
72 227 00 1989

Copyright INMOS Limited 1989

This document may not be copied, in whole or in part, without prior written
consent of INMOS.

4ft , Ilrrmos, IMS and occam are trademarks of the INMOS Group of Companies.

72 OEK 227 00

2

3

4

Contents overview

Preface

How to use the guide
1.1 Introduction
1.2 User guide
1.3 Reference manual
1.4 Appendices

Introduction
2.1 Product components
2.2 Operating requirements

Installation
3.1 Introduction
3.2 Hardware Installation

3.2.1 Copying the Files
3.2.2 Reconfiguring DOS to accept the driver

User guide

Module motherboard software
4.1 Introduction
4.2 Getting started
4.3 Using the MMS

4.3.1 Running the MMS
4.3.2 Menu options

Help
Quit
Set C004 links
Check source files
Toggle diagnostics
Network mapper
Manual command entry
Change link numbers
View source file
Reset subsystem
Initialise C004s

v

vii

3
3
3

5
5
5
5
6

7

9
9
9

10
10
11
11
11
11
12
12
12
12
12
13
13
13

72 OEK 227 00

ii Contents

Create a bootable file 13
Create an occam table 13

4.4 Describing the software configuration 15
4.4.1 Softwire definition 16

4.5 Describing the hardware configuration 19
4.5.1 Hardwire definition 20

Sizes section 21
T2 chain section 22
Hardwire section 23

4.6 Error reporting 26
4.6.1 Errors in the hardwire description 26

File reading errors 26
Syntax errors 26
Range checking errors 27
Duplication errors 27

4.6.2 Errors in the softwire description 27

Reference manual 29

5 Device driver call definitions 31
5.1 The system calls available 31

5.1.1 OPEN 31
5.1.2 READ 32
5.1.3 WRITE 33
5.1.4 IOCTL 33

6 INMOS server 37
6.1 Introduction 37
6.2 Running the server 37

6.2.1 Loading programs 38
6.2.2 Specifying link address 38

7 Server protocol definitions 39
7.1 iserver protocol 39
7.2 Server functionality 39

7.2.1 File commands 40
7.2.2 Host commands 47
7.2.3 Server commands 49

Appendices 53

A Rebuilding the server 55

72 OEK 227 00

Contents iii

B INMOS standard link access routines 57
B.1 Link initialisation 57
B.2 Data operations 58
B.3 SUbsystem control 59
B.4 Error testing 59
B.5 Data ready tests 60

C Softwire description language 61

0 Hardwire description language 63

E Edge mappings for the B008 65

F The IMS C004 programmable link switch 67

G The stages of IMS C004 configuration 69

H Distribution disk 71
H.1 Contents of the release disk 71

Bibliography 73

J Glossary 75

72 OEK 227 00

iv

72 OEK 227 00

Contents

Contents overview
1

2

3

How to use the
guide

Introduction

Installation

Describes the layout of the guide.

Introductory explanation of the S708 and
its operating requirements.

installation instructions for the S708

The user guide

4 Module
Motherboard

Software

Describes how to use the MMS software.

The reference manual

5

6

7

Device driver call
definitions

INMOS server

Server Protocol
Definitions

Shows the format of system calls to the
driver.

An introduction to the structure and use of
the standard INMOS server.

Describes the protocol used by the Inmos
server.

72 OEK 227 00

vi

The appendices

Contents overview

A Rebuilding the Shows the user how to rebuild the INMOS
server server.

S INMOS standard Describes the set of C routines for talking
link access to a link from the host computer
routines.

C Softwire description Syntax of the MMS softwire description
language language.

D Hardwire Syntax of the MMS hardwire description
description language.
language

E Edge mappings on A Summary of the EDGE mappings on the
the B008 B008.

F The IMS 0004 A short description of the IMS C004.
programmable link

switch

G The stages of IMS Describes the method used to configure a
0004 configuration system of motherboards.

H Distribution disk Lists contents and structure of the distri-
bution disk.

I Bibliography Lists literature worth referring to.

J Glossary A glossary of terms used to describe the
features of the toolset.

72 OEK 227 00

the use an IMS B008 board in an IBM PC or

C"ni-t\lID'''':llI''C 100 IYlU\,"',,;; the module motherboard software which can be used to
prc~qrc3.mlmable switches on the IMS B008 motherboard. These switches

the transputers hosted on the motherboard. The mod
motnE~rOloar'd software also contains a network mapper (worm) program which

inter-connections of these transputers and provide a means

interface the IMS B008 to the DOS operating

the server program The server
transputer networks and file and terminal services to

the module motherboard software and the WORM

viii

72 OEK 227 00

Preface

The S708 User Guide is broadly structured into four sections:

Introduction

User Guide

Reference manual

Appendices

1..1 Introduction

This section gives an overview of the components of the S708 product and its
operating requirements.

This section provides information on how to use the components of the product

1..3 Reference_. -_'.......

The reference manual gives the detailed technical information that was not ap
propriate to the user guide.

1..4

The appendices are provided for rapid reference.

72 OEK 227 00

2

72 OEK 227 00

1 How to use the guide

2 Introduction
This document relates to the S708 device driver product for an IBM PC run
ning MS-DOS.The S708 is a software package consisting of a MSDOS device
driver and a set of tools for use with the IMS BO 0 8 board product. The de
vice driver, once installed, provides a mechanism for loading transputers via a
server.

2.1 Product components

The S708 is supplied on a standard 360K MS-DOS floppy disk. The contents
of the disk should be as follows:

• Device driver.

• INMOS server.

• Module Motherboard Software (MMS).

2.2 Operating requirements

The S708 device driver is intended for use with IBM PC and compatible machines
running MSDOS V2.1 0 or greater.

72 OEK 227 00

4

72 OEK 227 00

2 Introduction

3.1

This section describes how to install the S708 Software on an IBM-PC Compat
ible.

3.2

Before it is possible to successfully install the device driver it is necessary that
the Ba 08 card is installed, in accordance with the B008 User Reference Guide
which is supplied with the board hardware. Whilst installing the board, take note
of the following configuration information which will be required in order to install
the device driver properly:

Base 10 Address of the B008 Card

DMA Channel Number

3.2.1 ,",UUViIBBU the Files

First move to the target disk drive and make a suitable directory using the DOS
mkdir command. This directory can be anywhere on the disk.

Having made the directory, move in to it using the DOS cd command, insert the
S708 distribution disk in drive A: and issue the following command line:

xcopy a:*.* /s

If you have an earlier version of MS-DOS or PC-DOS which doesn't support the
xcopy command, issue the following commands instead:

copya:*.*
mkdir iserver
copy a:iserver*.* iserver

The exact contents of the release disk are given in an appendix. The contents
of the directory after extraction will be as follows:

BOOS
ISERVER.EXE

72 OEK 227 00

MMS Hardwire file for the BOOS
Executable copy of the iserver

6

I SERVER
for the iserver
~S2.B4

PC~S.ITM

S708DRIV.SYS
SOFTWIRE

Installation

the sources

The module motherboard software
Iterm file for the ~S on a Sun
The DOS Device Driver
Example softwire configuration

3.2.2 Reconfiguring DOS to the driver

Having physically installed both the hardware and the software components in
the PC it is necessary to tell DOS to recognise the new device.
This is done by altering a file called CONFIG. SYS in the root directory of the
boot disk by adding a line describing the device driver.

The 'syntax of the CONFIG.SYS line for the B008 Driver is:

DEVICE=pathname [lA address] [ID chan I N] [IN name]

where: pathname is the file DOS pathname of the device driver file.

The pathname parameter is the pathname of the S708DRIV.SYS file on
the disk as installed in the previous step.

address is the 10 address of the B008 card, as set by the hardware
switches on installation.

chan is the DMA channel number as set on the card (0, 1, or 3). If
instead of a channel digit, the character 'N' is substituted then the driver
will not attempt to use the DMA facilities of the B008. If DMA usage by
the B008 has been disabled on the card switches then this parameter
must be given as 'N'.

name is the DOS device name which the device will assume. Use this
option with care if you intend to use inmos software products which may
expect this name to be the default name 'LINK1'. The name cannot be
more than the DOS limit of eight characters.

The following are examples of typical CONFIG.SYS lines for the device driver:

DEVICE
DEVICE

C:\S708\S708DRIV.SYS /A 150 /NAME IMSB008 /0 N
C:\S708\S708DRIV.SYS /A 200 /D 1

Having altered the config.sys file, reboot the machine and run the MMS as de
scribed in the relevant section of this document to confirm the correct installation
of the device and software.

72 OEK 227 00

User guide

72 OEK 227 00

8

72 OEK 227 00

User guide

The range of INMOS Module Motherboards[1] and Modules[2] allow many differ
ent configurations of modules and the connections between them to be specified
without making physical changes to the boards. The configuration is performed
by sending configuration data to the IMS C004 link switches[3] on the board. The
MMS (Module Motherboard Software) is designed to make it easy to generate
the data needed to configure a system of motherboards.

The MMS provides interactive control of a motherboard or a system of moth
erboards. It presents a menu-driven interface allowing the user to set up the
motherboards and also to create configuration programs for use outside of the
MMS.

This chapter describes how to use the hardware and software description lan
guages needed to describe the hardware system and the desired connections
within that system, together with a description of the MMS program itself.

The MMS uses a terminal description file called In order for the
MMS to access this file it is necessary to set up an environment variable called
..... "',;,ad.'-I..,"'" e This can be done by including the following line in your autoexec
file:

In the rest of this manual it is assumed that the motherboards in use have been
set up, and that you are familiar with the user guides for them.

In order to be able to configure the links connecting the IMS C004s on the moth
erboards the MMS reads files, known as the 'softwire' and 'hardwire' files. The
first of these contains a description of the connections that the user wants to
make using the programmable link connections. The second contains a descrip
tion of the hardware configuration of the boards being used.

The hardwire file is needed so that the MMS is able to determine what con
nections it is possible to make; it contains information on such things as the
number of IMS C004s, number of module slots, and the connections between
them. Once this description has been set up no changes will have to be made

72 OEK 227 00

10 4 Module motherboard software

unless physical changes are made to the motherboard system. If you are using
a single IMS 8008 or IMS 8014 there should not be any need to understand the
information in the hardwire file in great detail as the supplied hardwire description
files for these boards can be used without modification.

The softwire file is needed to specify both the connections from module to module
and from module to edge on a motherboard. Unlike the hardwire file the softwire
file will be tailored for the application being run.

You should read section 4.4 on describing softwire connections and study the
example files supplied with the MMS before attempting to run the MMS or trying
to set up your own softwire description. To get going initially it is probably be
easiest to modify a copy of one of the example filesets provided.

4.3 Using the MMS

4.3.1 Running the MMS

To run the MMS, move to the directory in which the contents of the distribution
disk were unpacked and type

iserver / sb mms2. b4 softwire hardwire

replacing softwire and hardwire by files containing the softwire description and
hardwire description respectively. The MMS will display a menu screen and
prompt key command. At this point the user can enter any of the command
codes listed on the menu, including h for help and q for quit.

72 OEK 227 00

4.3 Using the MMS

4.3.2 Menu options

The menu options available are as follows:

H - Help
Q - Quit
S - Set C004 links
C - Check source files
T - Toggle diagnostics
N - Network mapper
M - Manual command entry
L - Change link numbers
V - View source files
R - Reset subsystem
I - Initialise C004s
8 - Create a bootable file
o - Create an occam table

The menu options are described below.

Help

11

The help option allows the user to call up a help screen for each of the menu
options. The help screen for the help option displays some information about
the MMS, including implementation limits of number of IMS C004s, IMS T212s,
slots, etc. The MMS version number is also displayed.

Quit

Return to operating system.

Set C004 links

The set command performs the IMS C004 setting as specified in the softwire
source file.

To carry out this command the MMS first reads the hardwire description, and
builds up an internal representation of the motherboards. The MMS then at
tempts to boot the configuration pipeline with a special worm which allows com
mands to be sent to the IMS C004s. The MMS then reads the softwire file, and
generates and sends the configuration commands to the configuration pipeline.

If errors are detected at any stage, they are reported and the command aban
doned.

72 OEK 227 00

12

Check source files

4 Module motherboard software

The check source files command is essentially the same as the set command
except that no attempt is made to perform the actual configuration of the boards.
In this way it is possible to check a set of source files without having the corre
sponding hardware on-line.

Toggle diagnostics

This toggles the diagnostic mode. In this mode any command sequences that
are generated are also displayed on the screen.

Network mapper

The network mapper command sends a worm into the transputer network using
the currently set pipe-in link. The mapper is currently able to detect IMS T212s,
IMS T414s, IMS T800s and IMS M212s, although 6K bytes of memory is re
quired, and therefore it will not be able to find the IMS T212s in the configuration
pipeline as they have no external memory.

Manual command entry

The manual command option allows the user to send IMS C004 command se
quences to any IMS C004 specified in the hardwire file. These sequences are
of the same form as those generated automatically:

• IMS C004 id

• IMS C004 command

• any parameters required by the command

It is not possible to send the enquire command (BYTE 2) as no facility is provided
for returning information from the configuration pipeline.

Change link numbers

The link change options allows the user to change the links which the MMS
uses to communicate with the configuration pipeline and the module pipeline.
The default settings are:

Link 1 - configuration pipeline
Link 2 - module pipeline

It is not possible to specify the same link for both pipelines.

72 OEK 227 00

13

View source file

The view option allows the user to view the source of the softwire and hardwire
files. It prompts for which file to view and which line number within that file to
view. That line together with the preceding and following two are then displayed.

The reset option asserts the subsystem reset on the host transputer, causing
the system of motherboards to be reset. This will not cause the IMS C004
configuration to be lost.

The initialise option causes a software reset to be sent to each IMS C004 in the
motherboard system. In order to do this the hardwire file is read to determine
the number and whereabouts of each of the IMS C004s within the system.

The bootable file option is similar to the set option except that the configuration
commands generated are written to a file containing a program which will con
figure the network when it is booted from the server. The generated program
expects the configuration pipeline to be connected to the root transputer via the
configuration pipeline link set when the program is generated. This configura
tion program can be used without the MMS being present on the system. When
run, the program will either print a message stating that the configuration was
successful or unsuccessful.

The occam table option is similar to the set command except that the con
figuration commands generated are written to a file in the form of an occam
table together with a program which controls the configuration pipeline during
the network configuration. This occam table can be sent to the configuration
pipeline using the extraordinary link communication procedures[4] to output the
table. The table output will fail if the network configuration is not successful.

For example the following piece of occam can be used configure a net
work, assuming that the table generated by the MMS is contained in the file
mmstable.occ:

procedure to confiqure module motherboards
run time with table produced by the mms2

72 OEK 227 00

14

-- software.

4 Module motherboard software

#INCLUDE "hostio.inc"
PROC config (CHAN OF SP fs, ts)

#INCLUDE "linkaddr.inc"
#INCLUDE "table.inc" -- occam table
#USE "hostio.lib"
#USE "xlink.lib"

CHAN OF ANY from.t2, to.t2:
PORT OF BYTE analyse, reset:

PLACE to.t2 AT linkl.out:
PLACE from.t2 AT linkl.in:
PLACE reset AT (0 >< (MOSTNEG INT)) » 2:
PLACE analyse AT (4 >< (MOSTNEG INT)) » 2:

VAL ONEms IS 15:
VAL fail.delay IS 8000:

BOOL failed, failed2:
BYTE result:
INT time:
[4]BYTE num:
TI:MER timer:

PROC Pause ()
SEQ

timer ? time
timer ? AFTER time PLUS (5 * ONEms)

72 OEK 227 00

send worm and configuration
commands in the table.

4.4 Describing the software configuration

SEQ
analyse 0 (BYTE) -- Reset subsystem
reset 0 (BYTE)
Pause ()
reset 1 (BYTE)
Pause ()
reset 0 (BYTE)
Pause ()

timer ? time
time := time
PAR

OutputOrFail.t (to.t2, Table,
timer, time, failed)
Inp~tOrFail.t (from.t2, num,
timer, time, failed2)

IF
failed

SEQ
Reinitialise (to.t2) -- clean up after failure
so.write.strinq.nl (fs, ts,

"Unable to configure T2 chain.")
TRUE

VAL INT32 n RETYPES num:
-- print no. of T2s found.

SEQ
so.write.strinq (fs, ts,

"Size of T2 chain: ")
so.write.int32 (fs, ts, n + 1, 0)
so.write.strinq.nl (fs, ts, ".")

4.4 Describing the software configuration

15

The following sections describe how to specify the soft connections required on
a system of motherboards.

The syntax of both the softwire and hardwire descriptions are described in a
modified Backus-Naur Form (BNF). For example,

edge.to.edge./ine = EDGE edge. id TO EDGE edge.id

This means 'An edge.to.edge./ine is the keyword EDGE, followed by an edge.id,
followed by the keywords TO EDGE, followed by an edge.id'.

72 OEK 227 00

16

A vertical bar (I) means 'or', for example:

softwire.line = slot. to. slot. line
I slot. to. edge. line
I edge.to.edge.line

The written structure of the description is specified by the syntax. Each statement
normally occupies a single line, and the indentation of each statement forms an
intrinsic part of the syntax of the language. For example,

board.softwires.line = PIPE board.id
{ softwire.line }

This means 'A board.softwires.line is the keyword PIPE followed by a board.id
followed by zero or more softwire.lines, each on a separate line, and indented
two spaces further than PIPE'. Curly brackets { and} are used to indicate the
number of times a syntactic object occurs. {object} means, 'zero or more
objects, each on a separate line'. Similarly {1 object} means, 'one or more
objects, each on a separate line.' [object] means that object is optional.

Comments are introduced by a double dash (--), and extend to the end of the
line.

Summaries of the syntax of the description languages are given in appendices
A and B.

4.4.1 Softwire definition

The softwire connections allow links on modules on a motherboard to be con
nected to other modules and edges, without requiring a direct hardwired route
between the two. Instead the MMS routes the channels via the IMS C004s on
the motherboard. It may not be possible to make every possible connection
desired. This depends on how the IMS C004s and module slots are physically
connected to each other.

72 OEK 227 00

4.4 Describing the software configuration

A SOFTWIRE description has the following basic structure:

SOFTWIRE
PIPE 0

. soft connections for board 0

PIPE 1

. soft connections for board 1

PIPE n

. soft connections for board n

END

The syntax of a softwire description is:

softwire.description = SOFTWIRE

{ board.softwires.line}
END

17

board.softwires. line PIPE board.id
{ softwire.line}

The softwire lines are specified in three ways:

• Edge to edge connections

• Slot to edge connections

• Slot to slot connections

The syntax for softwire lines is:

softwire.line

72 OEK 227 00

edge. to. edge. line
slot. to. edge. line
slot. to. slot. line

18 4 Module motherboard software

An edge to edge connection simply specifies that the two edges named are to
be connected together. For example,

EDGE 4 TO EDGE 7

The syntax for an edge to edge line is:

edge.to.edge./ine = EDGE edge.id TO EDGE edge.id

A slot to edge line specifies that the edge is to be connected to the specified
link on the slot. For example,

SLOT 3, LINK 3 TO EDGE 6

The syntax for a slot to edge line is:

slot. to. edge. line = SLOT slol.id, link.num TO EDGE edge.id

A slot to slot line specifies a connection is to be made between a link on one
module to a link on another module, for example:

SLOT 2, LINK 0 TO SLOT 1, LINK 0

specifies that link 0 of slot 2 will be softwired to link 0 of slot 1.

The slot to slot line has another form which includes a VIA statement. This form
specifies that the connection is to be made via the two edges specifed. This
form is really just a shorthand equivalent to two slot to edge lines. For example

SLOT 2, LINK 0 TO SLOT 12, LINK 3 VIA EDGE 3, 6

is equivalent to the longer form:

SLOT 2, LINK 0 TO EDGE 3
SLOT 12, LINK 3 TO EDGE 6

It is the user's responsibility to complete the connection by hardwiring the two
edge connectors together. The purpose of this is to allow soft connections to
be set up indirectly via edge links where the board architecture does not permit
direct connection.

The syntax for slot to slot lines is:

slot. to.slot. line = SLOT slot.id, link.num TO SLOT slot.id, link.num [via.section]

via. section =VIA EDGE edge.id, edge.id

72 OEK 227 00

4.5 Describing the hardware configuration 19

As an example of a complete file using these constructs, the following softwires
file specifies all the connections in the diagram below:

SOFTWIRE
PIPE 0

SLOT 0, LINK 3 TO SLOT 1, LINK 3
SLOT 0, LINK 0 TO SLOT 1, LINK 0 VIA EDGE 0, 1
SLOT 2, LINK 0 TO EDGE 2

END

3 SLOT 0 0

0

LINK CABLE

3 SLOT 1 0

2

0
SLOT 2

4.5 Describing the hardware configuration

This section describes how to define the hardware configuration of a motherboard
system. The MMS needs to know how the slots, IMS C004s and edges are
connected together on the board in order to be able to determine whether a
particular set of softwire connections is possible or not.

The following sections will describe what is required in each section of a board
definition, including some examples.

72 OEK 227 00

20

4.5.1 Hardwire definition

4 Module motherboard software

A typical hardwire definition would look something like the following:

. define boarda

DEF boardb
sizes section
t2chain section
hardwires section

PIPE boarda, boardb, boardb, boarda, boarda END

The definition consists of two separate parts

• The definition of board types

• The definition of the pipeline

The pipeline definition tells the MMS how the boards in the system are arranged.
In the example above we have the following system:

boarda ~ boardb ~ boardb ~ boarda r----. boarda

The board definition, on the other hand, specifies the connections within a par
ticular board type. Each section of the board definition will now be described in
more detail.

The syntax for a hardwire description is:

hardwire.description = {1 board.definition }
pipeline.description

board.definition

pipeline.description

72 OEK 227 00

DEF board.name
sizes
t2.chain
hardwires

PIPE { board.name}

4.5 Describing the hardware configuration

Sizes section

21

The sizes section is used to tell the MMS how many IMS T212s, IMS C004s,
slots and edges are present on the board for example:

SIZES
T2 1
C4 1
SLOT 3
EDGE 2

END

describes a board with one IMS T212, one IMS C004, three module slots, and
two edge connections.

The syntax of the sizes section is:

sizes = SIZES
T2 positive.integer
C4 positive.integer
SLOT positive.integer
EDGE positive. integer

END

72 OEK 227 00

22

T2 chain section

4 Module motherboard software

The T2 chain section tells the MMS how the T2 chain is connected to the IMS
C004s. It specifies which links of the IMS T212s are connected to the configu
ration links of the IMS C004s. For example,

T2CHAIN
T2 0, LINK 0 C4 0
T2 0, LINK 3 C4 1
T2 1, LINK 0 C4 2
T2 1, LINK 3 C4 3

END

describes the following system:

C40 C42

10 10

1
T20

2 1
T2 1

2

1

3
1

3

C4 1 C43

The syntax of the T2 chain section is:

t2.chain

t2.c4.line

t2.id

chain. link. num

c4.id

72 OEK 227 00

T2CHAIN
{ t2.c4.line}

END

T2 t2.id, chain./ink.num C4 c4.id

positive. integer

o
3

0..31

23

The hardwire section describes how the slots, edges and IMS C004s are con
nected together. A typical structure is as follows:

pipeline
slots to IMS C004s
edges to IMS C004s
slots to edges

END

The sections may appear in any order and lines from each may be freely inter
mixed, although organising it as above will aid understanding.

The syntax of the hardwire section is:

hardwires

hardwire.line

HARDWIRE
{ hardwire./ine }

END

slot. to. slot
c4.to.slot
c4. to. edge
slot. to. edge

The pipeline section describes how the module slots on the motherboard are
connected together to form the module pipeline. In general, link 2 of a slot is
connected to link 1 of the following slot so that it conforms with the module
motherboard architecture[1]. It is not possible to separate the input and output
channels of the links. For example,

SLOT 0, SLOT 1,
SLOT 1, LINK 2 TO SLOT

2, 2 TO SLOT

describes the following four module pipeline

-1 SLaT 0HSLaT 1HSLaT 2HSLaT 3~

72 OEK 227 00

24

The syntax of slot to slot lines is:

4 Module motherboard software

slot. to. slot

slot. id

SLOT slot.id, /ink.num TO SLOT slot.id, link.num

positive. integer

The slots to IMS C004s section describes how the non-pipeline links of the slots
are connected to the IMS C004 link switches. In general both links 0 and 3 will
be taken to an IMS C004. It is possible to specify that the input and output
channels of a link are taken to different IMS C004s by including an I or 0 in the
definition. For example,

C4 0, LINK o TO SLOT 0, LINK 0
C4 1, LINK 0, 0 TO SLOT 1, LINK 0, I
C4 1, LINK 1, I TO SLOT 1, LINK 0, 0
C4 1, LINK 5, 0 TO SLOT 2, LINK 3, I

specifies the following connections

C40
0,0

C4 1
5,0

..-- e-----

0 1,I

0 ~ 0,0

1 2 1 2 1 2
~ SLOT 0 SLOT 1 SLOT 2 ~

t 3,I

The syntax of IMS C004 to slot lines is:

c4. to. slot

i/o

link.num

c4./ink.no

72 OEK 227 00

C4 c4.id, c4./ink.no [, i/o] TO SLOT slot.no, link.num [, i/o]

I

o

o
1
2
3

positive.integer

4.5 Describing the hardware configuration 25

The edges to IMS C004s section specifies which edges, if any, are connected to
the IMS C004s on the board. As with slots to IMS C004s, the input and output
channels can be handled separately. For example,

C4 0, LINK 0, I TO EDGE 1, 0
C4 0, LINK 4 TO EDGE 3

describes the following connections

......-----,4
t--------;1IIPi

C0040
0,1

The syntax of IMS C004 to edge lines is:

c4. to. edge

edge.id

C4 c4.id, c4./ink.no [, i/o] TO EDGE edge.id [, i/o]

positive. integer

The slots to edges section specifies which edges are connected to slots. It is not
possible to separate the input and output channels for slot to edge connections.
For example

SLOT 1, LINK 3 TO EDGE 3

describes the following connection:

3
SLOT 1

The syntax of a slot to edge connection is:

slot. to. edge = SLOT slot.id, Iink.num TO EDGE edge.id

72 OEK 227 00

26

4.6 Error reporting

4 Module m,otherboard software

4.6.1 Errors in the hardwire description

There are a number of different types of error that may be detected by the MMS
when reading the hardwire file:

• File Reading Errors

• Syntax Erro rs

• Range Checking Errors

• Duplication Errors

Most error messages should be self-explanatory.

File reading error's

If the MMS is not able to read the source files an error will be reported and
explained. In some cases errors of this type will be detected first as a syntax
error and reported as such.

Syntax errors

Any syntax errors in the hardwire file will be reported, producing one of the
following types of error message:

' unexpected symbol found '
' unexpected number found '
' unexpected word found ... '

The symbol that was expected at that point is usually displayed as well, together
with the source line number that the error was found on. This line is also dis
played in full below the error message.

For example, if the SIZES section of the hardwire file looked like this:

SIZES
T2 2
C4 4
SLOT 32

END

The MMS would produce the following error message:

Error detected in HLl file at line 4 :
- Unexpected symbol found ('END'). 'EDGE' was expected

Line 4 : END

72 OEK 227 00

4.6 Error reporting

cn,eclKlnla errors

27

Numbers outside the following ranges will cause out of range error messages:

implementation limit restrictions

values defined in the SIZES section

link values outside range 0-3

Dupli~~atlon errors

If any link from a slot, IMS C004 or edge is mentioned more than once in the
HAROWIRE section, a duplication error will occur and an error message will be
displayed. Similarly, duplicated IMS T212 links or IMS C004 IOs in the T2CHAIN
section will give rise to errors.

For example,

C4 0, LINK 4, 0 TO SLOT 4, LINK 3, I

C4 0, LINK 4, 0 TO SLOT 7, LINK 0, I

will produce an error message similar to:

Error detected in HLl file at line x :
- The C004 link in this connection is already involved
in a C004 to slot connection

Line x : C4 0, LINK 4, 0 TO SLOT 7, LINK 0, I

Links may not be checked for duplication in the same order as they appear in
the line.

4.6.2 Errors in the softwire description

Many errors in the softwire definition are handled in the same way as the hardwire
description. In addition to these errors, however, the MMS will also report soft
connections which it is unable to establish.

72 OEK 227 00

28

This can be for one of two reasons:

4 Module motherboard software

• A 'hard link' mentioned in a soft connection is not defined as connected
anywhere in the hardwire description

• Two hard channels are required to have a soft connection between them,
but are connected to different IMS C004s making their connection impos
sible.

To make it easier to report and correct such errors the MMS error messages
break the process of establishing a soft link down into four stages. An error may
be detected and reported at any of these stages:

1 From 'from link' output to IMS C004 input

2 From IMS C004 output to 'to link' input

3 From 'to link' output to IMS C004 input

4 From IMS C004 output to 'from link' input

SLOT EDGE OR
SLOT LINK

For example, in the following line:

SLOT 0, LINK 3 TO SLOT 1, LINK 0

the stages are as follows:

1 Check slot 0, link 3 output is connected to aiMS C004 input

2 Check IMS C004 output is connected to slot 1, link 0 input

3 Check slot 1, link 0 is connected to aiMS C004 input

4 Check IMS C004 output is connected to slot 0, link 3 input.

72 OEK 227 00

Reference manual

72 OEK 227 00

30

72 OEK 227 00

Reference manual

11

fi iti
5.1 The system calls available

The interface between the user program and the drivers is via a set of system
calls. Because of the way a device driver integrates the device handling into
the operating system, these system calls are the normal MS-DOS calls for doing
input and output to a file or device.

The device driver interfaces the B008 to the operating system as a character
device, this means that the device can be accessed by READ or WRITE calls
with variable length buffers.

• OPEN - Open device for reading or writing.

• READ - Read a number of bytes from the link.

• WRITE - Write a number of bytes to the link.

• IOCTL - loctl calls to perform the following:

ReadFlags - Read the value of the transputer subsystem error
flag and the driver timeout flag, as well as the status of the read
and write channels of the link.

2 SetFlags - Sets up the following actions:

(a) Reset - Reset the transputer network.

(b) Analyse - Analyse the transputer network.

(c) Settimeout - Sets the timeout value and enables time
outs.

• CLOSE - Close device.

5.1.1 OPEN

The open call to MSDOS, generates a file descriptor to be used to access the
device. The open call is passed a file name which MSDOS first checks against
its list of character device names. If a match is found then the MSDOS sends
all subsequent 10 requests associated with the descriptor to the device driver
rather than to a file. The IBM Disk Operating System Technical Reference gives
a full description of how to call the operating system, the following code segment

72 OEK 227 00

32

shows a typical open call.

5 Device driver call definitions

name db , LINK1', 0

mov
mov
int

open_file: mov
al, MODE
ah, 3Dh
21h

dx, offset name

;File handle returned in AX

or from C

fd = open(HLINK1 H, O_ROWR);

There is a problem however with the DOS open call to open a device. If there
is no device which has the same name as the parameter then DOS will decide
that the open call was to a real file, thus a file descriptor to an open file will be
returned rather than to a device. In this way it is not possible by means of the
open call to determine whether the device driver is installed or not.

There is however a DOS IOCTL call which returns information about the type of
an open file descriptor. One of the bits in the returned status word corresponds
to whether the descriptor points to a device or to a plain file. The procedure for
opening a descriptor to the link should be to perform an open call on the name
of the device, then perform an ioctl call on the new descriptor to check that it
does in fact reference the device rather than a file of the same name.

Assuming the open file descriptor in bx, the following code will test whether the
desriptor references a device:

mov
mov
int
test
jz

ax,4400h ;IOCTL call, function 0
bx,<file handle>
21h
dl,80h
not a device

The DOS IOCTL call is not usually implemented directly in C runtime libraries.

5.1.2 READ

Having opened the device, the read call allows data to be read from the link. The
DOS Read call takes a file descriptor (which should be the descriptor obtained
from open) a buffer pointer and a length. The buffer pointer and length are then
passed to the device driver for service.

72 OEK 227 00

5.1 The system calls available 33

The device driver attempts to read the requisite number of bytes into the buffer,
returning control to DOS and hence the user program when:

• All the bytes have been read

• A Timeout occurs see the timeout ioctl call

• The user presses ctrl-break

If all the bytes were read, then read will return the passed length. If only part of
the request was read due to either timeout or break detection then the number
of bytes read is returned. If a timeout or break occured before any bytes were
read then -1 is returned by the read call.

5.1.3 WRITE

The write call allows data to be written to the link adapter. The DOS Write call
takes a file descriptor (which should be the descriptor obtained from open) a
buffer pointer and a length. The buffer pointer and length are then passed to
the device driver for service.

In a similar way to the Read call, the device driver attempts to write the correct
number of bytes from the buffer to the link, returning control to DOS and hence
the user program when:

• All the bytes have been written

• A Timeout occurs see the timeout ioctl call

• The user presses ctrl-break

If all the bytes were written, then write will return the passed length. If only part of
the request was written due to either timeout or break detection then the number
of bytes written is returned. If a timeout or break occured before any bytes were
written then -1 is returned by the write call.

5.1.4 IOCTL

In DOS, the ioctl call is a way of passing and retrieving control information to
the device or the device driver. This information is passed or retrieved using
sub-function 02 and 03 of the ioctl (ah=44h) DOS INT 21 system call. The ioctl
call is not usually supported directly by C compilers, it must be executed through
either asssembly language or a generic operating system call interface of the
language.

72 OEK 227 00

34 5 Device driver call definitions

The call to INT 21 h, AH=44h, AL=03h is used to write certain control information
to the the device driver. In all cases a 32-bit (4-byte) value is passed into the
call. The top 16-bits specify the kind of operation to be done, the bottom sixteen
bits contain the parameter to the operation (if any)

Top 16 bits Bottom 16 bits meaning
OOOOh don't care Reset the root transputer
0001h don't care Assert analyse and reset
0002h Timeout period (x 0.1 seconds) Set the timeout period

(0 means no timeout)

Example code to reset the root transputer:

reset word dw 00
dw 00

reset link:-mov ah, 44h ; Funetion 44 - 03
mov aI, 03h
mov bx, <file handle> ; Handle returned by open
mov ex, 4 ;Size of status string
mov dx, offset es:reset word
push es
pop ds ; Address in ds:dx
int 21h ;Make DOS eall

The call to INT 21 h, AH=44h, AL=02h is used to read the status information from
the device driver. The call should be made, specifying a 32-bit transfer area in
ex. On return the transfer area will be as follows:

Bit Number Meaning
0 The transputer error flag is set
1 A Timeout occured on the last 10 operation
2 The transputer link is able to accept at least one byte
3 The transputer link has a least one byte available

72 OEK 227 00

5.1 system calls available 35

Example code to retrieve the error flag:

status dw 00
dw 00

;Function 44 - 02

;Address in ds:dx
;Make DOS call
;AX=returned status

;Only leave error bit

mov
mov
mov
mov
mov
push
pop
int
mov
and

72 OEK 227 00

ah,44h
al,02h
bx, <file handle>
cx,4 ;Size of status string
dx,offset cs:status word
cs
ds
21h
ax, [status]
al,l

36

72 OEK 227 00

6 INMOS server
6.1 Introduction

This section describes the structure and function of the INMOS server. The
server provides the route by which user programs can be loaded onto a trans
puter and access host services. The, server is written in the C programming
language and is supplied in both binary and source form.

6.2 Running the server

To run the host file server use the following command line:

iserver {option}

where: option is any file server option, given in table 6.1

All options are two letters long and start with a's'. None of these options may be
used for program parameters. Any other text on the command line is supplied
to programs.

If iserver alone is typed then the server provides brief help information.

Option
SA
SB filename
se filename
SE
SI
SL name
SR
SS

Description
Analyse root transputer and peek 8K of memory from it.
Boot program contained in named file.
Copy named file to Iink.
Terminate if the error flag becomes set.
Produce information messages.
Specify link address or device name.
Reset the root transputer.
Serve link (Le. provide host support to program
communicating on link)

Options must be preceded by '-' for UNIX based toolsets.
Options must be preceded by '/' for non-UNIX based toolsets.
Spaces between options and the case of letters in the parameters are not
significant.
Options may be in any order
Note: -SB filename is equivalent to -SR-SS-SI-se filename

Table 6.1 File server options

72 OEK 227 00

38

6.2.1 e-VILoIIYIIDIM programs

6 INMOS server

The name of the file containing the program to be loaded is specified by the SB
option. If the file cannot be found an error is reported. When this option is used
the board is reset prior to loading the program. When the program has been
loaded the server then provides host services to the program.

Using the SB option is equivalent to using the SR, SS, SI and se options to
gether.

If you want to load a program onto a board without resetting, or if the board
is already reset, use the se option. This should only be done if the transputer
being loaded is reset or has a resident program that can understand the file
being sent by the server.

If you want the server to terminate after loading the program do not use the SB
option. Instead use se and SR to reset and load the board. The server will then
terminate after loading the program.

To reset a transputer run the server with only the SR option.

6.2.2 Soeclifviina link address

The server contains a default address for communicating with boot from link
boards. This address may be changed by the SL option. The option is followed
by the link address. The link address must be given in hexadecimal.

72 OEK 227 00

fi ns
This section provides a technical description of the server's functionality and
the protocol used to implement requests to and replies from the server. This
information is intended to help those porting the server to a new host machine,
or are extending server functionality.

7..1 iserver 1II"'\1".""'I'I''\If'I''\I

Every communication, both to and from the server, is a counted array of bytes.
The first two bytes are a (little endian) count of the following message length.
In the to-server direction, there is a minimum packet length of 8 bytes (Le. a
minimum message length of 6 bytes). In both to and from directions there is a
maximum packet length of 512 bytes. A further restriction is that the message
must always be an even number of bytes.

~ message of length si +(256*s2) I

In occam these messages can be routed as INT16: : [] BYTE protocol.

The server code on the host can take advantage of the fact that it will always be
able to read 8 bytes from the link at the start of a transaction.

7.2 Server TB I 11"\ If''I'U'''tl 1"\ '!:ll 11 ...'"

This section describes the basic set of server functions. All versions of the
iserver will support these functions, enabling programs to be ported between
any version of the toolset.

The functions implemented by the server are separated into three groups:

1 Interacting with files

2 Interacting with the host environment

3 Interacting with the server itself

In the descriptions that follow, the arguments and results of server calls are listed
in the order that they appear in the data part of the protocol packet. The length
of a packet is the length of all the items concatenated together, rounded up to
an even number of bytes.

72 OEK 227 00

40 7 Server protocol definitions

All server calls return a result byte as the first item in the return packet. If the
operation succeeds the result byte will be zero. If the operation fails the result
byte will be non-zero. The result will be one (1) in the special case where the
operation failed because it was not implemented1. If the result is not zero, some
or all of the return values may not be present, resulting in a smaller return packet
than if the call was successful.

In the descriptions below, occam types are used to define the format of data
items in the packet. All integer types are communicated least significant byte
first. Negative integers are represented in 2s complement. Strings and other
variable length blocks are introduced by a 16 bit signed count.

7.2.1 File commands

Open files are identified with 32 bit descriptors. There are three predefined open
files:

o standard input
1 standard output
2 standard error

If one of these is closed it may not be reopened.

1Result values between 2 and 127 are defined to have particular meanings by occam
server libraries, Result values of 128 or above are specific to the implementation of a server.

72 OEK 227 00

7.2 Server functionality

Fopen - Open a file

41

Synopsis: Streamld Fopen(Name, Type, Mode)

1 or 2
1 ... 6

To server: BYTE
INT16: : [] BYTE
BYTE
BYTE

Tag = 10
Name
Type
Mode

From server: BYTE
INT32

Result
Streamld

Fopen opens the file Name and, if successful, returns a stream identifier
Streamld.

Type can take one of two possible values:

1 Binary. The file will contain raw binary bytes

2 Text. The file will be stored as text records. Text files are host
specified.

Mode can have 6 possible values:

1 Open an existing file for input

2 Create a new file, or truncate an existing one, for output

3 Create a new file, or append to an existing one, for output

4 Open an existing file for update (both reading and writing), starting
at the beginning of the file

5 Create a new file, or truncate an existing one, for update

6 Create a new file, of append to an existing one, for update

When a file is opened for update (one of the last three modes above) then
the resulting stream may be used for input or output. There are restric
tions, however. An output operation may not follow an input operation
without an intervening Fseek, Ftell or Fflush operation.

The number of streams that may be open at one time is host-specified,
but will not be less than eight (including the three predefines).

72 OEK 227 00

42

Fclose - Close a file

Synopsis:

7 Server protocol definitions

Fclose(Streamld)

To server: BYTE
INT32

From server: BYTE

Tag = 11
Streamld

Result

Fclose closes a stream Streamld which should be open for input or out
put. Fclose flushes any unwritten data and discards any unread buffered
input before closing the stream.

Fread - Read a block of data

Synopsis:

To server:

Data

BYTE
INT32
INT16

Fread(Streamld, Count)

Tag = 12
Streamld
Count

From server: BYTE
INT16: : [] BYTE

Result
Data

Fread reads Count bytes of binary data from the specified stream. Input
stops when the specified number of bytes are read, or the end of file is
reached, or an error occurs. If Count is less than one then no input is
done. The stream is left positioned immediately after the data read. If
an error occurs the stream position is undefined.

Result is always zero. The actual number of bytes returned may be
less than requested and Feof and Ferror should be used to check for
status.

72 OEK 227 00

7.2 Server functionality

Fwrite - Write a block of data

43

Synopsis: Written Fwrite(Streamld, Data)

To server:

From server:

BYTE
INT32
INT16: : [] BYTE

BYTE
INT16

Tag = 13
Streamld
Data

Result
Written

Fwrite writes a given number of bytes of binary data to the specified
stream, which should be open for output. If the length of Data is less than
zero then no output is done. The position of the stream is advanced by
the number of bytes actually written. If an error occurs then the resulting
position if undefined.

Fwrite returns the number of bytes actually output in Written. Result
is always zero. The actual number of bytes returned may be less than
requested and Feof and Ferror should be used to check for status.

If the Streamld is 1 (standard output) then the write is automatically
flushed.

Fgets - Read a line

Synopsis:

To server:

Data

BYTE
INT32
INT16

Fgets(Streamld, Count)

Tag = 14
Streamld
Count

From server: BYTE
INT16: : [] BYTE

Result
Data

Fgets reads a line from a stream which must be open for input. Charac
ters are read until end of file is reached, a newline character is seen or
the number of characters read is not less than Count.

If the input is terminated because a newline is seen then the newline
sequence is not included in the returned array.

If end of file is encountered and nothing has been read from the stream
then Fgets fails.

72 OEK 227 00

44

Fputs - Write a line

Synopsis:

7 Server protocol definitions

Fputs(Streamld, String

To server:

From server:

BYTE
INT32
INT16: : [] BYTE

BYTE

Tag = 15
Streamld
String

Result

Fputs writes a line of text to a stream which must be open for output.
The host-specified convention for newline will be appended to the line
and output to the file. The maximum line length is host-specified.

Fflush - Flush a stream

Synopsis: Fflush(Streamld)

To server: BYTE
INT32

From server: BYTE

Tag = 16
Streamld

Result

Fflush flushes the specified stream, which should be open for output. Any
internally buffered data is written to the destination device. The stream
remains open.

72 OEK 227 00

7.2 Server functionality

Fseek - Set in

Synopsis: Fseek(Streamld, Offset, Origin)

To server: BYTE Tag = 17
INT32 Streamld
INT32 Offset
INT32 Origin

From server: BYTE Result

45

Fseek sets the file position for the specified stream. A subsequent read
or write will access data at the new position.

For a binary file the new position will be Offset characters from
V.L..Il.\.04.1l..&& which may take one of three values:

Set, the beginning of the file

2 Current, the current position in the file

3 End, the end of the file

For a text stream, Offset must be zero or a value returned by Ftell. If the
latter is used then Origin must be set to 1.

Ftell - Find out DOSltllOn in a file

Synopsis: Position

To server: BYTE
INT32

From server: BYTE
INT32

Ftell(Streamld

Tag = 18
Streamld

Result
Position

Ftell returns the current file position for Streamld.

72 OEK 227 00

46

Feof - Test for end of fi le

Synopsis:

7 Server protocol definitions

Feof(Streamld

To server: BYTE
INT32

From server: BYTE

Tag = 19
Streamld

Result

Feof succeeds if the end of file indicator for Streamld is set.

Ferror - Get file error status

Synopsis: ErrorNo, Message = Ferror(Streamld)

To server:

From server:

BYTE
INT32

BYTE
INT32
INT16: : [] BYTE

Tag = 20
Streamld

Result
ErrorNo
Message

Ferror succeeds if the error indicator for Streamld is set. If it is, Fer
ror returns a host-defined error number and a (possibly null) message
corresponding to the last file error on the specified stream.

Remove - Delete a file

Synopsis:

To server:

From server:

Remove(Name)

BYTE
INT16: : [] BYTE

BYTE

Tag = 21
Name

Result

Remove deletes the named file.

72 OEK 227 00

7.2 Server functionality

Rename - Rename a file

Synopsis: Rename(OldName, NewName

47

To server:

From server:

BYTE
INT16: : [] BYTE
INT16: : [] BYTE

BYTE

Tag = 22
OldName
NewName

Result

Rename changes the name of an existing file OldName to NewName.

7.2.2 Host commands

Getkey - Get a keystroke

Synopsis: Key GetKey()

To server: BYTE Tag = 30

From server: BYTE Result
BYTE Key

GetKey gets a single character from the keyboard. The keystroke is
waited on indefinitely and will not be echoed. The effect on any buffered
data in the standard input stream is host-defined.

Pollkey - Test for a key

Synopsis: Key = PollKey()

To server: BYTE

From server: BYTE
BYTE

Tag = 31

Result
Key

PollKey gets a single character from the keyboard. If a keystroke is not
available then Pol/Key returns immediately with a non-zero result. If a
keystroke is available it will not be echoed.The effect on any buffered
data in the standard input stream is host-defined.

72 OEK 227 00

48

Getenv - Get environment variable

7 Server protocol definitions

Synopsis: Value Getenv(Name

To server:

From server:

BYTE
INT16: : [] BYTE

BYTE
INT16: : [] BYTE

Tag = 32
Name

Result
Value

Getenv returns a host-defined environment string for Name. If Name is
undefined then Result will be non-zero.

Time - Get the time of day

Synopsis: LocalTime, UTCTime Time ()

To server: BYTE Tag 33

From server: BYTE
INT32
INT32

Result
LocalTime
UTCTime

Time returns the local time and Coordinated Universal Time if it is avail
able. Both times are expressed as the number of seconds that have
elapsed since midnight on 1st January, 1970. If UTC time is unavailable
then it will have a value of zero.

System - Run a command

Synopsis: Status System (Command

To server:

From server:

BYTE
INT16: : [] BYTE

BYTE
INT32

Tag = 34
Command

Result
Status

System passes the string Command to the host command processor for
execution. If Command is zero length then System will succeed if there
is a command processor. If Command is not null then Status is the
return value of the command, which is host-defined.

72 OEK 227 00

7.2 Server functionality

7.2.3 Server commands

Exit - Terminate the server

49

Synopsis: Exit (Status)

To server: BYTE
INT32

From server: BYTE

Tag = 35
Status

Result

Exit terminates the server, which exits returning Status to its caller.

If Status has the special value 999999999 then the server will terminate
with a host-specific 'success' result.

If Status has the special value -999999999 then the server will terminate
with a host-specific 'failure' result.

CommandLine - Retrieve the server command line

Synopsis:

To server:

String

BYTE
BYTE

CommandLine(All

Tag = 40
All

From server: BYTE
INT16: : [] BYTE

Result
String

Commandline returns the command line passed to the server on invo
cation.

If All is zero the returned string is the command line, with arguments
that the server recognised at startup removed.

If All is non-zero then the string returned is the entire command vector
as passed to the server on startup, including the name of the server
command itself.

72 OEK 227 00

50

Core - Read peeked memory

7 Server protocol definitions

Synopsis

To server:

Data

BYTE
INT32
INT16

Core(Offset, Length

Tag = 41
Offset
Length

From server: BYTE
INT16: : [] BYTE

Result
Core

Core returns the contents of the root transputer's memory, as peeked
from the transputer when the server was invoked with the analyse option.

Core fails if Offset is larger than the amount of memory peeked from the
transputer or if the transputer was not analysed.

If (Offset + Length) is larger than the total amount of memory that was
peeked then as many bytes as are available from the given offset are
returned.

Version - Find out about the server

Synopsis: Id = Version ()

To server: BYTE

From server: BYTE
BYTE
BYTE
BYTE
BYTE

Tag = 42

Result
Version
Host
OS
Board

Version returns four bytes containing identification information about the
server and the host it is running on.

If any of the bytes has the value 0 then that information is not available.

Version identifies the server version. The byte value should be divided
by ten to yield a version number.

72 OEK 227 00

7.2 Server functionality 51

Host identifies the host box. Currently 5 are defined:

1 PC

2 NEC-PC

3 VAX

4 Sun-3

5 Sun-4

OS identifies the host environment. Currently 4 are defined:

1 DOS

2 Helios

3 VMS

4 SunOS

Board identifies the interface board. Currently 7 are defined:

1 8004

2 8008

3 8010

4 8011

5 8014

6 DRX-11

7 QTO

INMOS reserves numbers up to and including 127 for these three fields.

72 OEK 227 00

52

72 OEK 227 00

7 Server protocol definitions

Appendices

72 OEK 227 00

54

72 OEK 227 00

Appendices

r
The INMOS server consists of a set of C modules and header files. The source
can be altered' to be used with various applications. When this is done the
server needs to be recompiled and linked using the hosts C compiler, to make
this process easier a Makefile is supplied.

72 OEK 227 00

56

72 OEK 227 00

A Rebuilding the server

This appendix describes a standard set of 'C' bindings for talking to transputer
links from a host computer. These routines are independent of the host spe
cific software that drives the hardware (e.g. a device driver, or an assembly
language routine). INMOS has implemented versions of these routines for all its
development boards across several hosts and uses this scheme in its server.

If you wish to create a version of the server for your own board it should only be
necessary to replace these functions in the server provided.

/* OpenLink

Ready the link associated with 'Name'.
If 'Name' is NULL or nn then

any free link can be used.
* Returns any positive integer as a link id or
* a negative value if the open fails.
*/

int OpenLink (Name
char *Name;

/* CloseLink

Close the active link 'LinkId'.
Returns 1 on success or

negative if the close failed.
*/

int CloseLink (LinkId
int LinkId;

72 OEK 227 00

58

8.2 Data ,",1I''\all''~t'u",n~

INMOS standard access routines

/* ReadLink
*
* Read 'Count' chars into 'Buffer'
* from the specified link.
* LinkId is a valid link identifier,
* opened with OpenLink.
* 'Timeout' is a non negative integer representing
* tenths of a second.
* A 'Timeout' of zero is an infinite timeout.
* The timeout is for the complete operation.
* If 'Timeout' is positive then ReadLink may return
* having read less than the number of chars asked for.
* Returns the number of chars placed in 'Buffer'
* (which may be zero) or negative to indicate an error.
*/

int ReadLink (LinkId, Buffer, Count, Timeout)
int LinkId;
char *Buffer;
unsigned int Count;
int Timeout;

/*
*

'*
*
*
*
*
*

*
*
*
*

'*
*
*/

WriteLink

Write 'Count' chars from 'Buffer'
to the specified link.

LinkId is a valid link identifier,
opened with OpenLink.

'Timeout' is a non negative integer representing
tenths of a second.

A 'Timeout' of zero is an infinite timeout.
The timeout is for the complete operation.
If 'Timeout' is positive then WriteLink may return
having written less than the number of chars asked for.
Returns the number of chars actually written
(which may be zero) or negative to indicate an error.

int WriteLink (LinkId, Buffer, Count, Timeout)
int LinkId;
char *Buffer;
unsigned int Count;
int Timeout;

72 OEK 227 00

8.3 Subsystem control 59

B.3

/*

*
*
*
*
*
*/

Subsystem control

ResetLink

Reset the subsystem associated
with the specified link.

Returns 1 if the reset is successful,
negative otherwise.

int ResetLink (Linkld)
int Linkld;

/*
*
*
*
*
*
*/

AnalyseLink

Analyse the subsystem associated
with the specified link.

Returns 1 if the analyse is successful,
negative otherwise.

int AnalyseLink (Linkld)
int Linkld;

B.4 Error testing

/* TestError

** Test the error status associated
* with the specified link.
* Returns 1 if error is set, 0 if it is not and
* negative to indicate an error.
*/

int TestError (Linkld)
int Linkld;

72 OEK 227 00

60

8.5 Data ready tests

B INMOS standard link access routines

1'* TestRead
'*
'* Test input status of the link.
'* Returns 1 if ReadLink will return one byte
'* without timeout,
'* 0 if it may not and negative to indicate an error.
*1

int TestRead (Linkld)
int Linkld;

1* TestWrite

'*
Test output status of the link.
Returns 1 if WriteLink can write one byte

without timeout,
'* 0 if it may not and negative to indicate an error.
'*1

int TestWrite (Linkld)
int Linkld;

72 OEK 227 00

C Softwire description
language

softwire.description = SOFTWIRE

{ board.softwires}
END

board.softwires = PIPE board.id
{ softwire.line}

softwire.line = slot. to. slot. line
1 slot. to. edge. line
I edge. to. edge. line

slot. to. slot. line = SLOT slot.id, link.num TO SLOT slot.id, link.num [via.section]

via. section =VIA EDGE edge. id, edge.id

slot.to.edge./ine = SLOT slot.id, /ink.num TO EDGE edge.id

edge. to. edge./ine = EDGE edge.id TO EDGE it edges.id

link.num

slot. id

edge. id

72 OEK 227 00

=0
1 1
12
13

= positive. integer

= positive.integer

62

72 OEK 227 00

C Softwire description language

D Hardwire description
language

hardwire.description = {1 board. definition }
pipeline.description

positive. integer

pipeline.description

board.definition

sizes

t2.chain

t2.c4.line

t2.id

chain./ink.num

link.num

c4.id

72 OEK 227 00

a positive integer varying between implementations

PIPE { board.name }

DEF board.name
sizes
t2.chain
hardwires

SIZES
T2 positive.integer
C4 positive.integer
SLOT positive.integer
EDGE positive. integer

END

T2CHAIN

{ t2.c4./ine}
END

T2 t2.id, chain.link.num C4 c4.id

positive. integer

o
3

o
1
2
3

0..31

64

hardwires

hardwire.line

slot. id

c4./ink.no

edge.id

slot. to. slot

c4. to. slot

i/o

c4.to.edge

slot. to. edge

72 OEK 227 00

o Hardwire description language

HARDWlRE

{ hardwire./ine }
END

slot. to.slot
c4.to.slot
c4. to. edge
slot. to. edge

positive.integer

positive. integer

positive. integer

SLOT slot.id, link.num TO SLOT slot.id, link.num

C4 c4.id, c4.link.no [, i/o] TO SLOT slot.no, /ink.num [, i/o]

I

o

C4 c4.id, c4./ink.no [, i/o] TO EDGE edge.id [, i/o]

SLOT slot.id, /ink.num TO EDGE edge.id

E Edge mappings for the
B008

The MMS2 hardwire file for the B008 as supplied in the file 'b008' contains EDGE
definitions for the output connectors of the B008. The edge definitions map onto
the connectors as follows (The connector label on the link break-out board is
also given)

IHardwire Mnemonic I Signal Name IBreakout Label I
EDGE 0 EdgeLinkO LO
EDGE 1 EdgeLink1 L1
EDGE 2 EdgeLink2 L2
EDGE 3 EdgeLink3 L3
EDGE 4 EdgeLink4 L4
EDGE 5 EdgeLink5 L5
EDGE 6 EdgeLink6 L6
EDGE 7 EdgeLink7 L7

EDGE 8 PatchLinkO L8
(via patch header)

EDGE 9 PatchLinkO L9
(via patch header)

72 OEK 227 00

66

72 OEK 227 00

E Edge mappings for the B008

The IMS C004 programmable link switch provides a full crossbar switch be
tween 32 link inputs and 32 link outputs. It will switch links running at standard
transputer speeds (10 and 20 Mbits/sec). The IMS C004 is programmed via a
separate serial link called the configuration link.

Each input and output is identified by a number in the range 0 to 31. A con
figuration message consisting of one, two or three bytes is transmitted on the
configuration link. The configuration messages sent to the switch are shown
below.

and the output ofDisconnects the output of

Connects

Connects to by connecting the input
of Iink1 to the output of and the input of

to the output of

Enquires which input the is connected to. I
The IMS C004 responds with the input. The most
significant bit of this byte indicates whether the
output is connected (bit set high) or disconnected
(bit set low). Early versions do not respond to the
command.

This command byte must be sent at the end of ev
ery configuration sequence which sets up a con
nection. The IMS C004 is then ready to accept
data on the connected inputs.

Resets the switch. All outputs are disconnected
and held low. This also happens when is
applied to the IMS C004.

Output is disconnected and held low.

[O][i nput][output]

[1] [link1] [link2]

[2] [output]

[3]

[4]

[5] [output]

[6] [link1] [link2]

For more detailed information on the IMS C004 see [3] and [5].

72 OEK 227 00

68

72 OEK 227 00

The IMS C004 programmable link switch

stages of IMS
configuration

This appendix is designed to give some extra information about the method
used to configure the system of motherboards. The configuration takes place in
a number of stages, as described below.

A special IMS T212 worm is sent down the configuration pipeline which looks for
IMS T212s attached to link 2. The total number of IMS T212s found is passed
back up the pipeline to the host transputer. If the number found is different
from the number described in the hardwire file then an error is reported and the
configuration abandoned.

At this stage a hardware reset of the IMS C004s is performed (if available on
the motherboard in use), by writing to the external memory interface of the IMS
T212.

The host transputer now sends the identification numbers of the IMS C004s in
the system down the pipeline. This enables the worm on any particular IMS
T212 to intercept commands intended for the IMS C004s it controls and pass on
commands for others.

The configuration pipeline is now in a state where it is able send configuration
data to the IMS C004s.

Before sending any configuration data to the pipeline, the host transputer sends
a software reset command to each IMS C004 in the system to ensure that the
IMS C004s are in a known state.

The configuration data for the network is then send down the configuration
pipeline, each command preceded by the identification number of the IMS C004
it is meant for.

The configuration will now be complete and it is possible to reset the system of
motherboards without destroying the soft configuration.

72 OEK 227 00

70

72 OEK 227 00

G The stages of IMS C004 configuration

ution disk
H..1 Contents of the release disk

The release disk is a standard 360K (40 Tracks, 9 Sectors, Double Sided) MS
DOS floppy disk.

The disk contains the following files:

bOOS
ibmpc.itm
iserver.exe
mms2.b4
softwire
s70Sdriv.sys

The directory 'iserver' on the release disk, contains the following files:

b004asm.asm
b004link.c
bOOSlink.c
bOlllink.c
b014link.c
change. log
filec.c
helios.c
hostc.c
inmos.h
iserver.c
iserver.h
link.c
makefile
manifest
msdosc.c
pack.h
qtOlink.c
serverc.c

72 OEK 227 00

72

72 OEK 227 00

H Distribution disk

Bibliography
1 Module motherboard architecture, Trevor Watson,

Technical note 49, INMOS Limited, Bristol. 1988

2 Dual inline transputer modules (TRAMs), Paul Walker,
Technical note 29, INMOS Limited, Bristol. 1988

3 IMS C004 programmable link switch,
Data sheet, INMOS Limited, Bristol.

4 Extraordinary use of transputer links, Roger Shepherd,
Technical note 1, INMOS Limited, Bristol. 1987

5 Design and applications for the IMS C004, Glenn Hill,
Technical note 19, INMOS Limited, Bristol. 1987

6 Exploring multiple transputer arrays, Neil Miller,
Technical note 24, INMOS Limited, Bristol. 1987

7 Transputer instruction set: a compiler writer's guide,
Prentice Hall. 1988

72 OEK 227 00

74

72 OEK 227 00

Bibliography

Analyse Assert a signal to a transputer to tell it to halt at the next de-scheduling
point, and allow the state of the processor to be read. In the context of
'analysing a network', analyse all processors in the network. One of the
system control functions on transputer boards.

Bootstrap A transputer program, loaded from ROM or over a link after the trans
puter has been reset or analysed, which initialises the processor and
loads a program for execution (which may be another loader).

Hard channels Channels which are mapped onto links between processors in
a transputer network (used in contrast to Soft channels).

Module Motherboard Motherboards are provided to interface to various buses.
They have slots for inserting INMOS TRAMs and switch chips which can
be programmed to connect the transputers in different topologies.

Network A set of transputers connected together using links, as a connected
graph (Le. in such a way that there is a path, via links, and other trans
puters, from one transputer to every other transputer in the set).

Reset Transputer system initialisation control signal.

Root transputer The transputer connected directly to the host machine.

Server A program running in a host computer attached to a transputer network
which provides access to the filing system and terminal I/O of the host
computer. The server is normally used to boot up the network as well.

Soft channels Channels declared and used within a process running on a single
transputer (used in contrast to Hard channels).

TRAM Standard hardware module which can be used to quickly construct sys
tems for a particular application or for a prototype. TRAMs consist of
transputers, memory and sometimes application specific circuitry. They
conform to a published specification.

Worm A program that will distribute itself through a network of transputers (per
haps with an unknown topology) and allow all the processors in the net
work to be loaded, tested or analysed.

72 OEK 227 00

	Contents
	Contents overview
	Preface
	1 How to use the guide
	1.1 Introduction
	1.2 User guide
	1.3 Reference manual
	1.4 Appendices

	2 Introduction
	2.1 Product components
	2.2 Operating requirements

	3 Installation
	3.1 Introduction
	3.2 Hardware Installation
	3.2.1 Copying the Files
	3.2.2 Reconfiguring DOS to accept the driver

	User guide
	4 Module motherboard software
	4.1 Introduction
	4.2 Getting started
	4.3 Using the MMS
	4.3.1 Running the MMS
	4.3.2 Menu options
	Help
	Quit
	Set C004 links
	Check source files
	Toggle diagnostics
	Network mapper
	Manual command entry
	Change link numbers
	View source file
	Reset subsystem
	Initialise C004s
	Create a bootable file
	Create an occam table

	4.4 Describing the software configuration
	4.4.1 Softwire definition

	4.5 Describing the hardware configuration
	4.5.1 Hardwire definition
	Sizes section
	T2 chain section
	Hardwire section

	4.6 Error reporting
	4.6.1 Errors in the hardwire description
	File reading errors
	Syntax errors
	Range checking errors
	Duplication errors

	4.6.2 Errors in the softwire description

	Reference manual
	5 Device driver call definitions
	5.1 The system calls available
	5.1.1 OPEN
	5.1.2 READ
	5.1.3 WRITE
	5.1.4 IOCTL

	6 INMOS server
	6.1 Introduction
	6.2 Running the server
	6.2.1 Loading programs
	6.2.2 Specifying link address

	7 Server protocol definitions
	7.1 iserver protocol
	7.2 Server functionality
	7.2.1 File commands
	Fopen - Open a file
	Fclose - Close a file
	Fread - Read a block of data
	Fwrite - Write a block of data
	Fgets - Read a line
	Fputs - Write a line
	Fflush - Flush a stream
	Fseek - Set position in a file
	Ftell - Find out position in a file
	Feof - Test for end of file
	Ferror - Get file error status
	Remove - Delete a file
	Rename - Rename a file

	7.2.2 Host commands
	Getkey - Get a keystroke
	Pollkey - Test for a key
	Getenv - Get environment variable
	Time - Get the time of day
	System - Run a command

	7.2.3 Server commands
	Exit - Terminate the server
	CommandLine - Retrieve the server command line
	Core - Read peeked memory
	Version - Find out about the server

	Appendices
	A Rebuilding the server
	B INMOS standard link access routines
	B.1 Link initialisation
	B.2 Data operations
	B.3 Subsystem control
	B.4 Error testing
	B.5 Data ready tests

	C Softwire description language
	D Hardwire description language
	E Edge mappings for the B008
	F The IMS C004 programmable link switch
	G The stages of IMS C004 configuration
	H Distribution disk
	H.1 Contents of the release disk

	I Bibliography
	J Glossary

