Author: Roger Shepherd

1 TRANSPUTER .10N SE- 3
1.1 Notatic 3
Constznts , 3
Procedtires - ’ 3

1.2 Summaiy of Registers, Flags and Special Locatlons 5
Priority 0 Queue control:)

Priority 1 Queue control: 5
Sequeniial process execution: 5
Initialisa:ion, booting and analysis - 5

Extra registers 6
StatusRe? 7

1.3 Workspac 9
1.4 Special values 9
1.5 Memory Access Procedures 10
1.6 Processor and Link-Channel interactions 11
Overview and terminology 11

Occam description 11

Feset 13
Link-channel behaviour 15

1.7 Initialisation 18
1.8 Processor operation 19
Prioritised scheduling - 20

Action performed by processor wheit i’: i2r bacomes ready 23

Action performed by processor as re-.:. -3f link-channe! request 24

1.9 Clocks and timeslicing 25
1.10 Procedures used in the descriptior oi the iastruction set 26
Procedures related to scheduling 26
Procedures concerned with Timer que::e manipulation 29
Procedure used in alternative input 32
Procedures used 1o implement block iicve 33
Procedures used for input and output 37

Other procedures used in the instruction descriptions 40

1.11 Function Set 41
Direct, Prefixing and Indirect Funciions 41
Operations 42

Direct Functions 45
Register Manipulation Etc 47
Checking 49
Addressing 51

Data Access and Move 51

Logic and Bits . 52

Basic Arithinetic 53
Compariscn and modulo arithmetic 54
<heduliny 55
Communiation 56

Timer Input 57
Aiternative Input 58

Skip Guerds 58
Channel Guards 59
Alternative Timer Inpu* 61

Timer Guards 62
Partword arithmetin 64

Microcomputer Division Conficential 1 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Long arithmetic 65

Booting and analysing 68

Floating point support 70

Testing 74

2 INITIALISATION, BOOTING, ANALYSING AND CHECKING 76
2.1 Introduction 76

2.2 Resetting and Analysing 76
Analyse 76

Information available after booting an analysed transputer 77

2.3 Instructions where processor may halt 78

2.4 Booting 79
Booting from ROM 79

Booting from a link 80

Actions to be performed by the booting program 80

2.5 Error detection by hardware 81

2.6 Instructions which may cause the Error flag to be set 81

2.7 Differences between halt-on-error and analyse 82

3 MEMORY CONFIGURATION 83
3.1 Order of reading configuration information 83

3.2 Memory interface configuration address 83

3.3 Memory Map 85

4 FUNCTION OF PADS AND PIN-OUTS 86
4.1 Function of pads 86

4.2 84 lead J-Bend pin-out 91

4.3 84 lead PGA pin-out 93

Microcomputer Division Confidential 2 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1 TRANSPUTER INSTRUCTION SET
1.1 Notation

In this document the notation used is that of occam 2, with the assumption that the variables of type INT are
infinite-bit two's complement integers.

Any particular processor is assumed to have a finite word length, each register in the processor holding the
value of the corresponding variable in the following description. It is therefore natural to interpret a word as

a fixed length two’s-complement integer. Before and after execution of any instruction, the numerical value
taken by each variable is correctly representable in the corresponding single word register.

Constants

The following constants are used in the description of the machine.

BitsInWord The number of bits in a machine word.

Range The number of distinct values storeable in a word.
(Range = 2**BitsInWord)
MaxInt The largest (most positive) value representable
in aword. (MaxInt = (Range/2) - 1).
MinInt The smallest (most negative) value representable
in aword. (MinInt = - (Range/2)).
Procedures

The following two procedures are used. They do not affect the value held in a processor register; only the
value of the corresponding variable. Consequently, they are used in the following description to change the
interpretation of the register value, rather than the value itself.

PROC UnSign (INT regq)
IF
reg < 0
reg := reg + Range
TRUE
SKIP

PROC Sign (INT reg)
IF
reg > MaxInt
reg := reg - Range

TRUE
SKIP

Microcomputer Division Confidential 3 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

The procedure RestoreToRange is used if the result of an operation (such as addition) may have taken
the value stored in a register into the range [-Range, Range-1] rather than range permitted for a signed
integer ([-Range/2, (Range/2) - 1]). The effect of this can be thought of as throwing away the bits

of higher significance than the sign bit of the register.

PROC RestoreToRange (INT register)
IF

register > MaxInt

register := register - Range
register < MinInt

register := register + Range
TRUE

SKIP

The procedure Latex produces the value of (T1 AFTER T2). This is dependant on the wordlength of
the processor.

PROC Later (VAL INT T1, T2, BOOL laterFlag)
INT timeDiff :
SEQ
timeDiff := Tl - T2
RestoreToRange (timeDiff)
laterFlag := (timeDiff > 0)

..

Microcomputer Division Confidential 4 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.2 Summary of Registers, Flags and Special Locations
Timer:

ClockReg[0] the current value of the high priority processor clock
ClockReg[1l] the current value of the low priority processor clock

TPtrLoc[0] either indicates that the level 0 timer is not in use or points to the first process on the level 0
timer queue

TPtxrLoc[1] either indicates that the level 1 timer is not in use or points to the first process on the level 1
timer queue

TNextReg[0] indicates the time of the first event on the level 0 timer queue
TNextReg[1l] indicates the time of the first event on the level 1 timer queue
TEnabled[0] indicates whether there is anything on the level 0 timer queue
TEnabled[1] indicates whether there is anything on the level 1 timer queue
Priority 0 Queue control:

FptrReg[0] pointer to front of active process list

BptrReg[0] pointer to back of active process list

Priority 1 Queue control:

FptrReg[1] pointer to front of active process list

BptxReg[1l] pointer to back of active process list

Sequential process execution:

IptxReg pointer to next instruction to be executed

WdescReg process descriptor of the current proces

Areg top of evaluation stack

Breg middle of evaluation stack

Creg bottom of evaluation stack

Oreg operand register

StatusReg contains status information - see below

Initialisation, booting and analysis

MemStart this is the most negative word in store not used by the machine for any special purpose (eg as
a link-channel process word, register save word or timer pointer).

Microcomputer Division Confidential 5 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Interrupt save area:

SaveBase the base address of the area of store used to save the registers of a low priority process while
a high priority process is executing.

WdescIntSave the offset of the word containing the Wdesc register of an interrupted process within the
save area.

IptrIntSave the offset of the word containing the Iptr register of an interrupted process within the save
area.

AregIntSave the offset of the word containing the Axeg register of an interrupted process within the save
area.

BregIntSave the offset of the word containing the Bxreg register of an interrupted process within the save
area.

CregIntSave the offset of the word containing the Creg register of an interrupted process within the save
area.

EregIntSave the offset of the word containing the Exeg register of an interrupted process within the save
area.

STATUSIntSave the offset of the word containing the STATUS register of an interrupted process within
the save area.

Extra registers

Ereg carries descriptor of process to be scheduled on completion of a message transfer. This is only be
used during the execution of block move.

BMbuffer used to hold information between successive stages of a block move.

Microcomputer Division Confidential 6 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

StatusReg

The only bits in the StatusReg of concern to the assembler programmer are the HaltOnErrorBit and the
ErrorFlag. The procedures which are used to manipulate these are given below. The remaining bits in the
STATUSreg are used by the processor to control the execution of interruptable instructions; their state only
becomes visible when the STATUSreg is saved during the execution of a high priority process.

Bit Name Purpose
1 GotoSNPBit causes processor to execute StartNextProcess
2 |0Bit set by Input and Output before entry to block move
3 MoveBit indicates block move is being executed
4 TimeDelBit indicates a deletion from the timer queue
5 TimelnsBit indicates an insertion into the timer queue
6 DistAndinsBit (does not appear in this description but
is actually use in the processor)
7 HaltOnErrorBit Cause processor to halt when an error is

generated (this is edge triggered)
msb ErrorFlag

PROC SetErrorFlag()
StatusReg := StatusReg BITOR ErrorFlag

.
.

PROC ClearErrorFlag()
StatusReg := StatusReg BITAND (BITNOT ErrorFlagqg)

PROC ReadErrorFlag (BOOL state)
state := ((StatusReg BITAND ErrorFlag) <> 0)

PROC SetHaltOnErrorFlag()
StatusReg := StatusReg BITOR HaltOnErrorBit

PROC ClearHaltOnErrorFlag()
StatusReg := StatusReg BITAND (BITNOT HaltOnErrorBit)

.
.

PROC ReadHaltOnErrorFlag (BOOL state)
state := ((StatusReg BITAND HaltOnErrorBit) <> 0)

Microcomputer Division Confidential 7 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

The procedure Over£lowCheck sets the ExrorFlag if its argument is not in the range of representable
values and then forces its argument to lie within that range. It does this by ignoring bits beyond the most

significant representable bit.

PROC OverflowCheck (INT register)
IF
(register < MinInt) OR (register > MaxInt)
SEQ
SetErrorFlag ()
register := register REM Range
RestoreToRange (register)
TRUE
SKIP

Microcomputer Division Confidential 8 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.3 Workspace

In the following description, the process descriptor of the current process is also held as two variables Wptx
and Priorxity. These are updated as follows

PROC UpdateWdescReg (VAL INT NewWdescRegq)

SEQ
WdescReg := NewWdescReg
Wptzx := WdescReg BITAND (-2)
Priority := WdescReg BITAND 1

Consequently, Wpt x always holds a pointer to the current process workspace, and Priority always holds
the priority of the current process.

For each concurrent process, a number of locations are used to hold scheduling information. These locations
are accessed using fixed word offsets from the workspace pointer, as follows:

Iptr.s = -1
Link.s = -2
State.s = -3
Pointer.s = -3
TLink.s = -4
Time.s = -5

Local 0 is used by the instructions which implement ALTernative.
1.4 Special values
The special value taken by a channel location:

NotProcess.p = MinInt

The special values taken by the State location in the implementation of channel guards are:

Enabling.p = MinInt + 1
Waiting.p = MinInt + 2
Ready.p = MinInt + 3

The special values taken by the Tlink location in the implementation of timer guards are:

TimeSet.p MinInt + 1
TimeNotSet.p MinlInt + 2

The values of true and false are:

MachineTRUE 1
MachineFALSE 0

The value used stored in local 0 to indicate that no selection has been made during an ALTernative input:

NoneSelected.o = -1

Microcomputer Division Confidential 9 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.5 Memory Access Procedures

In the description of the processor and instruction the following memory access procedures are used:

AtWord (Base, N, A) sets A to point at the Nth word past Base
AtByte (Base, N, A) sets A to point at the Nth byte past Base
RIndexWord (Base, N, X) sets X to the value of the Nth word past Base
RIndexByte (Base, N, X) sets X to the value of the Nth byte past Base
WIndexWoxrd (Base, N, X) sets the value of the Nth word past Base to X
WIndexByte (Base, N, X) sets the value of the Nth byte past Base to X

Memory addresses start from Minint, the process locations of the links and the event channel occupying
the first few locations in memory. The number of process locations used for the links and the event pin is
LinkChans.
An address is a single word value divided into two parts:

a word address

a byte selector

The byte selector occupies the least significant bits in the word. The number of bits used for the byte selector
is BselLength, where

BsellengthTab = TABLE [0, 0, 1, 2, 2, 3, 3, 3, 3]
Bsellength = BsellLengthTab [BitsInWoxd / 8]
BselMask = (1 << (Bsellength+l)) - 1

Microcomputer Division Confidential 10 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.6 Processor and Link-Channel interactions
Overview and terminology
The link-channels operate concurrently with, and are controlled by, the processor.

When a process executes an oulput message instruction which specifies a link-channel the processor must
cause the link-channel to transfer the specified message from the transputer's memory. To do this, the
processor makes a Pex£oxrmIO request on the link-channel. This request specifies a pointer to the message,
the length of the message and the priority of the process. When the message has been transferred, the link-
channel signals the processor with a RunRequest. This will cause the processor to run the process which
output the message.

When a process excutes an input message instruction the interactions between the processor and an input
link-channel are similar. The processor makes a Pex£oxrmIO request as before and when the message has
been transferred, the link-channel signals the processor with a RunRequest as before.

When a process refers to an input link-channel in a guard of an alternative construct the processor makes
use of two further requests on the link-channel.

The first of these, called an Enable request, specifies the priority of the process performing the alternative
and ‘enables’ the link-channel. When an ‘enabled’ link-channel starts to receive a message it signals the
processor with a ReadyRequest.

The second, called a StatusEnquiry, does two things. Firstly, it causes the link-channel to send a
message to the processor indicating if it has yet started to receive a message and, secondly, it 'disables’ the
link-channel if it is enabled.

To reset a link-channel, the processor makes a ResetRequest on the link-channel. The link will return to
its reset state, and, if it was not already signalling the processor with a ReadyRequest or a RunRequest,
it will acknowledge with an AckReset.

Occam description

The processor and the link-channels are each described as separate concurrent processes. Each connection
between the processor and a link-channel uses 3 channels. For the i'th link-channel these are

ProcessoxrToLink [i]
LinkToProcessor[i] [0]
LinkToProcessor[i] [1]

The processor sends requests and their parameters to the i'th link-channel on ProcessoxToLink[i].
The I'th link-channel uses LinkToProcessox[i] [0] to signal the processor when it is at priority 0 (high
priority) and LinkToProcessor[i] [1] when it is at priority 1 (low priority).

Each input link-channel is also connected to two further channels, LinkInData and LinkInAck. These
carry the data recieved by the link-channel and the acknowledges sent by the channel.

Each output link-channel is also connected to two further channels, LinkOutData and LinkOutAck.
These carry the data sent by the link-channel and the acknowledges received by the channel.

Microcomputer Division Confidential 11 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Messages on ProcessoxrTolLink
The possible messages on ProcessorToLink [i] are
1 PerformIO <priority> <pointer> <count>
This requests the link-channel to transfer a message of <count> bytes starting at <pointer>.

The priority of the link-channel for this transfer is <prioxity>. (Because a link-channel is one
directional there is no need for the processor to specify the transfer direction).

2 Enable <priority>

This requests an input link-channel to become enabled and sets the priority of the link-channel to
<priority>.

3 StatusEnquiry <priority>
This asks an input link-channel if it has started to receive a message. It also disables the link-channel
if it was enabled. The link-channel responds by sending ReadyRequest if it has started to receive
a message, ReadyFALSE otherwise.

4 ResetRequest <priority>

This is sent to reset a link-channel. The link-channel responds by returning AckReady, unless it
was already sending a ReadyRequest or a RunRequest.

5 AckReady
The processor sends this to acknowledge a ReadyRequest made by the link-channel.
Messages oh LinkToProcessor[i] [0] and LinkToProcessor[i] [1]
The possible message on LinkToProcessoxr[i] [0] and LinkToProcessoxr[i] [1] are
1 RunRequest

This signals that a link-channel has completed passing a message. The processor will either ac-
knowledge the request with an AckRun or will reset the link-channel with a ResetRequest.

2 ReadyRequest

This signals that a link-channel has started to receive a message. It is sent either when an enabled
link-channel starts to receive a message, or in response {0 a StatusEnquiry.

3 ReadyFALSE

This is sent in reply to a StatusEnquiry when the link-channel has not started to receive a
message.

4 AckReset
This is sent in reply to ResetRequest.

Microcomputer Division Confidential 12 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Summary of message interactions
To clarify the processor and link-channel interactions, a trace of the behaviour of a link-channel is given below
for all possible interactions. The traces given below all involve low priority process interacting with the i'th link-
channel;the interactives involving high priority processor are similar but have LinkToProcessox[i] [0]
substituted for LinkToProcessoxr[i] [1] and O substitued for 1 whenever the processor send a priority
to the link-channel.
Reset
When the processor resets the i'th link-channel the interaction is :
SEQ
ProcessorToLink[i] ? request; priority -- ResetRequest; 1
LinkToProcessor[i] [1] ! response
The response sent will be AckReset, RunRequest or ReadyRequest.
Input and Output
When the processor executes either an 'input message’ or 'output message’ instruction the interaction is:
SEQ
ProcessoxTolLink[i] ? interaction; priority -- PerformIO
ProcessoxrToLink[i] ? pointer; count
There are then three possible further traces.

1 The link-channel completes its 10 :

SEQ
LinkToProcessor[i] [1] ! RunRequest,
ProcessorToLink[i] ? interaction -- AckRun

2 The link-channel is reset before completion of its 10 :
SEQ
ProcessorToLink([i] ? interaction; priority -- ResetRequest; 1
LinkToProcessor[i] [1] ! AckReset
3 The link-channel is reset at the same time as it completes of its 10 :

PAR
ProcessorToLink[i] ? interaction; priority -- ResetRequest; 1
LinkToProcessor[i] [1] ! RunRequest

Microcomputer Division Confidential 13 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Alternative input
When the processor makes a StatusEnquixy on the i'th link-channel the interaction is

SEQ
ProcessorTolLink[i] ? token; priority -- StatusEnquiry:; 1 or 0
LinkToProcessor[i] [1] ! response

The response will be ReadyRequest if the link-channel has started to receive a message, ReadyFALSE
if it has not.

The processor enables the i'th link-channel as follows :

SEQ
ProcessorToLink[i] ! Enable; priority

There are 5 possible interactions between an enabled link-channel and the processor :

1 The link-channel is not ready and the processor makes a StatusRequest. The trace of this
interaction is described above, the link-channel returning ReadyFALSE.

2 The i'th link-channel signals it is ready before the processor makes another request :

SEQ
LinkToProcessor([i] [1] ! ReadyRequest
ProcessorTolLink[i] ? interaction
- AckReady

3 The processor makes a StatusEnquiry at the same time as the link-channel sends a ReadyRequest

PAR
LinkToProcessor[i] [1] ! ReadyRequest
ProcessorToLink[i] ? interaction; priority
- StatusEnquiry; 1

4 The processor makes a ResetRequest before the link-channel becomes ready. In this case the
interaction is as described above with the link-channel responding with AckReset.

5 The processor makes a ResetRequest at the same time as the link-channel sends a ReadyRequest
PAR
LinkToProcessor[i] [1] ! ReadyRequest

ProcessorToLink[i] ? interaction; priority
- ResetRequest; 1

Microcomputer Division Confidential 14 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Link-channel behaviour

PROC LinkOut (CHAN LinkOutData, LinkOutAck,

CHAN FromProcessor, [2]CHAN ToProcessor)
INT priority, pointer, count :

BYTE byte :
BOOL ready, requested :
SEQ
requested := FALSE -- transfer requested
ready := TRUE -- ready to output a byte
WHILE TRUE
INT token :
PRI ALT
FromProcessox ? token
SEQ
FromProcessor ? priority
IF
token = PerformIO
SEQ

FromProcessor ? pointer; count
requested := TRUE
token = ResetRequest
SEQ
ready := TRUE
requested := FALSE
ToProcessor[priority] ! AckReset

(ready AND requested) & SKIP
IF

count = 0 -- No more data to be output
INT oldPriority :

SEQ
requested := FALSE
oldPriority := priority
PAR :
ToProcessor[oldPriority] ! RunRequest
INT interaction :
SEQ
FromProcessor ? interaction
IF
interaction = AckRun
SKIP
interaction = ResetRequest
FromProcessor ? priority

TRUE -- Output a byte; set ready to FALSE
SEQ
RIndexByte (pointer, 0, byte)
AtByte (pointer, 1, pointer)
count := count - 1
LinkOutData ! byte

ready := FALSE -- wait for acknowledgement

LinkOutAck ? token -= AckData
ready := TRUE

Microcomputer Division Confidential 15 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC LinkIn(CHAN LinkInAck, LinkInData,
CHAN FromProcessor, [2]CHAN ToProcessor)

INT priority, pointer, count

BYTE byte :
BOOL ready, requested, enabled :
SEQ
ready := FALSE -- Has a byte has been input
requested := FALSE -- Is transfer pending?
enabled := FALSE -- Is link enabled ?
WHILE TRUE
INT token :
PRI ALT

LinkInData ? byte
ready := TRUE

FromProcessor ? token
... deal with processor request

(requested AND ready) & SKIP
... acknowledge and store byte

(enabled AND ready) & SKIP
... dinform processor that link is ready

where the folds are as follows:
... deal with processor request

SEQ
FromProcessor ? priority
IF
token = Enable
enabled := TRUE
token = StatusEnquiry
SEQ
enabled := FALSE
IF
ready
ToProcessor[priority], ReadyRequest
TRUE
ToProcessor[priority], ReadyFALSE
token = PerformIO
SEQ
FromProcessor ? pointer; count
requested := TRUE
token = ResetRequest
SEQ
ready := FALSE
enabled := FALSE
requested := FALSE
ToProcessor[priority] ! AckReset

Microcomputer Division Confidential 16 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

... acknowledge and store byte

SEQ
LinkInAck ! AckData -- Acknowledge
WIndexByte (pointer, 0, byte)
AtByte (pointexr, 1, pointer)
count := count - 1

IF
count = 0 -- Transfer completed
INT oldPriority :
SEQ
requested := FALSE
oldPriority := priority
PAR
ToProcessor[oldPriority] ! RunRequest
INT interaction :
SEQ
FromProcessor ? interaction
IF
interaction = AckRun
SKIP
interaction = ResetRequest
FromProcessor ? priority
TRUE

SKIP
ready := FALSE

... dinform processor that link is ready

INT oldPriority :
SEQ
enabled := FALSE
oldPriority := priority
PAR
ToProcessor [oldPriority] ! ReadyRequest
INT interaction :
SEQ
FromProcessor ? interaction
IF
interaction = AckReady
SKIP
interaction = StatusEnquiry
FromProcessor ? priority
interaction = ResetRequest

SEQ
FromProcessor ? priority
ready := FALSE

Microcomputer Division Confidential 17 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.7 Initialisation

More information on the subject of initialisation is available in the Initialisation, Booting, Analysing and Check-
ing section.

The following registers and special location are not set when the machine powers on or is reset.

ClockReg[0]

ClockReg[1l]

TPtxrLoc[0]

TPtrLoc[1l]

TNextReg[0]

TNextReg[1l]

FptrReg[0]

BptrReg[0]

FptrReg[1]

BptxReg[1l]

msb of the StatusReg (ie the errorflag)
bit 7 of the StatusReg (ie the HaltOnErroxFlag)

The ClockRegs do not increment after a power-on, reset or analyse until a store timer instruction has been
executed. The states of the other registers are set as below:

Areg = IptrReg
Breg = WdescReg
Oreg =0

If the machine is booting from external memory then

WdescReg = MemStart BITOR 1
IptrReg = MaxInt - 1
Creg = ANY

If the machine is booting from a link-channel then

WdescReg = (first word after boot program) BITOR 1
IptrReg = MemStart
Creg = pointer to boot channel

Microcomputer Division Confidential 18 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.8 Processor operation

The processor performs a sequence of actions. Each action may be (i) to execute an instruction (or part
of an instruction) on behalf of the current process, (ii) to act on a request by a link-channel, or, (iii) to deal
with a timer which has become ready. An action which is performed on behalf of a high priority process, on
behalf of a link-channel operating at high priority or on behalf of the high-priority timer is called a "high priority
action”. A "low priority action” is similarly defined.

The actions which may occur for the currently executing process are the execution of the procedures (defined
below) StartNextProcess, InsertMiddleStep, BlockMoveMiddleStep, DeleteMiddleStep
or the fetching, decoding and execution of an instruction.

The action which may be performed by the processor on behalf of a link-channel is the execution of the
procedure HandleChannelRequest. The action which may be performed by the processor of behalf of
the timer is the execution of the procedure HandleTimerRequest.

When the processor has completed one action it will choose its next action as follows (this is defined more
precisely in the program given below):

The processor will execute the procedure StartNextProcess if the GotoSNPbit of the
StatusRegq is set, otherwise it will perform a high priority action if there is one that can
be performed. Otherwise it will perform a low priority action if there is one which can be
performed. Otherwise it will wait until there is a request from a timer or a link-channel.

The processor selects an action at a particular priority according to the following rules. The
processor will execute DeleteMiddleStep if the TimeDelBit of the StatusReg is set.
Otherwise it will execute InsertMiddleStep if the TimelnsBit of the StatusReg is
set. Otherwise the processor will execute the procedure BlockMoveMiddleStep if the
MoveBit of the StatusReg is set. Otherwise it will handle any channel request. Otherwise
it will handle any timer request. Otherwise the processor will fetch, decode an execute an
instruction.

In the following description the procedures Primary and Secondary decode and execute primary and
secondary instructions.

Microcomputer Division Confidential 19 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

WHILE active
VAL INT interruptable IS GotoSNPBit \/ (IOBit \/ (MoveBit \/
(TimeInsBit \/ TimeDelBit))) :
SEQ
-- completed indicates if current instruction has terminated
completed := (StatusReg /\ interruptable) = 0
validProcess := Wptr <> NotProcess.p

PRI ALT
(StatusReg /\ GotoSNPBit) <> 0 & SKIP
StartNextProcess ()

(Priority = 0) AND (NOT (TNextReg[0] AFTER ClockReg[0])) AND
completed & SKIP

HandleTimerRequest (0)

ALT he = 0 FOR LinkChans
(Priority = 0) AND completed & FromChan[hec] [0] ? token
HandleChannelRequest (token, hc)
(Priority = 1) AND '
(NOT (TNextReg[0] AFTER ClockReg[0])) & SKIP
HandleTimerRequest (0)

ALT he = 0 FOR LinkChans
(Priority = 1) & FromChan[hec] [0] ? token
HandleChannelRequest (token, hc)

(Priority = 1) AND (NOT (TNextReg[l] AFTER ClockReg([l]))AND
completed & SKIP

HandleTimerRequest (1)

ALT he = 0 FOR LinkChans
(Priority = 1) AND completed & FromChan[hc] [1] ? token
HandleChannelRequest (token, hc)

validProcess & SKIP
IF
(StatusReg /\ TimeDelBit) <> 0
DeleteMiddleStep (Breg, Creg)
(StatusReg /\ TimeInsBit) <> 0
InsertMiddleStep (Areg, Breg, Creq)
(StatusReg /\ MoveBit) <> 0
BlockMoveMiddleStep (Creg, Breg, Areg)
TRUE
SEQ
BuildNextInstruction (IptrReg, Oreg, code)
IF
code <> f.opr
Primary (code)
code = f.opr
Secondary (Oreg)
Oreg := 0

Prioritised scheduling

The execution of a low priority process can be interrupted when a high priority process becomes runnable as
defined above. In particular certain instructions are interruptable:

move message // input message // output message /

Microcomputer Division Confidential 20 Restricted Document September 27, 1988

Microcomputer Division Confidential

timer alt wait // timer input //
disable timer

Author: Roger Shepherd

When a low priority process is interrupted by a high priority process certain of the processor registers are
written to the transputer’s memory, freeing those registers for use by the high priority process. When there
are no more high priority processes to be executed the registers are restored and execution of the low priority

process recomences.

The following procedures are used to save and restore registers when an interrupt occurs:

PROC SaveRegisters (VAL BOOL SaveEreg)

-—- Save processor registers for interrupt

SEQ

WIndexWozrd (SaveBase, WdescIntSave, WdescRegq)

IF

WdescReg <> (NotProcess.p BITOR 1)

SEQ
WIndexWord (SaveBase,
WIndexWord (SaveBase,
WIndexWord (SaveBase,
WIndexWord (SaveBase,
WIndexWord (SaveBase,
TRUE
SKIP
IF
SaveEreg

IptrIntSave,
AregIntSave,
BregIntSave,
CregIntSave,

-- Low Priority

IptrReq)
Areg)
Breg)
Creq)

STATUSIntSave, StatusReg)

WIndexWord (SaveBase, EregIntSave, Ereg)

TRUE
SKIP

Microcomputer Division Confidential

21

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC RestoreRegisters ()
-- Restore processor registers after interrupt
SEQ
INT temp :
SEQ
RIndexWord(SaveBase, WdescIntSave, temp)
UpdateWdescReg (temp)
IF
WdescReg <> (NotProcess.p BITOR 1) -- Low Priority
SEQ
RIndexWord (SaveBase, IptrIntSave, IptrRegq)
RIndexWord (SaveBase, AregIntSave, Areq)
RIndexWord (SaveBase, BregIntSave, Bregq)
RIndexWord (SaveBase, CreglIntSave, Creg)
RIndexWord (SaveBase, STATUSIntSave, StatusReqg)
TRUE
SKIP
IF
(StatusReg BITAND MoveBit) <> 0
RIndexWord(SaveBase, EregIntSave, Ereq)
TRUE
SKIP

Microcomputer Division Confidential 22 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Action performed by processor when timer becomes ready

PROC HandleTimerRequest (VAL INT Queueld)
INT frontProcess :
SEQ
TEnabled[Queueld] := FALSE
RIndexWord (TptrLoc[QueuelId], 0, frontProcess)
SEQ
INT secondProcess : —-— update queue
SEQ
RIndexWord (frontProcess, TLink.s, secondProcess)
WIndexWord (frontProcess, TLink.s, TimeSet.p)
WIndexWord (TptrLoc[QueueId], 0, secondProcess)

IF
secondProcess = NotProcess.p
SKIP
TRUE
SEQ
RIndexWord(secondProcess, Time.s, TNextReg[QueueId])
TEnabled[QueueId] := TRUE
INT status : -- schedule process as appropriate
SEQ
RIndexWord (frontProcess, Pointer.s, status)
IF
status = Ready.p
SKIP
status = Waiting.p
SEQ

WIndexWord(frontProcess, Pointer.s, Ready.p)
Run (frontProcess BITOR QueueId)

..

Microcomputer Division Confidential 23 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Action performed by processor as result of link-channel request

PROC HandleChannelRequest (VAL INT Request, hc)
-- handles a request from a channel to the processor
== hc is index of hard channel in(occam) channel array
IF
Request = RunRequest
INT channelContent :
SEQ
ToChan[hc] ! AckRun
RIndexWord (PortBase, hc, channelContent)

IF
channelContent = NotProcess.p -- after Reset
SKIP
TRUE
SEQ
WIndexWord (PortBase, hc, NotProcess.p)
Run (channelContent)

Request = ReadyRequest
INT channelContent, procPtr, status :
SEQ
-- Needed to make the cancellable ReadyRequest work
ToChan[hc] ! AckReady
RIndexWord (PortBase, hc, channelContent)
procPtr := channelContent BITAND (-2)
RIndexWord (procPtr, Pointer.s, status)
IF
status = Enabling.p
WindexWord (procPtr, Pointer.s, Ready.p)
status = Ready.p
SKIP
status = Waiting.p
SEQ _
WIndexWord (procPtr, Pointer.s, Ready.p)
Run (channelContent)

Microcomputer Division Confidential 24 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.9 Clocks and timeslicing

The processor contains two clock registers, one for each priority. These registers start incrementing after
the processor has been reset or analysed only once a store timer instruction has been executed. In the
occam description of the processor in this document it is assumed that clock registers either are or are
not incrementing as appropriate. In the description of the store timer instruction the call on the procedure
StartTimer indicates that the clock registers should start incrementing.

The high priority clock register increments every 1uS, the low priority clock increments every 64uS.

The processor will timeslice low priority processes when the clock registers are incrementing. The mechanism
works by checking, during the execution of the jump and loop end instructions whether the process has been
executing for more than a timeslice period, if it has then the following process is executed

SEQ
WindexWord (Wptr, Iptr.s, Iptr)
Run (WdescReg)
StatusReg := StatusReg \/ GotoSNPbit

The performance of the check and the (possible) subsequent execution of the above process is indicated in
the desription of the jump and loop end instructions by the calling of the procedure TimeSlice.

Microcomputer Division Confidential 25 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.10 Procedures used in the description of the instruction set

Procedures related to scheduling

PROC Enqueue (VAL INT ProcPtr, INT Fptr, Bptr)
-- add a process to a scheduling list
SEQ
IF
Fptr = NotProcess.p
Fptr := ProcPtr
TRUE
WIndexWord (Bptr, Link.s, ProcPtr)
Bptr := ProcPtr

.
.

PROC Dequeue (VAL INT Level)
-- Take a process from a scheduling list
SEQ
UpdateWdescReqg (FptrReg[Level] BITOR Level)
IF
FptrReg[Level] = BptrReg[Level]
FptrReg[Level] := NotProcess.p
TRUE
RIndexWord (FptrReg[Level], Link.s, FptrReg[Level])

-
-

PROC ActivateProcess ()
-- Starts a process executing
SEQ
Oreg :=
RIndexWord (Wptxr, Iptr.s, IptrRegq)

Microcomputer Division Confidential 26 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC StartNextProcess ()
-=- This starts execution of the next runnable process (if one exists).
SEQ

StatusReg := StatusReg BITAND (BITNOT GotoSNPBit)
IF

Priority = 0
IF
FptrReg[0] <> NotProcess.p
SEQ
Dequeue (0)
ActivateProcess ()
TRUE
SEQ -- no further high priority processes
RestoreRegisters ()
IF
-- no interrupted process .
(Wptr = NotProcess.p) AND

(FptrReg[l] <> NotProcess.p)
SEQ

Dequeue (1)
ActivateProcess ()
-- no low priority processes at all
(Wptr = NotProcess.p) -— no processes
SKIP
-- interrupted process was doing block move
(StatusReg BITAND MoveBit) <> 0
BlockMoveFirstStep (Creg, Breg, Areg)
-- continue with block move
TRUE

SKIP
Priority = 1
IF

FptrReg[l] <> NotProcess.p
SEQ

Dequeue (1)
ActivateProcess ()
TRUE

UpdateWdescReg (NotProcess.p BITOR 1)

PROC Wait ()
SEQ
WIndexWord (Wptr, State.s, Waiting.p)
WIndexWord (Wptr, Iptr.s, IptrReg)
StatusReg := StatusReg BITOR GotoSNPBit

Microcomputer Division Confidential 27 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC Run (VAL INT ProcDesc)
-- Schedule a process
INT procPriority :

INT procPtr :

SEQ
procPriority := ProcDesc BITAND 1
procPtr := ProcDesc BITAND (-2)
IF
Priority = 0 ~- Machine at high priority:; queue process
Enqueue (procPtr, FptrReg[procPriority], BptrReg[procPriority])

Priority = 1 -- Machine at low priority

IF
procPriority = 0 -- High priority process; execute it

SEQ
SaveRegisters((StatusReg BITAND MoveBit) <> 0)
UpdateWdescReg (ProcDesc)
StatusReg := StatusReg BITAND

(ExrroxFlag BITOR HaltOnErrorBit)

ActivateProcess ()
procPriority = 1 -- Low priority process; queue it

Wptr = NotProcess.p
SEQ
UpdateWdescReg (PxrocDesc)
ActivateProcess()

TRUE
Enqueue (procPtr, FptrReg[l], BptrReg[l])

Microcomputer Division Confidential 28 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Procedures concerned with Timer queue manipulation

The four procedures InsertFirstStep, InsertMiddleStep, InsertFinalStep and InsertTest
combine to cause the current process to be inserted into the timer queue. This will happen due to execution
of either the timer input or timer alternative wait instructions.

PROC InsertFinalStep (INT time, previous, subsequent)

SEQ
-~ Enqueue new timer process
WIndexWord (previous, O, Wptr)
WIndexWord (Wptz, TLink.s, subsequent)
WIndexWord (Wptzx, Iptr.s, IptrRegq)

-- Ensure the earliest time is in TNextReg
RIndexWord (TimerBase, Priority, previous)
RIndexWord (previous, Time.s, TNextReg[Priority])
TEnabled[Priority] := TRUE

~- Finished insertion, start next process
StatusReg := StatusReg BITAND (BITNOT TimeInsBit)
StatusReg := StatusReg BITOR GotoSNPBit

PROC InsertTest (INT time, previous, subsequent)
-- Used by Insert Middle and First Steps
SEQ
RIndexWord (previous, 0, subsequent)
IF
subsequent = NotProcess.p
InsertFinalStep (time, previous, subsequent)
subsequent <> NotProcess.p
INT subsequentTime :
BOOL laterFlag :
SEQ
RIndexWord (subsequent, Time.s, subsequentTime)
Later(time, subsequentTime, laterFlag)
IF
laterFlag
SKIP
TRUE
InsertFinalStep (time, previous, subsequent)

PROC InsertMiddleStep (INT time, previous, subsequent)
—- Test for Insertion before next process on timer queue
SEQ
AtWord (subsequent, TLink.s, previous)
InsertTest (time, previous, subsequent)

Microcomputer Division Confidential 29 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC InsertFirstStep (INT time, previous, subsequent)
-- Areg is time
-- Breg is previous
-- Creg is subsequent
-- "previous" points at the location to be updated if the current
-- process is to be inserted before the process pointed to by
-- "subsequent”.
SEQ
-- Start insertion, set local registers
StatusReg := StatusReg BITOR TimeInsBit
WIndexWoxrd(Wptr, State.s, Waiting.p)
WIndexWord (Wptr, Time.s, time)

-- Test for Insertion before first process on timer queue
AtWord (TimerBase, Priority, previous)
InsertTest (time, previous, subsequent)

Microcomputer Division Confidential 30 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

The four procedures DeleteFirstStep, DeleteMiddleStep, DeleteFinalStep and DeleteTest
combine to cause the current process to be deleted from the timer queue. This will happen due to execution
the disable timer instruction.

PROC DeleteFinalStep (INT previous, subsequent)
SEQ
-- Delete the current process from the timer queue
RIndexWord (Wptxr, TLink.s, subsequent)
WIndexWord (previous, 0, subsequent)
WIndexWord (Wptr, TLink.s, TimeNotSet.p)

-- Ensure the earliest time is stored in TNeitReg
RIndexWord (TptrLoc[Priority], 0, previous)
IF
previous = NotProcess.p
SKIP
previous <> NotProcess.p
SEQ
RIndexWord (previous, Time.s, TNextReg[Priority])
TEnabled[INT Priority] := TRUE

-- Finish Deletion
StatusReg := StatusReg BITAND (BITNOT TimeDelBit)

PROC DeleteTest (INT previous, subsequent)
-- Used by Delete First and Middle Steps
SEQ
RIndexWord (previous, 0, subsequent)
IF
subsequent = Wptr
DeleteFinalStep (previous, subsequent)
TRUE
- SKIP

PROC DeleteMiddleStep (INT previous, subsequent)
—- Test for Deletion before next process on timer queue
SEQ
AtWord (subsequent, TLink.s, previous)
DeleteTest (previous, subsequent)

PROC DeleteFirstStep (INT previous, subsequent)
SEQ
-- Start deletion, set TEnabled to FALSE (pending completion)
StatusReg := StatusReg BITOR TimeDelBit
TEnabled[Priority] := FALSE

-- Test for deletion before first process on timer queue
previous := TptrLoc[Priority]
DeleteTest (previous, subsequent)

.

Microcomputer Division Confidential 31 Restricted Document September 27, 1988

Microcomputer Division Confidential

Procedure used in alternative input

PROC IsThisSelectedProcess ()
-— this is used by all the disable instructions
INT disableStatus :

SEQ
RIndexWord (Wptx, 0, disableStatus)
IF
disableStatus = NoneSelected.o

SEQ
WIndexWord (Wptx, 0, Areq)
Areg := MachineTRUE
disableStatus <> NoneSelected.o
Areg := MachineFALSE

Author: Roger Shepherd

Microcomputer Division Confidential 32 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Procedures used to implement block move

The routines WritePartWord, Min, CalcShiftUp, Decode and Select are used in the implemen-
tation of the block moving mechanism. The block move mechanism is initialised by execution of
BlockMoveFirstStep (this will happen as a result of execution of a block move instruction, an input mes-
sage instruction, an oufput message instruction or when the transputer restarts an interrupted block move.
Once initialised the BlockMoveMiddleStep procedure is repeated executed until either the block move
has completed or the block move is interrupted. -

PROC WritePartWord (VAL INT Address, Woxrd, StartByte, Length)
-- insert bytes ’‘StartByte’ through ’StartByte+Length-1’ into
-- the corresponding byte of the memory location ’Address’
INT buffer, insert, keep :

SEQ
insert := 0
SEQ bytelIndex = StartByte FOR Length
insert := insert BITOR (#FF << (byteIndex*8))
keep := BITNOT insert
RIndexWord (Address, 0, buffer)
buffer := (buffer BITAND keep) BITOR (Woxrd BITAND insert)
RestoreToRange (buffer)
WIndexWord(Address, 0, buffer)

PROC Min (VAL INT Argl, Arg2, INT result)
IF
Argl < Arg2
result := Argl
TRUE
result := Arg2

PROC CalcShiftUp (VAL INT SB, DB, INT shift)
== Calculate the Byte shift for the source to match the destination.
SEQ
shift := (DB - SB) REM BytesPerWord
IF
shift < 0
shift := shift + BytesPerWord
TRUE
SKIP

.

Microcomputer Division Confidential 33 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC Decode (VAL INT Dest, Source, INT DB, SB)
-- Extract Byte-select component of source and destination addresses

SEQ
DB := Dest BITAND BselMask
SB := Source BITAND BselMask

PROC Select (VAL INT P, C, ShiftUp, INT S)
-- Forms a new woxd,
-= with the ShiftUp-most-significant bytes from P at the
-- least significant end, and the (BitsInWord/8) minus ShiftUp-
-- least-significant bytes from C at the most significant end.
-—- Inserts 1’s otherwise.
INT lowWord, highWorxd :
VAL ShiftUpBits IS ShiftUp * 8 :
VAL Complement IS BitsInWord - ShiftUpBits :

SEQ
lowWord := (P >> Complement) BITOR ((-1) << ShiftUpBits)
highWoxrd := C BITOR ((-1) << Complement)

highWord := (highWord << ShiftUpBits) BITOR
(BITNOT ((-1) << ShiftUpBits))
S := lowWord BITAND highWord

Microcomputer Division Confidential 34 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC BlockMoveFinalStep ()
-- NB Clear Flags BEFORE running Ereg !
-~ Run Ereg if IOBit set, clear IOBit and MoveBit

IF
(StatusReg BITAND IOBit) <> 0
SEQ
StatusReg := (StatusReg BITAND
(BITNOT MoveBit)) BITAND
(BITNOT IOBit)
Run (Eregqg)
TRUE
StatusReg := (StatusRegqg BITAND

(BITNOT MoveBit))

PROC BlockMoveFirstStep (INT source, dest, length)

INT shiftUp :
INT bytesToRead, bytesToWrite :
INT DB, SB :
INT current, selected :
IF

length = 0

BlockMoveFinalStep ()

length > 0
SEQ
StatusReg := StatusReg BITOR MoveBit
Decode (dest, source, DB, SB)
CalcShiftUp(SB, DB, shiftUp)
RIndexWord (source, 0, current)
Min ((BitsInWord/8) - SB, length, bytesToRead)
Min ((BitsInWord/8) - DB, length, bytesToWrite)
IF
bytesToRead >= bytesToWrite
Select (current, current, shiftUp, selected)
bytesToRead < bytesToWrite
SEQ

BMbuffer := current

-- Must do another read before we write

RIndexWord(source, 1, current)

Select (BMbuffer, current, shiftUp, selected)
-- Write
mn@uwuumu,mmmm,m,wwﬂwﬁm)
-- Update pointers and buffer
AtByte (dest, bytesToWrite, dest)
length := length - bytesToWrite
AtByte (source, bytesToWrite, source)
-- Update buffer
BMbuffer := current

Microcomputer Division Confidential 35 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC BlockMoveMiddleStep (INT source, dest, length)

INT shiftUp :
INT bytesToWrite :
INT DB, SB :
INT current, selected :
IF

length = 0

BlockMoveFinalStep ()

length > 0
SEQ
-- Read word
Decode (dest, source, DB, SB)
CalcShiftUp(SB, DB, shiftUp)
IF
length > shiftUp
-- First choose which word to read
IF
shiftUp = 0
RIndexWord (source, 0, current)
shiftUp <> 0
RIndexWord (source, 1, current)
TRUE
SKIP
-- Write appropiate section
-- Selection can be omitted in the ShiftUp = 0 case
Select (BMbuffer, current, shiftUp, selected)
Min ((BitsInWord/8) - DB, length, bytesToWrite)
WritePartWord(dest, selected, DB, bytesToWrite)
-- Update pointers and buffer
AtByte (dest, bytesToWrite, dest)
length := length - bytesToWrite
AtByte (source, bytesToWrite, source)
BMbuffer := current

..

Microcomputer Division Confidential 36 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Procedures used for input and output

PROC HandShake (VAL INT I, INT token)
-- Required for resetting a link which might be
-- operating at high priority
ALT pri = 0 FOR 2
FromChanL[I] [pxri] ? token
SKIP

PROC SaveRegsPendingSoftIO()
SEQ
WIndexWord (Breg, 0, WdescReg)
WIndexWoxd (Wptxr, Iptr.s, IptrRegq)
WIndexWord (Wptxr, Pointer.s, Creq)

PROC HardChannelInputOutputAction (VAL INT poxrtNo)
SEQ
WIndexWord (Breg, 0, WdescReg)
WIndexWoxrd (Wptr, Iptr.s, IptrReq)
ToChan [portNo] ! PerformIO; Priority:; Creg: Areg

PROC ChanOffset (VAL INT reg, INT chanNum)
-- Extract a "channel number", starting from MinInt = 0
chanNum := (reg - MinInt) >> BsellLength

Microcomputer Division Confidential 37 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC Input ()
-- Areg is count, Breg is channel, Creg is pointer.
INT chanNum :

SEQ
ChanOffset (Breg, chanNum)
IF
chanNum >= LinkChans -- soft (Breg)
INT procDesc :
SEQ
RIndexWord (Breg, 0, procDesc)
IF
procDesc = NotProcess.p -- Not ready; wait
SEQ
SaveRegsPendingSoftIO()
StatusReg := StatusReg BITOR GotoSNPBit
procDesc <> NotProcess.p -- Ready; transfer
INT sourcePtr, procPtr :
SEQ
-- Reset channel -- NB ok to do this here
WIndexWord(Breg, 0, NotProcess.p)
procPtr := procDesc BITAND (-2)
RIndexWord (procPtr, Pointer.s, sourcePtr)
-— Set up the block move
Ereg := procDesc
Breg := Creg
Creg := sourcePtr
StatusReg := StatusReg BITOR
(MoveBit BITOR IOBit)
BlockMoveFirstStep (Creg, Breg, Aregq)
-- When completed, BlockMove will Run (Eregq)
chanNum < LinkChans -- hard (Breg)

SEQ
HardChannelInputOutputAction (chanNum)
StatusReg := StatusReg BITOR GotoSNPBit

Microcomputer Division Confidential 38 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC Output () I ST

-- Areg is count, Breg is channel, Creg is pointer.
INT chanNum :
SEQ
ChanOffset (Breg, chanNum)
IF
chanNum >= LinkChans -= Internal channel
INT procDesc :
SEQ
RIndexWord (Breg, 0, procDesc)
IF
procDesc = NotProcess.p -—- Not ready; wait
SEQ
SaveRegsPendingScoftIO()
StatusReg := StatusReg BITOR GotoSNPBit
procDesc <> NotProcess.p -- Ready
INT destPtr, procPtr :
SEQ
procPtr := procDesc BITAND (-2)
RIndexWord (procPtr, Pointer.s, destPtr)
IF -=- scheduler interlock for ALT
destPtr = Enabling.p
SEQ
WIndexWord (procPtr, Pointer.s, Ready.p)
SaveRegsPendingSo£ftIO ()
StatusReg := StatusReg BITOR GotoSNPBit
destPtr = Waiting.p
SEQ
WIndexWord (procPtr, Pointer.s, Ready.p)
- SaveRegsPendingSoftIO()
{ StatusReg := StatusReg BITOR GotoSNPBit
| Run (procDesc)
destPtr = Ready.p
SEQ
SaveRegsPendingSoftIO()
StatusReg := StatusReg BITOR GotoSNPBit
TRUE -- valid pointer
SEQ
-- Reset channel
WIndexWord(Breg, 0, NotProcess.p)
-- Set up registers for the block move
Ereg := procDesc
Breg := destPtr
StatusReg := StatusReg BITOR
(MoveBit BITOR IOBit)
BlockMoveFirstStep (Creg, Breg, Areg)
-- When completed, BlockMove will Run (Ereg)
chanNum < LinkChans -- link-channel
SEQ
HardChannelInputOutputAction (chanNum)
StatusReg := StatusReg BITOR GotoSNPBit

Microcomputer Division Confidential 39 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Other procedures used in the instruction descriptions

PROC ArithmeticRightShift (VAL INT Operand, Shift, INT result)
IF

Operand >= 0
result := Operand >> Shift
Operand < 0

SEQ
result := BITNOT Operand
result := result >> Shift
result := BITNOT result

Microcomputer Division Confidential 40 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.1 Function Set

The instructions executed by the procesor include direct functions, the prefixing functions pfix and nfix, and
an indirect function opr which uses the operand register Oreg to select one of a set of operations.

The set of direct functions and operations is as follows:

Direct, Prefixing and Indirect Functions
Code Abbreviation Name

#07 dl load local

#0D st store local

#01 Idp load local pointer
#03 Idnl load non-local
#0E stnl store non-local
#05 Idnip load non-local pointer
#0C eqc equals constant
#04 Idc load constant
#08 adc add constant
#00 | jump

#0A ¢ conditional jump
#09 call call

#0B ajw adjust workspace
#02 pfix prefix

#06 nfix negative prefix
#O0F opr operate

Microcomputer Division Confidential 41 Restricted Document September 27, 1988

Microcomputer Division Confidential

Operations

Code Size Abbreviation Name

#00 short rev reverse

#20 long ret return

#1B long Idpi load pointer to instruction

#3C long gajw general adjust workspace

#06 short gcall general call

#42 long mint mimimum integer

#21 long lend loop end

#13 long csub0 check subscript from 0

#4D long centd check count from 1

#29 long testerr test error false and clear

#10 long seterr set error

#55 long stoperr stop on error

#57 long clrhalterr clear halt-on-error

#58 long sethalterr set halt-on-error

#59 long testhalterr test halt-on-error

#02 short bsub byte subscript

#0A short wsub word subscript

#34 long bent byte count

#3F long went word count

#01 short Ib load byte

#3B long sb store byte

#4A long move move message

#46 long and and

#4B long or or

#33 long xor exclusive or

#32 long not bitwise not

#41 long shi shift left

#40 long shr shift right

#05 short add add

#0C short sub subtract

#53 long mul multiply

#2C long div divide

#1F long rem remainder

#09 short gt greater than

#04 short diff difference

#52 long sum sum

#08 short prod product

#0D short startp start process

#03 short endp end process

#39 long runp run process

#15 long stopp stop process

#1E long Idpri load current priority
Microcomputer Division Confidential 42

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential

Code

#07
#0B
#OF
#0E
#12

#43
#44
#45

#49
#30

#48
#2rFr

#22
#2B

#4E
#51
#47
#2E

#3A
#56
#1D
#4c

#16
#38
#37
#4F
#31
#1A
#36
#35
#19

#2A

Size

short
short
short
short
long

long
long
long

long
long

long
long

long
long

long
long
long
long

long
long
long
long

long
long
long
long
long
long
long
long
long

long

Abbreviation

in

out
outword
outbyte
resetch

alt
altwt
altend

enbs
diss

enbc
disc

Idtimer
tin

talt
taltwt
enbt
dist

xword
cword
xdble
csngl

ladd
Isub
Isum
ldiff
Imul
Idiv
Ishi
Ishr
norm

testpranal

Name

input message
output message
output word
output byte
reset channel

alt start
alt wait
alt end

enable skip
disable skip

enable channel
disable channel

load timer
timer input

timer alt start
timer alt wait
enable timer
disable timer

extend to word
check word
extend to double
check single

long add

long subtract
long sum

long diff

long multiply
long divide
long shift left
long shift right
normalise

test processor analysing

Microcomputer Division Confidential

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential

Code

#3E
#3D

#18
#50
#1c
#17
#54

#63
#6D
#6cC
#71
#73
y or NaN #72

#28
$#27
#26
#25
#24
#23
#198
#2D

Size

long
long

long
long
long
long
long

long
long
long
long
long
long

long
long
long
long
long
long
long
long

Abbreviation

saveh
savel

sthf
sthb
stif
stib
sttimer

unpacksn
roundsn
postnormsn
Idinf

cflerr

fmul

teststd
testste
teststs
testldd
testide
testlds

testhardchan

Microcomputer Division Confidential

Author: Roger Shepherd

Name

save high priority queue registers
save low priority queue registers

store high priority front pointer
store high priority back pointer
store low priority front pointer
store low priority back pointer
store timer

unpack single length fp number

round single length fp number

post-normalise correction of single length fp number
load single length infinity

check single length fp infinit

fractional multiply

store to Dreg for testing

store to Ereg for testing

store to StatusReg for testing
load to Dreg for testing

load to Ereg for testing

load to StatusReg for testing
single step TimeOut for testing
test hard chanel stack

44 Restricted Document September 27, 1988

Microcomputer Division Confidential

Direct Functions
load local

SEQ
Creg := Breg
Breg := Areg
RIndexWord (Wptr, Oreg, Areq)

store local

SEQ
WIndexWord (Wptr, Oreg, Areq)
Areg := Breg
Breg := Creg

load local pointer
SEQ
Creg := Breg
Breg := Areg
AtWord (Wptr, Oreg, Areq)
load non-local
RIndexWord (Areg, Oreg, Areq)
store non-local
SEQ
WIndexWord (Areg, Oreg, Breq)
Areg := Creg
load non-local pointer
AtWozrd (Areg, Oreg, Aregq)
equals constant
IF
Areg = Oreg
Areg := MachineTRUE
Areg <> Oreg
Areg := MachineFALSE

load constant

SEQ
Creg := Breg
Breg := Areg
Areg := Oreg

add constant

SEQ
Areqg := Areg + Oreg
OverflowCheck (Areg)

Microcomputer Division Confidential

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential

jump

SEQ
AtByte (IptrReg, Oreg, IptrReg)
TimeSlice()

conditional jump

IF
Areg = 0
AtByte (IptrReg, Oreg, IptrReg)
Areg <> 0
SEQ
Areg := Breg
Breg := Creg
call
SEQ

WIndexWord (Wptr, -1, Creg)
WIndexWord (Wptx, -2, Breg)
WIndexWord (Wptxr, -3, Aregqg)
WIndexWord (Wptxr, -4, IptrReq)
Areg := IptrReg
INT temp :
SEQ
AtWord (Wptx, -4, temp)
UpDateWdescReg (temp BITOR Priority)
AtByte (IptrReg, Oreg, IptrReq)

adjust workspace
INT temp :
SEQ

AtWoxrd (Wptr, Oreg, temp)
UpDateWdescReg (temp BITOR Priority)

Microcomputer Division Confidential 46

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential

Register Manipulation Etc
reverse

SEQ
Oreg
Areg
Breg

Areg
Breg
Oreg

" 8w s
nou

return

SEQ
RIndexWord (Wptr, 0, IptrRegq)
INT temp :
SEQ
AtWord (Wptr, 4, temp)
UpDateWdescReg (temp BITOR Priority)

load pointer to instruction
AtByte (IptrReg, Areg, Areq)
general adjust workspace

INT temp:

SEQ
temp := Wptr
UpDateWdescReg (Areg BITOR Priority)
Areg := temp

INT temp:

SEQ
temp := IptrReg
IptrReg := Areg
Areg := temp

minimum integer

SEQ
Creg := Breg
Breg := Areg
Areg := MinInt

loop end

SEQ

RIndexWord (Breg, 1, Cregq)
Creg := Creg - 1
WIndexWord (Breg, 1, Creg)

IF
Creg > 0
SEQ
RIndexWord (Breg, 0, Cregq)
Creg := Creg + 1
WIndexWord (Breg, 0, Cregqg)
AtByte (IptrReg, -Areg, IptrReq)
Creg <= 0
SKIP
Microcomputer Division Confidential 47

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

TimeSlice ()

Microcomputer Division Confidential 48 Restricted Document September 27, 1988

Microcomputer Division Confidential

Checking
check subscript from 0

SEQ
UnSign (Areq)
UnSign (Breg)
IF

Breg >= Areg —- unsigned compare
SetErrorFlag()
TRUE
SKIP
Sign (Breg)
Areg := Breg
Breg := Creg

check count from 1

SEQ
UnSign (Areq)
UnSign (Breg)
IF

Author: Roger Shepherd

(Breg = 0) OR (Breg > Areg) -- unsigned comparison

SetErrorFlag()
TRUE
SKIP
Sign (Breq)
Areg := Breg
Breg := Creg

test error false and clear

BOOL errorSet :
SEQ
Creg := Breg
Breg := Areg
ReadErrorxFlag (errorSet)
IF
errorSet
Areg := MachineFALSE
NOT errorSet
Areg := MachineTRUE
ClearErroxFlag()

set error

SetErroxFlag ()

Microcomputer Division Confidential 49

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

stop on error

BOOL errorSet :
SEQ
ReadErrorFlag (errorSet)
IF
errorSet
SEQ
WIndexWord (Wptr, Iptr.s, IptrReg))
StatusReg := StatusReg BITOR GotoSNPBit
NOT errorSet
SKIP

clear halt-on-error
ClearHaltOnErrorFlag ()
set halt-on-error
SetHaltOnErroxFlag ()
test halt-on-error

BOOL flagSet :
SEQ
Creg := Breg
Breg := Areg
ReadHaltOnErroxFlag (flagSet)
IF
flagSet
Areg := MachineTRUE
NOT flagSet
Areg := MachineFALSE

Microcomputer Division Confidential 50 Restricted Document September 27, 1988

Microcomputer Division Confidential

Addressing

byte subscript

SEQ
AtByte (Areg, Breg, Areq)
Breg := Creg

word subscript

SEQ
AtWord (Areg, Breg, Areg)
Breg := Creg

byte count

Areg := Areg * (BitsInWord/8)

word count

SEQ
Creg := Breg

Breg := Areg BITAND BselMask

Author: Roger Shepherd

ArithmeticRightShift (Areg, BselLength, Areg)

Data Access and Move
load byte
RIndexByte (Areg, 0, Areq)
store byte
SEQ
WIndexByte (Areg, 0, Breq)
Areg := Creg

move message

BlockMoveFirstStep (Creg, Breg, Areg)

Microcomputer Division Confidential

51

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Logic and Bits

and

SEQ
Areg := Areg BITAND Breg
Breg := Creg

or

SEQ
Areg := Breg BITCOR Areg
Breg := Creg

xor

SEQ
Areg := Breg >< Areg
Breg := Creg

not

Areg := Axreg >< (-1)

shift left
SEQ
Unsign (Areg)
IF
Areg <= BitsInWoxd
SEQ
Unsign (Breg)
Areg := (Breg << Areg) REM Range
Sign (Areg)
Breg := Creg
shift right
SEQ
UnSign (Breg)
IF

Areg <= BitsInWord
Areg := Breg >> Areg
Sign (Areg)
Breg := Creg

Microcomputer Division Confidential 52 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Basic Arithmetic

add

SEQ
Areg := (Breg + Areq)
OverflowCheck (Areg)
Breg := Creg

subtract

SEQ
Areg := (Breg - Aregq)
OverflowCheck (Areq)

Breg := Creg
multiply

-- Signed multiply, Areg := Areg * Breg MOD Range.
-- OverflowCheck now handles ANY signed integer !
SEQ

Areg := Breg * Aregqg

OverflowCheck (Areg)

Breg := Creg

divide

SEQ
IF
((Breg = MinInt) AND (Areg
SetErrorFlag()
TRUE
Areg := Breg / Areg
Breg := Creg

(-1))) OR (Areg

0)

remainder
SEQ
IF
((Breg = MinInt) AND (Areg = (-1))) OR (Areg = 0)
SetErrorFlag()
TRUE

Areqg := Breg REM Areg
Breg := Creg

Microcomputer Division Confidential 53 Restricted Document September 27, 1988

Microcomputer Division Confidential

Comparison and modulo arithmetic

greater than

SEQ
IF
Breg > Areg
Areg := MachineTRUE
Breg <= Areg

Areg := MachineFALSE

Breg := Creg
difference
SEQ
Areg := (Breg - Aregq)
RestoreToRange (Areq)
Breg := Creg
sum
SEQ
Areg := Breg + Areg
RestoreToRange (Areg)
Breg := Creg
product
SEQ
UnSign (Aregq)
UnSign (Breg)

Areg := Breg * Areg
Areg := Areg REM Range
Sign (Areg)

Breg := Creg

Microcomputer Division Confidential

-- quick unchecked multiply

-- short operand in Areg

Author: Roger Shepherd

54 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Scheduling
start process

INT temp :

SEQ
AtByte (IptrReg, Breg, temp)
WIndexWord (Areg, Iptr.s, temp)
Run (Areg BITOR Priority)

end process

INT temp :
SEQ
RIndexWord (Areg, 1, temp)
IF
temp = 1
SEQ
RIndexWord (Areg, 0, IptrReg)
UpDateWdescReg (Areg BITOR Priority)
temp <> 1
SEQ
WIndexWord (Areg, 1, temp-1)
StatusReg := StatusReg BITOR GotoSNPBit

run process

Run (Aregq)

stop process

SEQ
WIndexWoxd (Wptr, Iptr.s, IptrReg)
StatusReg := StatusReg BITOR GotoSNPBit

load current priority

SEQ
Creg := Breg
Breg := Areg
Areg := Priorxity

Microcomputer Division Confidential 55 Restricted Document September 27, 1988

Microcomputer Division Confidential

Communication
input message
Input ()
output message
Qutput ()
output word

SEQ
WIndexWord (Wptzr,

0, Areq)

Areg := BytesPerWord

Creg := Wptr
Output ()

output byte

SEQ
WIndexWord (Wptr,
Areg := 1l
Creg := Wptr
Output ()

reset channel

INT temp :

INT chanNum :

SEQ
RIndexWord (Aregqg,
WIndexWord (Aregq,
ChanOffset (Aregqg,
IF

chanNum < LinkChans

INT token :
PAR

ToChan [chanNum]

0, Areq)

~- Channel ID in Areg

0, temp)
0, NotProcess.p)
chanNum)

HandShake (chanNum, token)

Microcomputer Division Confidential

-=- Hard Channel

! ResetRequest; Priority

56

Author: Roger Shepherd

-- no other action needed for soft channel
-- old process pointer

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Timer Input
load timer

SEQ
Creg
Breg
Areg

Breg
Areg
ClockReg[Priority]

. e e
nonn

timer input

BOOL laterFlag :
SEQ
Later (ClockReg[Priority], Areg, laterFlagq)
IF
laterFlag
SKIP
TRUE
SEQ
Areg := Areg + 1
RestoreToRange (Areq)
InsertFirstStep (Areg, Breg, Creg)

Microcomputer Division Confidential 57 Restricted Document September 27, 1988

Microcomputer Division Confidential

Alternative Input

alt start

WIndexWord (Wptxr, State.s, Enabling.p)
alt wait

SEQ

Author: Roger Shepherd

-- set up "NoneSelected.o" in local 0 to signify
-- that the no ready process has been selected

WIndexWord (Wptr, 0, NoneSelected.o)

-- Is any channel or skip guard ready?

RIndexWord (Wptr, State.s, Areq)
IF
Areg = Ready.p
SKIP
TRUE
Wait ()

alt end

INT temp :

SEQ
RIndexWord (Wptxr, 0, temp)
AtByte (IptrReg, temp, IptrReg)

Skip Guards
enable skip

IF
Areg <> MachineFALSE
WIndexWord (Wptr, State.s, Ready.p)
TRUE
SKIP

disable skip

SEQ
IF
Breg <> MachineFALSE
IsThisSelectedProcess ()
TRUE
Areg := MachineFALSE
Breg := Creg

Microcomputer Division Confidential 58

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Channel Guards
enable channel

SEQ
IF
Areg <> MachineFALSE
INT chanNum :
SEQ
ChanOffset (Breg, chanNum)
IF

chanNum >= LinkChans -- internal channel
INT temp :
SEQ
RIndexWord(Breg, 0, temp)
IF
temp = NotProcess.p
WIndexWord(Breg, 0, WdescReg)
temp = WdescReg

SKIP
TRUE
WIndexWord (Wptr, State.s, Ready.p)
chanNum < LinkChans -- link-channel
INT token :
SEQ -- is channel ready ?
PAR

ToChan[chanNum] ! StatusEnquiry; Priority
FromChan[chanNum] [Priority] ? token
IF
token = ReadyRequest
WIndexWord (Wptxr, State.s, Ready.p)
token = ReadyFALSE
SEQ
ToChan[chanNum] ! Enable; Priority
WIndexWord (Breg, 0, WdescRegq)
TRUE
SKIP
Breg := Creg

Microcomputer Division Confidential 59 Restricted Document September 27, 1988

Microcomputer Division Confidential

disable channel

IF
Breg <> MachineFALSE
INT chanNum :
SEQ
ChanOffset (Creg, chanNum)
IF
chanNum >= LinkChans -- Internal channel
SEQ
RIndexWord (Creqg, 0, Breq)
IF
Breg = NotProcess.p
Areg := MachineFALSE
Breg = WdescReg
SEQ
WIndexWord(Creg, 0, NotProcess.p)
Areg := MachineFALSE
TRUE
IsThisSelectedProcess ()
chanNum < LinkChans -- Hard Channel
INT token :
SEQ
WIndexWoxrd(Creg, 0, NotProcess.p)

Author: Roger Shepherd

-- Ask if channel is ready and hence switch off channel

PAR
ToChan [chanNum] ! StatusEnquiry; Priority
FromChan[chanNum] [Priority] ? token
IF
token = ReadyRequest
IsThisSelectedProcess ()
token = ReadyFALSE
Areg := MachineFALSE
TRUE
Areqg := MachineFALSE

Microcomputer Division Confidential 60 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Alternative Timer Input
timer alt start

SEQ
WIndexWord (Wptr, TLink.s, TimeNotSet.p)

WIndexWord (Wptr, State.s, Enabling.p)
timer alt wait

SEQ
-- NoneSelected.o in local 0 signifies that
-- no process has yet been selected
WIndexWord (Wptr, 0, NoneSelected.o)
RIndexWord (Wptr, State.s, Creqg)

IF
Creg = Ready.p -- a channel is ready
WIndexWord(Wptr, Time.s, ClockReg[Priority])
TRUE
SEQ

RIndexWord (Wptr, TLink.s, Breg)
IF

Breg = TimeNotSet.p
Wait () -- all timer guards FALSE
Breg = TimeSet.p
-- Either a timer guard is ready, or wait
BOOL laterxFlag : ’
SEQ
RIndexWord(Wptr, Time.s, Areq)
Later (ClockReg[Priority], Areg, laterFlag)
IF
laterxFlag
-- clock makes process ready
SEQ
WIndexWord (Wptr, State.s, Ready.p)
WIndexWord (Wptr, Time.s, ClockReg[Priorityl])

TRUE
-- clock does not make process ready

SEQ
-- set Areg to time AT which process is ready
Areg := Areg + 1

RestoreToRange (Areg)

InsertFirstStep (Areg, Breg, Cregq)

Microcomputer Division Confidential 61 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Timer Guards
enable timer

SEQ
IF
Areg <> MachineFALSE
INT temp :
SEQ
RIndexWord (Wptr, TLink.s, temp)
IF

temp = TimeNotSet.p
-= This is first timer guard encountered
SEQ
WIndexWord(Wptr, TLink.s, TimeSet.p)
WIndexWord (Wptr, Time.s, Breg)

temp = TimeSet.p
~-- Update earliest time if this guard is earlier

BOOL laterxFlag :

SEQ
RIndexWord(Wptr, Time.s, temp)
Later (temp, Breg, laterFlag)
IF

laterFlag
WIndexWord (Wptr, Time.s, Bregq)
TRUE
SKIP

Areg = MachineFALSE

SKIP
Breg := Creg

Microcomputer Division Confidential 62 Restricted Document September 27, 1988

Microcomputer Division Confidential

disable timer

IF
Breg <> MachineFALSE
SEQ
RIndexWord (Wptxr, TLink.s, Oreg)
IF
Oreg = TimeNotSet.p
Areg := MachineFALSE
Oreg = TimeSet.p
—- See if this timer guard is ready
BOOL laterFlag :
SEQ
RIndexWord (Wptr, Time.s, Oregq)
Later (Oreg, Creg, laterFlag)
IF
laterFlag
IsThisSelectedProcess ()
TRUE
Areg := MachineFALSE

TRUE
SEQ
-- process must be removed from timer queue
DeleteFirstStep (Breg, Creg)
Areg := MachineFALSE

Breg = MachineFALSE
Areg := MachineFALSE

* Author: Roger Shepherd

Microcomputer Division Confidential 63 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Partword arithmetic
extend to word

SEQ
Unsign (Areq)
IF

(Breg < Aregq)
Areg := Breg
TRUE
Areg := Breg - (2*Areq)
Breg := Creg

check word

SEQ
Unsign (Aregq)
IF

(Breg >= Areg) OR (Breg < -Areq)
SetErrorFlag()
TRUE
SKIP
Areg :
Breg :

= Breg
= Creg

Microcomputer Division Confidential 64 Restricted Document September 27, 1988

Microcomputer Division Confidential

Long arithmetic
extend to double

SEQ
Creg := Breg

check single

SEQ
IF
((Areg < 0) AND (Breg <> (-1))) OR
((Areg >= 0) AND (Breg <> 0))
SetErrorFlag()
TRUE
SKIP
Breg := Creg

long add

SEQ
Areg := (Breg + Areg) + (Creg BITAND 1)
OverflowCheck (Areqg)

long subtract

SEQ
Areg := (Breg - Areg) - (Creg BITAND 1)
OverflowCheck (Areq)

long sum
SEQ
UnSign (Areq)
UnSign (Bregqg)
Areg := (Breg + Areg) + (Creg BITAND 1)
IF

(Areg > Range)

SEQ
Breg =1
Areg := Areg - Range
TRUE
Breg := 0
Sign (Areg)

Microcomputer Division Confidential 65

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

long diff

SEQ
UnSign (Areqg)
UnSign (Breg)
Areg := (Breg - Areg) - (Creg BITAND 1)
IF

Areg >= 0
Breg := 0
Areg < 0
SEQ
Areg := Areg + Range
Breg :=1
Sign (Areg)

long multiply

SEQ
UnSign (Areq)
UnSign (Breg)
UnSign (Creg)
Areg := (Breg * Areg) + Creg
Breg := Areg / Range
Areg := Areg REM Range
Sign (Areg)
Sign (Breg)

long divide

SEQ
UnSign (Areg)
UnSign (Breg)
UnSign (Cregqg)
IF
Creg >= Areg
SetErroxFlag()
Creg < Areg
INT temp :
SEQ
temp := (Creg << BitsInWord) + Breg
Breg := temp REM Areg
Areg := temp / Areg
Sign (Aregq)
Sign (Bregq)

Microcomputer Division Confidential 66 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

normalise

IF
(Breg = 0) AND (Areg = 0)
Creg := 2*BitsInWord
TRUE
VAL MsbOfDoubleWord IS 1 << ((2*BitsInWoxd)-1)
SEQ
UnSign (Areq)
UnSign (Bregq)
Areg := (Breg << BitsInWord) + Areg
Creg := 0
WHILE (Areg BITAND MsbOfDoubleWord) = 0
SEQ
Areg := Areg << 1
Creg := Creg + 1
Breg := Areg / Range
Areqg := Areg REM Range
Sign (Areg)
Sign (Breg)

long shift left

SEQ
UnSign (Areg)
IF
Areg <= (2*BitsInWoxrd)
SEQ
UnSign (Breg)
UnSign (Cregq)
Breg (Creg << BitsInWord) + Breg
Breg Breg << Areg
Areg Breg REM Range
Breg (Breg / Range) REM Range
Sign (Areg)
Sign (Breg)

long shift right

SEQ
Unsign (Areq)
IF

Areg <= (2*BitsInWord)
SEQ
UnSign (Breg)
UnSign (Creg)
Breg := (Creg << BitsInWord) + Breg
Breg := Breg >> Areg
Areg := Breg / Range
Breg := Breg REM Range
Sign (Areg)
Sign (Breg)

Microcomputer Division Confidential 67 Restricted Document September 27, 1988

Microcomputer Division Confidential

Booting and analysing

test processor analysing

SEQ
Creg := Breg
Breg := Areg
IF
ResetNotAnalysed

Author: Roger Shepherd

-- This flag indicates that the links were last reset,

-- as opposed to analysed.
Areg := FALSE

TRUE
Arxeg := TRUE

save high priority queue registers

SEQ
WindexWord (Areg, 0, FptrReg[0])
WindexWord (Areg, 1, BptrReg[0])
Areg := Breg
Breg := Creg

save low priority queue registers

SEQ
WindexWord (Areg, 0, FptrReg[l])
WindexWord (Axreg, 1, BptrReg[l])
Areg := Breg
Breg := Creg

store high priority front pointer

SEQ
FptxReg[0] := Areg
Areg := Breg
Breg := Creg

store high priority back pointer

SEQ
BptrReg[0] := Areg
Areg := Breg
Breg := Creg

store low priority front pointer
SEQ
FptrReg[l] := Areg

Areg := Breg
Breg := Creg

Microcomputer Division Confidential

68

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

store low priority back pointer

SEQ
BptrReg[l] := Areg
Areg := Breg
Breg := Creg

store timer

SEQ
ClockReg[0] := Areg
ClockReg[l] := Areg

Areg := Breg
Breg := Creg
StartTimexr ()

Microcomputer Division Confidential 69 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Floating point support

The following constants are used in the floating point support instructions:

BitsInFrac = 24 —- number of bits in fraction
PackedLSB =1

RealExp = §FF

RealInf = #7F800000 —— +Inf

RealRBit = #80

RealShift = 8

RealXcess = #7F

unpack single length floating point number

SEQ
UnSign (Areq)
Creg := Breg * 4
Areg := ((Areg BITAND (BITNOT MinInt)) << (RealShift + 1))
Breg := Areg / Range
Areg := (Areg REM Range)
Breg := Breg >> 1
IF
Breg = 0
IF
Areg =
SKIP
TRUE
SEQ
Creg := Creg + 1
Breg := 1
TRUE
IF
Breg = RealExp
IF
Areg = 0
Creg := Creg + 2
TRUE
Creg := Creg + 3
TRUE
SEQ
Creg := Creg + 1
Areg := Areg BITOR MinInt
Sign (Areg)

Microcomputer Division Confidential 70 Restricted Document September 27, 1988

Micrdoomputer Division Confidential Author: Roger Shepherd

round single length fp number

SEQ
UnSign (Aregq)
Unsign (Breg)
IF

Creg < RealExp
INT temp :
SEQ

temp
Breg
Breg
IF
(temp BITAND RealRBit) = 0
SKIP
(Areg BITOR ((temp BITAND RealXcess) BITOR
(Breg BITAND PackedLSB))) = 0
SKIP
TRUE
Breg := Breg + 1
Areg := Breg

TRUE

Areg := Reallnf
Sign (Areg)

Breg
(Creg * Range) + ((Breg << 1) BITAND (Range - 1))

Breg >> (RealShift + 1)

nnu

Microcomputer Division Confidential 71 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Post-normalise correction of single length fp number

SEQ
UnSign (Areq)
UnSign (Bregq)
Breg := (Breg * Range) + Areg
INT temp :
SEQ
RIndexWord (Wptx, 0, temp)
Creg := temp - Creg
IF
Creg < - (BitsInFrac - 1)
SEQ
Areg := 0
Breg := 0
Creg := 0
Creg < 1
SEQ
Breg := Breg >> (1 - Creg)
Creg := 0
Creg < RealExp
SEQ

TRUE
Creg := RealExp
Areg := (Breg REM Range) BITOR Areg -
Breg := Breg / Range
Sign (Areg)
Sign (Bregq)

load infinity

SEQ
Creg := Breg
Breg := Areg
Areg := Reallnf

check single length fp infinity or NaN

IF
(Areg BITAND RealInf) = RealInf
SetErroxFlag()
TRUE
SKIP

Microcomputer Division Confidential 72 Restricted Document September 27, 1988

Microcomputer Division Confidential

fractional multiply

VAL TwoToThe3l IS 1 << (31-1)
VAL TwoToThe30 IS 1 << (30-1)
INT P, L :
SEQ
P := (Areg * Breg) / TwoToThe3l
UnSign (Areg)
UnSign (Breg)
L := (Areg * Breg) \ TwoToThe3l
IF
L < TwoToThe30
SKIP
L = TwoToThe30
IF
(P BITAND 1)
SKIP

AT

nmon
» O

(P BITAND 1)
P:=P+1
L > TwoToThe30
P:=P +1
OverflowCheck (P)
Areg := P
Breg := Creg

Microcomputer Division Confidential

73

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential

Testing

Author: Roger Shepherd

The instructions in this section exist for testing the implementation of the transputer. They mainly make
available some of the hidden, internal registers of the transputer. In the following descriptions these registers

are as follows:
Dreg an extra processor register
DataReg[linkChans] the data registers of the link-channels

PointerReg[linkChans] the pointer registers of the link-channels
CountReg[linkChans] the count registers of the link-channels

store to D register for testing

SEQ
Dreg := Areg
Areg := Breg
Breg := Creg

store to E register for testing

SEQ
Ereg := Areg
Areg := Breg
Breg := Creg

store to StatusReg for testing

SEQ
StatusReg := Areg
Areg := Breg
Breg := Creg

Load D register for testing
SEQ

Creg := Breg

Breg := Areg

Areg := Dreg

Load E register for testing

SEQ
Creg := Breg
Breg := Areg
Areg := Ereg

Load StatusReg for testing

SEQ
Creg := Breg
Breg := Areg
Areg := StatusReg

Microcomputer Division Confidential

74

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

single step TimeOut for testing

this instruction is very dependant on the actual implementation of the transputer and is not documented here.
test hard channel stack

INT chanNum :

SEQ
ChanOffset (Areg, chanNum)
Areg := DataReg[chanNum]
DataReg[chanNum] := PointerReg[chanNum]
PointerReg[chanNum] := CountReg[chanNum]
CountReg[chanNum] := Breg
Breg := Creg

Microcomputer Division Confidential 75 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

2 INITIALISATION, BOOTING, ANALYSING AND CHECKING
2.1 Introduction

This section is concerned how a transputer system is initialised and debugged. The details of the initialisation
of the external memory interface are described in a separate section.

2.2 Resetting and Analysing

A transputer is reset in order to initialise its internal state, external memory interface and then to boot. If a
transputer is active when it is reset it stops operation immediately. A transputer is reset by pulsing the Reset
pin whilst holding the Analyse pin low.

A transputer is analysed in order to investigate its internal state. It stops operation in a way that preserves
much of its state and then starts to boot; it does not initialise its external memory interface. A transputer is
analysed by taking and holding the Analyse pin high, then pulsing the Reset pin and then taking the Analyse
pin low.

After a transputer has booted it is possible to tell whether the transputer was reset or analysed by executing the
‘Test Processor Analysing’ instruction. This will load the Areg register with MachineTRUE if the processor
was analysed or with MachineFALSE if the processor was reset.

Analyse

The Analyse pin exists in order that the state of a transputer system can be investigated. This is achieved
by bringing the system to a halt in such a way that the state of the individual transputers in that system can
be examined.

A system is analysed by analysing all the transputers in the system in the following manner.

The Analyse pin is asserted which causes the system to come to a halt after a specifiable time. The Reset
pin is then asserted, while continuing to assert the Analyse pin, for at least the specified Reset hold time and
is then taken low, while still asserting the Analyse pin. The Analyse pin is then de-asserted and the transputer
will boot. Note that the earliest time at which the transputer is guarenteed to be able to receive a message
remains specified relative to the fall of Reset rather than the fall of Analyse.

Analysing a system brings it to a halt as a result of each transputer in the system coming to a halt. The
components of transputer respond to the assertion of Analyse in the following manners:

Processor

The processor only responds to Analyse at certain points during its operation. When one of
these point is reached the processor halts any process which is executing and then ignores
any scheduling requests made by the links or the timer.

If the processor is not executing a process when analyse is asserted the processor responds
at once and halts immediately.

If the processor is executing a process when analyse is asserted the processor responds
by halting at either the next descheduling point (ie ‘StartNextProcess’) or the next point
at which a low priority process would be timesliced (this will be an unconditional ‘jump’ or
a ‘loop end’ instruction). Note that it is possible for a high priority process to pre-empt
a low priority process after analyse has been asserted, in which case the processor will
halt during the execution of the high priority process. The Iptr of a processor which has
been halted in this manner will point to the byte of memory following the final byte of the
instruction which caused the process to be halted. A list of instructions on which a process
can halt is included at the end of this section.

Timer

The clock stops when analyse is asserted. Any processes waiting for the timer will either

Microcomputer Division Confidential 76 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

be scheduled or will remain on the queue.
Links

The assertion of Analyse has no effect on input links; they continue to operate normally,
sending acknowledges and making scheduling requests as appropriate. (Any scheduling
requests made after the processor has halted will not succeed).

The assertion of Analyse causes output links to output at most a few more data packets.
They respond correctly to acknowledge packets and will make scheduling requests as ap-
propriate. (Any scheduling requests made after the processor has halted will not succeed).
The number of data packets which a link will output after Analyse is asserted is bounded
by the number of bytes in a processor word.

Information available after booting an analysed transputer

The value that the processor's Wdesc had when the processor halted is available in the Breg register. This
will be (NotProcess.p \ / 1) if the processor were not active.

The value that was in the processor's Iptx when the processor halted is available in the processor's Areg
register.

The ExrorFlag and HaltOnErroxFlag are in the same state as when the processor halted.

For some of the other information available after analysis to be meaningful it is necessary to initialise state
after booting a transputer. (This is initialisation of state in addition to that needed to ensure correct operation
of the transputer).

Provided that the process word associated with a link channel was initialised to NotProcess .p then if that
process word contains a process descriptor then the channel was being used for output, (unconditional) input
or alternative input when the processor halted.

Provided that the count register of an input link channel was initialised to 0 the value in that register will
indicate whether the link was ready when Reset was asserted. If the count register contains 1 then the
channel was ready. Otherwise (and less usefully) the state of the count register of a link channel will be as
described below.

The value in a link channel’s count register will be valid provided that the channel has not
been used during booting other than for loading the boot program or writing to memory.

If the link channel was being used for output then the value in the count register indicates
whether the message transfer had completed. If the count is 0 then the message transfer
had completed and the process would have been scheduled if the processor had not halted.

If the link channel was being used for (unconditional) input then the value in the channel’s
count register indicates whether the message had completed; if the count is 0 or 1 then
the message transfer had completed and the process would have been scheduled if the
processor has not halted. If the count is 1 then the first byte of a following message had
arrived.

NB In general it is NOT possible to perform this examination of a link’s count registers!
If two processes are communicating and waiting on either end of a link then the message being transferred
is held in the outputing transputer. If a process has input a message but has not yet resumed execution then
the message is held correctly in the inputting transputer.
The timer list pointer words may be read and thus the contents of the timer queues may be determined.

The front and back pointers of the process queues may be read and thus the contents of the process queues
may be determined.

Microcomputer Division Confidential 77 Restricted Document September 27, 1988

Microcomputer Division Confidential

23

Instructions where processor may hait

Author: Roger Shepherd

Instructions which may cause the processor to halt and the consequence of the processor halting on that
instruction.

1
2

[R4 B

10

Jump
Loop end

End Process

Stop Process
Stop On Error
Input Message

Output Message
Output Byte

Timer Input

Alt Wait

Timer Alt Wait

the jump would have been taken.
the instruction has updated the count

locations and the consequential jump would

have occured.
the process count will have been

updated and the process would have been

descheduled

the process would have been descheduled
the process would have been descheduled

the process descriptor will have been
left in the channel and the process
would have been descheduled.

the process descriptor will have been
has output to a channel from which
another process was performing
alternative input that other process
will have been scheduled. The process
would have been.descheduled.

the process will have been inserted
into the timer queue and would have
been descheduled.

the value Waiting.p will have been
written into the State location

and the process would have

been descheduled.

the value Waiting.p will have been
written into the State location, the
process will have been inserted into
the timer queue if appropriate and the

process would have been descheduled.

Microcomputer Division Confidential 78

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

24 Booting

The transputer will boot either as a result of being Analysed or of being Reset. A program can test whether
the proioessor booted as a result of being Reset or Analysed by executing the ‘Test Processor Analysing’
instruction.

The way in which a transputer boots is controlled by the BootFromRomNotLinks pin; if this pin is held high
then the transputer will boot from ROM, if it is held low the transputer will boot from a link.

Booting from ROM
The transputer starts executing in the following state

Iptr = ResetCode -- two bytes below the top of memory}
Wdesc = MemStart \/ 1 -- low priority, first free word of memory}

Areg = previous value of Iptr

Breg = previous value of Wdesc

Creg is undefined

The ExrorFlag and BaltOnErrorFlag are preserved.
The clocks are stopped.

Thle process queue pointer registers, timer queue locations and link count registers all contain their previous
values.

The pointer, count and data registers of the link channels contain their previous values.

Microcomputer Division Confidential 79 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Booting from a link
The first link channel to become active determines the transputer’s action.

If the value of the first byte received is 0 then a word of address is input, followed by a word of data which is
written to that address. The transputer then determines its further action by the next byte recieved.

If the value of the first byte received is 1 then a word of address is input, a word of data is read from that
address and output down the corresponding output link. This will destroy the content of the count register of
the outputting link channel. The transputer then determines its further action by the next byte recieved.

If the value of the first byte received is 2 or greater then the transputer inputs that number of bytes into its
memory, starting at MemStart and then starts executing in the following state

Iptr = MemStart}
Wdesc = MemStart + (((CodelLength+3) / 4) * 4) \/ 1}
-- low priority, first free word of memory}
Areg = previous value of Iptr
Breg = previous value of Wdesc
Cxreg = pointer to the link from which transputer booted
The ExrrorFlag and BaltOnErxoxFlag are preserved.
The clocks are stopped.
The values in the process queue pointer registers and timer queue locations are preserved.

The pointer, count and data registers of the link channels, other than the booting channel, contain their
previous values.

The count register of the booting channel is preserved.
Actions to be performed by the booting program

The high and low priority front of queue registers must be initialised to NotProcess.p. This must occur
before the booting program attempts to pass any messages or run any program.

The timer queue words must be initialised to NotProcess . p and the clock must be started by executing a
‘Store Timer' instruction. This must be done before any attempt is made to wait on the timer.

The ExrrorFlag and HaltOnErroxrFlag must be initialised.

In order that the analysis system works properly the link channel process words should be initialised to
NotProcess.p, the count registers of the link channels should be initialised to zero.

Microcomputer Division Confidential 80 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

25 Error detection by hardware

Certain run time errors such as arithmetic overflow and subscript errors are checked by transputer instructions.
These all signal the presence of an error by setting the sticky ExzorFlag. This may be explicitly set, cleared
and tested by instructions.

The ExrzoxFlag is sticky only within a priority level.
The state of the ExrorFlag is brought out of the transputer via the Error pin.

There is mode of operation where whenever the ExrorFlag changes from a 0 (unset) to a 1 (set) the
processor is brought to an immediate halt. This mode is selected via the HaltOnErrorFlag which may
be explicitly set, cleared and tested by instructions.

The definition that the processor will halt on a 0 to 1 transition of the ExroxrFlag ensures that a transputer
which has been halted as the resuit of the ExrroxrFlag being set can be booted and analysed whilst
preserving both the ExzrorFlag and HaltOnErroxFlag. The act of clearing the Error bit re-enables the
check.

When the processor halts as a result of the Error bit becoming set (ie after the HaltOnErrorFlag is
set), the Iptzx will point to the byte of memory which is two bytes beyond the last byte of the instruction
which generated the error. (Note that this is not the same state as the Iptx of a processor which has been
analysed). The processor does not execute any further instructions, does not respond to any Run or Ready
requests from the links nor respond to any Timer requests. The timer continues to tick and the links continue
to transfer data.

2.6 Instructions which may cause the Error flag to be set

Add Constant

Check subscript from 0
Check count from 1
Set Error

Add

Subtract

Multiply

Divide

Remainder

10 Check word

11 Check single

12 Long Add

13 Long Subtract

14 Long Divide

15 Fractional Multiply

16 Check Floating Point Error

oo~ WON—

Microcomputer Division Confidential 81 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

2.7 Differences between halt-on-error and analyse

The state of the IPtx of a process which has ‘halted on error’ or has been analysed can be determined by
examining the Areg of the processor when it is booted. However, the relationship between the value of the
Iptr and the instruction which was being exeuted when the processor halted is different in these two cases.

Where a processor has been analysed the Iptx will point to the byte of memory following the final byte of
the instruction which caused the process to be halted.

Where a processor has halted as a result of the Error bit becoming set (ie after the HaltOnErrorFlag

is set), the Iptx will point to the byte of memory which is two bytes beyond the last byte of the instruction
which generated the error.

Microcomputer Division Confidential 82 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

3 MEMORY CONFIGURATION

3.1 Order of reading configuration information

The configuration register is loaded starting at bit 0 and finishing at bit 35.
3.2 Memory interface configuration address

The configuration addresses are word addresses. The values put out on the memory interface will have bits
AD2 to AD31 corresponding to the word address. Bits AD1 and ADO are 1.

Configuration information is held as close to the top of memory as possible. The two highest byte location of
the address space are occupied by the ROM boot instructions so the first available full word is #7FFFFFF8.
Therefore addresses #7FFFFF6C through #7FFFFFF8 are used to contain the memory interface configuration
information. _

In keeping with the standard 'little endian’ convention used elsewhere in the transputer architecture the least

significant bit corresponds with the least significant address. This means that #7FFFFF6C contains bit 0 and
#7FFFFFF8 contains bit 35.

Microcomputer Division Confidential 83 Restricted Document September 27, 1988

Microcomputer Division Confidential

Author: Roger Shepherd

This gives the following association of addresses with bits in the configuration register.

Word address

register
#7FFFFFFeC
#7FFFFFF70
#7FFFFFF74
#7FFFFFF78
#7FFFFFF7C
#7FFFFFF80
#7FFFFFF84
#7FFFFFF88
#7FFFFFF8C
#7FFFFFF90
#7FFFFFF94 10
#7FFFFFF98 11
#7FFFFFFOC 12
#7FFFFFFA0 13
#7FFFFFFA4 14
#7FFFFFFA8 15
#7FFFFFFAC 16
#7FFFFFFBO 17
#7FFFFFFB4 18
#7FFFFFFB8 19
#7FFFFFFBC 20
#7FFFFFFC0O 21
#7FFFFFFC4 22
#7FFFFFFC8 23
#7FFFFFFCC 24
#7FFFFFFDO 25
#7FFFFFFD4 26
#7FFFFFFD8 27
#7FFFFFFDC 28
#7FFFFFFEQO 29
#7FFFFFFE4 30
#7FFFFFFE8 31
#7FFFFFFEC 32
#7FFFFFFFO 33
#7FFFFFFF4 34
#7FFFFFFF8 35

CoOoO~NOONMpWON=2O

Microcomputer Division Confidential

Bit of configuration Function

T1 Isb

T1 msb
T2 Isb

T2 msb
T3 Isb

T3 msb

T4 Isb

T4 msb
T5 Isb

T5 msb

T6 Isb

T6 msb
notS1 Isb
notS1
notS1
notS1
notS1 msb
notS2 Isb
notS2
notS2
notS2
notS2 msb
notS3 Isb
notS3
notS3
notS3
notS3 msb
notS4 Isb
notS4
notS4
notS4
notS4 msb
Refreshinterval Isb
Refreshinterval msb
RefreshEnable
LateWrite

84 Restricted Document September 27, 1988

Microcomputer Division Confidential

3.3

Memory Map

Byte Address

#7FFFFFFE

#7FFFFFF6C

#7FFFFEFFF8

#80000048

#80000044
#80000040
#8000003C
#80000038
#80000034
#80000030
#8000002C

#80000028
#80000024

#80000020

#8000001C
#80000018
#80000014
#80000010
#8000000C
#80000008
#80000004
#80000000

(ResetCodePtr)

(MemStart)

(EregIntSave)
(STATUSIntSave)
(CregIntSave)
(BregIntSave)
(AregIntSave)
(IptrIntSave)
(WdescIntSave)

(LTimerPtr)
(HTimerPtr)

(ChanTopAddr)

(MostNeg)

Microcomputer Division Confidential

Author: Roger Shepherd

low high

e ——————— -+
| | Reset Inst |
+ - —————— ————4
I |
~ Memory configuration ~
| |
- e DT +
| |
| |
| |
| |
T +
| Ereg Save Space |
| STATUSreg Save Space I
| Creg Save Space |
| Breg Save Space |
| Areg Save Space |
| Iptr Save Space |
| Wdesc Save Space |
- -+
| Timer Low Priority Pointer |
| Timer High Priority Pointer |
o ul - - - -+
| Event Process Word |
+ - - —————————————— +
| Link 3 Input Process Word |
| Link 2 Input Process Word |
| Link 1 Input Process Word |
| Link 0 Input Process Word |
| Link 3 Output Process Word |
| Link 2 Output Process Word |
| Link 1 Output Process Word |
| Link 0 Output Process Woxd |

85 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

4 FUNCTION OF PADS AND PIN-OUTS
4.1 Function of pads
BootFromRomNotLinksPad (Input Pad)

When this input pad is high, the processor will boot itself from the external memory by executing the code at
the byte address (MaxInt~ 2). (§7FFFFFFE on the t414).

When this pad is low, the processor will boot itself from the first link to receive data. The first byte is a count
value of the number of bytes of code to be received. This count value must not be zero or one. The channel
should then receive code. This code is loaded from the first free address above the reserved words of the
links, event channel timer queue pointers, and interrupt save locations.

Chan0SpeedPad (Input pad)

This pad controls the Baud rate of Link 0. When Chan0SpeedPad is low, Link 0 runs at 10MBaud. When
ChanOSpeedPad is high, Link 0 runs at 20MBaud if ChanSpeed50MhzNot25MhzPad is high. When
ChanOSpeedPad is high, Link 0 runs at SMBaud if ChanSpeed50MhzNot25MhzPad is low.
ChanlTo3SpeedPad (Input pad)

This pad controls the Baud rate of Links 1, 2, and 3. When ChanlTo3SpeedPad is low, Links 1,
2, and 3 run at 10MBaud. When ChanlTo3SpeedPad is high, Links 1, 2, and 3 run at 20MBaud if

ChanSpeed50MhzNot25MhzPad is high. When ChanlTo3SpeedPad is high, Links 1, 2, and 3 run at
SMBaud if ChanSpeed50MhzNot25MhzPad is low.

Microcomputer Division Confidential 86 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

ChangePadsForTestPad (Input pad)

This pad is taken high only during test. When the pad is taken high, a number of other pads change their
function to enable direct reading of the uCode Rom, parametric testing of the Link Output Pads, and checking
of the internal link clocks from the link Phase lock loop. The pads change as follows:-

LinkInput [0] becomes TestShiftIn (used to shift in the uWord Address for testing the uCode Rom)
LinkInput[1] becomes EnableuRomTest (Enables the uCode Rom Test)

LinkInput [2] becomes notDoDPDriversfromROM (When high, enables the shift register for the Rom
test. When low, allows the DataPath Drivers to read a value from the Rom)

LinkInput [3] becomes TestShClk (Shift clock for the uCode test shift register)

StatusErrorOutPad becomes TestShiftOut (used to shift out the uWord Data for testing the uCode
Rom)

LinkOutput [0] is driven from the inverse of the value on LinkInput [0]

LinkOutput [1] is driven from the inverse of the value on LinkInput [1]

LinkOutput [2] Is driven from the inverse of the value on LinkInput [2]

LinkOutput [3] is driven from the inverse of the value on LinkInput [3]
HighFromPhilToPhi3Pad is driven with the output of the Links Phase Lock Loop divided by 2.
ChanSpeed50MhzNot25MhzPad (Input pad)

This pad is used in conjunction with Chan0SpeedPad and ChanlTo3SpeedPad. When this pad is high,
the links can run at either 20MBaud or 10MBaud, depending on the value of the Chan0OSpeedPad and
ChanlTo3SpeedPad. When this pad is low, the links can run at either SMBaud or 10MBaud, depending
on the value of the Chan0SpeedPad and ChanlTo3SpeedPad.

ClockInPad (Input pad)

This pad is connected to the 5Mhz crystal source, and provides the frequency reference for the processor’s
phase lock loop. This input is TTL compatible.

DisableInternalRamPad (Input pad; not Bonded)
When this input pad is connected to vdd, both the internal RAM and the Test RAM are disabled and all the

address space is given to the external memory interface. A fuse can be blown to have the same effect as
taking DisableInternalRamPad high.

Microcomputer Division Confidential 87 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

EventAckPad (Output pad)

When the event channel accepts a request the event channel asserts the EventAckPad. The EventAckPad
will be deasserted when the EventReqPad has been deasserted. When the EventAckPad is deasserted,
the Event Channel is ready to accept the next request.

EventRegPad (Input pad)

When this input pad is asserted a request is made to the event channel.

ExtMemPad ADPin[31:0] (Bi-directional Pads)

These are the AddressDataPads for the External Memory Interface.

ExtMemPad BACK (Output pad)

ExtMemPad_BACK going high Acknowledges the AddressDataPads (ExtMemPad ADPin[31:0]) being
high impedance after ExtMemPad_BREQ is taken high.

ExtMemPad_BREQ (Input pad)

When ExtMemPad_BREQ is taken high, then once the External Memory Interface has completed any out-
standing processor, or refresh requests, the AddressDataPads (ExtMemPad_ADPin[31:0]) will be taken
high impedance.

ExtMemPad_MCON (Input pad)

This pad is used to configure the external memory interface. ExtMemPad_MCON can be connected dirrectly
to one of the AddressDataPads (ExtMemPad _ADPin[31:0]) or from the output of an inverter whose
input is connected to one of the AddressDataPads. If ExtMemPad MCON is connected dirrectly to an
AddressDataPad, then the External Memory Interface will configure to the Pre-Programmed configuration
whose address is the same as the number of the AddressDataPad ExtMemPad_MCON is connected to.
If ExtMemPad MCON is connected to an AddressDataPad using an inverter, then the External Memory
Interface will configure from a configuration placed in external ROM.

ExtMemPad notASPIN (Output pad)

When this signal is taken low, the AddressDataPads (ExtMemPad ADPin[31:0]) hold the correct address
for the commencing memory cycle.

ExtMemPad notPSPIN[3:0] (Output pad)

These pads are user configurable strobes used by the external memory system.
ExtMemPad notREFRESH (Output pad)

When ExtMemPad_notREFRESH is low, a Refresh cycle is in progress.

Microcomputer Division Confidential 88 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

ExtMemPad _notREPIN (Output pad)

This signal is taken low when a read cycle is to drive the AddressDataPads (ExtMemPad ADPin[31:0])
with the Data read from memory.

ExtMemPad notWEPIN[3:0] (Output pad)

These signals are the External Memory Interface Byte Write Strobes. With one or more of these Pads taken
low, the corresponing byte of Data is written to external memory.

ExtMemPad WaitPad (Input pad)

This is the wait input for the memory interface.
Gnd

These pads supply Ov.
HighFromPhilToPhi3Pad (Output pad)

This pad is used to check that the four internal clocks (Clocks[4:1]) are functioning correctly. BEighFromPhi1lToPhi3
is also used to synchronise correctly for ExtMemPad WaitPad.

LinkInputPad[3:0] (Input pad)

These four pads are the link input pads.

LinkOutputPad[3:0] (Output pad)

These four pads are the link output pads.

PLL_Buff5MhzPad (Output pad)

This is a output buffered version of the processor’s input clock.
PLL_RefGndPad

A capacitor should be connected between this input pad and PLL_RefVddPad
PLL_RefVddPad

A capacitor should be connected between this input pad and PLL_RefGndPad

Microcomputer Division Confidential 89 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

ProcTimeslnotPLLSelPad (Input pad)

When this pad is asserted, the processor four phase clock generator takes its input from the ClockIn pad.
When low, the four phase clock generator is fed from the processor’s phase lock loop output, and it's input is
taken from either ClockInPad if TimeslnotPLLSelPad is asserted, or ClockInPad divided by five
if TimeslnotPLLSelPad is not asserted.

ResgetPad (Input pad)

When this pad is taken high the processor is reset. If SystemAnalysePad is low, then when the
ResetPad is taken high the external memory interface is also reset. If the external memory interface
is reset, then when the reset pad is taken low, the external memory interface will be configured. After the
external memory interface has configured, the processor will start to execute.

StatusExrroxOutPad (Output pad)

This output pad is asserted when the Status Error bit is set in the processor.

SystemAnalysePad (Input pad)

When this input is taken high, the transputer will come to a clean halt ready for analysis after a system wide
error.

TimeslNotPLLSelPad (Input pad)

This is a test pad that disables the link phase lock loop. When this pad is high, the input clock is used to
form the internal clocks without multiplication. The Clock register for the Timer ticks at one fifth the normal
rate, and refresh cycles occur at one fifth normal rate.

vdd

These pads supply 5v.

Microcomputer Division Confidential 90 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

4.2 84 lead J-Bend pin-out
Pad Number Pad Name

1 PLL_RefGndPad

2 vdd

3 TimeslNotPLLSelPad
4 Gnd

5 HoldToGnd

6 ChangePadsForTestPad
7 StatusErrorOutPad

8 BootFromRomNotLinksPad
9 ResetPad

10 DisableInternalRamPad
11 ProcTimeslnotPLLselPad
12 SystemAnalysePad

13 ExtMemPad ADPin[31]
14 ExtMemPad ADPin[30]
15 ExtMemPad ADPin[29]
16 Gnd

17 ExtMemPad ADPin[28]
18 ExtMemPad ADPin[27]
19 ExtMemPad ADPin[26]
20 ExtMemPad ADPin[25]
21 ExtMemPad ADPin[24]
22 ExtMemPad ADPin[23]
23 ExtMemPad ADPin[22]
24 ExtMemPad _ADPin[21]
25 ExtMemPad ADPin[20]
26 vdd

27 ExtMemPad ADPin[19]
28 ExtMemPad ADPin[18]
29 ExtMemPad ADPin[17]
30 ExtMemPad ADPin[16]
31 ExtMemPad ADPin[15]
32 ExtMemPad ADPin[14]
33 ExtMemPad ADPin[13]
34 ExtMemPad ADPin[12]
35 ExtMemPad ADPin[11]
36 ExtMemPad ADPin[10]
37 Gnd

38 ExtMemPad ADPin[9]
39 ExtMemPad ADPin[8]
40 ExtMemPad _ADPin[7]
41 ExtMemPad ADPin[6]
42 ExtMemPad _ADPin[5]
43 ExtMemPad ADPin[4]
44 ExtMemPad _ADPin[3]
45 ExtMemPad _ADPin([2]
46 ExtMemPad_ADPin[1]
47 ExtMemPad ADPin[0]

Microcomputer Division Confidential 91 Restricted Document September 27, 1988

Microcomputer Division Confidential

Pad Number Pad Name

48 Gnd

49 ExtMemPad notPSPIN[O0]
50 ExtMemPad notPSPIN[1]
51 ExtMemPad notPSPIN[2]
52 ExtMemPad notPSPIN[3]
53 vad

54 ExtMemPad notASPIN

55 ExtMemPad notREPIN

56 ExtMemPad notWEPIN[O0]
57 ExtMemPad notWEPIN[1]
58 ExtMemPad notWEPIN[2]
59 ExtMemPad notWEPIN[3]
60 ExtMemPad notREFRESH
61 ExtMemPad WaitPad

62 ExtMemPad _BACK

63 ExtMemPad BREQ

64 ExtMemPad MCON

65 EventRegPad

66 Gnd

67 EventAckPad

68 LinkInputPad[3]

69 LinkOutputPad[3]

70 LinkInputPad[2]

71 LinkOutputPad[2]

72 LinkInputPad[1]

73 LinkCutputPad[1]

74 LinkInputPad[0]

75 LinkOutputPad[0]

76 vdd

77 ChanlTo3SpeedPad

78 HighFromPhilToPhi3Pad
79 ChanOSpeedPad

80 ChanSpeed50MhzNot25MhzPad
81 PLL_RefVddPad

82 PLL_Buff5MhzPad

83 DonotWire

84 ClockInPad

Microcomputer Division Confidential

92

Author: Roger Shepherd

Restricted Document September 27, 1988

s

g

Microcomputer Division Confidential

4.3 84 lead PGA pin-out
Pad Number Pin Grid Pin Number

F1
F2
F3
G1
H1
G2
Ji
G3
K1
H2
11 J2
12 H3
13 J3
14 K2
15 K3
16 H4
17 J4
18 K4
19 J5
20 H5
21 K5
22 K6
23 J6
24 H6
25 K7
26 K8
27 J7
28 K9
29 H7
30 K10
31 J8
32 J9
33 H8
34 H9
35 J10
36 H10
37 G8
38 G9
39 Gi10
40 F9
41 F8
42 F10
43 E10

-
COONONHLWN =

Microcomputer Division Confidential

Pad Name

ProcTimeslnotPLLSelPad

SystemAnalysePad
ExtMemPad ADPin[31]
ExtMemPad ADPin[30]
ExtMemPad ADPin[29]
Gnd

ExtMemPad ADPin[28]
ExtMemPad ADPin[27]
ExtMemPad ADPin[26]
ExtMemPad ADPin[25]
ExtMemPad ADPin[24]
ExtMemPad ADPin[23]
ExtMemPad ADPin[22]
ExtMemPad ADPin[21]
ExtMemPad ADPin[20]
vdd

ExtMemPad ADPin[19]
ExtMemPad ADPin[18]
ExtMemPad ADPin[17]
ExtMemPad ADPin[16]
ExtMemPad ADPin[15]
ExtMemPad ADPin[14]
ExtMemPad ADPin[13]
ExtMemPad ADPin[12]
ExtMemPad ADPin[11]
ExtMemPad ADPin[10]
Gnd

ExtMemPad ADPin[9]
ExtMemPad ADPin[8]
ExtMemPad ADPin[7]
ExtMemPad ADPin[6]
ExtMemPad ADPin[5]
ExtMemPad ADPin[4]
ExtMemPad ADPin[3]
ExtMemPad ADPin[2]
ExtMemPad ADPin[1]
ExtMemPad ADPin[0]
Gnd

ExtMemPad _notPSPIN[O0]
ExtMemPad_notPSPIN[1]
ExtMemPad notPSPIN[2]
ExtMemPad_notPSPIN[3]

vdd

Author: Roger Shepherd

a3 Restricted Document September 27, 1988

Microcomputer Division Confidential

Pad Number Pin Grid Pin Number

44 E9
45 ES8
46 D10
47 C10
48 D9

Microcomputer Division Confidential

Author: Roger Shepherd

Pad Name

ExtMemPad notASPIN
ExtMemPad notREPIN
ExtMemPad notWEPIN[O0]
ExtMemPad notWEPIN[1]
ExtMemPad notWEPIN[2]
ExtMemPad notWEPIN[3]
ExtMemPad _notREFRESH
ExtMemPad WaitPad
ExtMemPad BACK
ExtMemPad BREQ
ExtMemPad _MCON
EventRegPad

Gnd

EventAckPad
LinkInputPad[3]
LinkOutputPad[3]
LinkInputPad[2]
LinkOutputPad[2]
LinkInputPad[1l]
LinkOutputPad[1l]
LinkInputPad[0]
LinkOutputPad[0]

vdd

ChanlTo3SpeedPad
HighFromPhilToPhi3Pad
Chan(OSpeedPad
ChanSpeed50MhzNot25MhzPad
PLL_RefVddPad

PLL BuffSMhzPad
DoNotWire

ClockInPad
PLL_RefGndPad

vdd
TimeslNotPLLSelPad
Gnd

HoldtoGnd
ChangePadsForTestPad
StatusErrorOutPad
BootFromRomNotLinksPad
ResetPad
DisableInternalRamPad

94 Restricted Document September 27, 1988

	Content
	1 TRANSPUTER INSTRUCTION SET
	1.1 Notation
	Constants
	Procedures

	1.2 Summary of Registers, Flags and Special Locations
	Timer
	Priority 0 Queue control
	Priority 1 Queue control
	Sequential process execution
	Initialisation, booting and analysis
	Interrupt save area
	Extra registers
	StatusReg

	1.3 Workspace
	1.4 Special values
	1.5 Memory Access Procedures
	1.6 Processor and Link-Channel interactions
	Overview and terminology
	Occam description
	Reset
	Link-channel behaviour

	1.7 Initialisation
	1.8 Processor operation
	Prioritised scheduling
	Action performed by processor when timer becomes ready
	Action performed by processor as result of link-channel request

	1.9 Clocks and Timeslicing
	1.10 Procedures used in the description of the Instruction set
	Procedures related to scheduling
	Procedures concerned with Timer queue manipulation
	Procedure used in alternative input
	Procedures used to implement block move
	Procedures used for input and output
	Other procedures used in the instruction descriptions

	1.11 Function set
	Direct, Prefixing and Indirect Functions
	Operations
	Direct Functions
	load local
	store local
	load local pointer
	load non-local
	store non-local
	load non-local pointer
	equals constant
	load constant
	add constant
	jump
	conditional jump
	call
	adjust workspace

	Register Manipulation Etc
	reverse
	return
	load pointer to instruction
	general adjust workspace
	general call
	minimum integer
	loop end

	Checking
	check subscript from 0
	check count from 1
	test error false and clear
	set error
	stop on error
	clear halt-on-error
	set halt-on-error
	test halt-on-error

	Addressing
	byte subscript
	word subscript
	byte count
	word count

	Data Access and Move
	load byte
	store byte
	move message

	Logic and Bits
	and
	or
	xor
	not
	shift left
	shift right

	Basic Arithmetic
	add
	subtract
	multiply
	divide
	remainder

	Comparison and modulo arithmetic
	greater than
	difference
	sum
	product

	Scheduling
	start process
	end process
	run process
	stop process
	load current priority

	Communication
	input message
	output message
	output word
	output byte
	reset channel

	Timer Input
	load timer
	timer input

	Alternative Input
	alt start
	alt wait
	alt end

	Skip Guards
	enable skip
	disable skip

	Channel Guards
	enable channel
	disable channel

	Alternative Timer Input
	timer alt start
	timer all wait

	Timer Guards
	enable timer
	disable timer

	Partword arithmetic
	extend to word
	check word

	Long arithmetic
	extend to double
	check single
	long add
	long subtract
	long sum
	long diff
	long multiply
	long divide
	normalise
	long shift left
	long shift right

	Booting and analysing
	test processor analysing
	save high priority queue registers
	save low priority queue registers
	store high priority front pointer
	store high priority back pointer
	store low priority front pointer
	store low priority back pointer
	store timer

	Floating point support
	unpack single length floating point number
	round single length fp number
	post-normalise correction of single length fp number
	load infinity
	check single length fp infinity or NaN
	fractional multiply

	Testing
	store to D register for testing
	store to E register for testing
	store to StatusReg for testing
	load D register for testing
	load E register for testing
	load StatusReg for testing
	single step TimeOut for testing
	test hard channel stack

	2 INITIALISATION, BOOTING, ANALYSING AND CHECKING
	2.1 Introduction
	2.2 Resetting and Analysing
	Analyse
	Information available after booting an analysed transputer

	2.3 Instructions where processor may halt
	2.4 Booting
	Booting from ROM
	Booting from a link
	Actions to be performed by the booting program

	2.5 Error detection by hardware
	2.6 Instructions which may cause the Error flag to be set
	2.7 Differences between halt-on-error and analyse

	3 MEMORY CONFIGURATION
	3.1 Order of reading configuration information
	3.2 Memory interface configuration address
	3.3 Memory Map

	4 FUNCTION OF PADS AND PIN-OUTS
	4.1 Function of pads
	4.2 84 lead J-Bend pin-out
	4.3 84 lead PGA pin-out

