
D[R)mos~

IMS F003
20 graphics

C libraries

72 OEK244 00 July 1990

Copyright © INMOS Limited 1990

This document may not be copied, in whole or in part, without prior written
consent of INMOS.

et , lrnmos , IMS and occam are trademarks of INMOS Limited.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

72 OEK 244 00 July 1990

IContents
1 IMS F003 overview and environment. 3

1.1 Files comprising the graphics library 4

2 IMS F003 detail description 5
2.1 CGI conformance 5

Table of graphical primitive functions 6
Table of CGI attribute functions 7

2.2 Summary of functions 7
2.2.1 Plotting functions 8
2.2.2 Fill functions . 8
2.2.3 Text functions . 8
2.2.4 Image functions 9
2.2.5 Setup functions. 9
2.2.6 Auxiliary functions 9
2.2.7 Hardware-dependent functions 9

2.3 Application areas. 10
2.4 General concepts 10

2.4.1 Plot styles . 10
2.4.2 Fill mode .. 12
2.4.3 Logical modes 12

2.5 Using the library. 13
2.5.1 Choosing your monitor parameters 13
2.5.2 Compilation requirements 13
2.5.3 Linking requirements 13
2.5.4 An example program 14
2.5.5 Interpolation. 15
2.5.6 Achieving transparency 16

2.6 General notes 16
2.6.1 The graphics card. 16
2.6.2 Architecture. 17
2.6.3 Initialization . 18
2.6.4 Multiple plotting 18
2.6.5 Performance considerations. 19
2.6.6 System extensions . 19

3 Library functions .
3.1 Alphabetic list of implemented functions .
3.2 CGILIB.LIB functions .

3.2.1 cgi_addsptext .
3.2.2 cgi_addtext .
3.2.3 cgi_arc .
3.2.4 cgi_arcc .

21

21
21
22
23
24
25

2 Contents

3.2.5 cgi_chrbegin. 26
3.2.6 cgi_chrspace . 27
3.2.7 cgi_chrz. 28
3.2.8 cgi_circle . 29
3.2.9 cgi_cls .. 30
3.2.10 cgi_copy... 30
3.2.11 cgi_disjpolyline. 31
3.2.12 cgi_dot.. 31
3.2.13 cgi_errstat .. 32
3.2.14 cgi_fcircle..... 33
3.2.15 cgi_ffan. 34
3.2.16 cgi_fhline..... 35
3.2.17 cgi_frect...... .. 35
3.2.18 cgi_ftrap.... .. 36
3.2.19 cgi_init . 37
3.2.20 cgi_line. 39
3.2.21 cgi_paint. .. 40
3.2.22 cgi_polygon............... 41
3.2.23 cgi_polyline. .. 42
3.2.24 cgi_rect. .. 43
3.2.25 cgi_rot.. .. 44
3.2.26 cgi_search............... 45
3.2.27 cgi_setbcol... .. 47
3.2.28 cgi_setdrawmode. .. 48
3.2.29 cgi_setdrawscreen..... 49
3.2.30 cgi_setfcol... .. 50
3.2.31 cgi_setfillstyle. .. 51
3.2.32 cgi_setfont.......... 52
3.2.33 cgi_setlinestyle........ 53
3.2.34 cgi_setorient. 54
3.2.35 cgi_setpelstyle............ 55
3.2.36 cgi_sptext.... .. 56
3.2.37 cgi_strokearc................. 57
3.2.38 cgi_text................... 58
3.2.39 cgi_zoom........... .. 59

3.3 8419.LIB functions. .. 60

3.3.1 fs_displaybank. 60
3.3.2 fs_initscreen. .. 61
3.3.3 fs_initVTG. .. 62
3.3.4 fs_screenaddr .. 63
3.3.5 fs_setpalette. 64

3

1 IMS F003 overview
and environment

The IMS F003 software provides a two dimensional graphics libra~ functionally
conformant with a subset of the Computer Graphics Interface (CGI) standard. This
library is sufficiently flexible to allow it to be used as a building block to implement
additional 2-dimensional graphics operations, or indeed, 3-dimensional graphics
systems.

Functions in the library fall into a number of clearly defined areas. A family of func­
tions exists for drawing points, lines, and arcs. Another family handles two dimen­
sional drawing operations and fills. The text support provided by another family is
expandable by the programmer to accomodate personalized font information. mo
dimensional screen-pixel operations offer block copying, zooming, and rotation.
An auxiliary category handles miscellaneous initialization of the graphics card and
data structures used by the rest of the library.

In order to separate those parts of the graphics software that are hardware depen­
dent, a supplementary library called 8419.L18 provides framestore-specific initial­
ization, multi-frame display buffering, and colour control, for the INMOS IMS 8419
graphics card.

The CGllibrary will be useful in application areas from engineering drawing to mim­
ic diagrams, from interactive drawing and modelling to concept visualization.

For brevity, the software will be referred to as the CGllibrary throughout this docu­
ment.

The IMS F003 CGI software has been implemented in ANSII C, using the INMOS
TCOFF Toolset C compiler.

There are two libraries provided. The main library, CGILI8.LI8, handles all the CGI
drawing operations which are independent of the chosen graphics card. It is
supplied in binary form as a library, compatible with the INMOS TCOFF toolset.

The supplementary library, 8419.LI8, adapts the behaviour of the main CGllibrary
to run on the IMS 8419 graphics TRAM (or compatible). This TRAM can form part
of an arbitrary transputer network. The IMS 8419 can support a wide range of dis­
play resolutions and pixel rates. The CGllibrary can be used with all of these, by
simply altering initialization parameters to functions in the 8419.L18 librar)(at run­
time. A major benefit accruing from this design decision is that the library can be
used with other hardware by simply linking in a different hardware library. Further,
facilities for altering the display parameters at run-time, and for convenient multi­
frame buffer access and colour control, are all isolated from the ITlain CGllibrary
with clean documented interfaces.

A programmer can access functions in the libraries from a C application. For the
C programmer, a source header file, CGIDEFS.H, defines the prototypes of func-

72 OEK 244 00 July 1990

4 1 IMS F003 overview and environment

tions that can be accessed from user applications. This header file is included with
the users' C source prior to compilation.

1.1 Files comprising the graphics library

There are six files on the diskette:

B419.LIB

CGIDEFS.H

CGITYPES.H

CGILIB.LIB

EXAMPLE.C

README

These should be copied to the appropriate directory.

720EK244 July 1990

5

2 IMS F003 detail
description

2.1 CGI conformance

The IMS F003 offers a functionally conformant subset of the CGI (ISO TC97/SC21
N119) standard. The CGI standard defines the interface between device-inde­
pendent and device-dependent parts of a graphics system. CGI Graphical Primi­
tive Functions, Attribute Functions, and miscellaneous initialization and error log­
ging functions have been included.

The CGI defines the functional behaviour ofa number of graphical output primi­
tives and attribute functions, in a way which is encoding and binding independent.
This allows the same facilties to be provided in different languages, for example,
while taking into account the syntax of that language. The IMS F003 is implem­
ented in ANSII C, and is supplied with suitable C-Ianguage function bindings.

Throughout this document, reference is made to the areas where the functions pro­
vided by the IMS F003 relate to the CGI standard functions. In some cases, for per­
formance reasons, it has been necessary to provide a subset of capabilities, for
example, the arc drawing functions provided produce only axis-aligned arcs.

CGI Graphical Primitive Functions are those functions that define the geometric
components of a picture. The Graphics Primitive Functions defined in the CGI can
be grouped into the following categories: line, marker, text, filled area, image, and
GDP (Generalized Drawing Primitive).

CGI Attribute Functions determine the appearance of these Graphical Primitive
Functions. Attributes are classified as either individual or bundleable.

While it is not the purpose of this document to discuss the CGI standard, the follow­
ing table shows how various CGI (ISO TC97/SC21 N1179) Graphical Primitive
Functions and attribute Functions are implemented in terms of IMS F003 CGlli­
brary functions.

72 OEK 24400 July 1990

6

Table of graphical primitive functions

2 IMS F003 detail description

Line functions
POLYLINE
DISJOINT POLYLINE
CIRCULAR ARC CENTER
ELLIPTICAL ARC

cgi_polyline
cgi_disjpolyline
cgi_arc
cgi_arc

Marker function
POLY MARKER

Image function
CELL ARRAY

cgi dot, cgi cop~ Peloperntions

cgi_polygon, cgi_ftrap,
cgi_fhline, cgi_paint,cgi_search

GDP function
GENERALIZED DRAWING PRIMITIVE miscellaneous, e.g. some logical pixel
(hardware specific) modes use specialized transputer block-move instructions.

Filled area functions
POLYGON

POLYGON SET

RECTANGLE

CIRCLE

cgi_polyline, cgi_disjpolyline,
cgi_line, cgi_ftrap,cgi_fhline

CIRCULAR ARC 3 POINT CLOSE cgi_arcc, cgi_strokearc, cgi_ffan

CIRCULAR ARC CENTER CLOSE cgi_arcc, cgi_strokearc, cgi_ffan

ELLIPSE cgi_circle, cgi_fcircle,cgi_strokearc

ELLIPTICAL ARC CLOSE cgi_arcc, cgi_strokearc, cgi_ffan

Text functions

TEXT

APPEND TEXT

RESTRICTED TEXT

cgi_text, cgi_sptext, cgi_chr,
cgi_chrbegin, cgi_chrspace

cgi_addtext, cgi_addsptext,
cgi_chr, cgi_chrspace

cgi_text, cgi_sptext,cgi_chr,
cgi_chrbegin, cgi_chrspace

Table 2.1 CGI (ISO TC97/SC21 N1179) Example from IMS F003

72 OEK 24400 July 1990

2 IMS F003 detail description 7

Table of CGI attribute functions

The following table shows how various CGI (ISO TC97/SC21 N1179) Attribute
Functions can be implemented in terms of IMS F003 CGllibrary functions.

liNE TYPE
liNE WIDTH
liNE COlOR

MARKER TYPE
MARKER SIZE
MARKER COLOUR

cgi setlinestyle, cgi setdrawmode
cgi-setlinestyle,cgi-setdrawmode
cgi=setlinestyle, cgi=setdrawmode

cgi_setpelstyle, cgi_copy, cgi_zoom
cgi_setpelstyle, cgi_copy, cgi_zoom
cgi_setpelstyle,cgi_copy,cgi_zoom

TEXT FONT INDEX
TEXT PRECISION
CHARACTER EXPANSION FACTOR
CHARACTER SPACING
TEXT COlOR
CHARACTER HEIGHT
CHARACTER ORIENTATION
CHARACTER SET INDEX
ALTERNATE CHARACTER SET INDEX

cgi_setfont
cgi_text,cgi_chr,cgi_zoom
cgi_chr, cgi_zoom
cgi_chrspace
cgi_setfcol
cgi_chr
cgi_setorient,cgi_rot
cgi_setfont
cgi_setfont

INTERIOR STYLE
Fill COlOR
HATCH INDEX
PATTERN INDEX
PATTERN TABLE
PATTERN SIZE

cgi_setfillstyle,cgi_setfcol
cgi_setfcol
cgi_setfillstyle
cgi_setfillstyle
cgi_setfillstyle
cgi_setfillstyle

Table 2.2 CGI (ISO TC97/SC21 N1179) Implementation in IMS F003

2.2 Summary of functions

The CGI graphics functions are divided into the following related groups:

• plotting
• fills
• text
• image
• setup
• auxiliary

points, lines, and arcs
rectangles, ellipsoids, trapezoids, painting
multiple orientation and scaling
copying, rotating, and zooming at pixellevel
cgi structure intialization
error handling

A further group handles the hardware-dependent aspects of the graphics system,
provided in a supplementary library.

A summary each function is given next. This should highlight the flexibility of the
implementation, and provide a foundation for describing first some application ar­
eas, and then some of the unfamiliar terms and capabilities.

72 OEK 24400 July 1990

8 2 IMS F003 detail description

2.2.1 Plotting functions

Line between 2 end points

Rectangle outline

Consecutive line segments

cgi_disjpolyline Several separate lines

cgi_polygon

cgi_strokearc

2.2.2 Fill functions

cgi_fcircle

cgi_ftrap

cgi_fhline

2.2.3 Text functions

cgi_addtext

cgi_addsptext

cgi_chrbegin

72 OEK 24400

Arbitrary polygon

Axis-aligned ellipsoids

Partial ellipsoids

Partial ellispoids with segment and
chord termination option

Single stroke arc

Single point

Clear screen to given solid colour

Filled rectangle

Filled ellipsoid

Filled fan

Region filling

Filled trapezoid

Filled horizontal line segments

Text display at explicit position

Append text to current text position

Text with individual character kerning control

Append text with kerning control

Set character position

July 1990

2 IMS F003 detail description 9

cgi_chrspace Set inter-character default spacings

Zooming of a given character

2.2.4 Image functions

cgi_zoom

20 copy with logical operations

Arbitrary scaling of 20 block

20 block rotation

2.2.5 Setup functions

cgi_ini t Set up cgi static variables

cgi_setdrawmode Sets pixel mode, fill mode, and logical replace mode

cgi_setfont Init a user's packed font for text display

cgi_setorient Select an orientation for text and copy operations

cgi_setpelstyle Sets up a user pel design, up to 32 by 32 pixels

cgi_setlinestyle Sets up a user line design, up to 1024 pixels long

cgi_setfillstyle Sets up a user fill design, up to 32 by 32 pixels

cgi_ setdrawscreen Select a screen for drawing on

2.2.6 Auxiliary functions

cgi_errstatus Expound current error

Scan horizontally for colour changes.

2.2.7 Hardware-dependent functions

These functions are contained in a separate library called 8419.LI8, and allow the
main CGllibrary functions to be used with the IMS 8419 graphics card.

fs initVTG

fs initscreen

fs_setpalette

fs screenaddr

fs_displaybank

72 OEK 24400

Initialize g300.

Initialize the framestore screen structures

Set colour palette entries

Determine address of given screen bank

Select screen bank for display

July 1990

10 2 IMS F003 detail description

2.3 Application areas

The CGllibrary offers particular support in the engineering drawing field, where the
ability to customize line styles allows an unlimited expression of traces, the fill defi­
nitions allow hatching and shading to be implemented, and multiple scale/orienta­
tion font manipulation allows for diagram dimensioning. Enough support is pro­
vided for implementing three dimensional projections; the demonstration
programs illustrate the technique.

The library could be used to implement the visual end of an interactive drawing,
modelling, and CAD package.

2.4 General concepts

The CGI library has a number of drawing modes which define the run-time beha­
viour of most of the commands. These modes concern the following:

• Plot Style
• Filling mode
• Logical mode

use pixels, Pels, or Linestyles for outlining?
solid or patterned?
replace pixel or do a logical operation ?

These modes are collectively initianzed using the cgi_setdrawmode function.

The Plot Style and Filling mode apply only to specific commands, whereas the cur­
rently defined Logical Mode applies to everything plotted on a screen. A descrip­
tion of these modes, and their applicability, is given now.

2.4.1 Plot styles

All the Plotting commands conform to the Plotting style modes. This includes com­
mands for drawing lines, dots, and arcs etc. The Plot style afects every point to
be plotted to render the required object, in terms of the size, shape, and visibility
of the plotted point.

There are five Plot styles:

• Pixel
• Pel
• Linestyle
• Linestyle-Transparent
• Linestyle-Pel

Pixel mode means that a single pixel is plotted for each point on a line or arc to be
drawn. This gives solid outlines of minimal displayable thickness, drawn in the cur­
rent foreground colour.

Pel mode means that a 'fat' pixel, called a Pel, is plotted for every point for the given
command. Pels are useful for plotting cursors, markers, bullets etc. The program-

72 OEK 24400 July 1990

2 IMS F003 detail description 11

mer can specify the shape of a Pel, on a square grid, up to 32 by 32 pixels. The
Pel can be thought of as having two colours, foreground and background. In Pel
mode, the default logical pixel overwrite mode will only plot the non-zero entries
from the Pel definition. This means that if the background colour is always zero,
then the foreground can actually consist of any number of non-zero colours, all of
which will be plotted normally. By choosing a suitable logical pixel mode, the zero­
valued background colour can be plotted, or the foreground can be ignored. Plot­
ting a line or arc in Pel mode can result in thick traces, for example, if the Pel is
defined as some globular shape.

The programmer can define a Linestyle, in preference to the default line which is
solid colour. Up to 128 bytes of information describe the Linestyle, which can have
any number of colours in it. These colours are determined when the Linestyle is
initialized. However, it is best to think of the Linestyle as having a foreground and
a background colour, because the LineStyle-Pel mode, discussed next, makes use
of the current Linestyle value to determine whether to plot a Pe!. The current sys­
tem foreground and background colours are ignored when using Linestyle mode.

A pointer and count are associated with an active Linestyle. The pointer advances
along the Linestyle, at a rate determined by the counter: This means that it is possi­
ble to control how many points are plotted before the Linestyle pointer is increm­
ented, giving a stretch effect. If Linestyle mode is engaged, the outcome of every
plot command depends on the current position of the Linestyle pointer.

This mode is the same as Linestyle mode, except the background colour, taken
to be zero, is not plotted. Normally, in Linestyle mode, the current system fore­
ground and background colours are ignored arid a value from the Linestyle vector
is always used. This mode, however, allows a non-destructive effect with a zero
background colour, without having to compromize the appearance of the fore­
ground colour be using one of the logical pixel operations. This is useful in engi­
neering drawing applications when plotting traces and general construction/sec­
tioning lines.

The Pel and Linestyle mode can be combined, to create the Linestyle-Pel mode.
This mode combines the attributes of both component modes. The effect is that
for every point to be plotted in the given drawing command, the currently defined
Pel is plotted in accordance with the Linestyle mode.

If current Linestyle value is non-zero then a Pel will be plotted at the current posi­
tion. The colours of the Linestyle are ignored; only a zero entry in the Linestyle vec­
tor is used to signify the non-plotting of a Pe!. This is why the Linestyle should be
thought of as having two colours, foreground and background, even though in ac­
tuality if may have many. Note that this behaviour can be thought of as Linestyle­
Pel transparent. Ifit is necessary to cause pixel overwrite in background areas, and
still obtain the same visual effect, then the applications programmer must scribe
the area in Pel mode in a suitable colour, and then use Linestyle-Pel mode to write
the foreground.

72 OEK 24400 July 1990

12 2 IMS F003 detail description

2.4.2 Fill mode

All Fill operations are influenced by the Fill mode. This includes commands such
as rectangle fill, circle fill, and region paint etc. The Fill mode permits either a solid
fill colour or a user-defined pattern fill to be employed when filling.

Solid filling uses the current foreground colour.

A user-defined fill pattern can be up to 32 by 32, and can have any number of co­
lours in it. If the patterned Fill mode is selected, the user's active fill pattern is tiled
over the area to be filled. In this case, the current foreground and background co­
lours are ignored; the actual colour values specified in the pattern are used. This
allows patterns to have up to 256 different colours in them. By choosing a suitable
logical pixel mode, zero values may be treated specially if required. The origin of
the fill pattern is coincident with the graphics screen origin, at (0,0).

2.4.3 Logical modes

The Logical mode operates in the screen pixel domain, by performing logical bit­
wise operations on the colour to be plotted, and the existing colour at that pixel.
In this way, the resultant colours plotted can be made to depend on the colours that
were plotted previously. The Logical mode affects every drawing operation on the
screen, independently of the other ploUfill modes.

The basic pixel overwrite mode is:

• overwrite pixel overwrite; ignore present pixel colour

This mode is the fastest, because it does not require reading the framebufer prior
to plotting, and does not require a logical byte operation before plotting.

The logical modes are:

• AND
• OR
• XOR
• NAND
• NOR

bitwise AND with existing pixel
bitwise OR with existing pixel
bitwise XOR with existing pixel
bitwise NAND with existing pixel
bitwise NOR with existing pixel

These modes are slower than the basic pixel replace mode, because extra reads
are required from the framebufer, and a logical operation and writeback has to be
performed for each pixel plotted.

There are additionally three overwrite modes called MOVE2DALL,
MOVE2DZERO, MOVE2DNONZERO. These modes directly correspond to the
two dimensional block move instructions on T800 series transputers, and signifi­
cantly increase the performance of plotting and filling. The basic pixel overwrite
mode corresponds to the MOVE2DALL mode.

There is one exception to this, concerning the plotting ofa Pel (in either Pel or Line­
style-Pel mode). Here, the default overwrite mode corresponds to the transputers'

72 OEK244 00 July 1990

2 IMS F003 detail description 13

MOVE2DNONZERO mode. In otherwords, the zero elements of the Pel are not
written in overwrite mode in this case. To write the zero elements of a Pel in over­
write mode, one would select the MOVE2DALL overwrite mode.

2.5 Using the library

It is assumed in this discussion that the programmer is using the TCOFF toolset
C compiler, and an IMS 8419 graphics TRAM. Note that the ellipsis (three consec­
utive dots, thus ...) is used to represent hidden detail not relevent to the current
points being discussed.

2.5.1 Choosing your monitor parameters

The CGllibrary is totally independent of the resolution of the output display device.
All hardware dependent aspects have been isolated in the supplementary library
8419.LIB.

The timing specifications for the G300 on the IMS 8419 are expressed in an integer
vector, passed to the f s ini tVTG function from the 8419.L18 library. It is straight
forward for alternative-parameters to be selected; one simply consults the
IMS G300 CVC documentation for the parameters relevent to your monitor.

2.5.2 Compilation requirements

To use the CGI library functions, the C programmer includes a header file in the
source of each separately compiled C module which references any of the func­
tions in the CGI library.

The C compiler's preprocessor directive #inelude is used like this:

#inelude "egidefs.h"

This header file, egidefs. h, defines:

• important system constants

• macros for fastest execution of common commands

• function prototypes, conformant to ANSII C.

Note that cgidefs.h also references another C header file, egi types. h, which
must be available at compile time of the C module.

To compile the program is straightforward :

ice myprog.c /t8/g

2.5.3 Linking requirements

The library file cgilib .lib should be included in the programmers' specification
of files to be linked together. For example,

72 OEK 24400 July 1990

14 2 IMS F003 detail description

ilink myprog.tco cgilib.lib b419.1ib If startup.lnk

Of course, the same CGllibrary code can be shared by any number of separately
compiled modules. It is therefore only necessary to link in the CGI library code
once.

Also, it is important that calls to the CGllibrary functions are sequential, because
of the static variables used to hold graphics state information. Parallel access to
the CGI library could result in a corruption of this static state information.

2.5.4 An example program

The following example program shows how to use and initialize some of the CGI
library features.

#include <channel.h>
#include <stdio.h>
#include <mathf.h>
#include <math.h>
#include <stdlib.h>

#include "cgidefs.h" /* include system definitions */

screen screens [2]; /* two screen structures, banks 0 and 1 */
int visible_screen, invisible_screen;

void mypalette ()
{

int i=O;
for (i=O; i<255; i++)
fs_setpalette (i, i, i, i

}
/* Grey scale palette */

/* These parms are suitable for 1024 by 1024
on 50-60KHz linescan monitor */

int g3parms[] = { 17, 17, 43, 256, 87, 164,
6, 56, 2048, 338, 0, 491, 21, 255 };

int main ()
{

char linestyle [64], pel [64], pfill [64];

cgi_init(); /* init the CGI library */
fs_initVTG (g3parms); /* init the framestore */
visible_screen = 0;
invisible_screen = 1;
fs initscreen (&screens [visible_screen],

visible_screen, 1024, 1024);
fs initscreen (&screens [invisible_screen],

72 OEK 244 00 July 1990

2 IMS F003 detail description

invisible_screen, 1024, 1024);
fs displaybank (visible_screen);
cgi_setdrawscreen (&screens[visible_screen]);
mypalette () ;

... set up Linestyle, Pel, and fills

cgi_setlinestyle (32, &linestyle[O], S);
/* Tell CGI about your */

cgi_setpelstyle (S, S, &pel[O], 4, 4);
/* lines, fills, and pels */

cgi_setfillstyle (S, S, &pfill[O]);
cgi_setdrawmode (PM_LS_PEL, RM_COL, FM_COL);
cgi_setfont (fontSbyS, S, 2, 4); /* system font */
/* Sbit wide, 2 words/char, 4 lines/word */
cgi_setorient (TX_NORM); /* upright text and copy */
cgi_chrspace (10, 0);
cgi_chrbegin (100, 100);

... initialization over, do rest of program
cgi_line (0,0,100,100);
cgi_fcircle (500,500,300,200);

15

Suppose this source is placed in a file called myprog.c, and we want to build a sys­
tem to run on a single IMS 8419 G300 TRAM connected directly to the host com­
puter, then to build the system the following commands are suitable:

icc myprog.c /tS /g -) myprog.tco
ilink myprog.tco cgilib.lib b419.lib/f startup.lnk /tS -)
myprog.lkuicollect myprog.lku /t /s SOO -) myprog.btl

We can boot the application using

iserver /sb myprog.btl /se

If the G300 TRAM is not the root transputer, we can iskip load the program. For
example, if the IMS 8419 is connected to link 2 of the root transputer, we can boot
our single processor application like this:

iskip 2 /e/r
iserver /sc myprog.btl /ss /se

2.5.5 Interpolation

The zoom command can perform an interpolation during the zoom operation. The
purpose of this is to create a larger or smaller copy of the original that more closely
resembles that original. When an image is enlarged, each source pixel will corre-

72 OEK 244 00 July 1990

16 2 IMS F003 detail description

spond to several in the destination image. This can give a jagged appearance. In­
terpolation helps to smooth these out. Also, when an image is reduced, parts of
it can disappear because several pixels in the source correspond to only one in the
destination. Also, reducing an image can affect the coloration, particularty if used
in conjunction with a logical pixel mode.

This implementation uses a look-up table version of the reciprocal distance meth­
od that is suitable for monochrome and colour images. Both image types ,are han­
dled identically. The technique involves thresholding the colours in the source
image, to determine how to interpolate neighbouring pixels. This threshold map­
ping is key to the interpolation process. This implementation tests the most signifi­
cant bit of the colour on each pixel. Thus, all colours greater than 128 will be inter­
polated with all colours less than 128. Adjacent colours that do not transgress this
threshold will not interpolate.

The intensity of any point depends on the intensities of the 4 closest neighbouring
points, weighted according to their distance from that point. A mapping is per­
formed to threshold the colours of the four corner pixels corresponding to the point
to be plotted. Based on the results of this mapping, an interpolation table can be
selected. The position of the drawing point is then determined in the table, and the
corresponding table entry indicates which corner point is closest in terms of its re­
ciprocal distance. This colour is always one of the original corner colours, and be­
cause of this, the interpolated image will have a coloration closely resembling that
of the original.

2.5.6 Achieving transparency

The LineStyle-Transparent mode can be used to give a transparency of the back­
ground colour in plotting a linestyle line. In addition, many other operations can use
transparency, by using one of the logical pixel modes RM_Z and RM_NZ. These
two modes correspond to the transputer's 2D block move instructions. Operations
involving copying, such as cgi copy, and the text operations, can take advan-
tage of these modes. -

For example, the RM_NZ mode used with cgi copy gives a transparency of the
zero colour. In other words, the zero colour regTons in the source block are never
written into the destination, but all other colours are. Conversel}(the RM_Z mode
gives transparency for all non-zero colours. A copy operation in the RM_Z mode
will only write the zero colour into the destination; all non-zero colours are ignored.

Use of the RM_NZ mode with text commands like cgi a text, will only write the
foreground text colour. And using RM_Z mode will write the text in inverse video,
by writing only the zero background colour.

2.6 General notes

2.6.1 The graphics card

The CGllibrary is independent of the graphics hardware used as a framestore. The
supplementary library B419.LIB adapts the CGI library to this specific graphics

72 OEK 24400 July 1990

2 IMS F003 detail description 17

TRAM. This TRAM uses the INMOS GOO Colour Video Controller chip. which inte­
grates programmable video timing. video memory management. memory inter­
faces and colour look-up table on a single chip. The device has two modes ofoper­
ation. One mode. the so-called 8-bit mode. uses the video RAM as a pointer to an
entry in the colour look up table (CLUT). This mode can display any 256 colours
from more than 16 million. and is the mode that the CGllibrary operates with. The
G300's other mode. the 24-bit mode. uses one byte of video memory for each of
Red. Green. and Blue. While this offers many more displayable colours on-screen.
the CGI library does not support this mode of operation.

The flexibility of the IMS G300 device in driving a wide range of video output de­
vices in terms of resolution and pixel rate. is fully exploitable with the CGllibrary.

The library can operate to any of the G300s pixel rates and screen resolutions. The
run-time initialization using fs ini tVTG (int *g3parrns) from B419.LIB.
establishes the G300's clock raTe, and sets the device into CLUT mode.

Note that on the IMS B419, the CGllibrary places the graphics origin at the top left
hand corner of the screen.

2.6.2 Architecture

Fundamental -to the implementation and operation of the CGI library is the defini­
tion of a SCREEN. All graphics operations are performed on a screen.

A SCREEN is defined as a C structure with the following fields:

char *raster; a pointer to a byte map (normally a 2d raster field)
int Xsize; Maximum X value on this screen
int Ysize; Maximum Yvalue on this screen
int stride; The stride for the current screen

The system performs most operations on the current screen. A static pointer,
called _CURRSCREEN, points to the screen structure to be used. This is normally
set using the cgi_setdrawscreen function, as follows:

cgi_setdrawscreen (&screens[visible_screen]);

The raster area pointed to by this screen structure is used as the current drawing
field. This need not be a currently visible raster area, or indeed, it need not be one
of the framestore screens. All drawing operations are clipped to the current draw­
ing area.

The screen structure concept is used to represent not only video memory blocks,
but also Pel maps, unpacked Font, and pattern fill areas. This results in a conve­
nient way to be able to apply many operations to di1ferent items. For example, 20
clipping, logical plotting, zoom and rotate are all applied to SCREENs, and are all
used within the library in this way.

A programmer can define any number of screens, for many purposes. One pur­
pose might be to implement any number ofsoftware windows on an area of display
memory, with a view to clipping operations to this extent.

72 OEK244 00 July 1990

18 2 IMS F003 detail description

2.6.3 Initialization

It is the programmers' responsibility to initialize any structures necessary before
calling any commands that use these structures. The example program shows
how to initialize the main structures used by the CGI library and set up the G300
on the graphics card.

cgi_init() ;
fs_initVTG(g3parms);
visible_screen = 0;
invisible_screen=l;
fs initscreen (&screens [visible_screen],

visible_screen, 1024, 1024);
fs initscreen (&screens [invisible_screen],

invisible_screen, 1024, 1024);
fs_displaybank (visible_screen);
cgi_setdrawscreen (&screens[visible_screen]);

Most graphics operations read/write on the RAM area pointed to by
_CURRSCREEN. It is important that this pointer is correctly initialized, otherwise
the graphics operations could write over unexpected areas of memory on the
graphics card. Note in particular that calling cgi_ini t will reset the
_CURRSCREEN pointer to NULL. This pointer is usually initialized to point to an
screen structure responsible for one of the framestore screen bufers, ofwhich only
one is visible at any given moment. The function cgi setdrawscreen can be
used to do this. This allows graphics operations to beperformed on an invisible
buffer, then instantly switched for animation effects.

Providing this amount of initialization has been correctly performed, most of the
commands will fail safely if they have not been correctly initialized. For example,
attempting to display a character when the font has not been initialized with
cgi setfont, will safely default to no action. Illegal plotting/fill modes default to
basic versions, ie, solid fill, pixel overwrite Logical mode, and basic Pixel Plotstyle
mode. All plotting is clipped to the current screen dimension.

2.6.4 Multiple plotting

In some cases, the Plot algorithms (lines, arcs, points etc.) will plot some screen
pixels more than once. In most cases, this is unlikely to cause a problem, but cer­
tain combinations of Plot mode and Logical pixel mode can produce undesired vi­
sual effects. For example if a Logical pixel mode, such as XOR is selected, then
pixels that happen to be drawn twice will vanish.

This scenario can only happen with the Plot and Image algorithms when the XOR
Logical Pixel mode is engaged. The other major families for filling and text display
operate only in horizontal line segments, and so will not plot points more than once.

Consider the sorts of situations where multiple plotting in XOR mode can give rise
to visual artifacts:

Linestyle-Pel drawing. In drawing a Pel-line, successive Pels will overlap
in most cases.

72 OEK 244 00 July 1990

2 IMS F003 detail description 19

2 Flattened ellipsoids. Ellipse dimensions are specified in terms of the length
of their semi-major and semi-minor axes. If one of the axes is more than
about ten times as long as the other, then at the sharper end of the ellipse,
where the bend radius is tight, multiple plotting can occur. This effect is ex­
acerbated where large Pels are involved.

3 Intersecting polylines. If a polyline crosses over itself, then the area of over­
lap will be plotted more than once. Again, large Pels will give a more
marked effect.

4 Small vertex angles. When drawing polygons and polylines, if the angle at
the vertex formed by two consecutive line segments is small, then some
degree of overlap is possible. This effect can also be observed in some
cases with the closed arc command, where the segment lines joining the
two end points on the arc to the center can form a small vertex angle de­
scribed above.

5 Image zoom, shearing or rotation can result in some points being plotted
more than once.

2.6.5 Performance considerations

The transputer's 2D blockmove instructions are used where-ever possible, for
maximum performance. For example, in drawing solid or patterned areas without
regard to logical operations, the blockmoves significantly increase performance.
This is akin to the CGI standards' Generalized Drawing Primitive, where the use
of certain logical pixel modes offer implicit enhanced library performance in the
transputer implementation.

All transputers offer a small amount of very fast one-cycle on-chip RAM. On the
t800 series, this is 4 KBytes. The CGllibrary attempts to use this RAM for tempo­
rary storage of small vectors, used for fast region filling.

2.6.6 System extensions

The prototypes file CGIDEFS.H defines the functions in CGILLIB.LIB, and
B419.LIB. The CGllibrary defines a number of static variables which are accessi­
ble from the user's application. The most important of these are annunciated in the
prototypes file. Direct use of most of these is intended only as low-level support
hooks for programmers to build their own extensions.

The useful ones are:

extern in t COLD; system background colour
extern int _COLI; system foreground colour
extern s creenptr CURRSCREEN; pointer to current drawing screen
extern unsigned int font8by8 [] ; system font

The _CURRSCREEN pointer is normally set using a call of this form:

cgi_setdrawscreen (&screens[visible_screen]);

But it can be directly manipulated if desired.

72 OEK 244 00 July 1990

20 2 IMS F003 detail description

Certain graphics operations make use of a stack. Storage for this is defined in the
prototypes file, with a definition similar to this:

int gstack[lOOO];

It is primarily used by the cgi_paint algorithm. It was decided to make this stack
available to the programmer, so its size can be adapted. For example, if the painter
algorithm runs out of stack space when filling, it is a simple matter to allocate more
stack space for it in a controlled way. Had the stack been concealed within the li­
brary, this would not have been such a trivial extension. A stack size of 1000 here
is sufficient for filling about 200 concurrent horizontal line segments.

72 OEK244 00 July 1990

21

_3_Li_br_8_rY_f_un_c_ti_on_s__1

3.1 Alphabetic list of implemented functions

Unless otherwise stated, all the CGllibrary functions operate on the current active
screen structure. This is pointed to by the static _CURRSCREEN, but is normally
set using egi setdrawsereen, to point to a framestore screen structure, to al­
low the bank switching to be utilized. Again, unless otherwise stated, the graphics
functions draw in the current foreground colour, _COL1, selected with
egi setfeol. Remember that on the IMS B419 grpahics TRAM, the library
places the graphics origin at the top left hand corner of the screen.

This list has been divided into two parts, corresponding to the CGILIB library and
the 8419 library.

3.2 CGILIB.LIB functions

The CGILI8.LIB functions, which are hardware independent, are prefixed with
egi . They are accessed by textually including the prototype definition file
egidefs. h with the C source, and then linking with CGILIB.LIB.

72 OEK244 00 July 1990

22 3 Library functions

3.2.1 cgi_addsptext

Function: Append text at current position, with spacing control

Calling syntax:

void cgi_addsptext (int n, char *str, int *dx, int *dY)i

Parameters:

int n
char *str
int *dx
int *dy

Description:

number of characters to plot
Pointer to valid data
Pointer to array of integer X spacings
Pointer to array of integer Y spacings

n characters from the data string are plotted according to the current font. The char­
acter coordintates are updated after each character, according to the inter-cha­
racter spacings defined by the vectors dx and dy. The programmer must set the
spacing vectors dx and dy bearing in mind the selected orientation. The current
logical pixel mode and orientation affect the displayed result. The characters are
reproduced at the size of their defined font. Each pixel of every character is clipped
to the current screen. Note that the font required must first be initialized using
cgi setfont. Note that for text display, the default logical pixel replace mode,
RM~COL, causes the text to imprint with a rectangular box of colour O. In some
cases, this may not produce the desired effect. If only the foreground of the text
is required, and a pixel overwrite mode (Le. not a logical operation with the current
frame buffer) is required, then select pixel mode RM_NZ. This corresponds to the
transputers MOVE2DNONZERO capability.

72 OEK244 00 July 1990

3 Library functions

3.2.2 cgi_addtext

Function: Append text to current text position.

Calling syntax:

void cgi_addtext (int n, char *str);

Parameters:

in t n number of characters to plot
char *s tr Pointer to valid data

23

Description:

n characters from the data string are plotted according to the current font, starting
at the current character position. The character coordinates are updated aftereach
character, according to the inter-character spacings defined by cgi chrspace.
The current logical pixel mode and orientation affect the displayed resUlt. The char­
acters are reproduced at the size of their defined font. Each pixel ofevery character
is clipped to the current screen. Note that the font required must first be initialized
using cgi setfont. Note that for text displa~ the default logical pixel replace
mode, RM=COL, causes the text to imprint with a rectangular box of colour O. In
some cases, this may not produce the desired e1fect. If only the foreground of the
text is required, and a pixel overwrite mode (Le. not a logical operation with the cur­
rent frame buffer) is required, then select pixel mode RM_NZ. This corresponds
to the transputers MOVE2DNONZERO capability.

72 OEK 244 00 July 1990

24 3 Library functions

3.2.3 cgi_arc

Function: Outline part of an axis-aligned ellispoid.

Calling syntax:

void cgi_arc (int Xc, int Ye, int A, int B,
int DXs, int DYs, int DXe, int DYe);

Parameters:

int Xc
int Ye
int A
int B
int DXs
int DYs
int DXe
int DYe

Center X coord
Center Y coord
Length of semi-axis in X direction
Length of semi-axis in Y direction
X Direction of start vector
Y Direction of start vector
X Direction of end vector
Y Direction of end vector

Description:

This function plots part of the outline of an axis-aligned ellispoid, centered at
(Xc, Ye), with semi-axes Aand B. Both Aand B must be positive. If A> B, then A
is the semi-major axis and B is the semi-minor axis. Otherwise, B is the semi-major
axis and A is the semi-minor axis. Four way symmetry is used for drawing non-cir­
cular ellipses. The points (DXs, DYs) and (DXe, DYe) define direction vectors from
the centerofthe ellipse. Only points clockwise of the (DXs,DYs) vector and ANTI­
clockwise of (DXe, DYe) are plotted. Drawing order is otherwise the same as for the
cgi_ circle. Every point on the outline is clipped to the _CURRSCREEN defini­
tion. The Plot style and Logical pixel mode affect the appearance of the outline.

72 OEK 244 00 July 1990

3 Library functions 25

3.2.4 cqi_arcc

Function: Outline part of an axis-aligned ellispoid, with chord or segment lines.

Calling syntax:

void cgi_arcc (int Xc, int Ye, int A, int B,
int DXs, int DYs, int DXe, int DYe, int CloseFlag);

Parameters:

int Xc
int Ye
int A
int B
int DXs
int DYs
int DXe
int DYe
int CloseFlag

Center X coord
Center Y coord
Length of semi-axis in X direction
Length of semi-axis in Y direction
X Direction of start vector
Y Direction of start vector
X Direction of end vector
Y Direction of end vector
Close with two segment lines or a chord

Description:

This function plots part of the outline of an axis-aligned ellispoid, centered at
(xc, Ye), with semi-axes Aand B. Both Aand B must be positive. If A> B, then A
is the semi-major axis and B is the semi-minor axis. Otherwise, B is the semi-major
axis and A is the semi-minor axis. Four way symmetry is used for drawing non-cir­
cular ellipses. The points (DXs, DYs) and (DXe, DYe) define direction vectors from
the canter of the ellipse. Only points clockwise of the (DXs ,DYs) vector and ANTI­
clockwise of (DXe,DYe) are plotted. Drawing order is otherwise the same as for the
cgi_ circle. Every point on the outline is clipped to the _CURRSCREEN defini­
tion. The Plot style and Logical pixel mode affect the appearance of the outline.

The CloseFlag determines whether the part-outline drawn is closed with either a
segment or chord. Valid CloseFlag values are:

CF_SEGMENT
CF_CHORD

72 OEK 244 00

Draw two segment lines to the canter
Draw a chord between the two endpoints.

July 1990

26 3 Library functions

3.2.5 cgi_chrbegin

Function: Set current character display position.

Calling syntax:

void cgi_chrbegin (int X, int Y);

Parameters:

int X
int y

X coord of current character position
Y coord of current character position

Description:

This function initializes the current text poition, by defining where the next charac­
terwill be plotted. The co-ordinates are in pixels, from the graphics origin. The char­
acter origin is taken to be top left. Note that all text commands other than
cgi_chrz update the current character position.

72 OEK 244 00 July 1990

3 Library functions

3.2.6 cgi_chrspace

Function: Set current inter-character spacing.

Calling syntax:

void cgi_chrspace (int dX, int dY);

Parameters:

27

int dX
int dY

X step added to current character position per character
Y step added to current character position per character

Description:

This command sets the inter-character default spacings, which are added to the
current character position after a character is plotted. The parameters are indepen­
dent of the orientation selected, in that dX is always added to the screen X position,
and dY is always added to the screen Y position. It is the programmers' responsibil­
ity to set the appropriate values here, depending on the current orientation and font
size.

72 OEK 244 00 July 1990

28 3 Library functions

3.2.7 cgi_chrz

Function: Plot character with scaling.

Calling syntax:

void cgi_chrz (char data, int zlenx, zleny);

Parameters:

char data
int zlenx
int zleny

Character to display
Width in X screen pixels to display
Width in Y screen pixels to display

Description:

Any character in the current font can be independently enlarged/reduced in
screen X / screen Y direction. The actual amount of scaling depends on the ratios
of parameters zlenx and zleny, to the font width (famw) as defined in cgi_ set­
fan t. The current logical pixel mode and orientation afect the displayed result.
The scaling is performed without interpolation. Note that the font required must first
be initialized using cgi setfont. Note that for text display, the default logical pix­
el replace mode, RM_COL, causes the text to imprint with a rectangular box of co­
lour o. In some cases, this may not produce the desired elect. If only the fore­
ground of the text is required, and a pixel overwrite mode (Le. not a logical
operation with the current frame buffer) is required, then select pixel mode RM_NZ.
This corresponds to the transputers MOVE2DNONZERO capability.

72 OEK 244 00 July 1990

3 Library functions

3.2.8 cgi_circle

Function: Outline an axis-aligned ellispoid.

Calling syntax:

void cgi_circle (int Xc, int Ye, int A, int B);

Parameters:

29

int Xc
int Yc
int A
int B

Center X coord
Center Y coord
Length of semi-axis in X direction
Length of semi-axis in Y direction

Description:

This function plots the outline of an axis-aligned ellispoid, cantered at (xc, Yc), with
semi-axes A and B. Both Aand B must be positive. IfA> B, then A is the semi-major
axis and B is the semi-minor axis. Otherwise, B is the semi-major axis and A is the
semi-minor axis. Four way symmetry is used for drawing non-circular ellipses.
Drawing order starts on the horizontal axis passing through the center point, head­
ing outwards towards the vertical axis. Then, the Y-axis phase begins on the verti­
cal axis passing through the center point, heading to where the X-axis phase en­
ded. Every point on the outline is clipped to the _CURRSCREEN definition. The
Plot style and Logical pixel mode affect the appearance of the outline.

72 OEK 24400 July 1990

30

3.2.9 cgi_cls

Function: Optimized screen clear.

Calling syntax:

void cgi_cls (screenptr s, int colour);

Parameters:

3 Library functions

screenptr s
int colour

Description:

pointer to the screen structure to be cleared.
solid colour to initialize whole of screen to.

This function clears an entire screen structures raster area, to the specified solid
colour. It has been optimized to use the transputer's 20 block move instructions.
The current Fill mode and Logical pixel modes are ignored.

3.2.10 cgi_copy

Function: 2D block cop~

Calling syntax:

void cgi_copy (screenptr s, int Xs, int Ys,
int LSX, int LSY,
screenptr d, int Xd, int Yd);

Parameters:

screenptr s
int Xs
int Ys
int LSX
int LSY
screenptr d
int Xd
int Yd

Description:

pointer to source screen
Top left source co-ord X
Top left source co-ord Y
X size of source to copy
Y size of source to copy
pointer to destination screen
Top left destination co-ord X
Top left destination co-ord Y

This command copies a 20 block of specified dimensions, from the source screen
to the destination screen. No scaling is performed, although the current Logical pix­
el mode and selected orientation are observed. 20 block moves are used where
possible, and the block are clipped as necessary to fit. The source and destination
screen can be the same, but if the areas overlap then the elect is undefined. All
length parameters must be larger than 1.

72 OEK244 00 July 1990

3 Library functions

3.2.11 cgi_disjpolyline

Function: Plot a series of disjoint lines.

Calling syntax:

void cgi_disjpolyline (int n, int *params);

Parameters:

31

int n
int *params

The number of coord pairs
Pointer to an array containing points

line X1 ,Y1, X2,Y2,
line X3,Y-3, X4,Y4,
line Xn-1 ,Yn-1, Xn,Yn

Description:

This function takes a pointer to an integer vector containing a sequence of at least
n (X,Y) co-ordinate pairs. n is normally even, because each pair of (X,V) data is
joined by a separate line segment. This results in n/2 distinct line segments being
drawn. Every point on every line is clipped to the _CURRSCREEN definition. The
plotstyle and pixel replace mode affect the appearance of the outline. Drawing or­
der is the order of the params arra~ If only one co-ord pair is given, a single point
is plotted. If n is otherwise odd, a single point is plotted for the last line segment.

3.2.12 cgi_dot

Function: Plot a point.

Calling syntax:

void cgi_dot (int X, int Y);

Parameters:

int X
int Y

Description:

X coord
Y coord

Plot a single point at (x,Y), clipped to the _CURRSCREEN definition. The plotstyle
and pixel replace mode affect the appearance of the point.

72 OEK 244 00 July 1990

32

3.2.13 cgi_errstat

Function: Expound the current CGI error

Calling syntax:

3 Library functions

int cgi_errstat (char *errtext, int *errqual);

Parameters:

char *errtext
int errqual

Returns:

A text string returned, indicating the error.
The error qualifier.

errno Error code number

Description:

This function should be called when one wishes to examine the current error sta­
tus. The function returns a non-zero error code if there has been an error in any
of the previous function calls to the library The error codes are defined in
cgi types. h, and are as follows:

e_BADPELMODE invalid Plot mode
e_BADREPMODE invalid Logical pixel mode
e_BADFILLMODE invalid Fill mode
e_BADSEARCHDIRN invalid search direction
e_BADSEARCHTEST invalid search test criteria
e_BADFORIMODE invalid orientation

The errtext parameter returns a textual description of the error and it is the pro­
grammers's responsibility to allocate sufficient storage for this error message; 40
bytes is sufficient.

72 OEK 244 00 July 1990

3 Library functions

3.2.14 cgi_fcircle

Function: Draw a filled axis-aligned ellispoid.

Calling syntax:

void cgi_fcircle (int Xc, int Ye, int A, int B);

Parameters:

33

int Xc
int Yc
int A
int B

Center X coord
Center Y coord
Length of semi-axis in X direction
Length of semi-axis in Y direction

Description:

This function fills an axis-aligned ellispoid, centered at (xc, Yc), with semi-axes A
and B. Both A and B must be positive. If A > B, then A is the semi-major axis and
B is the semi-minor axis. Otherwise, B is the semi-major axis and A is the semi-mi­
nor axis. Four way symmetry is used for drawing non-circular ellipses. Drawing or­
der starts on the horizontal axis passing through the center point, heading out­
wards towards the vertical axis. Then, the Y-axis phase begins on the vertical axis
passing through the center point, heading to where the X-axis phase ended. Fills
are done on horizontal line segments, with each endpoint clipped to the _CURRS­
CREEN definition. The Fill style and Logical pixel mode affect the appearance of
the outline.

72 OEK 244 00 July 1990

34

3.2.15 cgi_ffan

Function: Draw a filled partial ellispoid.

Calling syntax:

3 Library functions

void cgi_ffan (int Xc, int Yc, int A, int B,
int DXs, int DYs, int DXe, int DYe,
int CloseFlag);

Parameters:

int Xc
int Yc
int A
int B
int DXs
int DYs
int DXe
int DYe
int CloseFlag

Center X coord
Center Y coord
Length of semi-axis in X direction
Length of semi-axis in Y direction
X Direction of start vector
Y Direction of start vector
X Direction of end vector
Y Direction of end vector
Close with two segment lines or a chord

Description:

This function fills part of an axis-aligned ellispoid, centered at (xc, Yc), with semi­
axes A and B. Both A and B must be positive. If A> B, then A is the semi-major axis
and B is the semi-minor axis. Otherwise, B is the semi-major axis and A is the semi­
minor axis. Four way symmetry is used for drawing non-circular ellipses. Drawing
order starts on the horizontal axis passing through the center point, heading out­
wards towards the vertical axis. Then, the Y-axis phase begins on the vertical axis
passing through the center point, heading to where the X-axis phase ended. Fills
are done on horizontal line segments, with each endpoint clipped to the
_CURRSCREEN definition. The Fill style and Logical pixel mode affect the appear­
ance of the outline.

The CloseFlag determines whether the fill is bounded by a chord or a pair of seg­
ments. Valid CloseFlag values are:

CF_SEGMENT
CF_CHORD

72 OEK 24400

Draw two segment lines to the center
Draw a chord between the two endpoints

July 1990

3 Library functions

3.2.16 cgi_fhline

Function: Fill a list of horizontal line segments.

Calling syntax:

void cgi_fhline (int Y, int n, int *params);

Parameters:

int Y Y line on which to fill segments
in t n Number of points defining start/stop X positions
int *params Data array listing X values

Description:

35

This routine takes a pointer to a sequence of (start,stop) X values on a given Y line,
and fills them. There are n/2 horizontal segments drawn. Each segment endpoint
is clipped to the _CURRSCREEN definition. The Fill style and logical pixel mode
affect the appearance of the line.

3.2.17 cgi_frect

Function: Draw a filled rectangle.

Calling syntax:

void cgi_frect (int XO, int YO, int Xl, int Yl)i

Parameters:

int XO
int YO
int Xl
int Yl

Description:

X coord of first point
Y coord of first point .
X coord of second point
Y coord of second point

This fills an axis-aligned rectangle, between two diagonally opposite corners, us­
ing blockmoves where possible. The end points of each blockmove stage are
clipped to the _CURRSCREEN definition. The Fill mode and Logical pixel mode
affect the appearance of the fill. If the Fill mode is solid colour, and the pixel replace
mode is overwrite, the fill area is 20 block-moved for speed. If the fill area is greater
than a certain threshold, and Fill mode is FM_PATTERN, and the Logical pixel re­
place mode is moverwrite, patterned fills are 20 block-moved into position.

72 OEK244 00 July 1990

36

3.2.18 cqi_ftrap

Function: Filled a trapezoid.

Calling syntax:

3 Library functions

void cgi_ftrap (int Xl, int Yl, int X2, int Y2,
int X3, int Y3, int X4, int Y4,
int Ys, int Ye);

Parameters:

int Xl, int Yl
int X2, int Y2
int X3, int Y3
int X4, int Y4
int Ys
int Ye

First point on first edge
Second point on first edge
First point on second edge
Second point on second edge
Y bounding value
Y bounding value

Description:

This routine fills a trapezoid in horizontal sections. The trapezoid is bounded hori­
zontally by the two (non-horizontal) lines (Xl,Yl) to (X2,Y2), (X3,Y3) to (X4,Y4)
The fill area is vertically restrained on the top by the largest Y value of Ys and the
smallest Y of the endpoints of the non-horizontal lines; and on the bottom by the
smallest of Ye and the largest of the other endpoints:

Ytop =max [Ys, min(Y1,Y2), min (Y3,Y4).]
Ybot = min [Ye, max(Y1,Y2), max (Y3,Y4)]

where Ytop and Ybot are the upper and lower y bounds, and max() and min() refer
to the largest/smallest of their list of arguments. Filling is performed in horizontal
strips, with each endpoint clipped. Fillmode and logical pixel operation are accom­
modated. The non-horizontal lines may self-intersect without problem.

Note that if Ytop is equal to Ybot, a single line is drawn. If Ybot is smaller than
Ytop, nothing is drwan.

72 OEK244 00 July 1990

3 Library functions

3.2.19 cgi_ ini t

Function: Initialize the cgi library static variables.

Calling syntax:

void cgi_init(void);

Parameters:

None.

37

Description:

This initialization function should be called before any other cg i functions, other­
wise paranormal behaviour should be expected. It need only be called once. After
calling this initialization function, the pointer to the current screen structure,
_CURRSCREEN, is set to NULL. This means that attempting at do any drawing
imediately afterwards will have no effect. Therefore, one should set the
_CURRSCREEN pointer to a valid framestore screen structure, before further
drawing.

Note that it is still necessary to use functions in the SET family to initialize particular
features one intends using.

72 OEK244 00 July 1990

38

Example useage:

main ()

3 Library functions

... declarations
cgi_init(); /* init the CGI library */
fs_initVTG (g3parms); /* init the framestore */
visible_screen = 0;
invisible_screen = 1;
fs initscreen (&screens [visible_screen],

visible_screen, 1024, 1024);
fs initscreen (&screens [invisible_screen],

invisible_screen, 1024, 1024);
fs_displaybank (visible_screen);
cgi setdrawscreen (&screens[visible screen]);

- /* Don't forget-this! */
set colour palette
set up 1inestyle, Pel, and fills

cgi setlinestyle (32, &linestyle[O], 8);
- /* Tell CGI about your */

cgi setpelstyle (8, 8, &pel[O], 4, 4);
- /* lines, fills, and pels */

cgi_setfillstyle (8, 8, &pfill[O]);
cgi setdrawmode (PM 18 PEL, RM COL, FM COL);
cgi-setfont (font8by8, 8, 2, 4); /* system font */
/* 8bit wide, 2 words/char, 4 lines/word */
cgi_setorient (TX_NORM); /* upright text and copy */
cgi_chrspace (10, 0);
cgi_chrbegin (100, 100);

do the rest of the program

72 OEK244 00 July 1990

'13 Library functions

3.2.20 cgi_line

Function: Draw a straight line between (and including) the two end points.

Calling syntax:

void cgi_line (int XO, int YO, int Xl, int Yl);

Parameters:

39

int XO
int YO
int Xl
int Yl

X coord of first point
Y coord of first point
X coord of second point
Y coord of second point

Description:

This function plots a straight line between the given end points, ensuring no pixel
gaps. Drawing order always proceeds from the first point, to the second point. Ev­
ery point on the line is clip tested to the _CURRSCREEN definition. The plotstyle
and logical pixel mode affect the appearance of the line.

72 OEK 244 00 July 1990

40

3.2.21 cgi""paint

Function: Paint an existing area.

Calling syntax:

3 Library functions

void cgi_paint (int Xs, int Ys, int Bcol);

Parameters:

int Xs
int Ys
int Bcol

X coord of interior point
Y coord of interior point
Boundary colour

Description:

This routine flood-fills an area bounded by colour Bcol, starting from an interior
point (xs, Ys). In order to operate correctly with logical pixel operations, the algo­
rithm guarantees to paint each pixel only once. Filling is afected by the Fill mode,
and the logical pixel operation. Filling with the same colour as Bcol gives correct
results, except that points inside closed regions of Bcol are not filled. Filling with
a pattern which includes Bcol is dangerous, and will almost certainly fail to operate.
If the initial point (xs,Ys) happens to be on a Bcol coloured pixel, the paint aborts
immediately.

72 OEK 244 00 July 1990

3 Library functions

3.2.22 cgi""po1ygon

Function: Plot a polygon outline.

Calling syntax:

void cgi_polygon (int n, int *pararns);

Parameters:

41

int n
int *pararns

The number of coordinate pairs to use
Pointer to an array containing points

X1 ,Y1 ,X2,Y2,, Xn,Yn

Description:
This function takes a pointer to an integervector containing a sequence of at least
n (X,Y) co-ordinate pairs. The function will plot a polyline through all the points, and
then join the first to the last point. Every point on every line is clipped to the
_CURRSCREEN definition. The plotstyle and pixel replace mode a1fect the ap­
pearance of the outline. Drawing order is the order of the params array Ifonly one
co-ord pair is given, a single point is plotted. If all points are coincident, a single
point is plotted.

72 OEK244 00 July 1990

42

3.2.23 cgi""polyline

Function: Plot a polyline through all the coordintae pairs.

Calling syntax:

void cgi_polyline (int n, int *params);

Parameters:

3 Library functions

int n
int *params

The number of coordinate pairs to use
Pointer to an array containing points

X1 ,Y1 ,X2,Y2, , Xn,Yn

Description:

This function takes a pointer to an integer vector containing a sequence of at least
n (X,Y) co-ordinate pairs. The function will plot a polyline through all the points, plot­
ting the endpoints only once. Every point on every line is clipped to the
_CURRSCREEN definition. The plotstyle and pixel replace mode alect the ap­
pearance of the outline. Drawing order is the order of the params array If one or
fewer co-ord pairs are given, there is no action.

72 OEK 244 00 July 1990

3 Library functions 43

3.2.24 cgi_rect

Function: Draw an axis-aligned rectangle outline, between two diagonally oppo­
site corners.

Calling syntax:

void cgi_rect (int xo, int YO, int Xl, int YI);

Parameters:

int XO
int YO
int Xl
int YI

X coord of first point
Y coord of first point
X coord of second point
Y coord of second point

Description:

An axis-aligned rectangle outline is drawn on the current screen, between the two
diagonally opposite corners. IF both points are the same, no action is performed.
Otherwise, drawing order is horizontally from the first point to the X coord of the
second point, then vertically to the second point, until the first point is reached
again. Every point drawn is clip tested to the _CURRSCREEN definition. The plot­
style and pixel replace mode affect the appearance of the line.

72 OEK 244 00 July 1990

44

3.2.25 cgi_rot

Function: 20 block rotation.

Calling syntax:

3 Library functions

void cgi_rot (screenptr s, int Xs, int Ys,
int LSX, int LSY,

int Xd, int Yd, float angle);

Parameters:

screenptr s
int Xs
int Ys
int LSX
int LSY
int Xd
int Yd
float angle

pointer to source screen
Top left source co-ord X
Top left source co-ord Y
X size of source to rotate
Y size of source to rotate
Top left destination co-ord X
Top left destination co-ord Y
radian angle for rotation

Description:

This command copies a 20 block of specified dimensions, from the source area
to the destination area, while performing a rotation of a specified radian angle. The
current Logical pixel mode is observed. The resultant block is clipped as necessary
to fit. If the source and destination areas overlap then the effect is undefined. All
length parameters must be larger than 1. Positive angles denote anticlockwise ro­
tations.

72 OEK 244 00 July 1990

3 Library functions

3.2.26 cgi_search

Function: Scan horizontal line segment for colour changes.

Calling syntax:

int egi_seareh (int xs, int Ys, int Bcol,
int sense, int dirn);

Parameters:

45

int Xs
int Ys
int Beol
int sense
int dirn-

Returns:

X start point
Selected scan line
Transition colour
Search test
Search direction

in t xposn X value corresponding to search result

Description:

This function is used to indicate where on the current scan line. a particular colour
change occurs. For example. one may wish to know where the firsUlast pixel of a
given colour. going lefUright from the start point occurs on a scan line previously
drawn. The cgi search function can be used to establish the position of such
colour changes on a specified horizontal line. It has two search modes.

One mode allows left or right searching while a specified colour is maintained. In
this mode. the X value returned is the last pixel of that colour, unless the starting
point is not the test colour. In this case. the X value returned is one pixel to the side
of the start point. so as to be beyond the expected search range. For example.
searching left from X position 500 while a specified colour is maintained. but such
that the first colour tested is different. will return postion 501. This number is not
inside the expected search range of 500 to 0. thereby indicating that the first pixel
tested was not suitable. Searching right with the same example would return 499.
for the same reason.

The other mode allows left or right searching UNTIL a specified colour is located.
In this mode. the X value returned is the last X position BEFORE the specified co­
lour is located. and ofcourse depends on whether a left or right search is employed.
This has the effect of returning an X value one pixel closer to the starting point.

If invalid search directions or test conditions are passed. the function returns X po­
sition 0 and sets a cg i error.

Valid parameter values for sense are:

S_WHILENOT
S_WHILEGOT

72 OEK 24400

continue while current pixel is not Bcol
continue while current pixel is Bcol

July 1990

46

Valid parameter values for dirn are:

3 Library functions

search left of current pixel
search right of current pixel

Example usage:

The following example clears the screen, draws a vertical line at X position 1000
in colour 255. A search is to be done right and left from (500,500), while the colour
is not 255 :

cgi_cls(O);
cgi_setfcol (255);
cgi_line (1000, 0, 1000, 1000);
xposnl = cgi_search (500, 500, 255, S_WHILENOT, S_RIGHT);
xposn2 = cgi_search (500, 500, 255, S_WHILENOT, S_LEFT);

The results are xposnl=999, showing the last x position before Bcol is encoun­
tered in a right search, and xposn2=0, showing that the left hand screen edge is
found before an instance of colour 255 on that line.

72 OEK 244 00 July 1990

3 Library functions

3.2.27 cgi_setbcol

Function: Select current background drawing colour

Calling syntax:

void cgi_setbcol(int Bcol)i

Parameters:

47

int Bcol Background colour

Description:

This function selects the colour index in the look-up table, to use as the background
colour, in those drawing operations that make use of a background colour. This in­
teger should be in the range 0 to 255 inclusive. If the number is outside this range,
the current background colour is not altered.

72 OEK 24400 July 1990

48 3 Library functions

3.2.28 cgi_setdrawmode

Function: Sets current drawing modes for plotting, filling, and logical pixel

Calling syntax:

void cgi_setdrawmode (int pm, int rrn, int frn);

Parameters:

int pm
int rm
int fm

Plot mode
Logical pixel mode
Fill mode

Description:

Sets Plot mode, Logical replace mode, and Fill mode. Plot mode affects only Plot
operations. Fill mode affects only fill operations. Logical pixel mode afects all
drawing operations.

File cgi types. h defines valid parameter entries:

Valid Plot style modes are:

PM_COL Basic mode
PM_LINESTYLE Linestyle mode
PM_LINESTYLETR Linestyle-Transparent mode
PM_PEL Pel (fat pixel) mode
PM_LS_PEL Linestyle Pel mode

Valid pixel replace modes are:

RM_COL
RM_AND
RM_OR
RM_XOR
RM_NOR
RM_NAND

Overwrite mode
Logical bitwise AND
Logical bitwise OR
Logical bitwise XOR
Logical bitwise NOR
Logical bitwise NAND

The following additional replace modes correspond directly to the transput­
er's 2D blockmove instructions:

MOVE2DALL
MOVE2DZERO
MOVE2DNONZERO

Valid Fill modes are:

72 OEK244 00

Solid colour fill
Patterned fill

July 1990

3 Library functions

3.2.29 cgi_setdrawscreen

Function: Select current drawing screen.

Calling syntax:

void cgi_setdrawscreen (screenptr sp)i

Parameters:

49

screenptr sp Pointer to screen structure to draw into

Description:

This function sets the drawing area to use for all further CGI operations, or until a
further cgi_setdrawscreen is issued.

72 OEK244 00 July 1990

50

3.2.30 cgi_setfcol

Function: Select current foreground drawing colour

Calling syntax:

void egi_setfcol(int Feol);

Parameters:

3 Library functions

int Feol Foreground colour

Description:

This function selects the colour index in the look-up table. to use for all further draw­
ing operations. This integer should be in the range 0to 255 inclusive. If the number
is outside this range. the current foreground colour is not altered.

72 OEK244 00 July 1990

3 Library functions

3.2.31 cqi_setfillstyle

Function: Establishes a custom fill design.

Calling syntax:

void cgi_setfillstyle (int fxsize, int fysize,
char *fillmap);

Parameters:

51

int fxsize
int fysize
char *fillmap

pattern size in X dirn
pattern size in Y dirn
pointer to pattern info

Description:

A fill pattern can be up to 32 by 32 pixels. This function initializes the system fill pat­
tern statics. A Fill pattern has a foreground and a background colou[Generally,
ois used for background and any othercolour can be used for foreground. Howev­
er, the actual colour plotted for the fill pattern is the current foreground colout set
with cgi setcol. Note that the fill pattern will only be used in Plot functions if the
appropriate Fill mode has been selected (FM_PATTERN) using
cgi_setdrawmode.

Example usage :

char pfill [64];
... init the pfill vector
cgi setfillstyle (8, 8, &pfill[O]);
/* This defines an 8 by 8 pattern. */

72 OEK244 00 July 1990

52

3.2.32 cgi_setfont

Function: Establish a font for text display

Calling syntax:

3 Library functions

famw
fwpc
flpw

void cgi_setfont(unsigned int *packfont,
int famw, int fwpc, int flpw);

Parameters:

unsigned int *packfont a 32bit integer array,
assumed to contain an encoded font.

width of the font in bits (e.g. 8, 16,24,32) when unpacked
no of 32bit words used to encode one character (e.g. 2)
no of rows encoded per 32 bit word (e.g. 4)

Description:

A font is stored in a packed form, as a sequence of 32-bit integers. Each character
is unpacked as it is required. However, the system maintains a number of static
variables that describe the current font to use. This function initializes the struc­
tures necessary to display any character from the font. The font supplied with the
CGllibrary, called fontSbyS, is an 8 by 8 bit character set, packed 4 rows (of 8
bits) to one 32bit word. It consists of 256 characters, packed in a 512 word vector.
The example below shows how to initialize this font for use with the text functions.
A font can contain any number of characters. If one intends the text reproduction
functions to result in ASCII character output, then one must ensure that the font
array has the component characters in the correct posiiton.

Example usage:

cgi setfont (fontSbyS, S, 2, 4);
/* Packed font is S bits wide when unpacked */
/* 2 32bit words represent one character */
/* There are four rows of the font per 32bit word */

Here, fontSbyS is assumed to hold font information.

See also: expand_char, text etc.

72 OEK244 00 July 1990

3 Library functions

3.2.33 cgi_setlinestyle

Function: Establish a custom line design.

Calling syntax:

void cgi_setlinestyle (int n, char *ls, int zoomFac);

Parameters:

53

int n
char *ls
int zoomFac

length of linestyle
pointer to linestyle data array
current zoom factor for incrementing position

Description:

A Linestyle design can be up to 128 bytes long. This function initializes the system
Linestyle statics. A Linestyle has a foreground and a background colou[Generally,
ois used for background and any other colour can be used for foreground. Howev­
er, the actual colour plotted for the Linestyle is the current foreground colou~ set
with cgi setcol. Note that the Linestyle will only be used in Plot functions if the
appropriate Plot mode has been selected (PM_LS, for example) using
cgi_setdrawmode.

Example usage:

char linestyle [64];
... init the linestyle vector
cgi_setlinestyle (32, &linestyle[O] , 8);

This sets up a linestyle of length 32 units, with a zoom factor of 8. This means that
the next point on the linestyle is selected after the current point has been used eight
times. The drawing commands that make use of symmetry (e.g. cgi circle),
automatically ensure the correct zoom factor on each line segment. -

72 OEK 244 00 July 1990

54 3 Library functions

3.2.34 cgi_setorient

Function: Select current orientation for text and image copy operation.

Calling syntax:

void cgi_setorient(int orient);

Parameters:

int orient orientation value, selected from list below.

Description:

One of eight axis-aligned orientations can be applied when rendering a character
from the current font, and when performing a block copy operation using
cgi_copy.

Valid orientations are defined in cg i type s . h:

TX_NORM
TX 90
TX=180
TX 270
TX-NORMFLIP
TX=90FLIP
TX_180FLIP
TX_270FLIP

72 OEK244 00

Normal orientation
Rotate 90 degrees clockwise
Rotate 180 degrees clockwise
Rotate 270 degrees clockwise
Flip top to bottom
Rotate 90 deg then top to bottom flip
Rotate 180 deg then top to bottom flip
Rotate 270 deg then top to bottom flip

July 1990

3 Library functions

3.2.35 cgi_setpelstyle

Function: Establish a custom Pel design.

Calling syntax:

void cgi_setpelstyle (int pxsize, int pysize,
char *pelrnap, int xorg, int yorg);

Parameters:

55

int pxsize
int pysize
char *pelrnap
int xorg
int yorg

Pel size in X dirn
Pel size in Y dirn
pointer to Pe~ info
The x offset into the Pel for the Pel's canter
The y offset into the Pel for the Pel's center

Description:

A Pel design can be up to 32 by 32 pixels. A Pel has aforeground and a background
colour. Generally, 0 is used for background and any other colour can be used for
foreground. However, the actual colour plotted for the Pel is the current foreground
colour, set with cgi setcol. This function initializes the system Pel statics. Note
that the Pel will onlybe used in Plot functions if the appropriate Plot mode has been
selected (PM_PEL, for example) using cgi_setdrawrnode.

Example usage:

char pel [64];
... set up pel array
cgi_setpelstyle (8, 8, &pel[O], 4, 4);

This sets up a Pel of8 by 8 pixels. The origin of the Pel is at (4,4), which is the center
of it's bulk. By moving the (xorg,yorg) values, the origin of the Pel can be moved,
with respect to the Pel. This would allow, say, an arrow-shaped cursor Pel to have
it's origin at the tip of the arrow

72 OEK 24400 July 1990

56 3 Library functions

3.2.36 cgi_sptext

Function: Plot text at specified position with individual character spacing.

Calling syntax:

void cgi_sptext (int X, int Y, int n,
char *str, int *dx, int *dy);

Parameters:

int X
int Y
int n
char *str
int *dx
int *dy

Screen X co-ord of top left corner
Screen Y co-ord of top left corner
number of characters to plot
Pointer to valid data
Pointer to array of integer X spacings
Pointer to array of integer Y spacings

Description:

The current character position is first set to (x, Y). Then, n characters from the data
string are plotted according to the current font. The character coordintates are up­
dated after each character, according to the inter-character spacings defined by
the vectors dx and d~ The programmer must set the spacing vectors dx and dy
bearing in mind the selected orientation. The current logical pixel mode and orien­
tation affect the displayed result. The characters are reproduced at the size of their
defined font. Each pixel of every character is clipped to the current screen. Note
that the font required must first be initialized using cgi setfont. Note that for text
display, the default logical pixel replace mode, RM_coL, causes the text to imprint
with a rectangular box of colour o. In some cases, this may not produce the desired
effect. If only the foreground of the text is required, and a pixel overwrite mode (Le.
not a logical operation with the current frame bufer) is required, then select pixel
mode RM_NZ. This corresponds to the transputers MOVE2DNONZERO
capability.

72 OEK 244 00 July 1990

3 Library functions

3.2.37 cgi_strokearc

Function: Outline an arc without using symmetry techniques.

Calling syntax:

void cgi_strokearc (int Xc, int Yc, int A, int B,
int DXs, int DYs, int DXe, int DYe)i

Parameters:

57

int Xc
int Yc
int A
int B
int DXs
int DYs
int DXe
int DYe

Center X coord
Center Y coord
Length of semi-axis in X direction
Length of semi-axis in Y direction
X Direction of start vector
Y Direction of start vector
X Direction of end vector
Y Direction of end vector

Description:

This function plots part of the outline of an axis-aligned ellispoid, centered at
(xc, Yc), with semi-axes Aand B. Both Aand B must be positive. If A> B, then A
is the semi-major axis and B is the semi-minor axis. Otherwise, B is the semi-major
axis and A is the semi-minor axis. The points (DXs, DYs) and (DXe, DYe) define di­
rection vectors from the center of the ellipse. Only points clockwise of the
(DXs,DYs) vector and ANTiclockwise of (DXe,DYe) are plotted. Drawing order is
from the positive X axis, anticlockwise, in one sweep. This is clearly much slower
than the normal arc, because no advantage of symmetry is used. This function is
provided to offer (more) pleasing arcs when using a defined linestyle. Every point
on the outline is clipped to the _CURRSCREEN definition. The Plot style and Log­
ical pixel mode affect the appearance of the outline.

72 OEK244 00 July 1990

58

3.2.38 cgi_text

Function: Display text at specified coordinates.

Calling syntax:

3 Library functions

void cgi_text (int X, int Y, int n, char *str);

Parameters:

int X
int Y
int n
char *str

Screen X co-ord of top left corner
Screen Y co-ord of top left corner
number of characters to show
Pointer to valid data

Description:

The current character position is first set to (x, Y). Then, n characters from the data
string are plotted according to the current font. The character coordinates are up­
dated after each character, according to the inter-character spacings defined by
cgi chrspace. The current logical pixel mode and orientation affect the dis­
played result. The characters are reproduced at the size of their defined font. Each
pixel of every character is clipped to the current screen. Note that the font required
must first be initialized using cg i setfon t. Note that for text displa~ the default
logical pixel replace mode, RM_C-OL, causes the text to imprint with a rectangular
box of colour O. In some cases, this may not produce the desired efect. If only the
foreground of the text is required, and a pixel overwrite mode (Le. not a logical oper­
ation with the current frame bufer) is required, then select pixel mode RM_NZ. This
corresponds to the transputers MOVE2DNONZERO capability.

72 OEK 24400 July 1990

3 Library functions

3.2.39 cgi_zoom

Function: Arbitrary X and Y scaling of a 2D block.

Calling syntax:

void cgi_zoom (screenptr s, int Xs, int Ys,
int LSX, int LSY,

screenptr d, int Xd, int Yd,
int LDX, int LDY,
int interpolate);

Parameters:

59

screenptr s pointer to source screen area
int Xs Top left source co-ord X
int Ys Top left source co-ord Y
int LSX X size of source to copy
int LSY Y size of source to copy
screenptr d pointer to destination screen area
int Xd Top left destination co-ord X
in t Yd Top left destination co-ord Y
int LDX X size of destination
int LDY Y size of destination
int interpolate select between normal and interpolated zoom

Description:

This command copies a 2D block of specified dimensions, from the source screen
to the destination screen, while performing arbitrary scaling independently in X and
Ydirections. A DDA technique is used to e1fect the scaling. The current Logical pix­
el mode is observed. Since some points will be drawn more than once, it is best
not to select the XOR Logical mode. The blocks are clipped as necessary to fit. The
source and destination screen can be the same, but if the areas overlap then the
effect is undefined. All length parameters must be larger than 1.

interpolate determines whether an ~nterpolatedzoom isto be performed. If this
parameter has value zero, no interpolation will be performed. If this parameter has
value one, the interpolation will be performed. Note that the interpolated zoom is
much slower than the non-interpolated zoom. Also remember that only colours on
oppposite sides of the 128 value threshold will be blended together (in a way that
does not affect the coloration of the original); adjacent colours on the same side
of 128 threshold will appear as if they have been non-interpolated.

72 OEK244 00 July 1990

60 3 Library functions

3.3 B419.LIB functions

The B419.LIB functions, which correspond to the IMS B419 graphics TRAM bind­
ings, are prefixed with f s . They are accessed by linking compiled C with
8419.LIB. Note that the function prototyes for these functions are included in the
cgidefs.h file, which will be used to reference the cgilib functions.

3.3.1 fs_displaybank

Function: Select which display bank to view

Calling syntax:

void fs_displaybank (int bank);

Parameters:

int bank The screen number, usually 0 or 1, to display.

Description:

This function should be called before attempting to view anything on an output de­
vice. By calling this function and changing the bank number, a multi-buffered
screen output, suitable for animation, can be achieved. By setting the value of
_CURRSCREEN to the address of the invisible screen structure, the CGllibrary
can operate on the invisible frame buffer, then the display banks can be instantly
switched over.

Example usage:

fs_initVTG (g3parms);
fs initscreen &screens[O] , 0, 1024, 1024);

/* frame buffer 0 */
fs_initscreen (&screens[l], 1, 1024, 1024);

/* and bank 1 */
fs_displaybank (0); /* screen 0 */

72 OEK244 00 July 1990

3 Library functions

3.3.2 fs initscreen

Function: Correspond a framestore screen structure with a bank number

Calling syntax:

void fs initscreen (screenptr s, int bank,
int xSize, int ySize);

Parameters:

61

screenptr s
int bank
int xSize
int ySize

Description:

A pointer to a screen structure.
The bank number of this screen.
The X pixel dimension of the screen.
The Y pixel dimension of the screen.

This function is used to initialize a framestore screen structure. There is an impor­
tant distinction to be made between a framestore screen and a non-framestore
screen. A framestore screen is the correct shape and size for a total coverage of
the graphics card display. The graphics card will only display framestore screens,
and the memory position of the raster area is obviously dependent on the address
decoding of the ggraphics card. All CGllibrary operations are written into a screen
of the appropriate dimensions, with a rasterfield at asuitable position for the graph­
ics card. This function is used to correctly define the dimensions and raster area
for framestore screens, which can then be subsequently selected by
fs displaybank (bank) . It expects to have all framestore screens the same
shape and size. It is vital that this function is called with the correct X and Y frames­
tore screen sizes, otherwise subsequent frame buffer address calculations will be
wrong.

Remember that normal screen structures can be of any size, can have their raster
area at an arbitrary memory address range, and can be used for various intermedi­
ate purposes. Such screens are almost certainly unrelated to the dimensions of
a framestore screen.

Example usage:

fs_initVTG (g3parms);
fs initscreen (&screens[O], 0, 1024, 1024);

7* frame buffer 0 */
fs initscreen (&screens[l], 1, 1024, 1024);

7* and bank 1 */
fs_displaybank (0);
cgi_setdrawscreen (&screens[O]);
fs setpalette (42, 255, 0, 0);

7* entry 42 to full red */

72 OEK244 00 July 1990

62 3 Library functions

3.3.3 fs ini tVTG

Function: Initialize the G300 to your screen resolution.

Calling syntax:

void fs initVTG (int *timingdata);

Parameters:

int *timingdata a vector of G300 timing values.

Description:

The IMS G300 has a number of run-time programmable registers which initialize
the device for one of many possible screen resolutions and frame rates. The four­
teen elements of timingdata are used by f s intiVTG to configure the G300.
These elements are as follows: -

oPLLfactor,
1 half_sync,
2 backJ)orch,
3 display,
4 short_display,

5 broad_pulse,
6 v_sync,
7 v_blank,
8 v_display,
9 line_time,

10 Iine start,
11 mem_init,
12 transfer_delay,
13 mask_register

This function should be called before attempting to view anything on an output de­
vice. Suitable values to reflect the timing parameters required by your monitor can
be determined from the IMS 8419 manual.

Example usage:

int g3parms[] = { 17, 17, 43, 256, 87, 164,
6, 56, 2048, 338, 0, 491, 21, 255 };
main ()
{
fs_initVTG (g3parms);
... rest of program
}

These values would be suitable for a high resolution 1024 by 1024 monitor at
around 60 frames/second, such as a TAXAN ULTRAVISION 1000, or an
HITACHI4219 etc.

72 OEK 244 00 July 1990

3 Library functions

3.3.4 fs screenaddr

Function: Return the raster field address of a framestore screen bank.

Calling syntax:

char* fs screenaddr (int bank);

Parameters:

63

int bank The screen number, usually 0 or 1, to point to.

Description:

This low-level function is used to determine the address of a framestore screen ras­
ter area. It is used by the f s ini ts creen function. It determines the address by
using the bank number, and-knowledge of the framestore X and Y dimensions as
specified by a previous call to fs ini tscreen. It is important that calls to
f s ini ts creen specify the total dimensions of a frame buffer, otherwise all fur­
ther address calculations, used when switching visible screen banks, will" be
wrong.

72 OEK 244 00 July 1990

64

3.3.5 fs_setpalette

Function: Set up the colour look-up table entries.

Calling syntax:

void fs_setpalette (int clutno, int red,
int green, int blue);

Parameters:

3 Library functions

int clutno
int red
int green
int blue

A number from 0 to 255 corresponding to the CLUT ent~

The red content for this colour, range 0 to 255.
The green content for this colour, range 0 to 255.
The blue content for this colour, range 0 to 255.

Description:

Generally, this function would be called for value of clutno to be viewed, before at­
tempting to view that colour. The palette entries can be changed dynamically at any
time, and obviously will effect everything already onscreen, as well as features still
to be drawn.

Example usage:

fs setpalette (42, 255,0,0); /* entry 42 to full red */

72 OEK 24400 July 1990

	Contents
	1 IMS F003 overview and environment
	1.1 Files comprising the graphics library

	2 IMS F003 detail description
	2.1 CGI conformance
	Table of graphical primitive functions
	Table of CGI attribute functions

	2.2 Summary of functions
	2.2.1 Plotting functions
	2.2.2 Fill functions
	2.2.3 Text functions
	2.2.4 Image functions
	2.2.5 Setup functions
	2.2.6 Auxiliary functions
	2.2.7 Hardware-dependent functions

	2.3 Application areas
	2.4 General concepts
	2.4.1 Plot styles
	2.4.2 Fill mode
	2.4.3 Logical modes

	2.5 Using the library
	2.5.1 Choosing your monitor parameters
	2.5.2 Compilation requirements
	2.5.3 Linking requirements
	2.5.4 An example program
	2.5.5 Interpolation
	2.5.6 Achieving transparency

	2.6 General notes
	2.6.1 The graphics card
	2.6.2 Architecture
	2.6.3 Initialization
	2.6.4 Multiple plotting
	2.6.5 Performance considerations
	2.6.6 System extensions

	3 Library functions
	3.1 Alphabetic list of implemented functions
	3.2 CGILIB.LIB functions
	3.2.1 cgi_addsptext
	3.2.2 cgi_addtext
	3.2.3 cgi_arc
	3.2.4 cgi_arcc
	3.2.5 cgi_chrbegin
	3.2.6 cgi_chrspace
	3.2.7 cgi_chrz
	3.2.8 cgi_circle
	3.2.9 cgi_cls
	3.2.10 cgi_copy
	3.2.11 cgi_disjpolyline
	3.2.12 cgi_dot
	3.2.13 cgi_errstat
	3.2.14 cgi_fcircle
	3.2.15 cgi_ffan
	3.2.16 cgi_fhline
	3.2.17 cgi_frect
	3.2.18 cgi_ftrap
	3.2.19 cgi_init
	3.2.20 cgi_line
	3.2.21 cgi_paint
	3.2.22 cgi_polygon
	3.2.23 cgi_polyline
	3.2.24 cgi_rect
	3.2.25 cgi_rot
	3.2.26 cgi_search
	3.2.27 cgi_setbcol
	3.2.28 cgi_setdrawmode
	3.2.29 cgi_setdrawscreen
	3.2.30 cgi_setfcol
	3.2.31 cgi_setfillstyle
	3.2.32 cgi_setfont
	3.2.33 cgi_setlinestyle
	3.2.34 cgi_setorient
	3.2.35 cgi_setpelstyle
	3.2.36 cgi_sptext
	3.2.37 cgi_strokearc
	3.2.38 cgi_text
	3.2.39 cgi_zoom

	3.3 B419.LIB functions
	3.3.1 fs_displaybank
	3.3.2 fs_initscreen
	3.3.3 fs_initVTG
	3.3.4 fs_screenaddr
	3.3.5 fs_setpalette

