interface when
initialised. If the Ethernet interface was initialised with transmit CRC field
generation disabled then ethernetyacket should also contain a user supplied
CRC field.

In normal operation the minimum packet length is MIN PACKET LENGTH (64)
bytes, and the maximum length is MA}{ PACKET LENGTH (1518) bytes. These
values include the leading 14 byte packet headerand trailing 4 byte CRC field. If
automatic CRC field generation is disabled then the minimum and maximum
packet lengths will be 4 bytes less. Packets containing less than the minimum
number of bytes will be padded automatically to the minimum length.

72 TRN 235 00 December 1991

20

4.1.5 B431_Tx_Packet20

Description:

Transmit an Ethemet packet. The packet header and data segments are sent to
the device driver where they are assembled into a complete packet, buffered, and
then transmitted on the Ethemet. The device driver will insert the source Ethemet
address into the packet header automatically, this is the address assigned to the
Ethemet interface during initialisation. Packets are buffered in a first in first out
queue (fifo) where they wait to be transmitted. If the queue fills up then this
procedure will block until there is sufficient space for the new packet. This
behaviour does not affect the receive packet queue, which will continue to supply
packets, if any are received. See B431_Wai tfor_Event () .

C:

void B431_Tx_Packet2 (
Channel
const unsiqned char
const short int
const unsigned char
const int

*to_b431,
destination_address [PHYSlCAL_ADDRESS_SIZE] ,
type_lenqth_field,
*packet_data[] ,
packet_data_lenqth)

occam:
PROC B431. Tx. Packet2 (
CBAN OF ANY to.b431,
VAL [PHYSICAL .ADDRESS . SIZE] BYTE destination. address,
VAL INT16 type.lenqth.field,
VAL []BYTE packet.data)

Parameter Description

to b431 Channel to the 8431 device driver-
destination address Destination Ethernet address

type_length_field Type or length value, the least significant byte
corresponds to the most significant byte of the
type length field

packet_data Packet data

packet_data_length Data length

Notes:

If the Ethernet interface was initialised with transmit CRC field generation disabled
then packet_data should also contain a user supplied CRC field.

In normal operation the minimum packet length is MIN_PACKET_LENGTH (64)
bytes, and the maximum length is MA}{ PACKET LENGTH (1518) bytes. These
values include the leading 14 byte packet headerand trailing 4 byte CRC field. If

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 21

automatic CRC field generation is disabled then the minimum and maximum
packet lengths will be 4 bytes less. Packets containing less than the minimum
number of bytes will be padded automatically to the minimum length.

Description:

Reset the Ethemet statistics. The device driver will clear (reset to 0) it's
accumulated Ethemet statistics.

C:
void B431_Reset_Stats (Channel *to_b431)

occam:
PROC B431.Reset.Stats(CBAN OF ANY to.b431

Parameter

to b431

Description

Channel to the 8431 device driver

Description:

Stop the Ethernet interface. Packet transmission and reception will cease and the
Ethernet interface will be disabled. Any queued transmit or receive packets will be
discarded. When the Ethernet interface has stopped the device driver will send an
acknowledge, B431 Wai tfor Event () should be called to receive the
acknowledgement. Once stopped the Ethernet interface can be re-initialised or
re-started.

C:
void B431_Stop_Ether(Channel *to_b431)

occam:
PROC B431.Stop.Ether(CBAN OF ANY to.b431

Parameter

to b431

72 TRN 23500

Description

Channel to the 8431 device driver

December 1991

22

4.1.8 8431_Terminate()

Description:

Terminate the 8431 device driver. The device driver will acknowledge and then
terminate. B431 Wai tfor Event () should be called to receive the
acknowledgement Once terminated no further interaction with the device driver
is possible.

C:
void B431_Terminate(Channel *to_b431

occam:
PROC B431.Te~nate(CHAN OF ANY to.b431

Parameter

to b431

Description

Channel to the 8431 device driver

Description:

Request the Ethernet statistics. The device driver will return it's current set of
accumulated Ethernet statistics, B431 Wai tfor Event () should be called to
receive them. Section 5.1.5 describes1he statistics returned.

C:
void B431_Ether_Stats (Channel *to_b431

occam:
PROC B431.Ether.Stats(CHAN OF ANY to.b431

Parameter

to b431

72 TRN 235 00

Description

Channel to the 8431 device driver

December 1991

IMS B431 ethernet TRAM

4.1.10 B431_Waitfor_EventO

23

PROC B431 .Wai tfor. Event (
CBAN OF ANY
CBAN OF BYTE
[ETBER.STATS.SIZE]INT32
[MAX.PACKET.LENGTB]BYTE
INT

Description:

Wait for an Ethemet interface event. This procedure is called to wait for and decode
events from the device driver when the Ethernet interface is active (see
B431_Start_Ether ()). The device driver will generate three types of event:-

Received packets

2 Report of an error condition

3 A response to B431_Stop_Ether(), B431_Ether_Stats() or
B431_Terminate ().

B431 Wai tfor Event () is designed to be called from a process primarily
responsible for handling the reception of Ethernet packets. Another, parallel
process, will handle the transmission of packets independently of this.

c:
int B431_Waitfor_Event(
Channel *from_b431,
Channel *cancel,
ETBER_STATS *ethernet_stats,
unsiqned char *ethernetJ>acket,
int *ethernetJ>acket_lenqth,
int *error_code,
unsiqned char *failedJ>acket_data)

occam:

from.b431,
cancel,
ethernet. s tats ,
ethernet. packet,
ethernet.packet.lenqth,
error. code,

[FAILED. PACKET. LENGTB]BYTEfailed.packet.data,
BYTE result)

72 TRN 23500 December 1991

24

Parameter

from b431

cancel

ethernet stats

ethernet""packet

ethernet""packet_length

error code

Description

Channel from the 8431 device driver

Cancel channel, used to force completion of the
procedure call. Sending any byte value on this
channel will cause the procedure to return im
mediately

Ethemet statistics, an unsigned long integer
structure (INT32 array in occam) that contains
accumulated Ethernet statistics. Only valid if
resul t is B431 ETHER STATS- -
Received Ethernet packet, includes trailing
CRC field. Only valid if result is
B431 RX PACKET

Packet length

Error code, describes an error event. Only valid
if resul t is B431 ERROR REPORT- -
Failed packet data, contains the first
FAILED PACKET LENGTH bytes of a failed
transmit-packet. Only valid if error code is
ERROR TX PACKET FAILED -- - -

Return codes:

resul t contains the completion code for B431. Wai tfor. Event (). It is
returned by B431_Waitfor_Event().

The resul t value indicates the reason for completion, as follows:-

Parameter

B431 WAIT CANCELLED- -
B431 TERMINATE

B431 STOP ETHER- -

B431 ETHER STATS- -

B431 RX PACKET

B431 ERROR REPORT- -

72 TRN 235 00

Description

Indicates forced completion with the cancel channel

Acknowledgement of device driver termination. See
B431 Terminate(), B431 Waitfor Event()
should not be called again - -

Acknowledgement of an Ethemet interface stop re
quest. See B431_Stop_Ether()

Acknowledgement of a request for Ethernet statis
tics. See B431 Ether Stats (), ether
net stats will contain the-current, accumulated,
Ethernet statistics

Indicates reception of an Ethernet packet. ether
net""packet and ethernet""packet_length
will hold the packet and length of packet respectively

Indicates an occurence of an internal or Ethemet re
lated error condition. error code will contain a
reason code, see below for these

December 1991

IMS 8431 ethernet TRAM 25

error code will contain an error reason code (if resul t is set to
B431_ERROR_REPORT), as follows:-

Parameter Description

ERROR NO ERROR No error

ERROR TX PACKET FAILED Device driverfailed to transmit a packet after the- - - maximum number of transmit retries was at-
tempted. The first FAILED_PACKET_LENGTH
bytes of the failed packet is returned

ERROR_HEARTBEAT_STOPPED Indicates a failure to detect the heartbeat signal
from the Media Attachment Unit following pack-
et transmission. See Section 5.1.7.

ERROR TX BABBLE FAULT Indicates an attempt to transmit a packet longer- - -
than the maximum allowed,
MAX_PACKET_LENGTH is 1518 bytes

ERROR_DMA_REQUEST_LATE Fatal hardware fault, this should never occur

ERROR_TX_BUFFER_INVALID Fatal internal condition, this should never occur

ERROR_TX_BUFFER_UNDERFLOW Fatal hardware fault, this should never occur

72 TRN 23500 December 1991

26

4.2 Diagnostic procedures

Two diagnostic procedures are provided for verifying correct operation of the
Ethernet interface hardware. The tests performed by both procedures involve
transmitting self addressed packets, waiting for them to return and then comparing
the returned packet data with the original test data. Thisloopback is either confined
to the bounds of the Ethemet interface hardware itself (internal) or may occur
externally, via an attached network.

Internalloopback checks for correct operation of the Ethernet interface hardware
and associated packet buffer memory while transmitting and receiving test
packets. There is no interaction with the attached Ethernet network during the test.
A failure to successfully perform internalloopback indicates a fatal fault within the
Ethernet interface hardware. External loopback extends the scope of the tests
performed by transmitting and receiving test packets via the live Ethernet. Failures
during this test can be caused by problems with the Media Attachment Unit,
associated cabling or a network fault.

Since both procedures initialise the Ethernet interface in diagnostic loopback
mode, application software should re-initialise the interface after their use. The
Ethernet interface will be left in the inactive (stopped) state.

4.2.1 B431_lnternal_Loopback()

Description:

Perform an internal loopback test of the Ethernet interface hardware.

c:
int B431 Internal Loopback (
Channel - - *from b431,
Channel *to b431,
const unsiqned char physical address[PHYSICAL ADDRESS SIZE],
int *error_code) --

occam:
PROC B431. Internal. Loopback (
CBAN OF ANY from.b431,

to.b431,
VAL [PHYSICAL . ADDRESS . SIZE] BYTE physical. address,
INT result,

error. code)

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 27

Parameter Description

from b431 Channel from the 8431 device driver

to b431 Channel to the 8431 device driver

physical_address Physical address of the Ethemet interface

error_code An Ethernet interface error code if resul t is
TEST HARDWARE ERROR- -

Return codes:

resul t contains the completion code for B431. Internal. Loopback (). It is
returned by B431_Internal_Loopback () .

A value of TEST PASSED indicates normal successful completion:- The Ethernet
interface successfully passed the packet loopback test. Other result codes indicate
a failure to perform the loopack test as follows:-

TEST MEMORY FAULT- -

TEST LOOPBACK FAILED- -

TEST HARDWARE ERROR- -

Notes:

The Ethernet interface hardware failed to in
itialise correctly

A memory fault was discovered while execut
ing the packet buffer memory check

Test packets failed to return or were corrupt
on reception

The device driver indicated a hardware fault,
error code will be as described for
B431 Waitfor Event(), see section
4.1.1[-

Since no interaction with the external Ethernet network occurs during internal
loopback the physical address assigned to the Ethernet interface mayor may not
be a valid address.

72 TRN 235 00 December 1991

28

4.2.2 B431_External_Loopback()

Description:

Perform an externalloopback test of the Ethernet interface hardware.

C:

int B431_External_Loopback (
Channel *from_b431 ,
Channel *to_b431,
const unsigned char physical_address [PHYSICAL_ADDRESS_SIZE] ,
int *error_code)

occam:
PROC B431. External. Loopback (
CBAN OF ANY from.b431,

to.b431,
VAL [PHYSICAL .ADDRESS . SIZE] BYTE physical. address,
INT result,

error. code)

Parameter Description

from b431 Channel from the 8431 device driver-
to b431 Channel to the 8431 device driver

physical_address Physical address of the Ethernet interface

error code An Ethernet interface error code if resul t
is TEST HARDWARE ERROR- -

Return codes:

resul t contains the completion code for B431 . External. Loopback (). It is
returned by B431_External_Loopback () .

A value of TEST PASSED indicates normal successful completion:- The Ethernet
interface successfully passed the packet loopback test. Other result codes indicate
a failure to perform the loopack test as follows:-

TEST INIT FAILED- -
TEST MEMORY FAULT

TEST LOOPBACK FAILED

TEST HARDWARE ERROR

72 TRN 23500

The Ethernet interface hardware failed to in
itialise correctly

A memory fault was discovered while execut
ing the packet buffer memory check

Test packets failed to return or were corrupt
on reception

The device driver indicated a hardware fault,
error code will be as described for
B431 Wai tfor Event () , see section
4.1.1[-

December 1991

IMS 8431 ethernet TRAM

4.3 IMS 8431 Device Driver

29

The IMS 8431 device driver is supplied as a linked unit in the file:
\F006A\B431DRVR. LKU (which should be on the I SEARCH path). It is referenced
by either a C (. efs) or an occam (.pgm) configuration level program and should
be placed on every IMS 8431 Ethemet TRAM in the target transputer network. The
configuration language syntax for achieving this is different for ANSI C and occam,
the following configuration program source code fragments summarise this:-

occam .pgm file:

-- Hardware description

VAL K IS 1024 :

NODE b431 :
NETWORK simple.network

DO
-- IMS B431 has a T222 and 64 Kbytes memory
SET b431 (type, memsize := "T212", 64 * K)
CONNECT SomeOtherTram[link] [2] TO b431 [link] [1]
-- Can use an arbitrary link on IMS B431

Software description

'USE "b431drvr.lku" -- IMS B431 device driver

CONFIG
CHAN OF ANY SomeOtherTram.to.b431, b431.to.SomeOtherTram
PLACED PAR

PROCESSOR b431
INMOS.B431.Driver(SomeOtherTram.to.b431, b431.to.SomeOtherTram)

ANSI C . efs file:

/* Hardware description */

/* IMS B431 has a T222 and 64 Kbytes memory */
T212 (memory = 64K) b431;
connect SomeOtherTram.link[2] to b431.link[1];

/* Software description */

process (interface (input to_b431, output from_b431)) b431_driver;

connect SomeOtherTram.to b431 to b431 driver.to b431;
connect SomeOtherTram.from_b431 to b431_driver.from_b431;

/* Select linked units and place processes */

use "b431drvr.lku" for b431 driver;
/* IMS B431 device driver *7

place b431_driver on b431;

72 TRN 235 00 December 1991

30

4.3.1 Debugging support

To achieve maximum performance from the Ethernet interface the IMS B431
device driver linked unit b431drvr .lku is supplied with interactive debugging
disabled. Note that it is not supplied with interactive debugging enabled, for the
following reasons:--

The IMS 8431 device driverwill be used in real time communication system
environments. Typically, it is not possible to interactively debug real time
communication protocol software.

2 Because it would be slower, using a different and slower version of the de
vice driver when debugging has the potential to alter the conditions under
which bugs arise.

The consequence of this is that it is not possible to interactively debug transputer
networks whose configuration descriptions include placement statements for the
IMS 8431 device driver. In particular, for ANSI C programmers, this means:-

When booted with ISERVER, configured programs will run normally.

2 Attempting to boot a configured program with the interactive debugger
IDEBUG will fail, the debugger will generate a warning message.

3 Application debugging is possible with the post-mortem debugger.

and for occam programmers:-

Application software should be compiled and linked with interactive debug
ging disabled. Use the complier and linker y option.

2 The y option should also be used when configuring with occonf, it will fail
to generate a bootable otherwise.

3 When booted with ISERVER, configured programs will run normally.

4 Application debugging is possible with the post-mortem debugger.

Interactive debugging is possible with the IMS F006A software, but this requires
alteration to source code and network configuration descriptions. There will be
occasions when interactive debug capability can be usefully applied to some parts
of a target transputer network, while other parts continue to execute real time
software. With care, it may even be possible to achteve this without affecting the
real time nature of other transputers in the system. For this reason an alternative
scheme for booting a target transputer network that allows both the interactive
debugging of application software and the IMS 8431 device driver to execute is
supported by the IMS F006A software.

72 TRN 23500 December 1991

IMS 8431 ethernet TRAM 31

Every IMS B431 Ethernet TRAM, in a target network, is treated as a peripheral
device and is not described in the corresponding network configuration file. The
placed hard links and channels that previously connected application software to
the device driver are instead placed onto an EDGE link. This separates application
transputers from their attached IMS B431 Ethernet TRAMs. No bootable code will
be generated for the IMS B431 TRAMs because they will not appear in the network
description:- the network bootable file generated by configuring with the
alternative description will not contain any code for any IMS B431 TRAMs. When
the network is booted with this file it will run only application software, on
application transputers. The IMS B431 TRAMs will be reset and not running any
code.

The responsibility to boot each IMS 8431 TRAM in this scheme is passed on to
application software. The procedure B431 Load Driver () does this, when
passed a pairoftransputerchannels which are connected to an adjacent IMS B431
TRAM it will download the device driver into the TRAM and verify that the boot
succeeded. The channels will be the same ones subsequently used to interact with
the device driver, as previously described, and should be mapped onto an EDGE
link known to be physically connected to the IMS B431 TRAM.

Booting the IMS 8431 TRAM separately in this manner allows an application
transputer network to be run with or without the interactive debugger present whilst
maintaining constant behaviour on the Ethernet TRAM. It should be stressed,
however, that the use of the interactive debugger does change the performance
and therefore real time characteristics of the application being debugged. It is
recommended that the post mortem debugger be used unless special
circumstances require otherwise.

The following occam configuration source code fragment shows how to declare an
EDGE link and how they are then attached to an application program:-

-- Hardware description.

VAL K IS 1024 :
VAL M IS K * K :

EDGE b431 :
ARC HostLink, B431Link
NODE app :
NETWORK application

DO
-- Application code runs on an INS B404 2Mbye TRAM
SET app (type, ~ize := "T800", 2 * M)
CONNECT app[link] [1] TO HOST WITH HostLink
-- INS B404 TRAM is known to be connected to the INS B431
-- via it's link 2. It doesn't matter to which link on the
-- INS B431 TRAM it is connected.
CONNECT app[link] [2] TO b431 WITH B431Link

72 TRN 235 00 December 1991

32

-- Software description.

fINCLUDE "hostio.inc"
fUSE "application.c8h" -- Application program

CONFIG
CHAN OF SP app.to.host, host.to.app :
CHAN OF ANY app.to.b431, b431.to.app :
PLACE app.to.host, host.to.app ON HostLink
PLACE app.to.b431, b431.to.app ON B431Link
PLACED PAR

PROCESSOR root
application(host.to.app, app.to.host, b431.to.app, app.to.b431)

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM

4.4 Using B431_Load_Driver()

Description:

Load the IMS 8431 Ethernet TRAM with its device driver.

33

Applications, which do not include the IMS 8431 Ethernet TRAM in theirtransputer
network configuration, will use this procedure to download the device driver. The
entire transputer network, with the exception of the Ethernet TRAM, will be loaded
with application software at bootstrap time. This procedure allows the application
to subsequently download the device driver into the Ethernet TRAM. Once loaded,
the Ethernet TRAM will function exactly as it would as if booted with the device
driver from the same configured bootable file as the application. This alternative
(two stage) loading scheme is required when one part of the transputer network
needs to be configured differently from another part. Section 4.3.1 describes this
in more detail.

C:
'include<b431load.h>

int B431 Load Driver (
Channel *from b431
Channel *to_b431)

occam:
'INCLUDE "b431load. inc"

PROC B431.Load.Driver(
CHAN OF ANY from.b431,

to.b431,
BYTE result)

Parameter Description

from b431 Channel from the 8431 device driver

to b431 Channel to the 8431 device driver

Return codes:

result contains the completion code for B431. Load. Driver (). It is returned
by B431_Load_Driver ().

A value of LOAD SUCCESS indicates normal successful completion:- the IMS
8431 Ethernet TRAM will be running it's device driver. Other result codes indicate
a failure to load and start the device driver as follows:-

LOAD BOOT FAILED- -
LOAD CHECK FAILED- -

72 TRN 23500

Could not download the device driver

Loaded device driver but it failed to respond
when checked

December 1991

34

Notes:

from b431 and to b431 must be configured as EDGE channels, ie: they are
placed onto an EDGE link by the configuration description for the application
transputer network. The corresponding hard link should connect the EDGE to an
IMS 8431 Ethernet TRAM. This is discussed in the relevant toolset documentation
for the configurer tools:- icconf (ANSI C) or occonf (occam).

If the EDGE link is physically unconnected, or connected to something other than
an IMS 8431 Ethernet TRAM, then this procedure will fail and interaction with the
device driver will be impossible.

72 TRN 235 00 December 1991

35

5 IEEE 802.3
CSMAlCD Ethernets

5.1 IEEE 802.3 CSMAlCD Ethernets

Ethernet is a Local Area Network (LAN) standard originally proposed by Xerox
Corp, Digitial Equipment Corp and Intel Corp. It is now established as ANSI/IEEE
Standard IEEE 802.3. Cheapernet is a variant of Ethernet using the same signal
ling conventions but a cheaper network medium.

Ethernet is a Carrier Sense, Multiple Access, with Collision Detection local area
network (abbreviated to CSMAlCD). This term defines the way in which two or
more nodes gain and share access to a common bus transmission medium:- the
Ethernet coaxial cable.

Communication is by means of packets. A packet is a collection of octets (bytes).
Packets are transmitted in byte serial order, and within each byte bit serial order,
on the coaxial cable.

When a node wishes to send a packet to another node, it observes the network
to see whether any other node is transmitting a packet (Carrier Sense). If it detects
another transmission, it will not attempt to transmit and instead defers until the net
work is quite. If it does not detect another transmission it begins to transmit the
packet.

Because it takes a finite time for a signal to travel across the network, two (or more)
nodes may begin transmitting simultaneously because they all believe the network
is free (Multiple Access). This results in packets colliding on the network.

All of the nodes detect the collision (Collision Detection). The nodes which were
not attempting to transmit will then not attempt to transmit until the collision has
been resolved and a packet transmitted. The nodes which were attempting to
transmit wait for a random time then attempt to transmit again. Thus, one node
should always gain possession of the network. If another collision occurs, the
nodes wait again for a random time and try again. Up to 16 transmission attempts
are allowed, if the packet has not been transmitted after this, the node does not
try to transmit it again.

Because of the carrier sense function, there is only a short time at the beginning
of transmission during which collisions can occur. This time is known as the slot
time and is the time taken for a transmitted signal to travel to the farthest point on
the network, collide, and return as a collision. The slot time is defined to be 64 byte
times which at 10 Mbits/s is 51.2Jls. This definition of slot time limits the maximum
path length on the network to 500 meters.

Once the slot time has elapsed without any collisions being detected, a node may
assume that it has possession of the network. All other nodes will have detected
it's transmission and will not attempt to transmit.

72 TRN 23500 December 1991

36

5.1.1 Packet structure

Ethernet packets have the following structure:-

IMS
F006

User supplied User supplied Igener-I
ated

Dest. Source Length Data (optional)
address address PAD

6 bytes I 6 bytes 12 bytesI 46 - 1500 bytes /4 byte~IS6 bits 18 bits 1

IEEE 802.3 MAC frame format

IMS F006 I
1 generated

Ethernet frame format
IMS

I
IMS F006

I

F006
generated User supplied User supplied Igener-I

ated

Dest. Source Type Data
address address

162 bits 12 bits I 6 bytes I 6 bytes 12 bytesI 46 - 1500 bytes 14 byte~

Figure 5.1 Ethernet packet structure

The IEEE 802.3 preamble and start frame delimiter (SFD) bits are equivalent to
the Ethernet preamble and sync bits. Thus the packet formats are essentially iden
tical.

Bytes are transmitted from left to right, starting with the preamble bits and finishing
with the frame check sequence (FCS) bytes. The IMS 8431 hardware generates
the preamble and SFD I sync bits automatically, it also computes the frame check
sequence bytes unless explicitly disabled from doing so.

The packet is logically split into two parts:- the packet header and data segments.
The header contains addressing and control information and the packet data seg
ment contains data.

The destination and source address fields are both 6 bytes long. The source ad
dress will correspond to the address assigned to the Ethernet interface during in
itialisation, it identifies the packet's origin. The destination address identifies the
intended recipient of the packet. Section 5.1.3 describes Ethernet addressing con
ventions.

The type or length field is two bytes long, it carries either a packet type code or a
length value. Type codes are used to identify packets as members of a common

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 37

higher layer protocol family. When used as a length field the value corresponds to
the number of bytes carried in the data part of the packet which may then be differ
ent from the actual number of bytes in the packet. This is used to distinguish data
bytes from optional padding bytes. The length value should be expressed in big
endian order, the most significant byte is transmitted before the least significant.

Packet lengths

The minimum Ethemet packet length is 64 (MIN PACKET LENGTH) bytes. The
maximum is 1518 (MAX PACKET LENGTH) byte; These values include the 14
(PACKET HEADER SIZE) byte packet header and trailing frame check sequence
bytes. Attempting to transmit a packet longer than the maximum allowed will result
in a transmit babble fault. Packets smaller than the minimum value will padded to
the minimum value with random data.

5.1.2 CRC algorithm

The CRC algorithm is used to check the data integrity of packets and also as part
of the logical address filtering mechanism (multicast addressing). The Ethernet in
terface automatically computes a 32 bit CRC value on the source address, destina
tion address, type I length field and data segments of a packet to be transmitted.
This value is appended to the packet when it is transmitted. The Ethernet interface
also calculates the CRC value for received packets and compares this to the re
ceived CRC value. If they are different, the packet has been corrupted. A count of
the number of packets received with CRC errors is maintained by the device driver

If the Ethernet interface is initialised with CRC field generation disabled then pack
ets queued for transmission should have a user calculated CRC field appended
to the packet data segment. See B431_Init_Normal C).

The CRC algorithm is specified in ANSI/IEEE 802.3 CSMAlCD, it is computed as
follows:-

1 The first 32 bits of the packet are complemented.

2 The n bits of the packet are considered to the coefficients of a polynomial
M(x) of degree n -1 :- the first bit of the destination address is the coefficient
of the x n- l term and the last bit of the data field is the coefficient of the xO

term.

3 M(x) is multiplied by x32 and divided by the generator polynomial:-

4 The remainder R(x) is of degree ~ 31. The coefficients of R(x) are consid
ered to be a 32 bit sequence.

5 The bits are complemented:- the result is the CRC.

The Ethernet interface contains hardware to compute the CRC value.

72 TRN 23500 December 1991

38

5.1.3 A~dressing

Every node on an Ethernet network is assigned a unique physical address (see
B431_Ini t_Normal (»). Packets travelling on the Ethernet contain two physical
address fields, the destination address and the source address. The source ad
dress will identify exactly one node:- the node originating the packet. The destina
tion address may identify a single destination node, a group of nodes (multicast
address) or all nodes on the Ethemet (broadcast address).

Physical addresses are 6 (PHYSICAL_ADDRESS_SIZE) bytes long.

Multicast Addresses

The CRC algorithm is used to implement the multicast address function. A packet
carrying a destination address with a least significant bit set to 1 is a multicast pack
et. It-may be received by a group of nodes depending on their logical address filters.

Multicast packets are filtered in the following way:-

The CRC algorithm (described in section 5.1.2) is applied to the multicast
destination address

2 The 6 high order bits of the resultant 32 bit CRC value are used to select
one bit from the logical address filter.

3 If the bit is 1 the packet is received, otherwise it is discarded.

The logical address filter is therefore 8 (LOGICAL ADDRESS FILTER SI ZE) by-
tes long (26 =64 bits =8 bytes). - - -

To disable the reception of multicast packets set all 8 bytes to zero.

Broadcast Address

A packet carrying a destination address of #FFFFFFFFFFFF, the broadcast ad
dress, will be received by all nodes regardless of their physical or multicast address
values.

5.1.4 Retry algorithm

The Ethemet interface will make up to 16 attempts to transmit a packet. An attempt
fails if a collision with a packet transmitted by another node occurs within the first
64 byte times of the transmission attempt. If a collision occurs the Ethernet inter
face waits for a random time between 0 and 2k slot times where a slot time is de
fined to be equal to 64 byte times and k =min(attempt number, 10). If 16 attempts
to transmit the packet fail the Ethernet interface discards the packet and generates
an error event with an error code of ERROR TX PACKET FAILED. The first 64
(FAlLED_PACKET_LENGTH)bytes of the packet are returned. See B431_Wait
for_Event ().

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 39

This mechanism is known as truncated binary exponential backoff.

The retry algorithm can be disabled by initialising the Ethernet interface with the
DISABLE TX RETRY mode flag set. This will cause the Ethernet interface to im
mediately-discard packets if it fails on the first transmission attempt.

5.1.5 Ethemet statistics

The device driver accumulates statistics that correspond to various operating char
acteristics of the Ethemet interface. They may be requested at any time, by calling
B431 Ether Stats (), and are returned to the application program via
B431-Wai tfor Event () . ANSI C programmers will receive the statistics in a
structure of type ETHER STATS, occam programmers will receive an INT32 array
(appropriate indices aredeclared in b431io. inc).

With the exception of the time domain reflectometer value, which is described in
the next section, all statistics are unsigned long integers which monotonically in
crease from O.

The statistics are implicitly cleared to 0 when the Ethernet interface is initialised or
may be explicitly cleared by calling B431 Reset Stats () . The following sta-
tistics are accumulated:- --

txJ>ackets

framing_errors

crc errors

packets_dropped

packets_missed

deferred transmits

72 TRN 235 00

The total number of packets queued for trans
mission.

The total number of packets received without
error.

The total number of packets received with a
framing error, the packet contained a
non-integer number of octets and also failed
the CRC check.

The total number of packets received that failed
the CRC check.

The total number of packets dropped (dis
carded) because the inbound packet queue ran
out of buffers during reception, buffers are re
leased when packets are sent to the application
program. See B431_Waitfor_Event(), this
usually indicates a failure of application soft
ware to match the receive packet rate.

The total number of packets missed completely
because the inbound packet queue was full,
see above.

The number of occurrences of deferal during
transmission, provides a measure of Ethernet
loading. The ratio of this value and
txJ>ackets can be regarded as an Ethemet
utilisation factor.

December 1991

40

late collisions

carrier lost

no more retries- -

single_retries

multiple_retries

The number of late collisions detected. A trans
mit packet collision was detected after the trans
mit slot time elapsed, the Ethernet interface
does not retry after a late collision, the packet is
discarded. This indicates a potential network
fault as all nodes should obey the physical layer
CSMAlCD access protocol.

The number of occurrences of carrier loss dur
ing transmission, the Ethernet interface will con
tinue to transmit the packet and will not retry. In
dicates a potential network fault.

The number of packets discarded because the
Ethernet interface failed to transmit them after
16 retry attempts. Indicates a potential network
fault, if the ratio of tx""packets to this value is
high then suspect a cable fault. The time do
main reflectometer value can provide an esti
mate of the distance to a potential cable fault,
see the next section for more details.

The total number of packets successfully trans
mitted after a single retry attempt, provides a
measure of network loading.

The total number of packets successfully trans
mitted after multiple retry attempts, also pro
vides a measure of network loading.

5.1.6 Time domain reflectometer

The Ethernet interface has a hardware counter called the time domain reflectome
ter (TOR). When a packet is transmitted the counter starts counting at the transmit
bit rate (10MHz), it stops counting when a packet collision is detected. If repeated
retry failures occur then this value can provide an estimate of the distance to the
location of a potential cable fault. The value returned (with other statistics) by call
ing B431_Ether_Stats () is an average of the time domain reflectometer for
each occurence of transmit retry failure.

If the propagation velocity of the cable isP, then the distance (in meters) to a poten
tial cable fault is given by:-

distance = J.. X P X TDR X 0.1 X 10--6
2

The factor of t results from the TDR being equal to the time for the transmission

signal to propagate to the collision point and for the collision signal to return.

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM

5.1.7 Heartbeat monitor

41

Heartbeat, otherwise known as Signal Quality Error, is a feature sometimes pro
vided by Media Attachment Units for continuously verifying correct operation of the
collision detection circuitry and associated cabling. This function is usually ajump
er configured option within the MAU box.

Heartbeat works as follows: immediately after every transmission the MAU will as
sert it's collision detect signal. The Ethernet interface will correspondingly check
that this has happened and if it fails to detect the collision (heartbeat) signal an error
will be reported. B431_Waitfor_Event () will complete with an error_code of
ERROR HEARTBEAT STOPPED.- -
The Ethernet interface should be initialised with the heartbeat monitor function en
abled if the MAU supports it.

5.1.8 Performance

The following graph depicts data rate versus packet length. Results were obtained
using a program designed to continuously transmit packets, with a constant packet
length, to a non-existent destination address. The time taken to transmit a large
number of packets was measured under fairly light Ethernet load conditions and
the effective data rate calculated.

kBytes/sec
1000

800

600

400

200

o+---.-----.-----.----.-~-r-----.----r___,_--.,.__,,___r--.---...,____J

o 200 400 600 800 1000 1200 1400
Packet size

Figure 5.2 Graph showing packet size vs data rate

72 TRN 235 00 December 1991

42

72 TRN 235 00 December 1991

43

6 Detailed hardware
description

6.1 Data structures

The Ethernet interface on the IMS 8431 is implemented with the AM 7990
(LANCE). The LANCE avoids loading the IMS T222 with frequent I/O operations
by having direct memory access (DMA). The LANCE transmits Ethernet packets
directly from a set of transmit buffers, and receives packets directly into a set of
receive buffers. The programmer can place the transmit and receive buffers in any
convenient areas of memory.

Each buffer has an associated descriptor. The descriptors arbitrate buffer owner
ship between IMS T222 and LANCE and provide comprehensive error and status
reporting for each packet received or transmitted. Each descriptor points to a
single buffer. Refer to figure 6.1.

The descriptors are arranged in two blocks of memory called the transmit message
descriptor ring and the receive message descriptor ring. The LANCE has a pointer
to each of these rings. Each ring entry must start on a quadword boundal)C Le. at
a byte address divisible by eight. The ring entries and their respective buffers are
used strictly in the order in which they appear in the ring, entries are never skipped.

72 TRN 235 00 December 1991

44

d . treceive escnp or nng
CSR1: Address of buffer 1 N Receive

Ir---
pointer to Buffer 1 status buffer 1

initialisation
Buffer 1 byte countblock

Buffer 1 message count
Mode 2------ N Receive IPAORO 2 buffer 2

PAOR1 2
PAOR2 2

LAORFO ••LAORF1 ••
LAORF2 n

N Receive
ILAORF3 n buffer n

RORA I--- n
RLEN I--- n
TORA
TLEN

Initialisation block transmit descriptor ring
Address of buffer 1 N Transmit

IBuffer 1 status buffer 1
Buffer 1 byte count
Buffer 1 error status

2

N Transmit I2 buffer 2
2
2

••••
n

N Transmit
In buffer n

n
n

Figure 6.1 Data structures used by the LANCE

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 45

6.1.1 Buffer and descriptor ownership

The host and LANCE communicate with each other by means of the receive and
transmit message descriptor rings. Ring entries (descriptors) and their associated
buffers are owned either by the host or by the LANCE. Ownership is indicated by
an ownership bit in each message decriptor. The LANCE does not access descrip
tors and buffers which it does not own, the host software should not access des
criptors and buffers which it does not own. In this way, only valid data is exchanged
between LANCE and host.

6.1.2 Data chaining

To make efficient use of the system memory, the LANCE incorporates a data chain
ing mechanism. This allows the transmit and receive buffers to be smaller than the
maximum packet size (1514 bytes). Packets longer than the buffer size are written
to several buffers and the buffers chained by setting appropriate bits in their des
criptors. In this way, small packets occupy single small buffers and large packets
occupy more buffers, so that little memory space is wasted. Data chaining can op
erate for both transmitted and received packets. The minimum packet or buffer
size for data chaining is 100 bytes.

6.2 Software structure

The transputer's hardware support for multiple processes running in parallel
makes it ideal as a communications controller. In a typical application, software
running on the IMS T222 inputs packets to be transmitted on one (or more) of its
links and outputs received packets on one (or more) of its links. The software would
be structured as shown in figure 6.2.

The transmit queue monitor inputs packets for transmission from a channel (which
may be a link and places them in the transmit buffers). It also monitors the progress
of all packets queued for transmission. Any change in the status of a packet
queued for transmission is signalled by a transmitter interrupt which the event han
dier passes on to the transmit queue monitor.

72 TRN 235 00 December 1991

46

Packets to
transmit

Transmitter

Receiver

LAN

Figure 6.2 Software structure and interaction with hardware

The receive queue monitor waits for receiver interrupts from the event handler It
then examines the receive descriptor ring to determine the cause of the interrupt.
It outputs correctly received packets on a receive channel.

The event handler determines whether interrupts were generated by the transmit
ter or receiver and passes them on to the transmit and receive handlers according
ly.

To transmit a packet, the IMS T222 simply has to place the packet in an empty
transmit buffer and set up the descriptor for that buffer to indicate that it should be
transmitted. The LANCE will transmit the buffer contents when it has transmitted
all packets ahead of it in the descriptor ring. It then updates the descriptor contents
to inform the IMS T222 of the packet status. It may also interrupt the IMS T222.

When the LANCE receives a packet from the Ethernet (or Cheapernet) it places
the packet in the next available empty receive buffer. It then updates the descriptor
for that receive buffer to indicate that it contains a received packet. It may also inter
rupt the IMS T222. When the IMS T222 has removed the received packet from the
buffer it marks the descriptor as empty again.

Operation of the IMS 8431 is the same regardless of whether it is connected to an
Ethernet system or a Cheapernet system: the same software can be used with
both types of network.

72 TRN 23500 December 1991

IMS 8431 ethernet TRAM 47

6.3 Initialising

Initialising the IMS 8431 consists of setting up the physical and logical addresses
of the node, and the data structures required for transmitting and receiving pack
ets.

The LANCE needs to know the node addresses, and the location of and number
of entries in the transmit and receive descriptor rings. The host sets these via the
initialisation block. This is a parameter block placed at a defined address in
memory. The LANCE initialises itself with these parameters on receipt of a com
mand from the host.

The LANCE contains four control and status registers: CSRO-3. CSR1 and CSR2
are a pointer to the initialisation block. This must be written by the host before giving
the initialise command. Setting the INIT bit in CSRO causes the LANCE to load it
selfwith the parameters from the initialisation block pointed to by CSR1 and CSR2.
CSR3 defines the way in which the LANCE's DMA interface works.

6.3.1 The initialisation block

The initialisation block defines the logical and physical addresses of this node and
the LANCE operating mode. It also defines the number of entries in and location
of the transmit and receive message descriptor rings. The initialisation block is
read by the LANCE when the host sets the INIT bit in CSRO. The structure of the
initialisation block is shown in figure 6.3; it occupies twelve words of contiguous
memory starting on a word boundary

o -IA~-R+1~-11_5_-=-_--R-D--'-~-----'OI

15 13:' 0
IADR+18~ 0 - -- - - - - - 01

15 i 0

IADR+20 I TDr I

15 13 i 0

IADR+22~ 0 - - - - - - - - 01

MODE

I
PADRO
PADR1
PADR2

I
LADRFO
LADRF1
LADRF2
LADRF3

L ___

15

IADR

IADR+2
IADR+4

IADR+6

IADR+8
IADR+10
IADR+12

IADR+14

Figure 6.3 Initialisation block

72 TRN 23500 December 1991

48

Mode register

The MODE register ls normally set to #0000. Non-zero values are used for test
purposes, see section 6.13.

Physical Address (PADRo-PADR2)

These three words form the 48 bit address allocated to this node. PADRO is the
least significant part of the address. This address should be unique on the network
and, in theory, can be unique for every ethernet node in existence. Physical ad
dresses are always even. When the LANCE detects the start of a packet on the
LAN, it examines the packet's destination address. If the destination address is
#FFFFFFFFFFFF the packet is received as this is the broadcast address. If the
least significant bit of the destination address is 0, it is compared with the physical
address; if they are the same, the packet is received. Otherwise, the address is a
logical address.

Logical Address Filter (LADRFo-LADRF3)

Logical addressing allows nodes with different physical addresses to receive the
same packet. If the least significant bit of the destination address is 1, but the ad
dress is not the broadcast address (#FFFFFFFFFFFF), the destination address is
a logical address. The six high order bits of the CRG of the destination logical ad
dress are then used to select one bit of the logical address filter If that bit is 1 the
packet is received. Thus, to receive packets with a particular logical address, a par
ticular bit (determined by the CRC algorithm) must be set in the logical address fil
ter. An algorithm for determining the bit which must be set is described in section
5.1.2.

Receive Descriptor Ring Pointer (RDRA)

The host writes this location with the address of the start of the receive buffer des
criptor ring. The three least significant bits of this address must be 0 becau~e the
start of each descriptor is aligned on a quadword boundary

Receive Descriptor Ring Length (RLEN)

The number of entries in the descriptor ring must be a power of two between 1 and
128. The number of entries is expressed as a three bit number; e.g. 000 for 1 entry,
001 for 2 entries, 111 for 128 entries. The host writes this number to the three most
significant bits of RLEN, all other bits must be O. Table 6.1 shows the contents of
RLEN for each possible ring size.

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM

RLENITLEN Ring Entries

#0000 1

#2000 2

#4000 4

#6000 8

#8000 16

#AOOO 32

#COOO 64

#EOOO 128

49

Table 6.1 Transmit and Receive descriptor ring size

Transmit Descriptor Ring Pointer (TDRA)

The host writes this location with the address of the start of the transmit buffer des
criptor ring. The three least significant bits of this address must be 0 because the
start of each descriptor is aligned on a quadword bounda~

Transmit Descriptor Ring Length (TLEN)

The number of entries in the descriptor ring must be a power of two between 1 and
128. The number of entries is expressed as a three bit number; e.g. 000 for 1 entry,
011 for 8 entries, 111 for 128 entries. The host writes this number to the three most
significant bits of TLEN, all other bits must be O. Table 6.1 shows the contents of
TLEN for each possible ring size.

6.3.2 CSRo-CSR3

The LANCE has four control and status registers, shown in figure 6.4, which con
tain status and error bits and also the control bits used to start, stop, and initialise
the LANCE. CSR1 and CSR2 form a pointer to the initialisation block. CSR3 de
fines the way in which the DMA hardware operates.

The control and status registers are all accessed at the same location in the trans
puter's address space; '7FFC. The register to be accessed is ~dentified by writing
0, 1, 2, or 3 to '7FFE; this location is known as the register address port (RAP).

72 TRN 235 00 December 1991

50

CSRO

15 0
CSR11 IADR

15 0
CSR21 #0000

15 0
CSR31 #0000

Figure 6.4 The control and status registers

CSRO

CSRO contains the status and error bits. All of these bits can be read. Some of
these bits are capable of causing interrupts when interrupts are enabled. All bits
in CSRO are cleared when the IMS B431 is reset except STOP which is set. Reset
places the LANCE in STOP mode. All bits in CSRO except STOP are cleared when
STOP is set. The bits are

ERR

ERR =BABL + CERR + MISS + MERR

ERR is set by the LANCE and can be cleared only by clearing the condition
causing the error.

BABL (Babble Error)

Babble Error is set by the LANCE after 1519 bytes have been transmitted: Le.
if the packet length is greater than the maximum allowed by the ethernet specifi
cation. The LANCE continues to transmit until the whole packet has been trans
mitted or an error occurs. BABL is cleared by writing 1 to this bit.

CERR

As a test of the collision detection logic, the LANCE expects its collision detect
input to be asserted within 2Jls after the end of each transmission. It is up to the
MAU to assert the collision pair at the SIA connector. If it is not asserted or if there
is a fault in the collision detection circuitry, the LANCE will set CERR. This fea
ture is known as heartbeat. CERR is an indication ofwhether the collision detec
tion logic is functional. If the MAU does not support heartbeat, CERR should be
ignored. CERR does not set INTR.

MISS (Receiver Miss Error)

The LANCE sets MISS when it loses a packet because it did not own a receive
buffer. MISS is cleared by writing 1 to this bit.

72 TRN 23500 December 1991

IMS 8431 ethernet TRAM 51

MERR

The LANCE sets MERR if it could not access the memory on the IMS 8431. This
condition should never occur as it indicates a hardware fault. MERR should nev
er become set. MERR is cleared by writing 1 to this bit.

RINT

The LANCE sets Receiver Interrupt when it updates the Receive Descriptor
Ring entry for the last buffer of a received packet: i.e. after a packet is received.
RINT is cleared by writing 1 to this bit.

TINT

The LANCE sets Transmitter Interrupt when it updates the Transmit Descriptor
Ring entry for the last buffer of a transmitted packet: i.e. after a packet is trans
mitted. TINT is cleared by writing 1 to this bit.

lOON

The LANCE sets Initialisation Done when it has completed it's self initialisation
procedure started by setting the INIT bit. IDON is cleared by writing 1 to this bit.

INTR

INTR =8A8L + MISS + MERR + RINT + TINT + IDON

If INEA is 1, the LANCE will assert the transputer's Event pin in conjunction with
setting INTR.

INEA (Interrupt Enable)

If INEA is 1, the LANCE will assert the transputer's Event pin if INTR is set. If
INEA is 0, the LANCE will not assert the Event pin.

RXON (Receiver On)

Indicates whether the LANCE receiver circuitry is enabled (1) or disabled (0).

TXON (Transmitter On)

Indicates whether the LANCE transmitter circuitry is enabled (1) or disabled (0).

TOMO (Transmit demand)

Setting TDMD causes the LANCE to access the transmit descriptor ring immedi
ately instead of waiting for it's normal polling interval of 1.6ms to elapse. It can
be used by the transmit driver software to speed up transmission. TDMD is
cleared by the LANCE after is is recognised.

STOP

Setting STOP has the effect of resetting the LANCE. Transmission and recep
tion cease and the LANCE remains idle until STRf or INIT is set. STOP clears
all other bits in CSRO. STOP can only be cleared by setting STRf or INIT.

STRT

The driver software sets STRT to cause the LANCE to begin transmission and
reception of packets. STRT can only be cleared by setting STOP.

72 TRN 235 00 December 1991

52

INIT
The driver software sets INIT This causes the LANCE to initialise itself with the
parameters from the initialisation block. STOP must be set before INIT can be
set.

Bit Set By Cleared By Write 1 Write 0 Sets
INTR

INIT write 1 STOP 1 - no

STRT write 1 STOP 1 - no

STOP write 1 STRT/INIT 1 - no

TOMO write 1 LANCE 1 - no

TXON DTX=O DTX=1/MERRlUFLO/BUFF - - no

RXON DRX=O DRX=1/MERR - - no

INEA write 1 write 0 1 0 no

INTR BABL+MISS+MERR+RINT+TINT+IDON - - -

lOON LANCE write 1 0 - yes

TINT LANCE write 1 0 - yes

RINT LANCE write 1 0 - yes

MERR LANCE write 1 0 - yes

MISS LANCE write 1 0 - yes

CERR LANCE write 1 0 - no

BABL LANCE write 1 0 - yes

ERR BABL+CERR+MISS+MERR - - no

Table 6.2 CSRO bits
Notes:

The Set By and Cleared By columns describe the circumstances under
which each bit is set and reset. In addition, all bits (except SlOP) are
cleared by STOP and reset: STOP is set by reset.

2 The Write 1 and Write 0 columns show the effect of writing each bit with
1 or 0 respectively. A dash in either of these two columns indicates that writ
ing that value has no effect on that bit.

3 The Sets INTR column shows which bits will set the INTR bit if they them
selves are set. These are the bits which can cause interrupts to the
IMS T222 if interrupts are enabled (INEA=1).

4 INTR and ERR simply reflect the states of other bits in CSRO. They are
cleared by clearing the bit(s) causing the interrupt or error.

The bits in CSRO can be divided into two groups: the control bits, and the status
bits. The control bits are INIT, STRT, STOP, TOMO, and INEA. The status bits are
TXON, RXON, INTR, lOON, TINT, RINT, MERR, MISS, CERR, BABL, and ERR.

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 53

The way in which CSRO works allows operations on it to be performed very easil}l
For example, to clear a transmitter interrupt and enable interrupts, simply write
#0240 - no other bits will be affected. Writing zeroes to the register has no effect
on any bit except INEA, so interrupts can be disabled without affecting any other
bit simply by writing #0000. Writing a one to most of the status bits will clear that
bit: writing a one to a control bit will cause the LANCE to perform the required ac
tion. Table 6.2 lists the details.

CSR1

CSR1 holds the 16 bit byte address of the start of the initialisation block; note that
the address must be even since the initialisation block must start on a word bound
ary.

CSR2

CSR2 extends the address held in CSR1 to a 24 bit value. Since the IMS B431 is
a 16 bit addressed system, CSR2 is always written with #0000.

CSR3

CSR3 defines the way in which the LANCE's DMA interface works. CSR3 must be
written with #0000; otherwise the IMS B431 will not function correctly.

6.3.3 Summary

Before any data packets are sent or received, the LANCE must be initialised and
the correct data structures set up in memor}l The initialisation procedure for normal
transmission and reception is as follows.

set the STOP bit and disable interrupts by writing #0004 to CSRO.

2 write the byte address of the initialisation block to CSR1; note that the ad
dress must be even.

3 write #0000 to CSR2 and #0000 to CSR3.

4 write TDRA with the start address of the transmit descriptor ring.

5 set TLEN to indicate the transmit descriptor ring length.

6 write RDRA with the start address of the receive descriptor ring.

7 set RLEN to indicate the receive descriptor ring length.

8 write a suitable value to the logical address filter; LADRF: This will be 0 if
logical addressing is not being used.

9 write the node's physical address to the physical address register: PADR.

10write #0000 to the MODE register.

72 TRN 23500 December 1991

54

11 set up the transmit and receive message descriptors.

12initialise the LANCE and enable interrupts by writing '0041 to CSRO.

The LANCE then initialises itself by reading the initialisation block. At the end of
initialisation the LANCE sets lOON in CSRO and interrupts the host.

• The host writes '0142 to CSRO to clear the interrupt, enable interrupts,
and start transmission and reception of packets.

The LANCE will then transmit packets from the transmit buffers as they are written
by the host and will write received packets to the receive buffers as they are re
ceived.

6.4 Receiving

The LANCE attempts to receive all packets which are addressed to this node and
all packets with the broadcast address. The LANCE communicates received pack
ets to the host by means of the receive message descriptor ring and receive data
buffers. The receive data buffers are accessed via the pointers in the receive des
criptor ring entries. The receive descriptor ring is shown in figure 6.5, it consists
of a four word descriptor (entry) for each receive buffer. Each entry must start on
a quadword boundary (a byte address divisible by eight). The LANCE uses the re
ceive message descriptors and buffers strictly in the order in which they appear
in the descriptor ring: entries are never skipped.

Received packets will be data chained over several receive buffers if they are too
long to fit in a single receive buffer. This is recorded in the message descriptor for
each receive buffer used.

6.4.1 The receive message descriptor

Each receive descriptor ring entry consists of the four words RMDO-RMD3 shown
in figure 6.5. Each entry points to a receive bufferand stores information about that
buffer such as: whether it is owned by the LANCE or the host, its length, the number
of message bytes received into that buffer, and whether any errors occurred during
reception of the buffer contents.

15
RMDOI ADDR

15 7

o

RMD11 OWN I ERR IFRAMloFLOI CRC IBUFF I STP I ENP I 00000000

15 11 0
RMD21 1111 I BCNT I

15 11 0
RMD3(0000 I MCNT I

Figure 6.5 Receive message descriptor ring entry

72 TRN 23500 December 1991

IMS 8431 ethernet TRAM 55

Receive message descriptor 0 (RMDO)

RMDO is a pointer to the receive data buffer referred to by this descriptor On re
ceipt of a packet the LANCE will write the received data to the block of memory at
this address.

Receive message descriptor 1 (RMD1)

RMD1 is used to arbitrate buffer ownership between the LANCE and the host. It
is also used by the LANCE to indicate whether any errors occurred during recep
tion of this packet and to indicate whether this received message is continued into
the next buffer (data chaining). The bits in RMD1 are

OWN

1 if this descriptor and buffer are owned by the LANCE.

o if this descriptor and buffer are owned by the host.

The host software should not access the descriptor or buffer if they are owned
by the LANCE as their contents will not be valid. The host software should set
OWN to 1 to hand this descriptor and buffer back to the LANCE when it has fin
ished with them: it should never set OWN to O. The LANCE will set OWN to 0
when data has been received into the buffer or if an error occurred while data
was being received into this buffer. The LANCE will never set OWN to 1.

ERR

ERR =FRAM + OFLO + CRC + BUFF

ERR is a summary of the other receive error bits.

FRAM

Framing Error. The LANCE sets FRAM if there was a CRC error and the packet
contained a non-integer multiple of 8 bits. If there was no CRC error FRAM is
not set, regardless of the number of bits in the packet. Thus, a FRAM error oc
curs if the packet has become truncated or extended in transit.

OFLO

Overflow Error. The LANCE sets OFLO if its internal buffer overflowed because
no receive buffers were available. This would happen if packets are received
faster than the host software empties the receive buffers.

CRC

CRC Error. The LANCE sets CRC if the CRC calculated on the received packet
does not agree with the CRC appended to the packet. This indicates that the
packet has been corrupted in transit.

BUFF

Buffer Error. The LANCE sets BUFF ifit needs to data chain the received packet
into the next buffer but cannot because it does not own the next receive buffer.

72 TRN 235 00 December 1991

56

This would happen if packets are received faster than the host software empties
the receive buffers.

STP

Start of Packet. The LANCE sets STP in the descriptor for the first buffer contain
ing part of a data chained, received packet. The LANCE also sets STP if the
packet is not data chained (it occupies a single receive buffer).

ENP

End of Packet. The LANCE sets ENP in the descriptorforthe last buffer contain
ing part of a data chained, received packet. The LANCE also sets ENP if the
packet is not data chained (it occupies a single receive buffer).

Receive message descriptor 2 (RMD2)

RMD2 is the two's complement of the length of the buffer pointed to by this descrip
tor: Le. it is minus the length of the buffer. It is the maximum number of bytes which
the LANCE is allowed to write to this buffer. If a larger packet is received, the
LANCE will continue the received data in the buffer pointed to by the next descrip
tor in the receive descriptor ring: Le. it will data chain the packet.

Receive message descriptor 3 (RMD3)

The LANCE writes the length of the received packet into RMD3 of the last descrip
tor used by this packet. Valid only when ERR is clear and ENP is set: Le. in the last
descriptor of a correctly received packet. Thus, for non data-chained packets,
RMD3 contains the number of message bytes in the buffer. For data chained pack
ets, the length of the message is held in RMD3 in the descriptor for the last buffer
used.

72 TRN 23500 December 1991

IMS 8431 ethernet TRAM

6.5 Size and number of receive buffers

57

If the packet size is fixed or it is known that the majority of received packets will be
of a certain size; then it is most efficient to have receive data buffers of that size.

When the size of received packets is unknown, the optimum receive buffer size
depends on the trade off between several factors. The size of received packets can
be up to 1518 bytes. It is inefficient to use receive buffers of this size because this
results in wasting large amounts of memory when small packets are received.
However, the LANCE will chain received packets which are larger than the buffer
size over several buffers. This allows buffers which are smaller than the maximum
packet size to be used and so uses the memory more efficientl~ The overhead in
the chaining operation is small but not negligible since it requires more work from
the receive driver software, the minimum buffer size which allows data chaining is
100 bytes.

The number of buffers and descriptor ring entries must be a power of 2. There
should be as many receive buffers as possible within the limits of the memory
space available: the number of bytes used by each buffer is the length of the buffer
plus 8 bytes for the descriptor.

6.6 LANCE actions during packet reception

When no packets have been received, orwhen the host has dealt with all received
packets, all of the receive message descriptors and buffers are owned by the
LANCE: i.e. OWN=1 in all buffers. Thus, the initialisation software should'set the
OWN bits in all the receive buffer descriptors.

The LANCE maintains a pointer to the next descriptor it will use. This points to des
criptor 0 after initialisation and, after each packet is received, it points to the des
criptor after the last one used by that packet. After the last descriptor in the ring is
used, the next to be used is descriptor o. Thus, the LANCE uses the descriptors
as a ring and never skips descriptors.

When a packet arrives, the LANCE checks that it owns the receive descriptorwhich
it points to. If it does, it writes the received data to the buffer pointed to by this des
criptor, and updates the descriptor. It marks the descriptor as being owned by the
host and interrupts the host to inform it that a packet has been received. If it does
not own the descriptor which it points to, it cannot receive the packet and sets the
miss error bit (MISS) in CSRO. This action also sets ERR and INTR in CSRO and,
if interrupts are enabled, interrupts the IMST222. A higher level protocol may deal
with the missed packet by sending a negative acknowledge packet or requesting
retransmission when it has receive buffers available.

The LANCE reads the buffer length from RMD2. If the received packet is longer
than the receive buffer, the LANCE attempts to chain it into the next buffer. The
LANCE examines the next descriptor to determine whether it owns the buffer. If
it does not, it cannot continue to receive the packet. In this case, LANCE sets BUFF

72 TRN 23500 December 1991

58

and ERR in RMD1 of the current descriptor (not the one it does not own) and sets
RINT and INTR in CSRO. If interrupts are enabled, this action will interrupt the
IMS T222. If the LANCE does own the next buffer, it will continue to receive into
that buffer. Data chaining will continue until either the packet ends, or the next buff
er is not owned by the LANCE.

When the whole packet has been received, the LANCE sets RINT and INTR in
CSRO. If interrupts are enabled (INEA=1) it will also interrupt the IMS T222.

6.7 Receive driver actions

When the entire packet has been received, or if an error occurs during reception,
the LANCE interrupts the host. The host can determine that the interrupt was
caused by reception of a packet (regardless of whether-there was an error) by ex
amining RINT in CSRO. RINT will be set if the interrupt was caused by a receive
event.

The host software should maintain a pointer (RXDESR) to the receive descriptor
for the next buffer it expects to have to process. The initialisation software must
set RXDESR to point to descriptor 0 as this will be the first used by the LANCE.
It should also maintain a pointer to the descriptor which it is currently processing
(current. rx. descriptor.ptr). When a receive event causes the receive driver to be
entered, this pointer should be a copy of RXDESR.

The host software should examine RMD1 of the descriptor pointed to by cur
rent. rx.descriptor.ptr. OWN should be clear indicating that the host now owns this
descriptor and its associated buffer. If OWN is set the descriptor is not valid. The
host software's first objective is to find the last descriptor containing part of the re
ceived packet. The last used descriptor will have either ENp, ERR or both set.
Thus, the host software should examine the descriptors until it finds one with ERR
or ENP set. It should examine the OWN bit in each descriptor before examining
the other bits. It should find OWN clear. If it finds OWN set, the descriptor is not
valid.

An invalid descriptor indicates that the host and LANCE are out of step or some
serious error has occurred. The only sensible method of recovery is to stop and
reinitialise the LANCE.

6.7.1 ERR is 0

No errors occurred while this buffer was being received. The host should check for
ENP set in this descriptor. If ENP is set, then this is the last buffer containing this
packet. If ENP is not set, the host should examine RMD1 of the next descriptor in
the ring. Again OWN should be 0 and ERR and ENP should be checked. The host
should continue examining descriptors until it either finds one with ERR=1 or with
ENP=1.

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM

6.7.2 ERR is 1

59

ERR is set if an error occurred while data was being received into this buffer IfERR
is set, this is the last descriptor/buffer used by this packet. Four types of error can
occur, errors are reported only in the last descriptor used by a packet.

• There was a CRC error; CRC is set. A CRC error is only detected at the end
of a packet.

• The packet did not contain a multiple of eight bits and there was a CRC er
ror; FRAM is set. A framing error is only detected at the end of a packet.

• The LANCE's internal buffer overflowed; OFLO is set. This occurs when
the LANCE needed to data chain into the next receive buffer, but the next
receive buffer was owned by the host.

• The received packet is longer than the current receive buffer and the next
buffer is OWNed by the host; BUFF is set. OFLO will also be set if this
caused the LANCE's internal buffer to overflow.

CRC and FRAM (framing) errors indicate that the received packet was corrupted
and should be discarded. OFLO and BUFF errors indicate that all or part of the
packet had to be discarded. A higher level protocol may be able to recover by caus
ing the packet to be retransmitted.

The difference between BUFF and OFLO is that BUFF is set any time the LANCE
needs to data chain but cannot because the next buffer is owned by the host. OFLO
is set if more data is received after a BUFF error causing the LANCEs internal buff
er to overflow. Thus, the LANCE may set BUFF and OFLO together but OFLO
should never appear set on its own.

If an error occurred, the receive driver should hand all the descriptors and buffers
back to the LANCE: by writing #8000 to RMD1 and #0000 to RMD3. RXDESR
should be set to point to the descriptor after the one which had ERR set.

6.7.3 ENP is set (and ERR is clear)

No errors occurred during reception of the packet. The packet has been correctly
received. current.rx.descriptor.ptr now points to the last descriptor used by this
packet.

The receive driver reads the packet length from RMD3 and determines the number
of bytes in the last used buffer. It should then remove the correctly received packet
from the receive buffers, starting with the data from the buffer pointed to by
RXDESR and ending with the data from the buffer pointed to by current.rx.descrip
tor.ptr. It should then hand these buffers back to the LANCE for reuse by

• writing #8000 to RMD1 in each descriptor,

• writing #0000 to RMD3 in each descriptor,

• RMDO and RMD2 may be changed.

72 TRN 235 00 December 1991

60

This marks them as owned by the LANCE and clears the message count in each
descriptor. Changing RMDO implies that the buffer containing the received data is
detached from the descriptor ring and another (empty) buffer is attached in its
place. This may be a useful thing to do since it means that the receive buffer is freed
quickly for reuse by the LANCE.

RXDESW is then updated to point to the descriptor after that pointed to by cur
rent.rx.descriptor.pointer. This will be the next to be used by the LANCE for re
ceived data. If current.rx.descriptor.ptr points to the last descriptor in the ring,
RXDESW should be set to point to descriptor O.

6.8 Transmitting

The host queues packets for transmission by the LANCE by means of the transmit
message descriptor ring. The ring is shown in figure 6.6, it consists of a four word
transmit descriptor (entry) for each transmit buffer. The LANCE uses the transmit
message descriptors and buffers strictly in the order in which they appear in the
descriptor ring: entries are never skipped.

The host software can data chain packets for transmission over several transmit
buffers if they are too long to fit in a single transmit buffer: The host indicates this
to the LANCE in the message descriptor for each receive buffer used.

6.9 The Transmit message descriptor

Each transmit descriptor ring entry consists of the four words TMDO-TMD3 shown
in figure 6.6. Each entry points to a transmit buffer and stores information about
that buffer such as: whether it is owned by the LANCE or the host, its length, and
whether any errors occurred during an attempt to transmit the buffer contents.

15 0
TMDOI ADDR I

15 7
TMD11 OWN I ERR I 0 IMOREI ONE I DEF I STP I ENP I 00000000

15 11 0
TMD21 1111 I BeNT I

15 9 0
TMD31 BUFF IUFLO I 0 ILCOL ILCAR IRTRY I TDR I

Figure 6.6 Transmit message descriptor ring entry

6.9.1 Transmit message descriptor 0 (TMDO)

TMDO is a pointer to the start of the block of transmit data referred to by this descrip
tor. This is a byte address, transmit buffers can start at any byte address.

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 61

6.9.2 Transmit message descriptor 1 (TMD1)

TMD1 is used to arbitrate buffer ownership between the LANCE and the host. It
is also used by the LANCE to indicate whether an error prevented transmission of
the packet and, if transmission was successful, whether any retries were neces
sary. The bits in TMD1 are:

OWN
OWN is set by the transmit driver software to indicate that this descriptor is valid
and points to a buffer containing valid data for transmission. When the LANCE
next comes to examine this descriptor (having dealt with all previous descriptors
in the transmit ring) it will attempt to transmit the contents of this buffer. OWN
is cleared by the LANCE after it has transmitted the packet or has failed to trans
mit the packet because of errors. The LANCE never sets OWN, the host soft
ware should never clear it. If the LANCE finds OWN clear it will not access the
descriptor further and will not access the buffer. The host should not access a
descriptor or buffer when it finds the OWN bit set.

ERR

ERR is set by the LANCE if an error occurred during an attempt to transmit this
buffer.
ERR =LCOL + LCAR + UFLO + RTRY

See section 6.9.4.

MORE

Set by the LANCE if more than one retry was needed to transmit the packet.
Useful as an indication of network loading.

ONE
Set by the LANCE ifexactly one retry was needed to transmit the packet. Useful
as an indication of network loading.

DEF

Set by the LANCE if it had to deferwhen attempting to transmit this packet. Use
ful as an indication of network loading.

STP

The transmit driver software should set STP to indicate that this descriptor
points to the first buffer containing part of a packet which is chained over several
buffers. It should also be set when the packet occupies only a single buffer.

ENP
The transmit driver software should set ENP to indicate that this descriptor
points to the last buffer containing part of a packet which is chained over several
buffers. It should also be set when the packet occupies only a single buffer.

6.9.3 Transmit message descriptor 2 (TMD2)

TMD2 is the two's complement of the number of bytes in this buffer to be trans
mitted; Le. it is minus the number of bytes to be transmitted.

72 TRN 23500 December 1991

62

6.9.4 Transmit message descriptor 3 (TM03)

TMD3 reports errors which have occurred during attempts to transmit this packet.
It should be written to #0000 by the host before handing over to the LANCE. If any
of the upper six bits are set when the buffer is handed back to the host, the LANCE
has failed to transmit the packet.

BUFF (buffer error)

Set by the LANCE during transmission if it did not find ENP set in this descriptor
and did not OWN the next buffer: Le. if it did not find the last buffer containing
part of the packet being transmitted. Transmit driver software can avoid buffer
errors by not setting the OWN bit in the first descriptorfor a particular packet until
all buffers and descriptors for that packet have been set up.

UFLO (underflow error)

The LANCE sets underflow error when the system memory does not respond
to an attempt by the LANCE to read transmit data. It should never occur on the
IMS 8431.

LCOL (late collision)

The LANCE sets LCOL ifa collision occurred after the first 64 bytes of the packet
were transmitted. This indicates a fault in the network such as a network which
is larger than the maximum size allowed by IEEE802.3 or a faulty transmitter
elsewhere on the network.

LCAR (loss of carrier)

The LANCE sets LCAR if it cannot detect its own transmission. The LANCE
monitors its own transmissions as a test of the transmit and receive paths to the
ethernet cable and back. If LCAR is set this indicates faults such as a faulty or
disconnected transceiver, fault on the ethernet cable, faulty serial interface
adapter. Not valid in internalloopback test mode.

RTRY (retry error)

The LANCE sets RTRY if repeated collisions caused 16 attempts to transmit the
packet to fail. Transmission retries can be disabled by setting DRrY in the mode
register: RTRY will then be set after one failed transmission attempt. The
LANCE will not attempt to transmit the packet again if it has set RTRY. A higher
level protocol may reschedule the packet for transmission.

TOR (collision timer)

Valid only if RTRY is set. The value in TDR is the time (in units of 0.1ms) from
the start of transmission until the collision was detected. If the propagation ve
locity of the cable is known, it can be used to determine the approximate dis
tance from this node to the point where the collision occurred. Repeated colli
sions at the same distance indicate a possible cable fault.

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 63

6.10 LANCE actions during transmission

When no packets are to be transmitted, orwhen the host has dealt with all received
packets, all of the receive message descriptors and buffers are owned by the host:
Le. OWN=O in all buffers. Thus, the initialisation software should clear the OWN
bits in all the receive buffer descriptors.

The LANCE maintains a pointer to the next descriptor it expects to contain transmit
data. This points to descriptor 0 after initialisation and, after each packet is trans
mitted, it points to the descriptor after the last one used by that packet. After the
last descriptor in the ring is used, the next to be used is descriptor O. Thus, the
LANCE uses the descriptors as a ring.

The LANCE polls the descriptor, referenced by its pointer, every 1.6ms. When it
finds the OWN bit set in this descriptor, it regards this as a signal that the buffer
referred to by this descriptor contains valid data for transmission.

The LANCE then examines the STP and ENP bits in this descriptor. It should find
STP=1 indicating the start of a packet. If STP=O, this descriptor is invalid, so the
LANCE simply clears the OWN bit to hand the buffer back to the host. If STP=1 ,
the LANCE reads the number of bytes in this buffer to be transmitted from TMD2
and starts to transmit the packet. If ENP is also 1, this buffer contains the whole
packet.

If ENP=O, the packet is assumed to continue in the next buffer. The LANCE then
examines the next descriptor. It should find OWN=1. If OWN=O the LANCE sets
BUFF in TMD3 as it cannot access the next part of the packet. It then sets TINT
and INTR in CSRO and interrupts the IMS T222 if interrupts are enabled. If
OWN=1, the LANCE will transmit the contents of this buffer, without interruption,
when it has finished transmitting the previous one. The contents of buffers are
transmitted until either: a descriptor is encountered with ENP=1, or a descriptor is
encountered with OWN=O. The buffer for which ENP=1 is transmitted.

Note that the host should write TMD2 in each descriptor with the number of bytes
which are to be transmitted from this buffer, not the length of the packet.

Once the packet has been transmitted successfully, the LANCE updates the trans
mit message descriptor for the last buffer (the one with ENP=1), clears OWN in the
descriptors used by this packet, and sets TINT and INTR in CSRO.

6.10.1 Failure to transmit

The LANCE may fail to transmit a data chained packet before reaching the last des
criptor used by the packet. In this case, the errors are recorded in the descriptor
for the buffer which was being transmitted when they occurred. The descriptors
and buffers for the packet, up to and including the one in which the error occurred,
are handed back to the host by setting OWN=O. The LANCE will then hand back
the descriptors for the rest of the packet because, when it polls them, it will find that
although it owns them, they do not have STP set. It will not attempt to transmit the
rest of the packet.

72 TRN 235 00 December 1991

64

Thus, all the descriptors and buffers for a packet which fails to transmit are handed
back to the host. The LANCE will then poll the descriptor after the last used by the
failed packet and, if this descriptor is valid, it will attempt to transmit the associated
buffer.

6.11 A typical transmit driver

The host needs to maintain two pointers to entries in the transmit descriptor ring.
One of these (TXDESR) points to the descriptorforthe first buffer which has been
queued for transmission but which has not yet been transmitted: Le. the one which
the LANCE will attempt to transmit next. The other (TXDESW) points to the des
criptor after the last one which has been queued for transmission: Le. it points to
the next descriptor the host can use. Both of these pointers are initialised to point
to transmit descriptor O.

Transmitting a data packet consists of a few simple steps.

The host adds the destination address, source address, and length fields
to the head of the packet.

2 The host checks that TXDESW points to a descriptor which is owned by
the host.

3 The host writes the packet to the transmit buffer referred to by TXDESW.
Large packets can be chained over several buffers.

4 The number of message bytes in each buffer, BCNT, is written to the des
criptor for each transmit buffer occupied by the packet.

5 The start ofpacket bit, STP, is set in the descriptor for the first transmit buff
er occupied by the packet.

6 The endofpacket bit, ENP, is set in the descriptorforthe last transmit buffer
occupied by the packet.

7 The buffers occupied by this message are handed to the LANCE by setting
the OWN bit in the descriptor for each buffer used. OWN should be set last
in the descriptor for the first buffer used by this packet.

8 TXDESW is adjusted to point to the next free entry in the transmit descriptor
ring; Le. the one after the last entry used by this packet.

After each buffer is transmitted, the LANCE clears the OWN bit in the descriptor
for that buffer. This indicates to the host that the LANCE has attempted to transmit
the buffer. Several types of error may occur during transmission of a packet. If any
error occurs, it is marked in the message descriptor of the buffer which was being
transmitted at that time. The LANCE also sets transmit interrupt (TINT) in CSRO
and interrupts the host.lfno errors occur, the LANCE sets TINT after the last buffer
of the current message has been transmitted. It is up to the host to determine the
nature of the interrupt by examining CSRO and the transmit buffer descriptors.

72 TRN 235 00 December 1991

IMS B431 ethernet TRAM 65

On receiving an interrupt, the host software should always check TINT to see if it
was caused by an attempt to transmit a packet. If TINT is set, the host software
should examine the descriptor pointed to by TXDESR. It should find the OWN bit
in that descriptor to be 0 indicating that the LANCE has attempted to transmit that
buffer. If OWN=1, the LANCE and host are out of step: this must be treated as a
fatal error and the LANCE must be re-initialised.

The host software's first task is to find the last descriptor belonging to this packet.
This is done by by examining each descriptor, from the one pointed to by TXDESR
onwards, until one is found with ENP=1. While it does this, it should also examine
the BUFF and ERR bits in each descriptor as a check for transmit errors.

6.11.1 BUFF and ERR are clear

BUFF and ERR will be clear in all descriptors used by this packet if the packet was
transmitted successfully. The LANCE will have handed all buffers and descriptor
used by this packet back to the host.

6.11.2 BUFF is set

The LANCE sets BUFF if it did not find ENP set in this descriptor and did not find
OWN set in the next descriptor; Le if it expected to transmit the next buffer as part
of this packet but did not own the next buffer The LANCE completes transmission
of the current buffer before setting BUFF and interrupting the host. The host can
avoid BUFF errors by never setting the OWN and STP bits in the first descriptor
for a packet until it has set up all the descriptors and buffers for the whole packet.

6.11.3 ERR is set

The LANCE sets ERR if:

• 16 attempts to transmit the packet have failed because of repeated colli
sions; RTRY is set,

• a collision occurred after the first 64 bytes of the packet were transmitted
(presumably due to a faulty transmitter elsewhere in the network or a net
work which is too large); LCOL is set,

• the LANCE could not detect its own transmission (presumably due to a fault
on the cable); LCAR is set,

• transmission ofthe packetwas not completed because the LANCE was un-
able to read part of the packet from memory in time; UFLO is set.

In all of these cases, the transmission has failed and the host must act accordingly.
The transmission may fail before all of the packet has been transmitted. This
should cause a CRC error at the receiving node so that the receiving node will dis
card the partly transmitted packet.

72 TRN 23500 December 1991

66

Whether the error occurred during the last buffer of the packet or a previous one,
the LANCE will hand all the buffers for a failed packet back to the host. TXDESR
should now point to the descriptor after the last one used by this packet.

Example: transmitting a short packet

A short packet is one which is shorter than the transmit buffer size and, therefore,
only occupies a single transmit buffer. Note that there is a minimum packet size
of 64 bytes; this limit is imposed by the Ethernet specification. After adding the
header information to the packet, the host sets up the transmit descriptor as illus
trated in figure 6.7. TMDO points to the start of the buffer containing the packet.
TMD2 contains minus the length of the packet. TMD3 is cleared (all 0). TMD1 is
written with #8300. This sets the STP and ENP bits indicating that this is the first
and last buffer containing this packet. It also sets the OWN bit to indicate to the
LANCE that this buffer should be transmitted.

Message buffer address

1101010 o10 11 11 I 00000000
Message

1111 Message length buffer
010/010 0101 0000000000

Transmit message descriptor
TMDO
TMD1

TMD2
TMD3

Figure 6.7 Transmitting a single data buffer

Whe-n the LANCE has transmitted the buffers for all previous descriptors in the ring,
it examines the OWN and STP bits in this descriptor. Finding them set, it attempts
to transmit the buffer. If the packet is transmitted successfully, the LANCE clears
the OWN bit to give the descriptor and buffer back to the host. Then, it sets TINT
and interrupts the host. If a fault or repeated collisions prevent transmission of the
packet, the LANCE updates TMD1 and TMD3 accordingly and then sets TINT and
interrupts the host.

Example: transmitting a long packet

A long packet is one which is longer than the transmit buffer size. Note that the
Ethernet specification sets a maximum packet length of 1518 bytes. This means
amaximum of 1500 data bytes as the 14 byte header and 4 byte CRC must be add
ed to this. Packets longer than the transmit buffer size must be data chained over
several transmit buffers; the first buffer used must contain at least 100 bytes. Data
chaining is done by setting the STP bit in the descriptor for the first buffer onl~ The
ENP bit is set in the descriptor for the last buffer onl~ Descriptors for other buffers
have neither bit set. Once the host has arranged the packet to be transmitted in
the buffers and has set the STP and ENP bits in the appropriate descriptors, it sets
the OWN bit in the descriptor for each buffer used. The typical arrangement is illus
trated in figure 6.8.

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 67

Message
Message segment 0 address

1101010 01011101 00000000
1111 Segment 0 length Segment 0

0101010 0101 0000000000

Transmit message descriptorn+1
Message segment 1 address

1101010 01010101 00000000 Segment 1

1111 Segment 1 length
0101010 0101 0000000000

Transmit message descriptorn+2
Message segment 2 address Segment 2

1101010 01010 11 I 00000000
1111 Segment 2 length

0101010 0101 0000000000

Transmit message descriptorn
TMDO
TMD1

TMD2
TMD3

TMDO
TMD1

TMD2
TMD3

TMDO
TMD1

TMD2
TMD3

Figure 6.9 Transmitting a packet longer than the buffer size

When the LANCE has transmitted the buffers for all previous descriptors in the ring,
it examines the OWN and STP bits in descriptor n. Finding them set, it attempts
to transmit the buffer. Since ENP is not set, the LANCE examines the OWN bit in
descriptor n+ 1. If OWN is not set, the LANCE transmits the current buffer and sets
the BUFF bit in its descriptor to indicate the error to the host. If OWN is set the
LANCE transmits this buffer also as part of the same packet. The LANCE contin
ues to do this until it has transmitted the last buffer of this packet; Le. the buffer for
which ENP was set.

72 TRN 23500 December 1991

68

6.12 Interrupts, errors and error handling

The LANCE interrupts the IMS T222 for a variety of reasons. These are

• initialisation done

• successful reception of a packet

• successful transmission of a packet

• errors during transmission

• errors during reception.

6.12.1 Interrupt handling

The device driversoftware will normally incorporate an interrupt handler This must
respond to interrupts in the order in which they occur It must also sort the interrupts
and pass transmitter originated interrupts to the transmitter monitor and receiver
originated interrupts to thereceiver monitor. Some types of interrupt are fatal and
require the LANCE and driver software to be restarted.

On receiving an interrupt, the device driver's first action is always to disable further
interrupts by writing #0000 to CSRO. CSRO is then examined to determine the
cause of the interrupt.

To avoid missing interrupts, and to preserve the time sequence of interrupt causing
events the following method is suggested.

• interrupts are disabled by writing #0000 to CSRO

• CSRO is read and added to a list of values read from CSRO

• the value read is written back to CSRO to clear the interrupt

• interrupts are enabled by writing #0040 to CSRO.

Thus, each event which caused an interrupt is recorded by an entry in the list of
values read from CSRO. The host deals with the list entries in the order in which
they occurred and no events are missed.

Such an interrupt handler is best implemented as aprocess running in parallel with
the receive and transmit drivers.

6.12.2 Errors

Errors can occur during both transmission and reception of packets. Most errors
are recorded in the transmit or receive message descriptors for the buffers which
were being handled when the error occurred. Some errors cannot be recorded in

72 TRN 235 00 December 1991

IMS 8431 ethernet TRAM 69

this way and are recorded in CSRO. On receiving any interrupt, the host should al
ways examine BABL, CERR, MISS and MERR in CSRO. If all of these bits are 0,
the interrupt will be a transmit or receive interrupt (except immediately after initiali
sation when IDON is set).

Transmit errors

If CSRO indicates a transmitter interrupt (TINT=1) the driver software must ex
amine the transmit message descriptor belonging to the next buffer it expects to
be transmitted. This may contain a whole packet, in which case ENP=1, or it may
be the first buffer containing a packet chained over several buffers: in which case
ENP=O.

The driver software must examine ERR in TMD1 to find out if the error occurred
while this buffer was being transmitted. If ERR=1, the driver software can identify
the nature of the error by examining the bits in TMD3. If it is the last/only buffer
(ENP=1), the error should have occurred during transmission of this buffer If it is
not the last buffer (ENP=O), the error may have occurred during transmission of
another buffer containing part of this packet. The driver software can find the error
by examining the ERR and ENP bits of subsequent entries in the transmit message
descriptor ring.

The driver software should find ERR set in one descriptor belonging to this packet.
If not, the interrupt handler and LANCE are probably out of step and the contents
of all buffers will have to be thrown away and the software restarted. This should
never occur with correctly written software.

Receive errors

If CSRO indicates a receiver interrupt (RINT=1) the driver software must examine
the next receive message descriptor it expects to be used. This may point to a buff
er containing a whole packet, in which case ENP=1 , or it may point to the first buffer
containing a packet chained over several buffers: in which case ENP=O.

The driver software must examine ERR in RMD1 to find out if the error occurred
while this buffer was being received. If ERR=1, the driver software can identify the
nature of the error by examining the other bits in RMD1. If it is the last/only buffer
(ENP=1), the error should have occurred during reception of this buffer. If it is not
the last buffer (ENP=O), the error may have occurred during reception of another
buffer containing part of this packet. The driver software can find the error by ex
amining the ERR and ENP bits of subsequent entries in the reception message
descriptor ring.

The driver software should find ERR set in one descriptor belonging to this packet.
If not, the interrupt handler and LANCE are probably out of step and the contents
of all buffers will have to be thrown away and the software restarted. This should
never occur with correctly written software.

72 TRN 235 00 December 1991

70

6.13 Self Testing

The LANCE has comprehensive self test facilities which allow most of its features
to be tested. The LANCE can be put into various test modes by setting appropriate
bits in'the MODE register. The test modes include both internal and external loop
back tests for testing the LANCE itself and the transmitter/receiver circuitry.

6.13.1 The MODE register

15
IPROMI

6 0
Undefined IINTL IDRTYICOLLI DEF IDTCRILOOpl DTX I DRX I

Figure 6.10 MODE register

PROM

The LANCE can be made to receive all packets by setting the PROM (promiscu
ous mode) bit. This allows the IMS 8431 to monitor the amount of traffic on the
network (network loading).

INTl

Valid only if lOOP =1. If lOOP =1and INTl =1, the LANCE willloopback inter
nally. It will receive its own transmitted packets without transmitting to the Ether
net coax. If lOOP =1 and INTl =0, the LANCE will loopback externally. It will
receive its own transmitted packets via the Ethernet coax.

DRTY (disable retry)

IF DRTY = 1, the LANCE will make only one attempt to transmit each packet,
instead of tne 16 attempts which it would normally make.

COll (force collision)

Valid only in internalloopback mode: lOOP =1, INTl =1. COll =1 forces the
LANCE to act as if a collision occurred on each subsequent transmission at
tempt. This means that 16 transmission attempts will be made for each packet
(1 attempt if DRTY = 1) and a retry error will be reported in TMD3. This is used
as a test of the retry and retry error circuitry

OTCR (disable transmit CRC)

If DTCR = 0 the transmitter generates and appends a CRC to the transmitted
packet. If DTCR = 1 the transmitter does not generate or append the CRC.

In loopback mode (lOOP =1) the CRC logic can be allocated either to the trans
mitter (DTCR =0) or to the receiver (DTCR =1), but not to both. If allocated to
the transmitter, the transmitter generates and appends a CRC but this is not
checked or stripped by the receiver. If allocated to the receiver, the test software
must append a CRC to the packet before it is transmitted as this will be checked
and stripped by the receiver.

72 TRN 23500 December 1991

IMS 8431 ethernet TRAM 71

LOOP (Ioopback mode)

LOOP =1 puts the LANCE into loopback mode so that transmission and recep
tion of packets can be tested without affecting any other nodes on the network.
In loopback mode, packets can be 8-32 bytes long including source address,
destination address, and type field.

Internalloopback mode tests: accessing of the transmit and receive descriptor
rings and buffers, and LANCE transmit and receive circuit~ Externalloopback
tests these and also the transmit and receive paths out to the Ethernet cable and
back.

Loopback tests are performed simply by placing the LANCE in loopback mode
and transmitting a self-addressed packet.

DTX (disable transmitter)

If DTX =1 the LANCE will not attempt to transmit any packets and does not ac
cess the transmit descriptor ring. DTX =1 clears TXON.

DRX (disable receiver)

If DRX =1 the LANCE will not receive any packets and does not access the re
ceive descriptor ring. DRX = 1 clears RXON.

6.13.2 Loopback tests

A basic loopback test consists of

set up the transmit and receive descriptors and buffers

2 place the LANCE in external or internal loopback mode,

3 queue a self addressed packet for transmission,

4 allow time for the LANCE to transmit and receive the packet,

5 examine CSRO and the transmit and receive descriptors to determine
whether the test was successful,

6 identify the cause of any fault.

Internalloopback tests

Internal loopback can be used to check that the LANCE has been correctly initial
ised and is accessing the transmit and receive descriptor rings correctl)lln internal
loopback mode, the LANCE does not make any transmissions to the Ethernet and
does not receive from the Ethernet.

72 TRN 23500 December 1991

72

To place the LANCE in internal loopback mode:

1 set the mode register to #0044 (set LOOP and INTL)

2 stop the LANCE

3 initialise the LANCE.

External loopback tests

Externalloopback can be used to test the transmit and receive hardware including
the Ethernet coax. The information provided in the TDR field of the transmit mes
sage descriptor can be used to locate faults in the Ethernet coax and drop cables.

To place the LANCE in external loopback mode:

set the mode register to #0004 (set LOOP and clear INTL)

2 stop the LANCE

3 initialise the LANCE.

72 TRN 23500 December 1991

IMS B431 ethernet TRAM

6.14 IMS 8431 TRAM engineering data

73

Full details of the TRAM motherboard philosophy and the full electrical and me
chanical specification of TRAMs can be found in references [1], [2], and [3]. The,
Transputer Databook[4] may also be of use. These are available as separate publi
cations from INMOS Ltd.

6.14.1 Connectors and pin allocations

6.14.2 Pin descriptions

Pin 1nl Function Pin No.
Out

System Services

VCC,GND PQwer supply and return 3,14

Clockln in 5MHz clock signal 8

Reset in Transputer reset 10

Analyse in Transputer error analysis 9

notError out Transputer error indicator (inverted) 11

Links

LinklnO-3 in INMOS serial link inputs to trans- 13,5,2,16
puter

LinkOutO-3 out INMOS serial link outputs from 12,4,1,15
transputer

Link- in Transputer link speed selection 6,7
speedA,B

Table 6.3 IMS 8431 Pin designations

Notes:

Signal names are prefixed by not if they are active low; otherwise they are
active high.

2 Details of the physical pin locations can be found in Figure 6.11.

72 TRN 23500 December 1991

74

~
0.180
0.150
0.100

Datum (pin 1)

Datum
0.100
0.224

0.775
0.875

1.076
1.200

1.480

1.975
Note: all dimensions are in inches and measured from the datum line

Figure 6.11 IMS 8431 outline drawing (All dimensions in inches)

LinkOutO-3

0.320

0.600
0.724

1.025

1.576
1.700

Transputer link output signals. These outputs are intended to drive into transmis
sion lines with a characteristic impedance of 100n. They can be connected directly
to the Linkln pins of other transputers or TRAMs.

Linklno-3

Transputer link input signals. These are the link inputs of the transputer on the
IMS 8431. Each input has a 10kn resistor to GND to establish the idle state, and
a diode to VCC as protection against ESD. They can be connected directly to the
LinkOut pins of other transputers or TRAMs.

LinkSpeedA, LinkSpeedB

These select the speeds of LinkO and Link1 ,2,3 respectivel~ Table 6.4 shows the
possible combinations.

LinkSpeedA LinkSpeedB LinkO Link1,2,3

0 0 10 Mbitsls 10 Mbitsls

0 1 10 Mbitsls 20 Mbitsls

1 0 20 Mbitsls 10 Mbitsls

1 1 20 Mbitsls 20 Mbitsls

Table 6.4 Link speed selection

72 TRN 23500 December 1991

IMS B431 ethernet TRAM

Clockln

75

I

A 5MHz input clock for the transputer. The transputer synthesises its own high fre
quency clocks. Clockln should have a stability over time and temperature of
200ppm. Clockln edges should be monotonic within the range 0.8V to 2.0V with
a rise/fall time of less than 8ns.

Reset

Resets the transputer, and other circuit~ Reset should be asserted for a minimum
of 1OOms. After Reset is deasserted afurther 1OOms should elapse before commu
nication is attempted on any link. After this time, the transputer on this TRAM is
ready to accept a boot packet on any of its links.

Analyse --------------
I. 100rns rnin _:. 100rns rnin _I

Reset~ . ~
Boot link -"""'-'-f{~:.:.:.:.:.I~{=I~~~}

Figure 6.12 Reset timing

Analyse

This is used, in conjunction with Reset, to stop the transputer. It allows internal
state to be examined so that the cause of an error may be determined. Reset and
Analyse are used as shown in figure 6.13. A processor in analyse mode can be
interrogated on any of its links.

Analyse~ IL.-- _
100m§il1 OOms I 1OOms I 100ms

I I I

IReset ---.j--r-lI--04----:::0,---m-s---'min

Analyse link ---,_=t:~{=t:\=::::tL.-- ------,-=/t::={{:=tr::

Figure 6.13 Analyse timing

notError

An open collector output which is pulled low when the transputer asserts its Error
pin. notError should be pulled high by a 10kn resistor to Vcc. Up to 10 notError
signals can be wired together. The combined error signal will be low when any of
the contributing signals is low.

72 TRN 23500 December 1991

76

6.14.3 Memory Map

The IMS T222 on the IMS 8431 has access to 64 Kbytes of memory. This is com
prised of4 Kbytes of internal transputer memory and 60 Kbytes of external SRAM.
It also has memory mapped access to the two MK 7990 (LANCE) control registers.
These occupy the top four byte locations in the memory map.

Hardware byte
address

IMS T222 on chip RAM #8000 - #8FFF

External Static RAM #9000 - #7FF8

MK7990 (LANCE) RDP #7FFC

MK7990 (LANCE) RAP #7FFE

Table 6.5 Memory map of the IMS 8431

Table 6.5 shows the address map of the IMS 8431 (the "#" sign indicates a hexa
decimal number). Addresses range from #8000 through #0000 to #7FFF: The in
ternal RAM on the IMS T222 occupies the first 4 Kbytes of address space. The
MK 7990 (LANCE) occupies the top four bytes of memory The internal RAM on
the IMS T222 has a SOns access cycle and the external SRAM has a 1OOns access
cycle. The LANCE has DMA to the external SRAM, DMA cycles are 600ns.

When operating at full Ethernet bandwidth the LANCE consumes approximately
38% of the available memory bus bandwidth.

6.14.4 Mechanical details

Figure 6.14 gives the vertical dimensions of an IMS 8431 and Figure 2.1 is an out
line drawing of the IMS 8431.

1!~!llll4if~IIID ~ gap =O.6mm. min.
Motherboard PC8

Figure 6.14 IMS 8431 height specification

72 TRN 235 00 December 1991

77

7 References I

The Transputer Development and iq Systems Databook, INMOS Ltd, Sec
ond Edition 1991

2 Dual-In-Line Transputer Modules (TRAMs) , INMOS Technical Note 29,
also in [1].

3 Module Motherboard Architecture, INMOS Technical Note 49, also in [1].

4 Transputer Databook, INMOS Ltd, Second Edition 1989.

5 Connecting INMOS links, INMOS Technical Note 18, INMOS Ltd 1987.

6 ANSI/IEEE 802.3-1984 Local Area Networks, Carrier Sense Multiple Ac
cess with Collision Detection (CSMAlCD). Access Method and Physical
Layer Specifications, ANSIIIEEE 802.3-1984.

7 ANSI/IEEE 802.3a,b,c,e, supplement to ANSI/IEEE 802.3-1984, ANSII
IEEE 1988.

72 TRN 235 00 December 1991

78

72 TRN 23500 December 1991

79

__A_p_p_en_d_ic_e_s I

72 TRN 235 00 December 1991

80

72 TRN 235 00 December 1991

81

A Directory structure I

IMS F006A files are installed within the following directory structure:-

drive: \F006A

~~
CllB occamllB

/~ /~
SOURCE EXAMPLES SOURCE EXAMPLES

Figure A.1 IMS F006A directory structure

Which, after a successful installation, should contain the following files:-

drive: \F006A

b431drvr.lku

drive:\F006A\CLIB

b431.1ib
b431io.h
b4311oad.h
b431test.h

drive:\F006A\CLIB\SOURCE

b431drvr.h
b431io.c
b431load.c
b431test.c
imsb431.h

drive:\F006A\CLIB\EXAMPLES

listen.c
listen.cfs
listen. Ink
loopback.c
loopback.cfs
loopback.lnk

72 TRN 235 00 December 1991

82

drive:\F006A\OCCAMLIB

b431.lib
b431.liu
b431io.inc
b431load.inc
b431test.inc

drive:\F006A\OCCAMLIB\SOURCE

b431drvr.inc
b431io.occ
b431load.occ
b431test.occ
imsb431.inc
marshall.occ

drive:\F006A\OCCAMLIB\EXAMPLES

listen.occ
listen.pgm
loopback.occ
loopback.pgm
txbench.occ
txbench .pgm

72 TRN 235 00 December 1991

83

B Example programs I

B.1 IMS F006A example program

The following examples can be compiled and run on the hardware configuration
described in section 3.5.1. Source code for the ANSI C example can be found in
the directory \F006A\CLIB\EXAMPLES and for the equivalent occam example,
in \F006A\OCCAMLIB\EXAMPLES.

The example is a simple Ethemet listener. It initialises the Ethernet interface for
promiscuous mode packet reception and then displays the header segment of
every packet received. Periodically it also requests and prints out Ethemet
statistics accumulated by the device driver. The example demonstrates the use of
the IMS F006A interface library and how to configure a transputer network
incorporating a single IMS 8431 Ethernet TRAM.

8.1.1 C Example

See the files:- listen. c, listen. cfs and listen . Ink in the ANSI C
examples directory. To compile and then run the example, type:-

imakef listen. btl Ic. (Ignore the message warning about
b431drvr .lku having an unknown file extension type. The device driver
has the .lku extension to stop imakef generating rules to create it).

2 make If listen.mak

3 iserver Ise Isb listen.btl

listen.c:

/* INS F006A example program
Copyright INMOS Limited 1991 */

/* Simple ethernet listener. This program initialises the INS B431
ethernet interface in promiscuous receive mode and prints out the
header segment of every packet it receives. It also periodically
requests and displays accumulated ethernet statistics as gathered
by the INS B431 device driver. * /

'include <time. h>
'include <misc .h>
'include <stdio.h>
'include <stdlib.h>
'include <b431io. h>
'include <process. h>

/* A function to continuously request ethernet statistics,
once every 20 seconds, this uses the channel to the INS B431
device driver and will be executed as a transputer process */

void request stats (
Process *p,
Channel *to_b431)

72 TRN 23500 December 1991

84

p = p; /* Geta rid of compil.r warninq m.ssaq. */

while (1)

ProcWait((int) CLOC1tS PER SBC * 20);
B431_Btlwr_Stata (to_b431 ');

/* Print the h.ader a.qment of a pack.t * /

voidprint-pack.t_header(
unsiqn.d char *.th.rnet-pack.t,
int eth.met-pack.t_length)

int i;

printf("Pack.t r.c.ived, lenqth = %d bytes\n[
.themet-packet_lenqth);

for (i = 0; i < PACKET READER SIZE; i++)
printf ("Ox%02x if, ethem.t....Pack.t [i]);

printf("]\n");

/* print the eth.rnet statistics structure */

void print ether stats (ETHER STATS ether stats
{ - - - -

printf ("ethernet statistics: \n");
printf("tx-packets = %lu, If, ether_stats.tx-packets);
printf ("rx...,packets = %lu\n", ether_stats. rx-packets) ;
printf ("framinq errors = %lu, ", ether stats. framinq errors) ;
printf ("crc errors = %lu\n", ether stats. crc errors);
printf ("packets dropped = %lu, ", ether stats.packets dropped);
printf ("packets-missed = %lu\n", ether atats .packets Diissed) ;
printf("deferred transmits = %lu, ", ether stats.deferred transmits)
printf ("late collisions = %lu, ", ether stats . late collisions);
printf ("carrIer lost = %lu\n", ether stits .tcarrier-lost) ;
printf ("failed retries = %lu, ", ether stats .no more retries);
printf("sinqle-retries = %lu, If, ether-stats.sinqle retries);
printf ("many retries = %lu\n", ether stats . mUltiple-retries) ;
printf ("averaqe_tdr_value = %lu\n", ether_stats .averaqe_tdr_value) ;

/ * Initialise the ethemet interface and then start it runninq.
Continuously call B431 Waitfor Event() to receive ethemet packets
and print their header: Start aparallel process to request ethemet
statistics and print them */

int main()
{

Process *p;
char result ;
ETHER STATS ether stats;
/ * Arbitrary physical address * /
unsiqned char physical address [PHYSICAL ADDRESS SIZE]=

{ Ox22, Ox44 , Ox88, Ox88, OX44, Ox22 };
/* Loqical address filter disables multicast packet reception */
unsiqned char loqical address filter [LOGICAL ADDRESS FILTER SIZE]:

{ OxO, OxO, OxO -; OxO, OxO, OxO ,- OxO, oxe }; -
int error_code,receive-packet_lenqth;
unsiqned char receive""packet[MAX_PACKET_LENGTH] ;
unsiqned char failed""packet_data [FAILED_PACKET_LENGTH] ;
Channel *to_b431, *froItLb431, *cancel = ChanAlloc () ;

/* Channels to / from IMS B431 device driver are obtained from

72 TRN 235 00 December 1991

printf ("B431 Ini t NormalO failed = %d\n", result);
exit_terminate (~) ;-

85

the confiquration environment *1

to_b431 = (Channel *) qet..,param(4);
from_b431 = (Channel *) qet..,param(3);
printf ("IMS-F006 -:,thernet listener\n");

1* Initialise and start the ethernet interface in promiscuous

packet receive mode */

result = B431 Init Normal (from b431, to b431,
- physical address; logical-address filter,

MEMORY CHECK I PROMISCUOUS RX); -
if result!= INIT_SUCCESS) -
{

}
result = B431 Start Ether (from b431, to b431);
if (result ,,; START SUCCESS) - -
{ -

printf ("B431 Start Ether () failed = %d\n", result);
exit_terminate (0) ; -

/* Allocate and start a parallel process to request ethernet
statistics once every 20 seconds. It is passed a single parameter,
the channel to the B431 device driver */

p = ProcA1loc ((void (*) ()) request stats, 0, 1, to b431) ;
ProcRun(p); --

/* Wait for ethernet interface activity. Print ethernet statistics
or the headers of packets received. Ignore everything else */

while (1)
(

result = B431 Waitfor Event(from b431, cancel,
'ether stats, -
receiveyacket, 'receiveyacket_length,
'error_code, failedyacket_data);

switch (result)
{

case B431 ETHER STATS:
print ether stats (ether_stats);
break; -

case B431 RX PACKET:
printyacket='header (receiveyacket,

receiveyacket_length);

break;

72 TRN 235 00 December 1991

86

listen.cfs:

/* INS F006A example program
Copyright INMOS Limited 1991 */

/* Confiquration file for simple ethernet listener. */

/* Hardware description. Confiquration consists of two TRAMs arranged
in a 2-1 pipeline. The first is a 2 Mbyte INS B404 TRAM connected to
the host. It is also connected to the second, INS B431, ethernet TRAM. */

T800 (memory = 2M) root;
/* INS B404 2Mbyte TRAM */
T212 (memory = 64K) b431;
/* INS B431 ethernet TRAM */

connect root.link[l] to host;
connect root. link [2] to b431.link[1];

/* Software description. Configure the ethernet listener example
program to run on the (root) INS B404 TRAM. The ethernet device driver
is placed on the INS B431 ethernet TRAM. */

/* Root processor runs example listen program. Connect it to the host
server and also the INS B431 device driver */

input from server;
output to_server;

/* input edge */
/* output edge */

process (stacksize = 8K, heapsize =SOK,
interface (input fs, output ts,

input from_b431, output to_b431)) listen;

connect from server to listen. fs ;
connect to server to listen. ts ;
/ * Connect-to server */

/* INS B431 ethernet TRAM runs the device driver. Connect it to the
other INS B404 TRAM which runs the listen program */

process (interface (input to b431,
output f;om_b431)) b431_driver;

connect listen. to b431 to b431 driver.to b431;
connect listen. from_b431 to b431_driver. from_b431;

/* Select linked units for each process and map to their respective
processor. Map channels to their respective links */

use "listen.c8x" for listen;/* Example listen program */
use "b431drvr.lku" for b431_driver;/* INS B431 device driver */

place listen on root;
place b431 driver on b431;
/* Place processes */

place from server on host;
place to server on host;
/* Place~ost channels */

72 TRN 235 00 December 1991

87

8.1.2 occam Example

See the files:- listen. ace and listen. pgm in the occam examples directory.
To compile and then run the example, type:-

imakef listen. btl Iy. (Ignore the message warning about
b431drvr .lku having an unknown file extension type. The device driver
has the .lku extension to stop imakef generating rules to create it).

2 make If listen.mak

3 iserver Ise Isb listen.btl

listen.occ:

-- INS F006A example program
-- Copyright INMOS Limited 1991

-- Simple ethernet listener. This program initialises the INS B431
-- ethemet interface in promiscuous receive mode and prints out the
-- header segment of every packet it receives. It also Periodically
-- requests and displays accumulated ethemet statistics as gathered
-- by the INS B431 device driver.

-- Toolset header and library files.

IIINCLUDE "ticks. inc"
IIINCLUDB "hostio. inc"
IIUSB "hostio.lib"

-- Main entry point has an ISERVER channel pair for connection to the
-- host and a further channel pair for communication with the INS B431
-- TRAM device driver.

PROC listen(CBAN OF SP fs, ts,
CBAN OF ANY from.b431, to.b431

-- INS F006A header and library files

IIINCLUDB "b431io.inc"
IIUSB "b431.lib"

-- Variables

-- Arbitrary physical address
VAL [PHYSICAL.ADDRESS.SIZE]BYTE physical. address IS

"*1122*1144*1188*1188*1144*1122" :

-- Logical address filter disables multicast packet reception
VAL [LOGICAL .ADDRESS . FILTER. SIZE] BYTE logical. address. fil ter IS

"*1100*1100*1100*1100*1100*1100*1100*1100" :

-- For use with B431.Waitfor.Event() etc.
BYTE result :
CHAR OF BYTE abort :
[ETBER.STATS.SIZE]INT32 ethemet.stats :
INT error. code, receive.packet.length :
[HAX.PACKET.LENGTB]BYTE receive.packet :
[FAILED.PACKET.LBNGTB]BYTE failed.packet.data

72 TRN 23500 December 1991

88

-- Initialise the ethernet interface and then start it runninq.
-- Continuously call B431.Waitfor.Event() to receive ethernet packets
-- and print out the header. Request and print out ethernet statistics
-- every 20 seconds.
SEQ

so.write.strinq.nl(fs, ts, "INS-F006 ethernet listener")

-- Initialise ethernet interface in promiscuous receive mode and
-- perform packet buffer memory check.
B431.Init.Normal(from.b431, to.b431,

physical. address, loqical.address.filter,
MEMORY.CHECK \/ PRONISCUOUS.RX, result)

IF
(result <> INIT.SUCCESS)

so.write.strinq.nl(fs, ts, "B431.Init.Normal() failed")
TRUE

SKIP

Start the ethernet interface runninq.
B431.Start.Ether(from.b431, to.b431, result
IF

(result <> START.SUCCESS)
so.write.strinq.nl(fs, ts, "B431. Start. Ether () failed")

TRUE
SKIP

Fork into two separate parallel processes. One will receive
-- and print out either ethernet packet headers or ethernet statistics
-- when received from the device driver. The other will request ethernet
-- statistics once every 20 seconds.

PAR

Process to request ethernet statistics once every 20 seconds.

WHILE TRUE
TIMER clock
INT time.now :
SEQ

clock? time.now
clock? AFTER time.now PLUS ((INT lo.ticks.per.second) * 20)
B431.Ether.Stats(to.b431)

Process to print out ethernet packet headers or statistics when
-- received from the INS B431 device driver.

WHILE TRUE
SEQ

-- Wait for the ethernet interface to do somethinq.
B431.Waitfor.Event(from.b431, abort, ethernet.stats,

receive.packet, receive.packet.lenqth,
error.code, failed.packet.data, result

CASE result

-- The other process requested ethernet statistics, print
-- out each field.
B431.ETHER.STATS

VAL []INT ethernet.stats RETYPES ethernet.stats :
SEQ

so.write.strinq.nl(fs, ts, "ethernet statistics:"
so.write.strinq(fs, ts, "tx.packets = ")
so.write.int(fs, ts, ethernet.stats[STATS.TX.PACKETS] , 0)
so.write.strinq(fs, ts, ", rx.packets = ")

72 TRN 23500 December 1991

89

so.write.int(fs, ts, ethernet.stats[STATS.RX.PACKETS] , 0)
so.write.nl(fs, ts)
so.write.strinq(fs, ts, "framinq.errors = ")
so.write.int(fs, ts, ethernet.stats[STATS.FRAMING.ERRORS], 0)

so.write.strinq(fs, ts, ", crc.errors = ")
so.write.int(fs, ts, ethernet.stats[STATS.CRC.ERRORS] , 0)
so.write.nl(fs, ts)
so.write.strinq(fs, ts, "packets.dropped = ")
so.write.int(fs, ts, ethernet.stats[STATS.PACKETS.DROPPED], 0)

so.write.strinq(fs, ts, ", packets.missed = ")
so.write.int(fs, ts, ethernet.stats[STATS.PACKETS.MISSED],
so.write.nl(fs, ts)

so."rite.string(fa, ts, "deferred.transmits = ") 0)
so."rite.int(fs, ta, ethernet.atats[STAXS.DEFERRED.TRANSMITS], 0)
so."rite.atring(fs, ts, ", late.collisions = ")
so."rite.int(fs, ts, ethernet. stats [STAXS.LATE.COLLISIONS] , 0)
so ."rite. string (fs, ts, ", carrier .lost = ")
so."rite.int(fs, ts, ethernet.atats[STAXS.CARRIER.LOST], 0)
so."rite.nl(fs, ts)
so."rite.string(fs, ts, "no.more.retries = ")
so."rite.int(fs, ts, ethernet.stats[STATS.NO.MORE.RETRIES], 0)
so ."rite. string (fs, ts, ", single. retries = ")
so."rite.int(fs, ts, ethernet.stats[STATS.SINGLE.RETRIES], 0
so ."rite . string (fs, ts, ", multiple. retries = ")
so."rite.int(fs, ts, ethernet.stats[STATS.MULTIPLE.RETRIES], 0)
so."rite .nl (f s, ts)
so ."rite. string (fs, ts, "average. tdr. value = ")
so."rite.int(fs, ts, ethernet.atats[STATS.AVERAGE.TDR.VALUE], 0)
so."rite.nl(fs, ts)

-- An ethernet packet arrived, print out it's header segment.
B431 .RX. PACKET

SEQ
so."rite.string(fs, ts, "Packet received, length = ")
sO."rite .int(fs, ts, receive .packet.length, 0)
so ."ri te . string. nl (fs, ts, " bytes")
so."rite. string (fs, ts, "[")
SEQ i = 0 FOR PACKET. HEADER. SIZE

SEQ
so."rite.hex.int(fs, ts, INT receive.packet[i], 2)
so."rite.string(fs, ts, " ")

so."rite.string.nl(fs, ts, "]")

Ignore everything else.
ELSE

SKIP

72 TRN 235 00 December 1991

90

listen.pgm:

-- IMS FO 06A example program
-- Copyright INMOS Limited 1991

-- Configuration file for simple ethernet listener.

-- Hardware description. Configuration consists of two TRAMs arranged
in a 2-1 piPeline. The first is a 2 Mbyte IMS B404 TRAM connected to

-- the host. It is also connected to the second, INS B431, ethernet TRAM.

VAL le IS 1024 :
VAL N IS le * K

ARC HostLink :
NODE root, b431
NETWORKethernet.listener

DO
SET root (type, memsize := "T800", 2 * M) -- INS B404 2Mbye TRAM
SET b431 (type, memsize := "T212", 64 * K) INS B431 ethernet TRAM
CONNECT root [link] [2] TO b431 [link] [1]
CONNECT root[link] [1] TO HOST WITH HostLink

-- Software description. Configure the ethernet listener example
-- program to run on the (root) INS B404 TRAM. The ethernet device driver
-- is placed on the INS B431 ethernet TRAM.

'INCLUDE "hostio. inc"

'USE "listen.c8h" -- ethernet listener example program
'USE "b431drvr .lku" -- INS B431 ethernet TRAM device driver

CONFIG

CHAN OF SP root.to.host, host.to.root :
CHAN OF ANY root.to.b431, b431.to.root :
PLACE root.to.host, host.to.root ON HostLink

PLACED PAR

-- Example program placed on the INS B404
PROCESSOR root

listen(host.to.root, root.to.host, b431.to.root, root.to.b431)

-- ethernet device driver placed on the INS B431
PROCESSOR b431

INMOS.B431.Driver(root.to.b431, b431.to.root)

72 TRN 23500 December 1991

72 TRN 23500

91

December 1991

Sales Offices

E1JB!JEE 00161 ROMA ARIZONA NORTH CAROLINA

DENMARK
Via A. Torlonia. 15 1000. East Bell Road 4505, Fair Meadow Lane

2730HERLEV
Tel. (39-6) 8443341 Phoenix. AZ. 85022 Suite 220
Telex: 620653 SGSATE I Tel. (602)867-6100 Raleigh, NC 27607Herlev Torv, 4 Telefax: (39-6) 8444474

Tel. (45-42) 94.85.33 Tel. (919) 787-6555

Telex:35411 NETHERLANDS CALIFORNIA
Telefax: (45-42) 948694 5652 AM EINDHOVEN 200 East Sandpointe, TEXAS

FINLAND
Meerenakkerweg, 1 Suite 120, 1310, Electronics Drive
Tel. (31-40) 550015 santa Ana, CA 92707 Carrollton, TX 75006

LOHJASF-08150 Telex: 51186 Tel. (714) 957-6018 Tel. (214) 466-7402
Karjalankatu,2 Telefax: (31-40) 528835
TeI.12.155.11 2055, Gateway Place, AS1NPAC1F1C
Telefax: 12.155.66 SPAIN Suite 300

FRANCE
08021 BARCELONA sanJose,CA95110 AUSTRALIA
Calle Platon, 6, 4 ltl Floor, 5th Tel. (408)452-9122 NSW 2027 EDGECLlFF

94253 GENTILLY Cedex Door Suite 211, Edgecliff Centre
7, Avenue Gallieni - BP 93 Tel. (34-3) 4143300 - 4143361 COLORADO 203-233, New South Head Road
Tel. (33-1)47.40.75.75 Telefax: (34-3) 2021461 1898, S. Flatiron Ct.

Tel. (61-2) 327.39.22
Telex: 632570 STMHQ Telex: 071 126911 TCAUS
Telefax: (33-1)47.40.79.10 28027 MADRID Boulder, CO 80301 Telefax: (61-2) 327.61.76

Calle Albacete, 5 Tel.(303)449-9000
67000 STRASBOURG Tel. (34-1)4051615 HONG KONG
20, Place des Halles Telex: 27060 TCCEE FLORIDA WANCHAITel. (33) 88.75.50.66 Telefax: (34-1) 4031134 22nd Floor - Hopewell CentreTelex: 870001 F 902 Clint Moore Road
Telefax: (33) 88.22.29.32 SWEDEN Congress Corporate Plaza 11 183.Queen's Road East

5-16421 KISTA
Bldg. 3- Suite 220 Tel. (852-5) 8615788

GERMANY Boca Raton, FL 33487 Telex: 60955 ESGIES HX

6000 FRANKFURT
Borgarfjordsgatan, 13 - Box Tel.(407)997-7233 Telefax: (852-5) 8656589
1094

Gutleutstrasse,322 Tel. (46-8) 7939220 INDIA
Tel. (49-69) 237492 Telex: 12078THSWS GEORGIA NEW DELHI 110001Telex: 176997 689
Telefax: (49-69) 231957

Telefax: (46-8) 7504950 6025, G.AtlanticBlvd. Liaison Office

Teletex:6997689=SlVBP SWITZERLAND
Norcross, GA 30071 62, Upper Ground Floor
Tel. (404) 242-7444 World Trade Centre

8011 GRASBRUNN 1218 GRAND-SACONNEX Barakhamba Lane
Bretonischer Ring, 4 (GENEVA) ILLlN01S Tel.3715191
Neukerloh Technopark CheminFran~ois-Lehmann18/A Telex: 031-66816 STMIIr'-'
Tel. (49-89) 46006-0 Tel. (41-22) 7986462 600, North Meacham Telefax:3715192 (

Telex: 528211 Telex: 415493 STM CH Suite 304,

Telefax: (49-89) 4605454 Telefax: (41-22) 7984869 Schaumburg, ILL 60173-4941 KOREA
Teletex: 8971 07=STDISTR Tel. (708) 517-1890 SEOUL 121

SOOO HANNOVER 51 United Kingdom And Eire 8th Floor Shinwon Building

Rotenburgerstrasse,28A MARLOW, BUCKS SL71YL INDIANA 823-14, Yuksam-Dong

Tel. (49-511)615960 Planar House, Parkway 1716. South Plate St. Kang-Nam-Gu

Telex: 175118418 Globe Park Kokomo. IN 46902 Tel. (82-2) 553-0399

Telefax:(49-511)6151243 Tel. (44-628) 890800 Tel. (317) 459-4700 Telex: SGSKOR K29998

Telex: 847458
Telefax: (82-2) 552-1 051

8500 NURNBERG 20 Telefax: (44-628) 890391 MASSACHUSETTS MALAYSIAEr1enstegenstrasse,72
Tel. (49-911) 59893-0 AMERICAS 55. Old Bedford Road PULAU PINANG 10400
Telex: 626243

BRAZIL
Lincoln North 4th Floor, Suite 4-03

Telefax:(49-911)5980701 Lincoln, MA 01773 Bangunan FOP, 1230 Jalan An-
05413 SAO PAULO Tel. (617) 259-0300 son

5200 SIEGBURG R. Henrique Schaumann Tel. (04) 379735
Frankfurter Str. 22a 286-CJ33 Telefax: (04) 379816
Tel. (49-2241) 660 84-86 Tel. (55-11) 883-5455 MICHIGAN
Telex: 889510 Telex: (391) 11-37988 17197, N. Laurel Park Drive SINGAPORE
Telefax: (49-22~1)67584 ·UMBRBR· Suite 253, SINGAPORE 2056

7000 STUTTGART Telefax: 11-551-128-22367 Livonia, MI48152 28 Ang Mo Kio - Industrial Park,

Oberer Kirchhaldenweg, 135
Tel. (313) 462-4030 2

Tel. (49-711)692041 CANADA Tel. (65) 48214 11

Telex: 721718 BRAMPTON, ONTARIO MINNESOTA Telex: RS 55201 ESGIES

Telefax:(49-711)691408 341. Main St. North 7805, Telegraph Road
Telefax: (65) 4820240

Tel. (416) 455-0505
ITALY Telefax:416-455-2606

Suite112 TAIWAN

20090 ASSAGO (MI)
Bloomington. MN 55438 TAIPEI

V.le Milanofiori - Strada 4 - USA Tel. (612) 944-0098 12th Floor

Palazzo A/4/A NORTH & SOUTH AMERICAN 571. Tun Hua South RoC!

Tel. (39-2) 89213.1 (10 lines) MARKETING HEADQUARTERS NEW JERSEY Tel. (886-2) 755-4111 I

Telex: 330131-330141 1000. East Bell Road Staffordshire Professional Ctr. Telex:10310 ESGIE TW

SGSAGR Phoenix, AZ. 85022 1307. White Horse Road Bldg. F. Telefax: (886-2) 755-4008)

Telefax: (39-2) 8250449 (1H602)867-61 00 Voorhees. NJ 08043 JAPAN
40033 CASALECCHIO 01 RENO SALES COVERAGE BY STATE

Tel. (609) 772-6222
TOKYO 108

(BO) ALABAMA Nisseki Takanawa Bid. 4F
Via R. Fucini, 12 303, Williams Avenue. NEW YORK 2-18-1 0Takanawa
Tel. (39-51) 591914 Suite1031, 2-4, Austin Court Minato-ku
Telex: 512442 Huntsville, AL 35801-5104 Poughkeepsie, NY 12603-3633 Tel. (81-3) 3280-4125
Telefax: (39-51) 591305 Tel.(205)533-5995 Tel. (914)454-8813 Telefax: (81-3) 3280-4131

	Contents
	1 Introduction
	1.1 Document structure
	1.1.1 Conventions

	1.2 Background
	1.2.1 Prerequisites

	2 Installation
	2.1 IMS F006A software
	2.2 IMS B431 Ethernet TRAM
	2.3 Connecting to Ethernet (10BASE5)
	2.3.1 AUI connection
	2.3.2 AUI power

	3 IMS F006A overview
	3.1 Components
	3.2 IMS B431 device driver
	3.3 IMS F006A interface libraries
	3.4 Example programs and source code
	3.5 Environments
	3.5.1 Development Environment
	3.5.2 Target System Environment

	4 IMS F006A libraries
	4.1 Interface procedures
	4.1.1 B431_Init_Normal()
	4.1.2 B431_Init_Loopback()
	4.1.3 B431_Start_Ether()
	4.1.4 B431_Tx_Packet1()
	4.1.5 B431_Tx_Packet2()
	4.1.6 B431_Reset_Stats()
	4.1.7 B431_Stop_Ether()
	4.1.8 B431_Terminate()
	4.1.9 B431_Ether_Stats()
	4.1.10 B431_Waitfor_Event()

	4.2 Diagnostic procedures
	4.2.1 B431_lnternal_Loopback()
	4.2.2 B431_External_Loopback()

	4.3 IMS B431 Device Driver
	4.3.1 Debugging support

	4.4 Using B431_Load_Driver()

	5 IEEE 802.3 CSMA/CD Ethernets
	5.1 IEEE 802.3 CSMA/CD Ethernets
	5.1.1 Packet structure
	5.1.2 CRC algorithm
	5.1.3 Addressing
	5.1.4 Retry algorithm
	5.1.5 Ethernet statistics
	5.1.6 Time domain reflectometer
	5.1.7 Heartbeat monitor
	5.1.8 Performance

	6 Detailed hardware description
	6.1 Data structures
	6.1.1 Buffer and descriptor ownership
	6.1.2 Data chaining

	6.2 Software structure
	6.3 Initialising
	6.3.1 The initialisation block
	6.3.2 CSR0-CSR3
	6.3.3 Summary

	6.4 Receiving
	6.4.1 The receive message descriptor

	6.5 Size and number of receive buffers
	6.6 LANCE actions during packet reception
	6.7 Receive driver actions
	6.7.1 ERR is 0
	6.7.2 ERR is 1
	6.7.3 ENP is set (and ERR is clear)

	6.8 Transmitting
	6.9 The Transmit message descriptor
	6.9.1 Transmit message descriptor 0 (TMD0)
	6.9.2 Transmit message descriptor 1 (TMD1)
	6.9.3 Transmit message descriptor 2 (TMD2)
	6.9.4 Transmit message descriptor 3 (TM03)

	6.10 LANCE actions during transmission
	6.10.1 Failure to transmit

	6.11 A typical transmit driver
	6.11.1 BUFF and ERR are clear
	6.11.2 BUFF is set
	6.11.3 ERR is set

	6.12 Interrupts, errors and error handling
	6.12.1 Interrupt handling
	6.12.2 Errors

	6.13 Self Testing
	6.13.1 The MODE register
	6.13.2 Loopback tests

	6.14 IMS B431 TRAM engineering data
	6.14.1 Connectors and pin allocations
	6.14.2 Pin descriptions
	6.14.3 Memory Map
	6.14.4 Mechanical details

	7 References
	A Directory structure
	B Example programs
	B.1 IMS F006A example program
	B.1.1 C Example
	B.1.2 occam Example

