
---." --. -- _ .. __ . _.._~ - _ __ ~ .. -- :

Author: Roger Shepherd

./

1 TRANSPUTER . ION SE-- 3
1.1 Notatie ------------------- 3

Constants 3
Procedllres 3

1.2 Summa.y of Registers, Flags ana c;oecial Locations 5

42

Priority 0 Queue control: 5
Priority 1 Queue control: 5
SequenHal process execution: 5

-------:--~-::--
Initialisa~:ion, booting and analysis 5
Extra re~isters 6
StatusRe;r 7

1.3 Workspac -:- . ~9

1.4 Special values 9
1.5 Memory A~cess Procedures 10
1.6 Processor and Link-Channel interactions 11

Overview and terminology 11
Occam description 11
Raset 13
link-channel behaviour 15

1.7 Initialisation 18
1.8 Processor operation 19

Prioritised scheduling 20
Action' performed by processor wheill:::;gr bac-omes ready 23
Action performed by processor as re~~.:7. -,t Iink--ch~a-n-n-e-:-I-~.:..eq-u-e-s~t-------:-2-:-4

1.9 Clocks and timeslicing 25
1.10 Procedures used in the description 0'" the instruction set 26

Procedures related to scheduling 26
Procedures concerned with Timer que!.;e manipulation 29
Procedure used in alternative, input 32

------.....Procedures used to implement block n':'ve 33
Procedures used for input and output 37

--------=~---~----==-=-----:--:--:--~:.-.:::-:-----:---:-~------------Other procedures used in the instructior. descriptions 40
1.11 Function Set 41

Direct, Prefixing and Indirect Func~ior.s ----------41------------------Operations
Direct Functions -~

--------:R=-e-g--:i~st':"'"e-r--:M=a-n--:i:--p-u-:-Ia~t':"'"io-:l--=E':"'"tc--·------------------ 47

Checking 49
Addressing 51
Data Access end Move 51
Logic and Bits 52
Basic Arithmetic 53

----::------:.""""":""-~-~----------------------::~ComparisC'nand modlJlo arithmetic 54
S:;hedulin~ 55
Commun{ ~ation 56
Timer Input 57
Aaernati':e Input 58--.,..--.:._----
Skip Gur.rds 58
Channel Guards 59
Alternative Timer Inp",! 61
Timer Guards - 62
Partword arithmet:r,------------------------~6~4

Microcomputer Division Conficential Restricted Document September 27 I 1988

/

/ Microcomputer Division Confidential Author: Roger Shepherd

2

3

4

Long arithmetic
Booting and analysing
Floating point support
Testing

INITIALISATION, BOOTING, ANALYSING AND CHECKING
2.1 Introduction
2.2 Resetting and Analysing

Analyse
Information available after booting an analysed transputer

2.3 Instructions where processor may halt
2.4 Booting

Booting from ROM
Booting from a link
Actions to be performed by the booting program

2.5 Error detection by hardware
2.6 Instructions which may cause the Error flag to be set
2.7 Differences between halt-on-error and analyse
MEMORY CONFIGURATION
3.1 Order of reading configuration information
3.2 Memory interface configuration address
3.3 Memory Map
FUNCTION OF PADS AND PIN-OUTS
4.1 Function of pads
4.2 84 lead J-Bend pin-out
4.3 84 lead PGA pin-out

65
68
70
74
76
76
76
76
77
78
79
79
80
80
81
81
82
83
83
83
85
86
86
91
93

Microcomputer Division Confidential 2 Restricted Document September 27, 1988

I

Microcomputer Division Confidential

1 TRANSPUTER INSTRUCTION SET

1.1 Notation

Author: Roger Shepherd

In this document the notation used is that of occam 2, with the assumption that the variables of type INT are
infinite-bit two's compiement integers.

Any particular processor is assumed to have a finite word length, each register in the processor holding the
value of the corresponding variable in the foliowing description. It is therefore natural to interpret a word as
a fixed iength two's-complement integer. Before and after execution of any instruction, the numerical value
taken by each variabie is correctly representable in the corresponding single word register.

Constants

The following constants are used in the description of the machine.

BitsInWord
Range

MaxInt

MinInt

Procedures

The number of bits in a machine word.
The number of distinct values storeable in a word.
(Range = 2....BitsInWord)
The largest (most positive) vaiue representable
in a word. (MaxInt = (Range/2) - 1).
The smallest (most negative) value representable
in a word. (MinInt = - (Range/2)).

The following two procedures are used. They do not affect the value heid in a processor register; only the
vaiue of the corresponding variabie. Consequently, they are used in the following description to change the
interpretation of the register value, rather than the value itself.

PRoe UnSign(INT reg)
IF

reg < 0
reg := reg + Range

TRUE
SKIP

PRoe Sign(INT reg)
IF

reg > MaxInt
reg := reg - Range

TRUE
SKIP

Microcomputer Division Confidential 3 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

The procedure RestoreToRange is used if the result of an operation (such as addition) may have taken
the value stored in a register into the range [-Range, Range-1] rather than range permitted for a signed
integer ([-Range/2, (Range/2) - 1]). The effect of this can be thought of as throwing away the bits
of higher significance than the sign bit of the register.

PROC RestoreToRange(INT register)
IF

register > Naxlnt
register := register - Range

register < ~nlnt

register .- register + Range
TRUE

SKIP

The procedure Later produces the value of (T1 AFTER. T2). This is dependant on the wordlength of
the processor.

PROC Later (VAL !NT T1, T2, BOOL l.aterFl.ag)
INT t.imeDiff :
SEQ

t.imeDiff := T1 - T2
RestoreToRanqe(t.imeDiff)
1at.erF1ag := (t.imeDiff > 0)

Microcomputer Division Confidential 4 Restricted Document September 27, 1988

Microcomputer Division Confidential

1.2 Summary of Registers, Flags and Special Locations

Timer:

Author: Roger Shepherd

C10ckReg [0] the current value of the high priority processor clock

C1ockReg[l] the current value of the low priority processor clock

'l'PtrLoc [0] either indicates that the level 0 timer is not in use or points to the first process on the level 0
timer queue

'l'PtrLoc [1] either indicates that the level 1 timer is not in use or points to the first process on the level 1
timer queue

TNextReg [0] Indicates the time of the first event on the level 0 timer queue

TNextReg[l] Indicates the time of the first event on the level 1 timer queue

TEnab1ed [0] Indicates whether there Is anything on the level 0 timer queue

TEnab1ed[1] indicates whether there Is anything on the level 1 timer queue

Priority 0 Queue control:

FptrReg [0] pointer to front of active process list

BptrReg [0] pointer to back of active process list

Priority 1 Queue control:

FptrReg [1] pointer to front of active process list

BptrReg [1] pointer to back of active process list

Sequential process execution:

IptrReg pointer to next instruction to be executed

WdescReg process descriptor of the current proces

Areg top of evaluation stack

Breg middle of evaluation stack

Creg bottom of evaluation stack

Oreg operand register

StatusReg contains status information - see below

Initialisation, booting and analysis

MemStart this is the most negative word in store not used by the machine for any special purpose (eg as
a link-channel process word, register save word or timer pointer).

Microcomputer Division Confidential 5 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Interrupt save area:

SaveBase the base address of the area of store used to save the registers of a low priority process while
a high priority process is executing.

Wdesel:ntSave the offset of the word containing the Wdese register of an interrupted process within the
save area.

Iptrl:ntSave the offset of the word containing the l:ptr register of an interrupted process within the save
area.

Aregl:ntSave the offset of the word containing the Areg register of an interrupted process within the save
area.

Bregl:ntSave the offset of the word containing the Breg register of an interrupted process within the save
area.

Cregl:ntSave the offset of the word containing the Creg register of an interrupted process within the save
area.

Eregl:ntSave the offset of the word containing the Brag register of an interrupted process within the save
area.

STATUSl:ntSave the offset of the word containing the STATUS register of an interrupted process within
the save area.

Extra registars

Brag carries descriptor of process to be scheduled on completion of a message transfer. This is only be
used during the execution of block move.

BMbuffer used to hold information between successive stages of a block move.

Microcomputer Division Confidential 6 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

causes processor to execute S~artNextProcess

set by Input and Output before entry to block move
indicates block move is being executed
indicates a deletion from the timer queue
indicates an insertion into the timer queue
(does not appear In this description but
is actually use in the processor)
Cause processor to halt when an error is
generated (this is edge triggered)

StatusReg

The only bits in the StatusReg of concern to the assembler programmer are the HaltOnErrorBit and the
ErrorFlag. The procedures which are used to manipulate these are given below. The remaining bits in the
STATUSreg are used by the processor to control the execution of interruptable instructions; their state only
becomes visible when the STATUSreg is saved during the execution of a high priority process.

Bit Name Purpose

1 GotoSNPBlt
2 10BIt
3 MoveBit
4 TimeDelBit
5 TimelnsBit
6 DistAndlnsBit

7 HaltOnErrorBit

msb ErrorFlag

PROC Se~ErrorF1ag()

S~a~usReg := StatusReg BXTOR ErrorF1ag

PROC C1earErrorF1ag()
StatusReg := StatusReg BXTAND (BXTNOT ErrorF1ag)

PROC ReadBrrorF1ag(BOOL state)
state := «S~atusReg BITAND ErrorF1ag) <> 0)

PROC SetBa1~OnErrorF1ag()

S~a~usReg := Sta~usReg BXTOR Ba1~OnErrorBi.~

PROC C1earBa1tOnErrorF1aq()
S~a~usReg := Sta~usReg BITAND (BXTNOT Ba1~OnErrorBit)

PROC ReadBa1tOnErrorF1ag (BOOL s~a~e)

s~a~e := «S~a~usReg BITAND Ba1tOnErrorBi~) <> 0)

Microcomputer Division Confidential 7 Restricted Document September 27,1988

Microcomputer Division Confidential Author: Roger Shepherd

The procedure OveJ:f1owCheck sets the ErrorF1ag if its argument is not in the range of representable
values and then forces its argument to lie within that range. It does this by ignoring bits beyond the most
significant representable bit.

PRce OveJ:f1owCheck(INT J:egister)
IF

(J:egist.eJ: < MinInt.) OR (regist.er > MaxInt.)
SEQ

Set.EJ:rorFJ.ag ()
regist.eJ: := regist.er REM Range
Rest.oreToRange (regist.er)

TRUE
SlaP

Microcomputer Division Confidential 8 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.3 Workspace

In the following description, the process descriptor of the current process is also held as two variables Wpt.r
and Priorit.y. These are updated as follows

PROC UpdateWdescReg(VAL nrr NewWdescReg)
SEQ

WdescReg := NewWdescReg
Wpt.r := WdescReg BITAND (-2)
Priorit.y := WdescReg BITAND 1

Consequently, Wpt.r always holds a pointer to the current process workspace, and Priorit.y always holds
the priority of the current process.

For each concurrent process, a number of locations are used to hold scheduling information. These locations
are accessed using fixed word offsets from the workspace pointer, as follows:

Ipt.r.s = -1

Link.s = -2

St.at.e.s = -3
Poin'ter.s = -3

TLink.s = -4

Time.s = -5

Local 0 is used by the instructions which implement ALTernative.

1.4 Special values

The special value taken by a channel location:

Not.Process.p = M1nInt.

The special values taken by the State location in the implementation of channel guards are:

Enab1ing.p
Wait.ing.p
Ready.p

= M1nInt. + 1
= M1nInt. + 2
= M1nIn't + 3

The special values taken by the Tlink location in the implementation of timer guards are:

TimeSet..p
TimeNo'tSet.p

M1nInt. + 1
M1nInt. + 2

The values of true and false are:

MachineTROE 1
MachineFALSE 0

The value used stored in local 0 to indicate that no selection has been made during an ALTernative input:

NoneSe1ect.ed.o = -1

Microcomputer Division Confidential 9 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.5 Memory Access Procedures

In the description of the processor and instruction the following memory access procedures are used:

AtWord(Base, N, A)
AtByte (Base, N, A)
RJ:ndexWord (Base, N, X)
RJ:ndexByte (Base, N, X)
W7ndexWord(Base, N, X)
WIndexByte (Base, N, X)

sets A to point at the Nth word past Base
sets A to point at the Nth byte past Base
sets X to the value of the Nth word past Base
sets X to the value of the Nth byt~ past Base
sets the value of the Nth word past Base to X
sets the value of the Nth byte past Base to X

Memory addresses start from Minlnt, the process locations of the links and the event channel occupying
the first few locations in memory. The number of process locations used for the links and the event pin is
LinkChans.

An address is a single word value divided into two parts:

a word address

a byte selector

The byte selector occupies the least significant bits in the word. The number of bits used for the byte selector
is Bse1Length, where

Bse1LengthTab = TABLE [0, 0, 1, 2, 2, 3, 3, 3, 3]
Bse1Length = Bse1LengthTab [BitsInWord I 8]
Bse1Mask = (1 « (Bse1Length+1)) - 1

Microcomputer Division Confidential 10 Restricted Document September 27, 1988

Microcomputer Division Confidential

1.6 Processor and Link-Channel interactions

Author: Roger Shepherd

Overview and terminology

The Iink-ehannels operate concurrently with, and are controlled by, the processor.

When a process executes an output message instruction which specifies a Iink-ehannel the processor must
cause the Iink-ehannel to transfer the specified message from the transputer's memory. To do this, the
processor makes aPerformJ:O request on the link-channel. This request specifies a pointer to the message,
the length of the message and the priority of the process. When the message has been transferred, the Iink­
channel signals the processor with a RunRequest. This will cause the processor to run the process which
output the message.

When a process excutes an input message instruction the interactions between the processor and an input
link-channel are similar. The processor makes aPer~ormIO request as before and when the message has
been transferred, the link-channel signals the processor with a RunRequest as before.

When a process refers to an input Iink-ehannel in a guard of an alternative construct the processor makes
use of two further requests on the Iink-channel.

The first of these, called an Enab1e request, specifies the priority of the process performing the alternative
and 'enables' the link-channel. When an 'enabled' Iink-ehannel starts to receive a message it signals the
processor with a ReadyRequest.

The second, called a StatusEnquiry, does two things. Firstly, it causes the link-channel to send a
message to the processor indicating if it has yet started to receive a message and, secondly, it 'disables' the
link-channel if it is enabled.

To reset a link-ehannel, the processor makes a ResetRequest on the Iink-ehannel. The link will return to
its reset state, and, if it was not already signalling the processor with a ReadyRequest or a RunRequest,
it will acknowledge with an AckReset.

Occam description

The processor and the link-channels are each described as separate concurrent processes. Each connection
between the processor and a link-channel uses 3 channels. For the i'th link-channel these are

ProcessorToLink[i]
LinkToProcessor[i] [0]
LinkToProcessor[i] [1]

The processor sends requests and their parameters to the 1"th link-channel on ProcessorToLink [i] .
The 1"th link-channel uses LinkToProcessor [i] [0] to signal the processor when it is at priority 0 (high
priority) and LinkToProcessor [i] [1] when it Is at priority 1 (low priority).

Each input link-channel is also connected to two further channels, LinkInData and LinkInAck. These
carry the data recieved by the link-channel and the acknowledges sent by the channel.

Each output link-channel is also connected to two further channels, LinkOutData and LinkOUtAck.
These carry the data sent by the link-ehannel and the acknowledges received by the channel.

Microcomputer Division Confidential 11 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Messages on ProcessorToLink

The possible messages on ProcessorToLink [i] are

1 PerformIO <priority> <pointer> <count>

This requests the Iink-ehannel to transfer a message of <count> bytes starting at <pointer>.
The priority of the link-ehannel for this transfer is <priority>. (Because a link-channel is one
directional there is no need for the processor to specify the transfer direction).

2 Enab1e <priority>

This requests an input Iink-channel to become enabled and sets the priority of the Iink-channel to
<priority>.

3 StatusEnquiry <priority>

This asks an input link-channel if it has started to receive a message. It also disables the link-channel
if it was enabled. The Iink-ehannel responds by sending ReadyRequest if it has started to receive
a message. ReadyFALSE otherwise.

4 ResetRequest <priority>

This is sent to reset a link-channel. The Iink-channel responds by returning AckReady. unless it
was already sending a ReadyRequest or a RunRequest.

5 AckReady

The processor sends this to acknowledge a ReadyRequest made by the link-channel.

Messages on LinkToProcessor [i] [0] and LinkToProcessor [i] [1]

The possible message on LinkToProcessor[i] [0] and LinkToProcessor[i] [1] are

1 RunRequest

This signals that a link-ehannel has completed passing a message. The processor will either ac­
knowledge the request with an AckRun or will reset the link-channel with a ResetRequest.

2 ReadyRequest

This signals that a link-channel has started to receive a message. It is sent either when an enabled
Iink-channel starts to receive a message. or in response to a StatusEnquiry.

3 ReadyFALSE

This is sent in reply to a StatusEnquiry when the link-channel has not started to receive a
message.

4 AckReset

This is sent in reply to ResetRequest.

Microcomputer Division Confidential 12 Restricted Document September 27.1988

Microcomputer Division Confidential Author: Roger Shepherd

Summary of message Interactions

To clarify the processor and link-channel interactions, a trace of the behaviour of a Iink-channel is given below
for all possible interactions. The traces given below all involve low priority process interacting with the i'th Iink­
channel;the interactives involving high priority processor are similar but have LinkToProcessor [i] [0]
substituted for LinkToProcessor [i] [1] and 0 substitued for 1 whenever the processor send a priority
to the Iink-channel.

Reset

When the processor resets the I'th link-channel the interaction is :

SEQ
ProcessorToLink[i] ? request; priority -- ResetRequest; 1
LinkToProcessor[i] [1] ! response

The response sent will be AckReset, RunRequest or ReadyRequest.

Input and Output

When the processor executes either an 'input message' or 'output message' instruction the interaction is:

SEQ
ProcessorToLink[i] ? interaction; priority -- Perfo%mIO
ProcessorToLink[i] ? pointer; count

There are then three possible further traces.

1 The link-channel completes its 10 :

SEQ
LinkToProcessor[i] [1] ! RunRequest,
ProcessorToLink[i] ? interaction -- AckRun

2 The Iink-channel is reset before completion of its 10 :

SEQ
ProcessorToLink[i] ? interaction; priority
LinkToProcessor[i][l] ! AckReset

3 The link-channel is reset at the same time as It completes of Its 10 :

PAR
ProcessorToLink[i] ? interaction; priority
LinXToProcessor[i][l] ! RunRequest

ResetRequest; 1

ResetRequest; 1

Microcomputer Division Confidential 13 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Alternative Input

When the processor makes a St:at:usEnquiry on the i'th link-channel the interaction is

SEQ
ProcessorToLi.nk[i] ? t:oken; priorit:y -- St:at:usEnquiry: 1 or 0
LinkToProcessor[i] [1] ! response

The response will be ReadyRequest: if the Iink-channel has started to receive a message, ReadyFALSE
if it has not.

The processor enables the i'th link-channel as follows :

SEQ
ProcessorToLink[i] ! Enab1e; priorit:y

There are 5 possible interactions between an enabled Iink-channel and the processor :

1 The Iink-channel is not ready and the processor makes a St:at:usRequest:. The trace of this
interaction is described above, the link-channel returning ReadyFALSE.

2 The i'th Iink-channel signals it is ready before the processor makes another request:

SEQ
LinkToProcessor[i][l] ! ReadyRequest:
ProcessorToLink[i] ? interact:ion

AckReady

3 The processor makes a St:at:usEnquiry at the same time as the Iink-channel sends aReadyRequest

PAR
LinkToProcessor[i] [1] ! ReadyRequest
ProcessorToLink[i] ? interact:ion; priorit:y

St:at:usEnquiry: 1

4 The processor makes a Reset:Request before the link-channel becomes ready. In this case the
interaction is as described above with the link-channel responding with AckReset:.

5 The processor makes aReset:Request at the same time as the link-channel sends aReadyRequest:

PAR
LinkToProcessor[i][l] ! ReadyRequest:
ProcessorToLink[i] ? int:eract:ion: priority

Reset:Request:: 1

Microcomputer Division Confidential 14 Restricted Document September 27, 1988

AckReset

transfer requested
ready to output a byte

Microcomputer Division Confidential

Link-channel behaviour

PROC LinkOut (CHAN LinkOutData, LinkOutAck,
CHAN FromProcessor, [2]CBAN ToProcessor)

INT priority, pointer, count :
BYTE byte :
BOOL ready, requested :
SEQ

requested := FALSE
ready := TRUE
WHILE TRUE

IN'!' token :
PRIAL'!'

FromProcessor ? token
SEQ

FromProcessor ? priority
D'

token =Perfo~O

SEQ
FromProcessor ? pointer; count
requested := TRUE

token = ResetRequest
SEQ

ready := TRUE
requested := FALSE
ToProcessor[priority]

Author: Roger Shepherd

(ready AND requested) , SKIP
IF

count = 0 -- No more data to be output
IN'!' 01dPriority
SEQ

requested := FALSE
o1clPriority := priority
PAR

ToProcessor[01dPriority] ! RunRequest
INT interaction
SEQ

FromProcessor ? interaction
IF

interaction = AckRun
SKIP

interaction = ResetRequest
FromProcessor ? priority

TRUE -- Output a byte; set ready to FALSE
SEQ

RIndexByte(pointer, 0, byte)
AtByte(pointer, 1, pointer)
count := count - 1
LinkOutData ! byte
ready := FALSE -- wait for acknow1edgement

LinkOutAck ? token
ready :=TRUE

Microcomputer Division Confidential

-- AckData

15 Restricted Document September 27, 1988

Has a byte has been inpu~

J:s ~ransfer pending?
Is 1ink enabled ?

Microcomputer Division Confidential

PROC LinkJ:n (CHAN LinkJ:nAck, LinkJ:nData,
CHAN FromProcessor, [2]CBAN ToProcessor)

rNT priori~y, pointer, coun~ :
BYTE byte:
BOOL ready, requested, enab1ed :
SEQ

ready : = FALSE
requested : = FALSE
enabled := FALSE
WHILE TRUE

INT ~oken :
PRIALT

LinkJ:nData ? byte
ready : = TRUE

FromProcessor ? ~oken

deal wi~h processor reques~

(reques~ed AND ready) , SlaP
acknowledge and st.ore byte

(enabled AND ready) & SlaP
iDfo~ processor ~ha~ link is ready

where the folds are as follows:

deal wi~h processor request

SEQ
FromProcessor ? priority
IF

token = Enable
enabled : = TRUE

token = S~a~usEnquiry

SEQ
enabled := FALSE
J:F

ready
ToProcessor[priority], ReadyReques~

TRUE
ToProcessor[priori~y], ReadyFALSE

~oken = PerformIO
SEQ

FromProcessor ? pointer; count
reques~ed := TRUE

token = ResetRequest
SEQ

ready := FALSE
enab1ed := FALSE
reques~ed := FALSE
ToProcessor[priority] AckRese~

Author: Roger Shepherd

Microcomputer Division Confidential 16 Restricted Document September 27, 1988

/

Microcomputer Division Confidential

acknow1edge and store byte

SEQ
Link:InAck ! AckData -- Acknow1edge
WJ:ndexByte (pointer, 0, byte)
AtByte (pointer, 1, pointer)
count := count - 1
:IF

count = 0 -- Transfer comp1eted
:INT o1dPriority
SEQ

requested := FALSE
o1dPriority := priority
PAR

ToProcessor[o1dPriority] ! RunRequest
:tNT interaction
SEQ

FromProcessor ? interaction
:IF

interaction = AckRun
SlaP

interaction =ResetRequest
FromProcessor ? priority

TRUE
SlaP

ready := FALSE

info~ processor that 1ink is ready

:tNT o1dPriority :
SEQ

enab1ed := FALSE
o1dPriority := priority
PAR

ToProcessor[o1dPriority] ! ReadyRequest
:INT interaction
SEQ

FromProcessor ? interaction
:IF

interaction =AckReady
SK:IP

interaction = StatusEnquiry
FromProcessor ? priority

interaction =ResetRequest
SEQ

FromProcessor ? priority
ready := FALSE

Author: Roger Shepherd

Microcomputer Division Confidential 17 Restricted Document September 27, 1988

Microcomputer Division Confidential

1.7 Initialisation

Author: Roger Shepherd

More information on the subject of initialisation is available in the Initialisation, Booting, Analysing and Check­
ing section.

The following registers and special location are not set when the machine powers on or is reset.

C1ockReg[O]
C1ockReg[1]
TPtrLoc[O]
TPtrLoc[l]
TNextReg [0]
TNextReg [1]
FptrReg[O]
BptrReg[Ol
FptrReg[l]
BptrReg[l]
msb of the StatusReg (ie the errorf1ag)
bit 7 of the StatusReg (ie the Ba1tOnErrorF1ag)

The ClockRegs do not increment after a power-on, reset or analyse until a store timer instruction has been
executed. The states of the other registers are set as below:

Areg
Breg
Oreg

= :IptrReg
= WdescReg
= 0

If the machine is booting from external memory then

WdescReg
:IptrReg
Creg

= MemStart: B:ITOR 1
= Max:Int - 1
= ANY

If the machine is booting from a link-channel then

WdescReg
:IptrReg
Creg

= (first word after boot program) BITOR 1
= MemStart
= pointer to boot channe1

Microcomputer Division Confidential 18 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.8 Processor operation

The processor performs a sequence of actions. Each action may be (i) to execute an instruction (or part
of an instruction) on behalf of the current process, (Ii) to act on a request by a link-channel, or, (iii) to deal
with a timer which has become ready. An action which is performed on behalf of a high priority process, on
behalf of a Iink-ehannel operating at high priority or on behalf of the high-priority timer is called a "high priority
action". A "low priority action" is similarly defined.

The actions which may occur for the currently executing process are the execution of the procedures (defined
below) StartNextProcess, InsertMidd1eStep, BlockMoveMidd1eStep, DeleteM1ddleStep
or the fetching, decoding and execution of an instruction.

The action which may be performed by the processor on behalf of a Iink-channel is the execution of the
procedure BandleChannelRequest. The action which may be performed by the processor of behalf of
the timer is the execution of the procedure Band1eTimerRequest.

When the processor has completed one action it will choose its next action as follows (this is defined more
precisely in the program given below):

The processor will execute the procedure StartNextProcess if the GotoSNPbit of the
StatusReq is set, otherwise it will perform a high priority action if there is one that can
be performed. Otherwise it will perform a low priority action if there is one which can be
performed. Otherwise it will wait until there is a request from a timer or a Iink-channel.

The processor selects an action at a particular priority according to the following rules. The
processor will execute DeleteMidcUeStep if the TimeDelBit of the StatusReq is set.
Otherwise it will execute InsertMidcUeStep if the TimelnsBit of the StatusReq is
set. Otherwise the processor will execute the procedure BlocJcMoveMidd1eStep if the
MoveSit of the StatusReq is set. Otherwise it will handle any channel request. Otherwise
it will handle any timer request. Otherwise the processor will fetch, decode an execute an
instruction.

In the following description the procedures Primary and Secondary decode and execute primary and
secondary instructions.

Microcomputer Division Confidential 19 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

WBJ:LE active
VAL J:NT interruptab1e IS GotoSNPBit \/ (IOBit \/ (MOveBit \/

(TimeInsBit \/ TimeDe1Bit») :
SEQ

-- comp1eted indicates if current instruction has te%D1inated
comp1eted := (StatusReg /\ interruptab1e) = 0
va1idProcess := Wptr <> NotProcess.p

PIU:ALT
(StatusReg /\ GotoSNPBit) <> 0 , SlaP

StartNextProcess ()

(Priority = 0) AND (NOT (TNextReg[O] AFTER C1ockReg[0]» AND
comp1eted , SKJ:P

Band1eTimerRequest (0)

ALT hc = 0 FOR LinkChans
(Priority = 0) AND comp1eted , FromChan[hc] [0] ? token

BancUeChanne1Request (token, hc)

(Priority = 1) AND
(NOT (TNextReg [0] AFTER C10ckReg [0] » , SKJ:P

Band1eTimerRequest (0)

ALT hc = 0 FOR LinkChans
(Priority = 1) 'FromChan[hc][O] ? token

Band1eChanne1Request (token, he)

(Priority = 1) AND (NOT (TNextReg[l] AFTER C1oekReg[1]»AND
comp1eted , SKJ:P

Band1eTimerRequest (1)

ALT he = 0 FOR LinkChans
(Priority =1) AND comp1eted' FromChan[he] [1] ? token

BancUeChanne1Request (token, he)

va1idProeess , SKIP
IF

(StatusReg /\ TimeDe1Bit) <> 0
De1eteMidd1eStep (Breg, Creg)

(StatusReg /\ TimeJ:nsBit) <> 0
J:n8e~dd1eStep (A%eg, Breg, Creg)

(StatusReg /\ MoveBit) <> 0
B1ockMOveMidcUeStep (Creg, Breg, A%eg)

TRUE
SEQ

Bui1dNextInstruction (IptrReg, Oreg, code)
J:F

code <> f.opr
Primary (code)

code = f.opr
Secondary (Oreg)

Oreg .- 0

Prioritised scheduling

The execution of a low priority process can be interrupted when a high priority process becomes runnable as
defined above. In particular certain instructions are interruptable:

move message /I input message /I output message /I

Microcomputer Division Confidential 20 Restricted Document September 27, 1988

Microcomputer Division Confidential

timer alt walt /I timer input /I

disable timer

Author: Roger Shepherd

When a low priority process is interrupted by a high priority process certain of the processor registers are
written to the transputer"s memory. freeing those registers for use by the high priority process. When there
are no more high priority processes to be executed the registers are restored and execution of the low priority
process recomences.

The following procedures are used to save and restore registers when an interrupt occurs:

PRce SaveRegistersevAL BOOL SaveEreg)
-- Save processor registers for interrupt
SEQ

WIndexWord (SaveBase, WdescIntSave, Wdes eReg)
IF

WdescReg <> (NotProcess.p BITOR 1) -- Low Priority
SEQ

WJ:ndexWord(SaveBase, IptrIntSave, IptrReg)
WJ:ndexWord(SaveBase, AregIntSave, Areg)
WIndexWord(SaveBase, BregIntSave, Breg)
WJ:ndexWord(SaveBase, CregIntSave, Creg)
WJ:ndexWord(SaveBase, STATOSIntSave, StatusReg)

TRUE
SKIP

IF
SaveEreg

WJ:ndexWord(SaveBase, EregIntSave, Ereg)
TRUE

SKIP

Microcomputer Division Confidential 21 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PRce RestoreRegisters()
-- Res~ore processor registers af~er in~errupt

SEQ
INT temp :
SEQ

RIndexWord(SaveBase, WdescIntSave, temp)
UpdateWdescReg(temp)

IF
WdescReg <> (NotProcess.p BITOR 1) -- Low Priority

SEQ
RIndexWord(SaveBase, IptrIntSave, IptrReg)
RIndexWord(SaveBase, AregIntSave, Areg')
RIndexWord(SaveBase, BregIntSave, Breg)
RIndexWord(SaveBase, CregIntSave, Creg)
RIndexWord(SaveBase, STATOSIntSave, StatusReg)

TRUE
SKIP

IF
(StatusReg BITAND MoveBit) <> 0

RIndexWord(SaveBase, EregIntSave, Breg)
TRUE

SKIP

Microcomputer Division Confidential 22 Restricted Document September 27. 1988

Microcomputer Division Confidential Author: Roger Shepherd

Action performed by processor when timer becomes ready

PROC BandJ.eTimerReques't (VAL D1T Queue:Id)
rNT fron'tProcess :
SEQ

TEnab1ed[Queue:Id] := FALSE
R:IndexWord(Tp'trLoc[Queue:Id], 0, fron'tProcess)
SEQ

:INT secondProcess : -- upda'te queue
SEQ

R:IndexWord(fron'tProcess, TLink.s, secondProcess)
W:IndexWord(fron'tProcess, TLink.s, T~eSe't.p)

W:IndexWord(Tp'trLoc[Queue:Id], 0, secondProcess)
:IF

secondProcess =No'tProcess.p
SK:IP

TROE
SEQ

R:IndexWord(secondProcess, Time.s, TNexi:Req[Queue:Id])
TEnab1ed[Queue:Id] := TROE

:INT s'ta'tus : -- schedu1e process as appropria'te
SEQ

R:IndexWord(fron'tProcess, Poin'ter.s, s'tatus)
:II'

s'ta'tus = Ready.p
SKIP

s'ta'tus = Wai'ting.p
SEQ

W:IndexWord (fron'tProcess, Poin'ter. s., Ready.p)
Run(fron'tProcess BITOR Queue:Id)

Microcomputer Division Confidential 23 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Action performed by processor as result of link-channel request

PRce BancUeChanneJ.Request (VAL XNT Request, he)
-- hancUes a request from a ehanne1 to the processor
-- he is index of hard ehanne1 in(oeeam) ehanne1 array
XF

Request =RunRequest
XNT channelContent
SEQ

ToChan [he] ! AekRun
RXndexWord(PortBase, he, ehanne1Content)
XF

channelContent = NotProeess.p -- after Reset
SKXP

TROE
SEQ

WXndexWord(PortBase, he, NotProeess.p)
Run (channelContent)

Request =ReadyRequest
INT channelContent, proeptr, status
SEQ

-- Needed to make the eanee11ab1e ReadyRequest work
ToChan[he] ! AekReady
RXndexWord(PortBase, he, ehanne1Content)
proePtr := ehannelContent BITAND (-2)
RXndexWord(procPtr, Pointer.s, status)
IF

status =Enab1inq.p
WIndexWord (procPtr, Pointer. s, Ready. p)

status =Ready.p
SKIP

status =Waitinq.p
SEQ

WXndexWord(procPtr, Pointer.s, ReaCiy.p)
Run (channe1Content)

Microcomputer Division Confidential 24 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

1.9 Clocks and tlmesliclng

The processor contains two clock registers, one for each priority. These registers start incrementing after
the processor has been reset or analysed only once a store timer instruction has been executed. In the
occam description of the processor In this document it is assumed that clock registers either are or are
not incrementing as appropriate. In the description of the store timer instruction the call on the procedure
S'tartTimer indicates that the clock registers should start incrementing.

The high priority clock register increments every 1uS, the low priority clock increments every 64uS.

The processor will timeslice low priority processes when the clock registers are incrementing. The mechanism
works by checking, during the execution of the jump and loop end instructions whether the process has been
executing for more than a timeslice period, if it has then the following process is executed

SEQ
WindexWord(Wp'tr, :Ip'tr.s, :Ip'tr)
Run (WdescReg)
S'ta'tusReg := S'ta'tusReg \/ Go'toSNPbi't

The performance of the check and the (possible) subsequent execution of the above process is Indicated in
the desription of the jump and loop end instructions by the calling of the procedure TimeS1ice.

Microcomputer Division Confidential 25 Restricted Document September 27,1988

Microcomputer Division Confidential

1.10 Procedures used in the description of the Instruction set

Procedures related to scheduling

PROC Enqueue (VAL :tNT Procptr, :tNT Fptr, Bptr)
-- add a process to a schedu1inq 1ist
SEQ

IF
Fptr = NotProcess.p

Fptr := ProcPtr
TROE

WXndexWord(Bptr, Link.s, ProcPtr)
Bptr := ProcPtr

Author: Roger Shepherd

PROC Dequeue (VAL INT Leve1)
-- Take a process from a schedu1inq 1ist
SEQ

OpdateWdescReq(FptrReq[Leve1] B:ITOR Leve1)
IF

FptrReq[Leve1] = BptrReq[Leve1]
FptrReq[Leve1] := NotProcess.p

TRUE
RIndexWord(FptrReq[Leve1], Link.s, FptrReq[Leve1])

PROC ActivateProcess()
-- Starts a process executinq
SEQ

Oreq := 0
RIndexWord(Wptr, :tptr.s, :tptrReq)

Microcomputer Division Confidential 26 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC StartNextProcess()
-- This starts execution of the next runnab1e process (if one exists).
SEQ

StatusReg := StatusReg Bl:TAND (Bl:TNOT GotoSNPBit)
l:F

Priority = 0
l:F

FptrReg[O] <> NotProcess.p
SEQ

Dequeue (0)
ActivateProcess ()

TRUE
SEQ -- no further high priority processes

RestoreRegisters()
l:F

-- no interrupted process
(wptr =NotProcess.p) AND

(FptrReg[l] <> NotProcess.p)
SEQ

Dequeue (1)
ActivateProcess()

-- no 10w priority processes at a11
(wptr = NotProcess.p) -- no processes

SKIP .
-- interrupted process was doing b10ck move
(StatusReg BITAND MoveBit) <> 0

B1ockMoveFirstStep(Creg, Breg, Areg)
-- continue with b10ck move
TRUE

SKIP
Priority = 1

IF
FptrReg[l] <> NotProcess.p

SEQ
Dequeue (1)
ActivateProcess()

TRUE
OpdateWdescReg(NotProcess.p BITOR 1)

PROC Waite)
SEQ

WIndexWord (Wptr, State. s, Waiting .p)
WIndexWord(Wptr, Iptr.s, IptrReg)
StatusReg := StatusReg BITOR GotoSNPBit

Microcomputer Division Confidential 27 Restricted Document September 27. 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC Run (VAL :tNT ProcDesc)
-- Schedu1e a process
XNT procPriority :
XNT procPtr :
SEQ

procPriori'ty := ProcDesc BJ:TAND 1
procP'tr := ProcDesc BITAND (-2)
IF

Priori'ty = 0 -- Machine a't high priori'ty; queue process
Enqueue(procP'tr, Fp'trReg[procPriori'ty], BptrReg[procPriori'ty])

Priority = 1 -- Machine at 10w priori'ty
XF

procPriority = 0 -- High priority process; execute it
SEQ

SaveRegisters((StatusReg BJ:TAND MoveBit) <> 0)
UpdateWdescReg(ProcDesc)
StatusReg := StatusReg BITAND

(ErrorF1ag BJ:TOR Ha1'tOnErrorBit)
ActivateProcess 0

procPriority = 1 -- Low priori'ty process; queue it
IF

wptr =NotProcess.p
SEQ

updateWdesCReg(ProcDesc)
ActivateProcess 0

TRUE
Enqueue(procPtr, FptrReg[l], BptrReg[l])

Microcomputer Division Confidential 28 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Procedures concerned with Timer queue manipulation

The four procedures I:nsertFirstStep, I:nsertMidd1eStep, I:nsertFina1Step and I:nsertTest
combine to cause the current process to be inserted into the timer queue. This will happen due to execution
of either the timer input or timer alternative wait instructions.

PROC I:nsertFina1Step (INT time, previous, subsequent)
SEQ

-- Enqueue new timer process
WIndexWord(previous, 0, Wptr)
WIndexWord(Wptr, TLink.s, subsequent)
WIndexWord (Wptr, Iptr. s, IptrReq)

-- Ensure the ear1iest t~e is in TNextReq
RIndexWord(TimerBase, Priority, previous)
RIndexWord(previous, Time.s, TNextReq[Priority])
TEnab1ed[Priority] := TRUE

-- Finished insertion, start next process
StatusReq .- StatusReq BI:TAND (BI:TNOT TimeInsBit)
StatusReq := StatusReq BITOR GotoSNPBit

PROC I:nsertTest (I:NT time, previous, subsequent)
-- Used by Insert Midd1e and First Steps
SEQ

RIndexWord(previous, 0, subsequent)
IF

subsequent = NotProcess.p
I:nsertFina1Step(time, previous, subsequent)

subsequent <> NotProcess.p
INT subsequentTime :
BOOL 1aterF1aq:
SEQ

RIndexWord (subsequent, Time. s, subsequentTime)
Later (time, subsequentTime, 1aterF1aq)
IF

1aterF1aq
SlaP

TRUE
:tnsertFina1Step(time, previous, subsequent)

PROC :tnsertMidcUeStep (INT time, previ.ous, subsequent)
Test for Insertion before next process on timer queue

SEQ
AtWord(subsequent, TLink.s, previous)
InsertTest(time, previous, subsequent)

Microcomputer Division Confidential 29 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PRce XnsertFirstStep(LNT time, previous, subsequent)
Areg is time
Breg is previous
Creg is subsequent
"previous" points at the 1ocation to be updated if the current
process is to be inserted before the process pointed to by
"subsequentn •

SEQ
-- Start insertion, set 10c&1 registers
StatusReg := StatusReg BXTOR TimeXnsBit
WIndexWord(wptr, State.s, Waiting.p)
WIndexWord (wptr, Time. s, time)

-- Test for Insertion before first process on timer queue
AtWord(TimerBase, Priority, previous)
XnsertTest(time, previous, subsequent)

Microcomputer Division Confidential 30 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

The four procedures De1eteFirstStep. De1eteMidcUeStep. De1eteFina1Step and De1eteTest
combine to cause the current process to be deleted from the timer queue. This will happen due to execution
the disable timer instruction.

PROC De1eteFina1Step(rNT previous, subsequent)
SEQ

-- De1ete the current process from the t~er queue
RJ:ndexWord(Wptr, TLink.s, subsequent)
WJ:ndexWord(previous, 0, subsequent)
WIndexWord(Wptr, TLink.s, T~eNotSet.p)

-- Ensure the ear1iest t~e is stored in TNextReq
RJ:ndexWord(TptrLoc[Priority], 0, previous)
J:F

previous = NotProcess.p
SKJ:P

previous <> Notprocess.p
SEQ

RJ:ndexWord(previous, Time.s, TNextReq[Priority])
TEnab1ed[INT Priority] := TRUE

Finish De1etion
StatusReg := StatusReg BJ:TAND (B:ITNOT TimeDe1Bit)

PROC De1eteTest(~T previous, subsequent)
-- Used by De1ete First and M1dcUe Steps
SEQ

RJ:ndexWord(previous, 0, subsequent)
J:F

subsequent = Wptr
De1eteFina1Step(previous, subsequent)

TRUE
. SKJ:P

PROC De1et~dd1eStep(J:NT previous, subsequent)
-- Test for De1etion before next process on t~er queue
SEQ

AtWord (subsequent, TLink. s, previous)
De1eteTest(previous, subsequent)

PROC De1eteFirstStep(J:NT previous, subsequent)
SEQ

-- Start de1etion, set TEnab1ed to FALSE (pending comp1etion)
StatusReg := StatusReg B:ITOR TimeDe1Bit
TEnab1ed[Priority] := FALSE

-- Test for de1etion before first process on timer queue
previous := ~trLoc[Priority]

De1eteTest(previous, subsequent)

Microcomputer Division Confidential 31 Restricted Document September 27. 1988

Microcomputer Division Confidential

Procedure used in alternative input

PROC XsThisSe1ectedProcess()
-- 'this is used by a11 'the disab1e ins'truc'tions
mT disab1eS'tatus :
SEQ

RXndexWord (Wp'tr, 0, disab1eSta'tus)
XF

disab1eS'tatus =NoneSe1ected.o
SEQ

WXndexWord (Wptr, 0, Areq)
Areq : = MachineTROE

disab1eS'tatus <> NoneSe1ected.o
Areq : = MachineFALSE

Author: Roger Shepherd

Microcomputer Division Confidential 32 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Procedures used to implement block move

The routines WritePaJ:tWord, Min, Ca1cShiftUp, Decode and Se~ect are used in the implemen­
tation of the block moving mechanism. The block move mechanism is initialised by execution of
BJ.oclcMoveFirstStep (this will happen as a result of execution of a block move instruction. an input mes­
sage instruction, an output message instruction or when the transputer restarts an interrupted block move.
Once initialised the B~oclcMoveMidd1eStep procedure is repeated executed until either the block move
has completed or the block move is interrupted.·

PROC WritePartWord(VAL mT Address, Word, StartByte, Length)
-- insert bytes' StartByte' through' StartByte+Length-l' i.nto
-- the corresponding byte of the memory ~ocation ' Address'
XNT buffer, insert, keep :
SEQ

insert := 0
SEQ byteXndex = StartByte FOR Length

insert := insert BXTOR (iFF « (byteXndex*8»
keep : = BXTNOT insert
RXndexWord(Address, 0, buffer)
buffer := (buffer BXTAND keep) BXTOR (Word BXTAND insert)
RestoreToRange(buffer)
WJ:ndexWord (Address, 0, buffer)

PROC Min(VAL mT Argl, Arg2, mT resuJ.t)
XF

Argl < Arg2
resuJ.t := Argl

TRUE
resuJ.t := Arg2

PROC CaJ.cShiftUp (VAL mT SB, DB, XN'1' shift)
-- CaJ.cu~ate the Byte shift for the source to match the destination.
SEQ

shift := (DB - SB) REM BytesPerWord
XF

shift < 0
shift := shift + BytesPerWord

TRUE
SKXP

Microcomputer Division Confidential 33 Restricted Document September 27,1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC Decode(VAL rN~ Dest, Source, rN~ DB, SB)
-- Extract Byte-se1ect component of source and destination addresses
SEQ

DB := Dest BX~AND Bse1Mask
SB := Source BX~AND Bse1Mask

PROC Se1ect(VAL rN~ P, C, ShiftUp, XNT S)
Fo~s a new word,
with the ShiftUp-most-significant bytes from P at the
1east significant end, and the (BitsXnWord/8) minus ShiftUp­
1east-significant bytes from C at the most significant end.

Xnserts l's otherwise.
rN~ 1owWord, highWord :
VAL ShiftUpBits XS Shiftup * 8 :
VAL Comp1ement XS BitsXnWord - ShiftUpBits
SEQ

1owWord := (P » Comp1ement) BX~OR «-1) « ShiftUpB.its)
highWord.- C BX~OR «-1) « Comp1ement)
highWord := (highWord« Sh.iftupBits) BX~OR

(BXTNO~ «-1) « ShiftUpBits))
S := 1owWord BX~AND highWord

Microcomputer Division Confidential 34 Restricted Document September 27, 1988

Microcomputer Division Confidential

PROC B1oCkMoveFina1Step()
-- NB C1ear F1ags BEFORE running Ereg !
-- Run Ereg if IOBit set, c1ear J:OBit and MoveBit
IF

(StatusR.eg BITAND J:OBit) <> 0
SEQ

StatusReq .- (StatusReg BITAND
(BITNOT MoveBit» BITAND
(BITNOT IOBit)

Run (Ereq)
TRUE

StatusReq := (StatusReq BITAND
(BITNOT MoveBit»

Author: Roger Shepherd

PROC B1ockMOveFirstStep(rNT source, dest, 1ength)
:tNT shiftUp :
:tNT bytesToRead, bytesToWrite
INT DB, SB :
INT current, se1ected :
J:F

1ength = 0
B1ockMoveFinalStep()

1enqth > 0
SEQ

StatusReq := StatusReg BITOR MoveBit
Decode (dest, source, DB, SB)
Ca1cShiftUp(SB, DB, shiftUp)
RIndexWord(source, 0, current)
M1n«BitslnWord/8) - SB, 1enqth, bytesToRead)
Min«BitslnWord/8) - DB, 1enqth, bytesToWrite)
IF

bytesToRead >= bytesToWrite
Select (current, current, shiftUp, selected)

bytesToRead < bytesToWrite
SEQ

BMbuffer := current
-- Must do another read before we write
RIndexWord(source, 1, current)
Select (BMbuffer, current, shiftUp, selected)

Write
WritePartWord (dest, se1ected, DB, bytesT.oWrite)
-- Update pointers and buffer
AtByte(dest, bytesToWrite, dest)
1ength := 1ength - bytesToWrite
AtByte(source, bytesToWrite, source)
-- Update buffer
BMbuffer := current

Microcomputer Division Confidential 35 Restricted Document September 27t 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC B1ockMOveMidd1eStep(rNT source, dest, 1ength)
INT shiftUp :
INT bytesToWrite :
INT DB, SB :
rNT current, se1ected
IF

1ength = 0
B1ockMoveFina1Step()

1ength > 0
SEQ

-- Read word
Decode (dest, source, DB, SB)
Ca1cShiftUp(SB, DB, shiftUp)
IF

1ength > shiftUp
-- First choose which word to read
IF

sh:l.ftUp = 0
RIndexWord(source, 0, current)

sh:l.ftUp <> 0
RInd.exWord(source, 1, current)

TROE
SKIP

-- Write appropiate section
-- Se1ection can be omitted in the ShiftUp = 0 case
Se1ect(BMbuffer, current, shiftUp, se1ected)
Min«BitsInWord/8) - DB, 1ength, bytesToWrite)
WritePartWord(dest, se1ected, DB, bytesToWrite)
-- Update pointers and buffer
AtByte(dest, bytesToWrite, dest)
1ength := 1ength - bytesToWrite
AtByte(source, bytesToWrite, source)
BMbuffer := current

Microcomputer Division Confidential 36 Restricted Document September 27, 1988

Microcomputer Division Confidential

Procedures used for input and output

PROC HandShake (VAL INT I, !NT token)
-- Required for resetting a l.ink which might be
-- operating at high priority
ALT pri = 0 FOR 2

FromChanL[I][pri] ? token
SKIP

PROC SaveRegsPendingSoftIO()
SEQ

WIndexWord(Breg, 0, WdescReg)
WIndexWord (Wptr, Iptr. s, IptrReg)
WIndexWord(Wptr, Pointer.s, Creg)

PROC HardChannel.InputOutputAction (VAL INT portNo)
SEQ

WIndexWord(Breg, 0, WdescReg)
WIndexWord (Wptr, Iptr. s, IptrReg)
ToChan[portNo] ! Perfo~IO; Priority; Creg; Areg

Author: Roger Shepherd

PROC ChanOffset (VAL !NT reg, !NT chanNum)
-- Extract a "channel. number", starting from MinInt = 0
chanNum := (reg - MinInt) »Bsel.Lenqth

Microcomputer Division Confidential 37 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC Input ()
-- Areg is count, Breg is channe1, Creg is pointer.
!NT chanNum :
SEQ

ChanOffset(Breg, chanNum)
IF

chanNum >= LinkChans -- soft (Breg)
!NT procDesc :
SEQ

RIndexWord(Breg, 0, procDesc)
IF

procDesc = NotProcess.p -- Not ready; wait
SEQ

SaveRegsPendingSoftIO()
StatusReg := StatusReg BITOR GotoSNPBit

procDesc <> NotProcess.p -- Ready; transfer
INT sourcePtr, procPtr :
SEQ

-- Reset channe1 -- NB ok to do this here
WIndexWord(Breg, 0, NotProcess.p)
procPtr := procDesc BITAND (-2)
RIndexWord(procPtr, Pointer.s, sourcePtr)
-- Set up the b10ck move
Ereg := procDesc
Breg := Creg
Creg := sourceptr
StatusReg := StatusReg BITOR

(MoveBit BITOR IOBit)
B1ockMoveFirstStep(Creg, Breg, Areg)
-- When comp1eted, B1ockMove wi11 Run(Ereg)

chanNum < LinkChans -- hard(Breg)
SEQ

BardChanne1InputOutputAction(chanNum)
StatusReq := StatusReq BITOR GotoSNPBit

Microcomputer Division Confidential 38 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

PROC Output () - ".- t-- ."::. 1\
-- Areg is count, Breg is channe1, Creg is pointer.
INT chanNum :
SEQ

ChanOffset(Breg, chanNum)
IF

chanNum >= LinkChans -- Internal. channel.
INT procDesc :
SEQ

llIndexWord(Breq, 0, procDesc)
IF

procDesc = NotProcess.p -- Not ready; wait
SEQ

SaveRegsPendingSoftIO()
StatusReq := Statuslleg BITOR GotoSNPBit

procDesc <> NotProcess.p -- Ready
INT d.estptr, procPtr :
SEQ

procptr := procDesc BITAND (-2)
RIndexWord(procPtr, Pointer.s, d.estPtr)
IF -- schedul.er interl.ock for ALl'

destptr = Enabl.ing.p
SEQ

WInd.exWord (procPtr, Pointer. s, Ready. p)
SaveRegsPendingSoftIO()
StatusReg := StatusReg BITOR GotoSNPBit

destptr = Waiting.p
SEQ

WIndexWord (procPtr, Pointer. s, Ready. p)
:' SavellegsPendingSoftIO ()
j StatusReg := Statuslleg BITOR GotoSNPBit
\ Run (procDesc)

destPtr = lleady.p
SEQ

SavellegsPendingSoftIO()
Statuslleg := StatusReg BITOR GotoSNPB.it

TRUE -- va1id pointer
SEQ

-- Reset channel.
WIndexWord(Breg, 0, NotProcess.p)
-- Set up registers for the b10ck move
Ereg := procDesc
Breg := destptr
StatuSlleg := StatusReg BITOR

(MoveBit BITOR IOBit)
Bl.ockMoveFirstStep(Creg, Breg, Areg)
-- When comp1eted, B1ockMove w.il.1 Run(Ereg)

chanNum < LinkChans -- l.ink-channel.
SEQ

BardChanne1InputOutputAction(chanNum)
StatusReg := StatusReg BITOR GotoSNPBit

Microcomputer Division Confidential 39 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Other procedures used in the instruction descriptions

PROC ArithmeticRightShift (VAL IN'!' Operand, Shift, INT resul.t)
IF

Operand>= 0
resul.t := Operand » Shift

Operand < 0
SEQ

resul.t := BITNOT Operand
resul.t := resul.t » Shift
resul.t := BITNOT resul.t

Microcomputer Division Confidential 40 Restricted Document September 27, 1988

Microcomputer Division Confidential

1.11 Function set

Author: Roger Shepherd

The instructions executed by the procesor include direct fundions, the prefixing functions pfix and nfix, and
an indirect function opr which uses the operand register Oreg to select one of a set of operations.

The set of direct functions and operations is as follows:

Direct, Prefixing and Indirect Functions

Code Abbreviation Name

#07
#OD
#01
#03
tOE
#05
#OC
#04
#08
#00
lOA
#09
lOB
#02
#06
#OF

Idl
stl
Idlp
Idnl
stnl
Idnlp
eqc
Ide
adc
j
cj
call
ajw
pfix
nfix
opr

load local
store local
load local pointer
load non-local
store non-local
load non-local pointer
equals constant
load constant
add constant
jump
conditional jump
call
adjust workspace
prefix
negative prefix
operate

Microcomputer Division Confidential 41 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Operations

Code Size Abbreviation Name

100 short rev reverse
120 long ret return
I1B long Idpi load pointer to instruction
13C long gajw general adjust workspace
106 short gcall general call
#42 long mint mlmlmum Integer
#21 long lend loop end

#13 long csubO check subscript from 0
#4D long ccnt1 check count from 1
#29 long testerr test error false and clear
#10 long seterr set error
#55· long stoperr stop on error
#57 long clrhalterr clear halt-an-error
#58 long sethalterr set halt-on-error
#59 long testhalterr test halt-on-error

#02 short bsub byte subscript
lOA short wsub word subscript
134 long bent byte count
#31' long wcnt word count

#01 short Ib load byte
#3B long sb store byte
#4A long move move message

#46 long and and
#48 long or or
#33 long xor exclusive or
#32 long not bitwise not
#41 long shl shift left
#40 long shr shift right

#05 short add add
#OC short sub subtract
#53 long mul multiply
#2C long div divide
#11' long rem remainder

#09 short gt greater than
#04 short diff difference
#52 long sum sum
#08 short prod product

#OD short startp start process
#03 short endp end process
#39 long runp run process
#15 long stopp stop process
#lE long Idpri load current priority

Microcomputer Division Confidential 42 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Code Size Abbreviation Name

#07 short in input message
lOB short out output message
#01' short outword output word
tOE short outbyte output byte
#12 long resetch reset channel

#43 long alt alt start
#44 long altwt alt wait
#45 long altend alt end

#49 long enbs enable skip
#30 long diss disable skip

#48 long enbc enable channel
#21' long disc disable channel

#22 long Idtimer load timer
#2B long tin timer input

#4K long talt timer alt start
#51 long taltwt timer alt wait
#47 long enbt enable timer
12E long dist disable timer

#3A long xword extend to word
#56 long cword check word
#lD long xdble extend to double
#4C long csngl check single

#16 long ladd long add
#38 long Isub long subtract
#37 long Isum long sum
#41' long Idiff long diff
#31 long Imul long multiply
#lA long Idlv long divide
#36 long Ishl long shift left
#35 long Ishr long shift right
#19 long norm normalise

#2A long testpranal test processor analysing

Microcomputer Division Confidential 43 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Code Size Abbreviation Name

#3E long saveh save high priority queue registers
#3D long savel save low priority queue registers

#18 long sthf store high priority front pointer
#50 long sthb store high priority back pointer
#lC long stlf store low priority front pointer
#17 long stlb store low priority back pointer
#54 long sttimer store timer

#63 long unpacksn unpack single length fp number
#6D long roundsn round single length fp number
#6C long postnormsn post-normalise correction of single length fp number
#71 long Idinf load single length infinity
#73 long etlerr check single length fp infinit
yor NaN #72 long fmul fractional multiply

#28 long teststd store to Dreg for testing
#27 long testste store to Ereg for testing
#26 long teststs store to StatusReg for testing
#25 long testldd load to Dreg for testing
#24 long testlde load to Ereg for testing
#23 long testlds load to StatusReg for testing
#19B long single step TimeOut for testing
#2D long testhardchan test hard chanel stack

Microcomputer Division Confidential 44 Restricted Document September 27, 1988

Microcomputer Division Confidential

Direct Functions

load local

SEQ
Creq := Breq
Breq := Areq
lUndexWord (Wptr, Oreq, Areq)

store local

SEQ
WIndexWord(Wptr, Oreg, Areq)
Areq := Breq
Breq := Creq

load local pointer

SEQ
Creg := Breq
Breq := Areg
AtWord(Wptr, Oreq, Areq)

load non-local

lUndexWord (Areq, Oreq, Areq)

store non-local

SEQ
WIndexWord (Areq, Oreg, Breq)
Areq := Creq

load non-local pointer

AtWord (Ar8q, Oreg, Areq)

equals constant

IF
Areq =Oreq

Areq : = MachineTROE
Areq <> Oreq

Areq : = MachineFALSE

load constant

SEQ
Creq := Breg
Breq := Areq
Areg := Oreq

add constant

SEQ
Areq : = Areq + Oreq
Overf1owCheck(Areq)

Microcomputer Division Confidential 45

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential

jump

SEQ
AtByt.e (IptrReq, Oreq, IptrReg)
TimeSl.ice()

conditional jump

Ii'
Areg = 0

AtByt.e(IptrReg, Oreg, IptrReg)
Areg <> 0

SEQ
Areq := Breg
Breg := Creg

call

SEQ
WIndexWord (Wptr, -1, Creg)
WIndexWord (Wptr, -2, Breg)
WIndexWord (Wptr, -3, Areg)
WIndexWord (Wptr, -4, IptrReq)
Areg := IptrReq
INT temp :
SEQ

AtWord(Wptr, -4, temp)
UpDateWdescReg(temp BITOR Priority)

AtByt.e(IptrReg, Oreg, IptrReg)

adjust workspace

INT temp :
SEQ

AtWozd(Wptz, Oreq, temp)
UpDateWdesdReg(temp BITOR Priority)

Author: Roger Shepherd

Microcomputer Division Confidential 46 Restricted Document September 27, 1988

Microcomputer Division Confidential

Register Manipulation Etc

reverse

SEQ
Oreg := Areg
Areg := Breg
Breg .- Oreg

return

SEQ
RIndexWord (Wptr, 0, :IptrReg)
:tNT temp :
SEQ

AtWord (Wptr, 4, temp)
OpDateWdescReg(temp B:ITOR Priority)

load pointer to Instruction

AtByte (:IptrReg, Areg, Areg)

general adjust workspace

:INT temp:
SEQ

temp := Wptr
OpDateWdescReg(Areg B:ITOR Priority)
Areg := temp

general call

:INT temp:
SEQ

temp := :IptrReq
:IptrReq := Areg
Areq := temp

minimum integer

SEQ
Creg := Breg
Breg := Areg
Areg := Min:Int

loop end

SEQ
RIndexWord(Breg, 1, Creg)
Creg := Creg - 1
W:IndexWord (Breg, 1, Creg)
:IF

Creg > 0
SEQ

RIndexWord(Breq, 0, Creg)
Creg := Creg + 1
W:IndexWord(Breq, 0, Creg)
AtByte(:IptrReg, -Areg, :IptrReg)

Creg <= 0
SKIP

Author: Roger Shepherd

Microcomputer Division Confidential 47 Restricted Document September 27. 1988

Microcomputer Division Confidential

TimeS1ice()

Microcomputer Division Confidential 48

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential

Checking

check subscript from 0

SEQ
UnSign(Areg)
UnSiqn(Breg)
IF

Breg >= Areg -- unsigned compare
SetErrorF1ag ()

TRUE
SKIP

Sign (Breg)
Areg := Breg
Breg := Creg

check count from 1

SEQ
UnSign (Areg)
UnSign(Breg)
IF

(Breg = 0) OR (Breg > Areg) -- unsigned comparison
SetErrorF1ag ()

TRUE
SKIP

Sign (Breg)
Areg := Breg
Breg := Creg

test error false and clear

BOOL errorSet :
SEQ

Creg := Breg
Breg := Areg
ReadErrorF1ag(errorSet)
IF

errorSet
Areg := MachineFALSE

NOT errorSet
Areg := MachineTRtJE

C1earErrorF1ag ()

set error

SetErrorF1ag ()

Author: Roger Shepherd

Microcomputer Division Confidential 49 Restricted Document September 27, 1988

Microcomputer Division Confidential

stop on error

BOOL errorSet
SEQ

ReadErrorF1ag(errorSet)
IF

errorSet
SEQ

WXndexWord(Wptr, J:ptr.s, J:ptrReg)
StatusReg .- StatusReg BJ:TOR GotoSNPBit

NOT errorSet
SlaP

clear halt-on-error

C1earBa1tOnErrorF1ag()

set halt-on-error

SetBa1tOnErrorF1ag()

test halt-on-error

BOOL fl.agSet :
SEQ

Creg := Breg
Breg := Areg
ReadBa1tOnErrorF1ag(f1agSet)
J:F

f1agSet
Areg := MachineTRUE

NOT f1agSet
Areg := MachineFALSE

Author: Roger Shepherd

Microcomputer Division Confidential 50 Restricted Document September 27, 1988

Microcomputer Division Confidential

Addressing

byte subscript

SEQ
AtByte (Areg, Breg, Areg)
Breg := Creg

word subscript

SEQ
AtWord(Areg, Breg, Areg)
Breg := Creg

byte count

Areg := Areg * (BitsInWord/8)

word count

SEQ
Creg := Breg
Breg := Areg BITAND Bse1Mask
ArithmeticRightShift (Areg, Bse1Length, Areg)

Data Access and Move

load byte

Rl:ndexByte (Areg, 0, Areg)

store byte

SEQ
W%ndexByte (Areg, 0, Breg)
Areg := Creg

move message

B1ockMoveFirstStep(Creg, Breg, Areg)

Author: Roger Shepherd

Microcomputer Division Confidential 51 Restricted Document September 27, 1988

Microcomputer Division Confidential

Logic and Bits

and

SEQ
Areq : = Areq BITAND Breq
Breq := Creg

or

SEQ
Areq :=Breg BITOR Areq
Breg := Creq

xor

SEQ
Areg : = Breg >< Areg
Breg := Creq

not

Areg := Areg >< (-1)

shift left

SEQ
t1nsign (Areg)
IF

Areg <= BitsInWord
SEQ

t1ns:Lgn(Breq)
Areg : = (Breq« Areq) REM Range
Siqn(Areg)

Breg := Crag

shift right

SEQ
t1nSign(Breg)
IF

Areg <= BitsInWord
Areq : = Breg » Areq

Siqn(Areg)
Breg := Creq

Author: Roger Shepherd

Microcomputer Division Confidential 52 Restricted Document September 27, 1988

Microcomputer Division Confidential

Basic Arithmetic

add

SEQ
Areg := (Breg + Areg)
OverfJ.owCheck(Areg)
Breg := Creg

subtract

SEQ
Areg := (Breg - Areg)
Overf1owCheck(Areg)
Breg := Creg

multiply

-- Signed muJ.'tip1y, Areg := Areg * Breg MOD Range.
-- Overf1owCheck now hancUes ANY signed integer !
SEQ

Areg := Breg * Areg
OverfJ.owCheck(Areg)
Breg := Creg

divide

SEQ
IF

«Breg =M1nInt) AND (Areg = (-1») OR (Areg = 0)
SetErrorFJ.ag ()

TRUE
Areg := Breg / Areg

Breg := Creg

remainder

SEQ
IF

«Breg = M1nInt) AND (Areg = (-1») OR (Areg = 0)
SetErrorFJ.ag ()

TROB
Areg := Breg REM Areg

Breg := Creg

Author: Roger Shepherd

Microcomputer Division Confidential 53 Restricted Document September 27, 1988

Microcomputer Division Confidential

Comparison and modulo arithmetic

greater than

SEQ
IF

Breg > Areg
Areg : = MachineTRUE

Breg <= Areg
Areg : = MachineFALSE

Breq := Creq

difference

SEQ
Areq := (Breq - Areg)
RestoreToRange(Areq)
Breg .- Creg

sum

SEQ
Areq : = Breg + Areq
RestoreToRanqe(Areg)
Breg := Creg

product

SEQ
UnSiqn (Areg)
UnSign (Breg)
Areg : = Breg * Areg
Areg : =Areg REM Ranqe
S:i.gn (Areq)
Breg : = Creg

Author: Roger Shepherd

quick unchecked mu1tip1y
short operand in Areg

Microcomputer Division Confidential 54 Restricted Document September 27, 1988

Microcomputer Division Confidential

Scheduling

start process

INT temp:
SEQ

AtByte (XptrReg, Breg, temp)
WXndexWord (Areg, Xptr. s, temp)
Run(Areg BITOR Priority)

end process

INT temp:
SEQ

lUndexWord (Areq, 1, temp)
IF

temp = 1
SEQ

RXndexWord(Areg, 0, I:ptrReq)
upDateWdesCReg(Areg BITOR Priority)

temp <> 1
SEQ

WXndexWord (Areg, 1, temp-1)
StatusReg .- Stat.usReg BITOR GotoSNPBit

run process

Run (Areg)

stop process

SEQ
WJ:ndexWord (Wptr, Iptr. s, IptrReg)
StatusReg := Stat.usReg BITOR GotoSNPBit

load current priority

SEQ
Creg := Breg
Breg := Areg
Areg := Priorit.y

Author: Roger Shepherd

Microcomputer Division Confidential 55 Restricted Document September 27, 1988

no other action needed for soft channe1
-- 01d process pointer

-- Channe1 10 in Areg
0, temp)
0, NotProcess.p)
chanNum)

Microcomputer Division Confidential

Communication

Input message

Input ()

output message

OUtput ()

output word

SEQ
WIndexWord (Wptr, 0, Areg)
Areg := Byt:esPerWord
Creg := Wptr
Output ()

output byte

SEQ
WIndexWord (Wptr, 0, Areq)
Areg:= 1
Creg := Wptr
Output ()

reset channel

INT temp:
INT chanNum
SEQ

lUndexWord (Areg,
WIndexWord (Areg,
ChanOffset. (Areq,
IF

chanNum < LinkChans -- Bard Channe1
I1ft' token :
PAll

ToChan[chanNum] ! ResetRequest; Priority
HandShake (chanNum, token)

TRUB
SKIP

Areg := temp

Author: Roger Shepherd

Microcomputer Division Confidential 56 Restricted Document September 27, 1988

Microcomputer Division Confidential

Timer Input

load timer

SEQ
Creq := Breq
Breq := Areq
Areg := C1ockReq[Priority]

timer input

BOOL 1aterF1aq
SEQ

Later(C1ockReq[Priority], Areg, 1aterF1aq)
::tF

1aterF1aq
SKIP

TRUE
SEQ

Areq := Areq + 1
RestoreToRange(Areg)
::tnsertFirstStep(Areg, Breq, Creg)

Author: Roger Shepherd

Microcomputer Division Confidential 57 Restricted Document September 27, 1988

Microcomputer Division Confidential

Alternative Input

alt start

WJ:ndexWord(Wptr, State.s, Enab1inq.p)

alt wait

SEQ
-- set up "NoneSe1ected.o" in 10ca1 0 to siqnify
-- ~hat ~he no ready process has been se1ected
WJ:ndexWord(wptr, 0, NoneSe1ected.o)
-- Is any channe1 or skip quard ready?
RIndexWord (Wptr, State. s, Areq)
IF

Areq = Ready.p
SlaP

TRUE
Wait 0

alt end

INT temp
SEQ

lUndexWord (wptr, 0, temp)
AtByte(IptrReq, temp, IptrReq)

Skip Guards

enable skip

IF
Areq <> MachineFALSE

WlndexWord(Wptr, State.s, Ready.p)
TRUE

SlaP

disable skip

SEQ
IF

Breq <> MachineFALSE
IsThisSe1ectedProcess()

TRUE
Areq :=MachineFALSE

Breq := Creq

Author: Roger Shepherd

Microcomputer Division Confidential 58 Restricted Document September 27, 1988

Microcomputer Division Confidential

Channel Guards

enable channel

Author: Roger Shepherd

SEQ
:IF

Areg <> MachineFALSE
:INT chanNum :
SEQ

ChanOffset (Breg, chanNum)
:IF

chanNum >= LinkChans internal. channe1
:INT temp :
SEQ

R:IndexWord(Breg, 0, temp)
:IF

temp = NotProcess.p
W:IndexWord(Breg, 0, WdescReg)

temp =WdescReg
SK:IP

TRUE
Wl:ndexWord(Wptr, State.s, Ready.p)

chanNum < LinkChans 1ink-channe1
:INT token :
SEQ -- is channe1 ready ?

PAR
ToChan[chanNum] ! StatusEnquiry; Priority
FromChan[chanNum] [Priority] ? token

:IF
token =ReadyRequest

WIndexWord(Wptr, State.s, Ready.p)
token = ReadyFALSE

SEQ
ToChan [chanNum] ! Enab1e; Priority
Wl:ndexWord(Breg, 0, WdescReg)

TRUE
SK:IP

Breg := Creg

Microcomputer Division Confidential 59 Restricted Document September 27, 1988

Microcomputer Division Confidential

disable channel

Author: Roger Shepherd

:IF
Breg <> MachineFALSE

J:NT chanNum :
SEQ

ChanOffset(Creg, chanNum)
J:F

chanNum >= LinkChans Internal channel
SEQ

RJ:ndexWord(Creg, 0, Breg)
J:F

Breg = NotProcess.p
Areg := MachineFALSE

Breg = WdescReg
SEQ

WJ:ndexWord(Creg, 0, NotProcess.p)
Areg := MachineFALSE

TRUE
J:sThisSelectedProcess()

chanNum < LinkChans Bard Channel.
:tNT token :
SEQ

WJ:ndexWord(Creg, 0, NotProcess.p)
-- Ask if channel. is ready and hence switch off channel.
PAR

ToChan[chanNum] ! StatusEnquiry; Priority
FromChan[chanNum][Priority] ? token

J:F
token = ReadyRequest

IsThisSelectedProcess()
token = ReadyFALSE

Areg := MachineFALSE
TRUE

Areg := MachineFALSE

Microcomputer Division Confidential 60 Restricted Document September 27. 1988

Microcomputer Division Confidential

Alternative Timer Input

timer alt start

SEQ
1andexWord(Wptr, TLink.s, TimeNotSet.p)
1andexWord(Wptr, State.s, Enab1inq.p)

timer all wait

Author: Roger Shepherd

SEQ
-- NoneSe1ected.o in 10ca1 0 signifies that
-- no process has yet been se1ected
1andexWord(Wptr, 0, NoneSe1ected.o)
Rl:ndexWord (Wptr, State. s, Creq)
J:F

Creq = Ready.p -- a channe1 is ready
WIndexWord(Wptr, T~e.s, C1ockReq[Priority])

TRUE
SEQ

Rl:ndexWord (Wptr, TLink. s, Breq)
II'

Breq = TimeNotSet.p
Wait () -- &11 timer quarc:ls FALSE

Breq = TimeSet.p
-- Either a timer guard is ready, or wait
BOOL 1aterF1aq :
SEQ

RIndexWord(Wptr, Time.s, Areq)
Later(C1ockReq[Priority], Areq, 1aterF1aq)
IF

1aterF1aq
c10ck makes process ready

SEQ
WIndexWord (Wptr, State.s, Ready.p)
WIndexWord(Wptr, Time.s, C10ckReq[Priority])

TRUE
c10ck does not make process ready

SEQ
-- set Areq to time AT which process is ready
Areq := Areq + 1
RestoreToRanqe (Areq)
InsertFirstStep(Areq, Breq, Creq)

Microcomputer Division Confidential 61 Restricted Document September 27, 1988

Microcomputer Division Confidential

Timer Guards

enable timer

SEQ
IF

Areg <> MachineFALSE
IN'!' temp :
SEQ

RindexWord (Wptr, TLink. s, temp)
IF

temp = T~eNotSet.p

-- This is first t~er guard encountered
SEQ

WIndexWord(wptr, TLink.s, T~eSet.p)

WIndexWord (wptr, Time. s, Breg)

Author: Roger Shepherd

temp = T~eSet.p

-- Update ear1iest time if this guard is earl.ier
BOOL l.aterF1ag:
SEQ

RIndexWord (wptr, Time. s, temp)
Later (temp, Breg, 1aterFl.aq)
IF

l.aterFl.aq
WIndexWord (Wptr, Time. s, Breg)

TRUE
SKIP

Areg = MachineFALSE
SKIP

Breg := Creg

Microcomputer Division Confidential 62 Restricted Document September 27, 1988

Microcomputer Division Confidential

disable timer

IF
Breg <> MachineFALSE

SEQ
RIndexWord (Wptr, TLink. s, Oreg)
J:F

Oreg = TimeNotSet.p
Areg := MachineFALSE

Oreg = TimeSet.p
-- See if this timer guard is ready
BOOL 1aterF1ag :
SEQ

RJ:ndexWord(Wptr, Time.s, Oreg)
Later(Oreg, Creg, 1aterF1ag)
:IF

1aterF1ag
IsThisSelectedProcess()

TRUE
Areg := MachineFALSE

TRUE
SEQ

process must be removed from timer queue
De1eteFirstStep(Breg, Creg)
Areg := MachineFALSE

Breg =MachineFALSE
Areg := MachineFALSE

Author: Roger Shepherd

1

Microcomputer Division Confidential 63 Restricted Document September 27, 1988

Microcomputer Division Confidential

Partword arithmetic

extend to word

SEQ
Unsign (Areg)
XF

(Breg < Areg)
Areg := Breg

TRUE
Areg := Breg - (2*Areg)

Breg := Creg

check word

SEQ
Unsign (Areg)
Xli'

(Breg >= Areg) OR (Breg < -Areg)
SetErrorF1ag ()

TRUE
SIUP

Areg := Breg
Breg := Creg

Microcomputer Division Confidential 64

Author: Roger Shepherd

Restricted Document September 27. 1988

Microcomputer Division Confidential

Long arithmetic

extend to double

SEQ
Creg := Breg
IF

Areg < 0
Breg := -1

Areg >=0
Breg .- 0

check single

SEQ
IF

«Areg < 0) AND (Breg <> (-1») OR
«Areg >= 0) AND (Breg <> 0 »
SetErrorF1ag ()

TRUE
SIUP

Breg := Creg

long add

SEQ
Areg := (Breg + Areg) + (Creg BITAND 1)
Overf1owCheck(Areg)

long subtract

SEQ
Areg := (Breg - Areg) - (Creg BITAND 1)
Overf1owCheck(Areg)

long sum

SEQ
OnSiqn (Areg)
OnSiqn (Breg)
Areg := (Breg + Areg) + (Creg BITAND 1)
IF

(Areg > Range)
SEQ

Breg := 1
Areg := Areg - Range

TRUE
Breg := 0

Siqn(Areg)

Author: Roger Shepherd

\

Microcomputer Division Confidential 65 Restricted Document September 27, 1988

Microcomputer Division Confidential

long diff

SEQ
UnSiqn (Areg)
UnSiqn(Breg)
Areg := (Breg - Areg) - (Creg BXTAND 1)
IF

Areg >= 0
Breg := 0

Areg < 0
SEQ

Areg := Areg + Range
Breg := 1

Sign (Areg)

long multiply

SEQ
UnSign(Areg)
unSiqn(Breg)
UnSign(Creg)
Areq := (Breg * Areg) + Creg
Breg := Areq / Range
Areg := Areq REM Range
Sign (Areg)
Sign (Breg)

long divide

SEQ
UnSign (Areg)
UnSign(Breg)
UnSign (Creg)
XI'

Creg >= Areg
SetErrorF1aq ()

Creg < Areq
:tNT temp :
SBQ

temp := (Creg «BitsXnWord) + Breg
Breq := temp REM Areq
Areg := temp / Areg
Sign (Areg)
Sign (Breg)

Author: Roger Shepherd

Microcomputer Division Confidential 66 Restricted Document September 27,1988

Microcomputer Division Confidential

normalise

IF
(Breg = 0) AND (Areg = 0)

Creg := 2*Bi~sInWord

TRUE
VAL MsbOfDoub1eWord IS 1 « «2*Bi~sInWord) -1)
SEQ

unSign (Areg)
unSign(Breg)
Areg := (Breg « Bi~sInWord) + Areg
Creg := 0
WHILE (Areq BITAND MsbOfDoub1eWord) = 0

SEQ
Areg := Areg « 1
Creg := Creg + 1

Breg := Areg / Range
Areg : = Areg REM Range
Siqn(Areg)
Siqn(Breg)

long shift left

SEQ
UnSign (Areg)
IF

Areg <= (2*Bi~sInWord)

SEQ
UnSign(Breg)
UnSign(Creg)
Breg := (Creg« Bi~sInWord) + Breg
Breg := Breg « Areg
Areg : = Breg REM Range
Breg : = (Breg / Range) REM Range
Sign (Areq)
Sign (Breq)

long shift right

SEQ
Unsign (Areg)
IF

Areg <= (2*Bi~sInWord)

SEQ
UnSign (Breg)
UnSign(Creg)
Breg := (Creg« Bi~sInWord) + Breg
Breg := Breg » Areg
Areg := Breg / Range
Breg := Brag REM Range
Sign (Areg)
Sign (Breg)

Author: Roger Shepherd

Microcomputer Division Confidential 67 Restricted Document September 27, 1988

Microcomputer Division Confidential

Booting and analysing

test processor analysing

Author: Roger Shepherd

SEQ
Creq := Breq
Breg := Areq
IF

ResetNotAna1ysed
-- This f1aq indicates that the 1inks were 1ast reset,
-- as opposed to analysed.

Areq := FALSE
TRUE

Areg := TRUE

save high priority queue registers

SEQ
WindexWord (Areq, 0, FptrReg [0])
WindexWord(Areq, 1, BptrReq[O])
Areg := Breg
Breg := Creg

save low priority queue registers

SEQ
WindexWord(Areq, 0, FptrReq[l])
WindexWord(Areg, 1, BptrReg[l])
Areg := Breq
Breg := Creq

store high priority front pointer

SEQ
FptrReg[O] := Areg
Areg := Breg
Breg := Creq

store high priority back pointer

SEQ
BptrReg[O] := Areg
Areq := Breg
Breg := Creg

store low priority front pointer

SEQ
FptrReg[l] := Areg
Areg := Breg
Breg := Creg

Microcomputer Division Confidential 68 Restricted Document September 27, 1988

Microcomputer Division Confidential

store low priority back pointer

SEQ
BptrReg[l] := Areg
Areg := Breg
Breg := Creg

store timer

SEQ
C1ockReg[O] := Areg
C1ockReg[1] := Areg
Areg := Breg
Breg := Creg
StartTimer ()

Microcomputer Division Confidential 69

Author: Roger Shepherd

Restricted Document September 27t 1988

Microcomputer Division Confidential

Floating point support

The following constants are used in the floating point support instructions:

Bits:InFrac = 24 number of bits in fraction
PackedLSB = 1
Rea1Exp = #FF
Rea1:Inf = #7F800000 -- +:Inf
Rea1RBit = #80
Rea1Shift = 8
Rea1Xcess = #7F

unpack single length floating point number

Author: Roger Shepherd

SEQ
UnSign(Areg)
Creg := Breg * 4
Areg := ((Areg B:ITAND (B:ITNOT Min:Int» « (Rea1Shift + 1))
Breg := Areg I Range
Areg := (Areg REM Range)
Breg := Breg » 1
:IF

Breg = 0
:IF

Areg = 0
SK:IP

TRUE
SEQ

Creg .- Creg + 1
Breg .- 1

TRUE
:IF

Breg = Rea1Exp
:IF

Areg::: 0
Creg := Creg + 2

TRUE
Creg := Creg + 3

TRUE
SEQ

Creg := Creg + 1
Areg := Areg B:ITOR Min:Int

Sign (Areg)

Microcomputer Division Confidential 70 Restricted Document September 27, 1988

Microcomputer Division Confidential

round single length fp number

Author: Roger Shepherd

SEQ
UnSign (Areg)
Unsign(Breg)
XF

Creg < Rea1Exp
INT temp :
SEQ

temp := Breg
Breg := (Creg * Range) + «Breg« 1) BITAND (Range - 1»
Breg := Breg » (Rea1Shift + 1)
IF

(temp BITAND Real.RBit) = 0
SlaP

(Areg BITOR «temp BITAND Real.Xcess) BITOR
(Breg BITAND PackedLSB») = 0

SKIP
TRCE

Breg := Breg + 1
Areg := Breg

TRUE
Areg := Rea1Xnf

Sign (Areg)

Microcomputer Division Confidential 71 Restricted Document September 27, 1988

Microcomputer Division Confidential

Post-nonnallse correction of single length fp number

SEQ
OnSiqn (Areg)
OnSiqn(Breg)
Breg := (Breg * Range) + Areg
ntT temp :
SEQ

RIndexWord(wptr, 0, temp)
Creg := temp - Crag

IF
Creg < - (BitsInFrac - 1)

SEQ
Areg := 0
Breg := 0
Creg .- 0

Creg < 1
SEQ

Breg := Breg » (1 - Creg)
Creg := 0

Creg < Rea1Exp
SEQ

TRUE
Creg := Real.Exp

Areg := (Breg REM Range) BITOR Areg .
Breg := Breg / Range
Siqn(Areg)
Siqn(BJ:eg)

load Infinity

SEQ
Crag := Breg
Breg := Areg
Areg := Rea1Inf

check single length fp infinity or NaN

IF
(Areg BITAND Real.Inf) = Real.Inf

SetErrorF1ag ()
TRUE

SKIP

Author: Roger Shepherd

Microcomputer Division Confidential 72 Restricted Document September 27, 1988

Microcomputer Division Confidential

fractional multiply

VAL TwoToThe31 IS 1 « (31-1)
VAL TwoToThe30 IS 1 « (30-1)
:tNT P, L :
SEQ

P .- (Axeg * Breg) / TwoToThe31
t1nSign (Areg)
t1nSign(Breg)
L := (Axeg * Breg) \ TwoToThe31
IF

L < TwoToThe30
SKIP

L = TwoToThe30
J:F

(P BJ:TAND 1) = 0
SKIP

(P BJ:TAND 1) = 1
P := P + 1

L > TwoToThe30
P := P + 1

Overf1owCheck(P)
Areg := P
Breg := Creg

Microcomputer Division Confidential 73

Author: Roger Shepherd

Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Testing

The instructions in this section exist for testing the implementation of the transputer. They mainly make
available some of the hidden. internal registers of the transputer. In the following descriptions these registers
are as follows:

Dreg
DataReg[1inkChans]
PointerReg[1inkChans]
CountReg[1inkChans]

store to 0 register for testing

SEQ
Dreg := Areg
Areg := Breg
Breg := Creg

store to E register for testing

SEQ
Ereg := Areg
Areg := Breg
Breg := Creg

store to StatusReg for testing

SEQ
StatusReg := Areg
Areg := Breg
Breg := Creg

Load D register for testing

SEQ
Creg := Breg
Breg :=Areg
Areg := Dreg

Load E register for testing

SEQ
Creg := Breg
Breg := Areg
Areg := Ereg

Load StatusReg for testing

SEQ
Creg := Breg
Breg := Areg
Areg := StatusReg

an extra processor register
the data registers of the link-channels
the pointer registers of the link-channels
the count registers of the link-channels

Microcomputer Division Confidential 74 Restricted Document September 27. 1988

Microcomputer Division Confidential

- " .. '

Author: Roger Shepherd

single step TimeOut for testing

this instruction is very dependant on the actual implementation of the transputer and is not documented here.

test hard channel stack

XNT chanNum :
SEQ

ChanOffset (Areg, chanNum)
Areg := DataReg[chanNum]
DataReg[chanNum] := PointerReg[chanNum]
PointerReg[chanNum] := CountReg[chanNum]
CountReg [chanNum] := Breg
Breg := Creg

Microcomputer Division Confidential 75 Restricted Document September 27, 1988

Microcomputer Division Confidential

2 INITIALISATION, BOOTING, ANALYSING AND CHECKING

2.1 Introduction

Author: Roger Shepherd

This section is concerned how a transputer system is initialised and debugged. The details of the initialisation
of the external memory interface are described in a separate section.

2.2 Resetting and Analysing

A transputer is reset in order to Initialise its internal state. external memory interface and then to boot. If a
transputer is active when it is reset it stops operation immediately. A transputer is reset by pulsing the Reset
pin whilst holding the Analyse pin low.

A transputer is analysed in order to investigate its internal state. It stops operation in a way that preserves
much of its state and then starts to boot; it does not initialise its external memory interface. A transputer is
analysed by taking and holding the Analyse pin high. then pulsing the Reset pin and then taking the Analyse
pin low.

After a transputer has booted it is possible to tell whether the transputer was reset or analysed by executing the
'Test Processor Analysing' instruction. This will load the Areq register with MachineTROE if the processor
was analysed or with MachineFALSE if the processor was reset.

Analyse

The Analyse pin exists in order that the state of a transputer system can be investigated. This is achieved
by bringing the system to a halt in such a way that the state of the individual transputers in that system can
be examined.

A system is analysed by analysing all the transputers in the system in the following manner.

The Analyse pin is asserted which causes the system to come to a halt after a specifiable time. The Reset
pin is then asserted. while continuing to assert the Analyse pin. for at least the specified Reset hold time and
is then taken low. while still asserting the Analyse pin. The Analyse pin is then de-asserted and the transputer
will boot. Note that the earliest time at which the transputer is guarenteed to be able to receive a message
remains specified relative to the fall of Reset rather than the fall of Analyse.

Analysing a system brings it to a halt as a result of each transputer in the system coming to a halt. The
components of transputer respond to the assertion of Analyse in the following manners:

Processor

The processor only responds to Analyse at certain points during its operation. When one of
these point is reached the processor halts any process which is executing and then ignores
any scheduling requests made by the links or the timer.

If the processor Is not executing a process when analyse is asserted the processor responds
at once and halts immediately.

If the processor is executing a process when analyse is asserted the processor responds
by halting at either the next descheduling point (ie 'StartNextProcess') or the next point
at which a low priority process would be timesliced (this will be an unconditional 'jump' or
a 'loop end' instruction). Note that it is possible for a high priority process to pre-empt
a low priority process after analyse has been asserted. in which case the processor will
halt during the execution of the high priority process. The Iptr of a processor which has
been halted in this manner will point to the byte of memory following the final byte of the
instruction which caused the process to be halted. A list of instructions on which a process
can halt is Included at the end of this section.

Timer

The clock stops when analyse Is asserted. Any processes waiting for the timer will either

Microcomputer Division Confidential 76 Restricted Document September 27, 1988

Microcomputer Division Confidential

be scheduled or will remain on the queue.

Links

Author: Roger Shepherd

The assertion of Analyse has no effect on input links; they continue to operate normally,
sending acknowledges and making scheduling requests as appropriate. (Any scheduling
requests made after the processor has halted will not succeed).

The assertion of Analyse causes output links to output at most a few more data packets.
They respond correctly to acknowledge packets and will make scheduling requests as ap­
propriate. (Any scheduling requests made after the processor has halted will not succeed).
The number of data packets which a link will output after Analyse is asserted is bounded
by the number of bytes in a processor word.

Information available after booting an analysed transputer

The value that the processor's Wdesc had when the processor halted is available in the Breg register. This
will be (NotProcess.p \ / 1) if the processor were not active.

The value that was in the processor's Iptr when the processor halted is available in the processor's Areg
register.

The ErrorF1ag and Ba1tOnErrorF1ag are in the same state as when the processor halted.

For some of the other information available after analy~is to be meaningful it is necessary to initialise state
after booting a transputer. (This is initialisation of state in addition to that needed to ensure correct operation
of the transputer).

Provided that the process word associated with a link channel was initialised to NotProc8s8.p then if that
process word contains a process descriptor then the channel was being used for output, (unconditional) input
or alternative input when the processor halted.

Provided that the count register of an input link channel was initialis~d to 0 the value in that register will
indicate whether the link was ready when Reset was asserted. If the count register contains 1 then the
channel was ready. Otherwise (and less usefully) the state of the count register of a link channel will be as
described below.

The value in a link channel's count register will be valid provided that the channel has not
been used during booting other than for loading the boot program or writing to memory.

If the link channel was being used for output then the value in the count register indicates
whether the message transfer had completed. If the count is 0 then the message transfer
had completed and the process would have been scheduled if the processor had not halted.

If the link channel was being used for (unconditional) input then the value in the channel's
count register indicates whether the message had completed; if the count is 0 or 1 then
the message transfer had completed and the process would have been scheduled if the
processor has not halted. If the count is 1 then the first byte of a following message had
arrived.

NB In general it is NOT possible to perform this examination of a link's count registersI

If two processes are communicating and waiting on either end of a link then the message being transferred
is held in the outputing transputer. If a process has input a message but has not yet resumed execution then
the message is held correctly in the inputting transputer.

The timer list pointer words may be read and thus the contents of the timer queues may be determined.

The front and back pointers of the process queues may be read and thus the contents of the process queues
may be determined.

Microcomputer Division Confidential 77 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

2.3 Instructions where processor may halt

Instructions which may cause the processor to halt and the consequence of the processor halting on that
instruction.

1 Jump
2 Loop end

3 End Process

4 Stop Process
5 Stop On Error
6 Input Message

7 Output Message
Output Byte

8 Timer Input

9 Alt Wait

10 Timer Alt Wait

the jump would have been taken.
the instruction has updated the count
locations and the consequential jump would
have occured.
the process count will have been
updated and the process would have been
descheduled
the process would have been descheduled
the process would have been descheduled
the process descriptor will have been
left in the channel and the process
would have been descheduled.
the process descriptor will have been
has output to a channel from which
another process was performing
alternative input that other process
will have been scheduled. The process
would have been·descheduled.
the process will have been inserted
into the timer queue and would have
been descheduled.
the value Waiting.p will have been
written into the State location
and the process would have
been descheduled.
the value Waiting.p will have been
written into the State location, the
process will have been inserted into
the timer queue if appropriate and the
process would have been descheduled.

Microcomputer Division Confidential 78 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

2.4 Booting

The transputer will boot either as a result of being Analysed or of being Reset. A program can test whether
the processor booted as a result of being Reset or Analysed by executing the 'Test Processor Analysing'
instruction. .

The way in which a transputer boots is controlled by the BootFromRomNotLinks pin; if this pin is held high
then the transputer will boot from ROM, if it is held low the transputer will boot from a link.

Booting from ROM

The transputer starts executing in the following state

Ipt~ = ResetCode -- two bytes be10w the top of memo~y}

Wdesc =MemStart \/ 1 -- 10w p~io~ity, fi~st free wo~d of memo~}

Areq = previous va1ue of Ipt~

B~eq = previous va1ue of Wdesc
C~eq is undefined

The B~~0~F1aq and Ba1tOnE~~o~F1aq are preserved.

The clocks are stopped.

The process queue pointer registers, timer queue locations and link count registers all contain their previous
values.

The pointer, count and data registers of the link channels contain their previous values.

Microcomputer Division Confidential 79 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

Booting from a link

The first link channel to become active determines the transputer's action.

If the value of the first byte received is 0 then a word of address is input, followed by a word of data which is
written to that address. The transputer then determines its further action by the next byte recieved.

If the value of the first byte received is 1 then a word of address is input, a word of data is read from that
address and output down the corresponding output link. This will destroy the content of the count register of
the outputting link channel. The transputer then determines its further action by the next byte recieved.

If the value of the first byte received is 2 or greater then the transputer inputs that number of bytes into its
memory, starting at MemStart and then starts executing in the following state

Ipt.r = MeDLSt.art.)
Wdesc = HeDLSt.art + « (CodeLength+3) / 4) • 4) \/ 1)

-- 10w priorit.y, first free word of memory)

Areq = previous value of Ipt.r
Breg = previous value of Wdesc
Creg = pointer to the link from which transputer booted

The ErrorF1ag and Ba1t.OnErrorFl.ag are preserved.

The clocks are stopped.

The values in the process queue pointer registers and timer queue locations are preserved.

The pointer, count and data registers of the link channels, other than the booting channel, contain their
previous values.

The count register of the booting channel is preserved.

Actions to be performed by the booting program

The high and low priority front of queue registers must be initialised to NotProcess . p. This must occur
before the booting program attempts to pass any messages or run any program.

The timer queue words must be initialised to NotProcess.p and the clock must be started by executing a
'Store Timer' instruction. This must be done before any attempt is made to wait on the timer.

The ErrorFl.ag and Ba1t.OnErrorFl.ag must be initialised.

In order that the analysis system works properly the link channel process words should be initialised to
Not.Process .p, the count registers of the link channels should be initialised to zero.

Microcomputer Division Confidential 80 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

2.5 Error detection by hardware

Certain run time errors such as arithmetic overflow and subscript errors are checked by transputer instructions.
These all signal the presence of an error by setting the sticky ErrorFJ.ag. This may be explicitly set, cleared
and tested by instructions.

The ErrorFJ.ag is sticky only within a priority level.

The state of the ErrorFJ.ag is brought out of the transputer via the Error pin.

There is mode of operation where whenever the ErrorFJ.ag changes from a 0 (unset) to a 1 (set) the
processor is brought to an Immediate halt. This mode is selected via the HaJ.tOnErrorFJ.ag which may
be explicitly set, cleared and tested by instructions.

The definition that the processor will halt on a 0 to 1 transition of the ErrorFJ.ag ensures that a transputer
which has been halted as the result of the ErrorF1ag being set can be booted and analysed whilst
preserving both the ErrorF1ag and HaJ.tOnErrorFJ.ag. The act of clearing the Error bit re-enables the
check.

When the processor halts as a result of the Error bit becoming set (ie after the HaJ.tOnErrorFJ.ag is
set), the :Iptr will point to the byte of memory which is two bytes beyond the last byte of the instruction
which generated the error. (Note that this is not the same state as the :Iptr of a processor which has been
analysed). The processor does not execute any further instructions, does not respond to any Run or Ready
requests from the links nor respond to any Timer requests. The timer continues to tick and the links continue
to transfer data.

2.6 Instructions which may cause the Error flag to be set

1 Add Constant
2 Check subscript from 0
3 Check count from 1
4 Set Error
5 Add
6 Subtract
7 MUltiply
8 Divide
9 Remainder

10 Check word
11 Check single
12 Long Add
13 Long Subtract
14 Long Divide
15 Fractional Multiply
16 Check Floating Point Error

Microcomputer Division Confidential 81 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

2.7 Differences between halt-on-error and analyse

The state of the IPtr of a process which has 'halted on error' or has been analysed can be determined by
examining the Areg of the processor when it is booted. However, the relationship between the value of the
Ipt.r and the instruction which was being exeuted when the processor halted is different in these two cases.

Where a processor has been analysed the Iptr will point to the byte of memory following the final byte of
the instruction which caused the process to be halted.

Where a processor has halted as a result of the Error bit becoming set (ie after the Ba1t.OnErrorF1ag
is set), the Iptr will point to the byte of memory which is two bytes beyond the last byte of the instruction
which generated the error.

Microcomputer Division Confidential 82 Restricted Document September 27, 1988

Microcomputer Division Confidential

3 MEMORY CONFIGURATION

Author: Roger Shepherd

3.1 Order of reading configuration information

The configuration register is loaded starting at bit 0 and finishing at bit 35.

3.2 Memory Interface configuration address

The configuration addresses are word addresses. The values put out on the memory interface will have bits
AD2 to AD31 corresponding to the word address. Bits AD1 and ADO are 1.

Configuration information is held as close to the top of memory as possible. The two highest byte location of
the address space are occupied by the ROM boot,instructions so the first available full word is #7FFFFFF8.
Therefore addresses #7FFFFF6C through #7FFFFFF8 are used to contain the memory interface configuration
information.

In keeping with the standard ·little endian· convention used elsewhere in the transputer architecture the least
significant bit corresponds with the least significant address. This means that #7FFFFF6C contains bit 0 and
#7FFFFFF8 contains bit 35.

Microcomputer Division Confidential 83 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

T11sb
T1 msb
T21sb
T2 msb
T3 19b
T3 msb
T41sb
T4msb
T5 19b
T5 msb
T6 Isb
T6 msb
not81 19b
not81
not81
not51
not51 msb
not521sb
not52
notS2
notS2
notS2 msb
notS31sb
notS3
notS3
notS3
not53 msb
not841sb
notS4
not84
not84
notS4 msb
Refreshlntervallsb
Refreshlnterval msb
RefreshEnable
LateWrite

#7FFFFFF6C
#7FFFFFF70
#7FFFFFF74
#7FFFFFF78
#7FFFFFF7C
#7FFFFFF80
#7FFFFFF84
#7FFFFFF88
#7FFFFFF8C
#7FFFFFF90
#7FFFFFF94
#7FFFFFF98
#7FFFFFF9C
#7FFFFFFAO
#7FFFFFFA4
#7FFFFFFA8
#7FFFFFFAC
#7FFFFFFBO
#7FFFFFFB4
#7FFFFFFB8
#7FFFFFFBC
#7FFFFFFCO
#7FFFFFFC4
#7FFFFFFC8
#7FFFFFFCC
#7FFFFFFDO
#7FFFFFFD4
#7FFFFFFD8
#7FFFFFFDC
#7FFFFFFEO
#7FFFFFFE4
#7FFFFFFE8
#7FFFFFFEC
#7FFFFFFFO
#7FFFFFFF4
#7FFFFFFF8

This gives the following association of addresses with bits in the configuration register.

Word address Bit of configuration Function
register
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Microcomputer Division Confidential 84 Restricted Document September 27, 1988

Microcomputer Division Confidential

3.3 Memory Map

Byte Address
#7FFFFFFE (ResetCodePtr)

i7FFJfFFIi'6C

i7FFFFFFF8

#80000048 (MemStart.)

#80000044 (Ereg:tntSave)
#80000040 (STATOS:IntSave)
#8000003C (Creg:tntSave)
#80000038 (Breg:tntSave)
#80000034 (Areg:IntSave)
#80000030 (:tptr:IntSave)
'8000002C (Wdesc:IntSave)

'80000028 (LTimerPtr)
'80000024 (HTimerPtr)

'80000020 (ChanTopAddr)

#8000001C
'80000018
#80000014
#80000010
#8000000C
#80000008
#80000004
#80000000 (MostNeg)

Author: Roger Shepherd

10w high
+-----------------------------+
I I Reset :tnst I
+-----------------------------+
I I
- Memory configuration -
I I
+-----------------------------+
I I
I I- -
I I
I I
+-----------------------------+
I Ereg Save Space I
I STATOSreg Save Space I
I Creg Save Space I
I Breg Save Space I
I Areg Save Space I
I :Iptr Save Space I
I Wdesc Save Space I
+-----------------------------+
I Timer Low Priority Pointer I
I Timer High Priority Pointer I
+-----------------------------+
I Event Process Word I
+-----------------------------+
I Link 3 :Input Process Word I
I Link 2 :Input Process Word I
I Link 1 :tnput Process Word I
I Link 0 :tnput Process Word I
I Link 3 Output Process Word I
I Link 2 Output Process Word I
I Link 1 Output Process Word I
I Link 0 Output Process Word I
+-----------------------------+

Microcomputer Division Confidential 85 Restricted Document September 27, 1988

Microcomputer Division Confidential

4 FUNCTION OF PADS AND PIN-OUTS

Author: Roger Shepherd

4.1 Function of pads

BootFz:omRomNotLinksPad (Input Pad)

When this input pad Is high, the processor will boot Itself from the external memory by executing the code at
the byte address (MaxInt- 2). (#7FFFFFFE on the t414).

When this pad is low, the processor will boot itself from the first link to receive data. The first byte is a count
value of the number of bytes of code to be received. This count value must not be zero or one. The channel
should then receive code. This code is loaded from the first free address above the reserved words of the
links, event channel timer queue pointers, and interrupt save locations.

ChanOSpeedPad (Input pad)

This pad controls the Baud rate of Link O. When ChanOSpeedPad is low, Link 0 runs at 10MBaud. When
ChanOSpeedPad Is high, Link 0 runs at 20MBaud if ChanSpeedSOMhzNot2sMhzPad is high. When
ChanOSpeedPad is high, Link 0 runs at 5MBaud if ChanSpeedsOMhzNot2sMhzPad is low.

ChanlTo3SpeedPad (Input pad)

This pad controls the Baud rate of Links 1, 2, and 3. When ChanlTo3SpeedPad is low, Links 1,
2, and 3 run at 10MBaud. When ChanlTo3SpeedPad is high, Links 1, 2, and 3 run at 20MBaud if
ChanSpeedSOMhzNot2sMhzPad is high. When ChanlTo3SpeedPad is high, Links 1, 2, and 3 run at
5MBaud if ChanSpeedS OMhzNot2sMhzPad is low.

Microcomputer Division Confidential 86 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

ChangePadsForTestPad (Input pad)

This pad is taken high only during test. When the pad is taken high, a number of other pads change their
function to enable direct reading of the uCode Rom, parametric testing of the Link Output Pads, and checking
of the Internal link clocks from the link Phase lock loop. The pads change as follows:-

LinkJ:nput [0] becomes TestShiftJ:n (used to shift in the uWord Address for testing the uCode Rom)

LinkJ:nput [1] becomes Enab1euRomTest (Enables the uCode Rom Test)

LinkJ:nput [2] becomes notDoDPDriversfromROM (When high, enables the shift register for the Rom
test. When low, allows the DataPath Drivers to read a value from the Rom)

LinkJ:nput [3] becomes TestShC1k (Shift clock for the uCode test shift register)

StatusErrorOutPad becomes TestShiftOut (used to shift out the uWord Data for testing the uCode
Rom)

LinkOutput [0] is driven from the inverse of the value on LinkJ:nput [0]

Li.nkOutput [1] is driven from the inverse of the value on LinkJ:nput [1]

LinkOutput [2] is driven from the inverse of the value on LinkJ:nput [2]

LinkOutput [3] is driven from the inverse of the value on LinkJ:nput [3]

BighFromPhi1ToPhi3Pad is driven with the output of the Links Phase Lock Loop divided by 2.

ChanSpeedSOMhzNot25MhzPad (Input pad)

This pad is used in conjunction with ChanOSpeedPad and Chan1To3SpeedPad When this pad Is high,
the links can run at either 20MBaud or 10MBaud, depending on the value of the ChanOSpeedPad and
Chan1To3SpeedPad When this pad is low, the links can run at either 5MBaud or 10MBaud, depending
on the value of the ChanOSpeedPad and Chan1To3SpeedPad.

C1oc::kJ:nPad (Input pad)

This pad is connected to the 5Mhz crystal source, and provides the frequency reference for the processor's
phase lock loop. This input is TTL compatible.

Disab1eJ:nternal.RamPad (Input pad; not Bonded)

When this input pad is connected to vdd, both the internal RAM and the Test RAM are disabled and all the
address space is given to the external memory interface. A fuse can be blown to have the same effect as
taking Disah1eJ:nternal.RamPad high.

Microcomputer Division Confidential 87 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

EventAckPad (Output pad)

When the event channel accepts a request the event channel asserts the EventAckPad. The EventAcJcPad
will be deasserted when the EventReqPad has been deasserted. When the EventAckPad is deasserted,
the Event Channel is ready to accept the next request.

EventReqPad (Input pad)

When this input pad Is asserted a request is made to the event channel.

ExtMemPacLADPin [31 : 0] (Bi-directional Pads)

These are the AddressDataPads for the External Memory Interface.

ExtMemPad B~CK (Output pad)

ExtMemPad..BACK going high Acknowledges the AddressDataPads (ExtMemPacLADPin [31 : 0]) being
high impedance after ExtMemPacUmEQ is taken high.

ExtMemPad..BREQ (Input pad)

When ExtMemPacUmEQ is taken high, then once the External Memory Interface has completed anyout­
standing processor, or refresh requests, the AddressDataPads (ExtMemPacLADPin [31: 0]) will be taken
high impedance.

ExtMemPad....MCON (Input pad)

This pad is used to configure the external memory interface. ExtMemPacUCON can be connected dlrrectly
to one of the AddressDataPads (ExtMemPad-ADPin [31: 0]) or from the output of an inverter whose
input Is connected to one of the AddressDataPads. If ExtMemPad.MCON Is connected dirrectly to an
AddressDataPad, then the External Memory Interface will configure to the Pre-Programmed configuration
whose address is the same as the number of the AddressDataPad ExtMemPacLKCON is connected to.
If ExtMemPa.cl..KCON is connected to an AddressDataPad using an inverter, then the External Memory
Interface will configure from a configuration placed in external ROM.

ExtMemPad..notASPIN (Output pad)

When this signal is taken low, the AddressDataPads (ExtMemPad...ADPin [31: 0]) hold the correct address
for the commencing memory cycle.

ExtMemPad..notPSPIN [3 : 0] (Output pad)

These pads are user configurable strobes used by the external memory system.

ExtMemPacLnotREFRESB (Output pad)

When ExtMemPacLnotREi'RESB Is low, a Refresh cycle is in progress.

Microcomputer Division Confidential 88 Restricted Document September 27, 1988

Microcomputer Division Confidential Author: Roger Shepherd

ExtMemPad..notREPIN (Output pad)

This signal is taken low when a read cycle is to drive the AddressDataPads (ExtMemPad..ADPin [31: 0])
with the Data read from memory.

Ext.MemPad..notWEPIN [3: 0] (Output pad)

These signals are the External Memory Interface Byte Write Strobes. With one or more of these Pads taken
low. the corresponlng byte of Data Is written to external memory.

Ext.MemPacLWai.tPad (Input pad)

This Is the wait Input for the memory interface.

Gnd

These pads supply Ov.

Bi.ghFromPhi.1ToPhi.3Pad (Output pad)

This pad is used to check that the four internal clocks (Clocks[4:1]) are functioning correctly. Bi.ghFromPhi1ToPhi3
is also used to synchronise correctly for ExtMemPacLWaitPad.

LinkInputPad [3: 0] (Input pad)

These four pads are the link Input pads.

Li.nkOutputPad[3: 0] (Output pad)

These four pads are the link output pads.

PLL-Buff5MhzPad (Output pad)

This is a output buffered version of the processor's input clock.

PLL..RefGndPad

A capacitor should be connected between this input pad and PLL..llefVddPad

PLL-RefVddPad

A capacitor should be connected between this input pad and PLL..RefGndPad

Microcomputer Division Confidential 89 Restricted Document September 27. 1988

Microcomputer Division Confidential Author: Roger Shepherd

ProcTimeslno1:PLLSe1Pad (Input pad)

When this pad is asserted, the processor four phase clock generator takes its input from the Cl.ockIn pad.
When low, the four phase clock generator is fed from the processor's phase lock loop output, and it's input is
taken from either Cl.ockInPad if TimeslnotPLLSel.Pad is asserted, or Cl.ockInPad divided by five
if Timeslno1:PLLSel.Pad is not asserted.

ResetPad (Input pad)

When this pad is taken high the processor is reset. If Sys1:emAnal.ysePad Is low, then when the
ResetPad is taken high the external memory interface Is also reset. If the external memory interface
Is reset, then when the reset pad is taken low, the external memory interface will be configured. After the
external memory interface has configured, the processor will start to execute.

StatusErroroutPad (Output pad)

This output pad is asserted when the Status Error bit Is set in the processor.

SystemAnal.ysePad (Input pad)

When this input is taken high, the transputer will come to a clean halt ready for analysis after a system wide
error.

T:l.meslNo1:PLLSel.Pad (Input pad)

This Is a test pad that disables the link phase lock loop. When this pad is high, the input clock is used to
form the internal clocks without multiplication. The Clock register for the Timer ticks at one fifth the normal
rate, and refresh cycles occur at one fifth normal rate.

Vdd

These pads supply 5v.

Microcomputer Division Confidential 90 Restricted Document September 27, 1988

Microcomputer Division Confidential

4.2 84 lead J-Bend pin-out

Pad Number Pad Name

Author: Roger Shepherd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

PLL....B.efGndPad
Vdd
Times lNotPLLSelPad
Gnd
BoldToGnd
ChanqePadsForTestPad
StatusErrorOutPad
BootFromRomNotLinksPad
ResetPad
DisableInterna1RamPad
ProcTimeslnotPLLselPad
SystemAnalysePad
ExtMemPadLADPin[31]
ExtMemPadLADPin [30]
ExtMemPadLADPin[29]
Gnd
ExtMemPadLADPin[28]
ExtMemPadLADPin[27]
ExtMemPadLADPin[26]
ExtMemPadLADPin[25]
ExtMemPadLADPin[24]
ExtMemPadLADPin [23]
ExtMemPadLADPin[22]
ExtMemPadLADPin[21]
ExtMemPadLADPin[20]
Vdd
ExtMemPad..ADPin [19]
ExtMemPadLADPin[18]
ExtMemPadLADPin[17]
ExtMemPadLADPin[16]
ExtMemPadLADPin[lS]
ExtMemPadLADPin[14]
ExtMemPadLADPin[13]
ExtMemPadLADPin[12]
ExtMemPadLADPin[11]
ExtMemPad-ADPin[10]
Gnd
ExtMemPad-ADPin[9]
ExtMemPadLADPin[8]
ExtMemPadLADPin[7]
ExtMemPadLADPin[6]
ExtMemPadLADPin[S]
ExtMemPadLADPin[4]
ExtMemPadLADPin[3]
ExtMemPadLADPin[2]
ExtMemPadLADPin[l]
ExtMemPadLADPin [0]

Microcomputer Division Confidential 91 Restricted Document September 27. 1988

Microcomputer Division Confidential

Pad Number Pad Name

Author: Roger Shepherd

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
n
78
79
80
81
82
83
84

Gnd
ExtMemPadLnotPSPIN[O]
ExtMemPadLnotPSPIN[l]
ExtMemPadLnotPSPIN[2]
ExtMemPadLnotPSPIN[3]
Vdd
ExtMemPadLno1:ASPIN
ExtMemPadLnotREPIN
ExtMemPadLnotWEPIN [0]
ExtMemPadLnotWEPIN [1]
ExtMemPadLnotWEPIN[2]
ExtMemPadLnotWEPIN [3]
ExtMemPadLnotREFRESB
ExtMemPacLWaitPad
ExtMemPacLBAClt
ExtMemPacUmEQ
ExtMemPad..HCON
EventReqPad
Gnd
Even1:AckPad
LinkInputPad [3]
LinkOutputPad[3]
LinkInpu1:Pad [2]
LinkOutputPad[2]
LinkInputPad [1]
LinkOutputPad[l]
LinkInputPad [0]
LinkOutputPad[O]
Vdd
Chan1To3SpeedPad
BighFromPhi1ToPhi3Pad
ChanOSpeedPad
ChanSpeedSOMhzNot2SMhzPad
PLL...RefVddPad
PLL..BuffSMhzPad
DonotWire
C1ockInPad

Microcomputer Division Confidential 92 Restricted Document September 27, 1988

Microcomputer Division Confidential

4.3 84 lead PGA pin-out

Pad Number Pin Grid Pin Number Pad Name

Author: Roger Shepherd

1 F1
2 F2
3 F3
4 G1
5 H1
6 G2
7 J1
8 G3
9 K1

10 H2
11 J2
12 H3
13 J3
14 K2
15 K3
16 H4
17 J4
18 K4
19 J5
20 H5
21 K5
22 K6
23 J6
24 H6
25 K7
26 K8
27 J7
28 K9
29 H7
30 K10
31 J8
32 J9
33 H8
34 H9
35 J10
36 H10
37 G8
38 G9
39 G10
40 F9
41 F8
42 F10
43 E10

ProcT~eslnotpLLSe1Pad

SystemAna1ysePad
ExtMemPa~Pin[31]

ExtMemPa~Pin[30]

ExtMemPa~Pin[29]

Gnd
ExtMemPa~Pin[28]

ExtMemPa~Pin[27]

ExtMemPa~Pin[26]

ExtMemPa~Pin[2S]

ExtMemPadLADPin[24]
ExtMemPadLADPin[23]
ExtMemPa~Pin[22]

ExtMemPa~Pin[21]

ExtMemPa~Pin[20]

Vdd
ExtMemPa~Pin[19]

ExtMemPa~Pin[18]

ExtMemPadLADPin[17]
ExtMemPa~Pin[16]

ExtMemPa~Pin[lS]

ExtMemPa~Pin[14]

ExtMemPa~Pin[13]

ExtMemPa~Pin[12]

ExtMemPa~Pin[11]

ExtMemPa~Pin[10]

Gnd
ExtMemPadLADPin [9]
ExtMemPa~Pin[8]

ExtMemPa~Pin[7]

ExtMemPa~Pin[6]'
ExtMemPa~Pin[S]

ExtMemPa~Pin[4]

ExtMemPadLADPin[3]
ExtMemPa~Pin[2]

ExtMemPadLADPin [1]
ExtMemPa~Pin[O]

Gnd
ExtMemPadLDotPSPLN[O]
ExtMemPadLnotPSPLN[l]
ExtMemPadLDotPSPXN[2]
ExtMemPadLDotPSPXN [3]·
Vdd

Microcomputer Division Confidential 93 Restricted Document September 27, 1988

. - ~

Microcomputer Division Confidential

Pad Number Pin Grid Pin Number Pad Name

"­
~

Author: Roger She~rd

•

44 E9
45 E8
46 D10
47 C10
48 D9
49 810
50 D8
51 A10
52 C9
53 89
54 C8
55 88
56 A9
57 A8
58 C7
59 87
60 A7
61 86
62 C6
63 A6
64 A5
65 85
66 C5
67 A4
68 A3
69 84
70 A2
71 C4
72 A1
73 83
74 82
75 C3
76 C2
77 81
78 C1
79 D3
80 D2
81 D1
82 E2
83 E3
84 E1

ExtMemPad-notASPIN
ExtMemPad-notREPIN
ExtMemPad-notWEPIN [0]
ExtMemPad-notWEPIN[l]
ExtMemPad-notWEPIN[2]
ExtMemPad-notWEPIN[3]
ExtMemPad-notREFRESH
ExtMemPad_WaitPad
ExtMemPad...BACK
ExtMemPad...BREQ
ExtMemP ad...MCON
EventReqPad
Gnd
EventAckPad
L:i.nklnputPad[3]
L:i.nkOutputPad[3]
L:i.nklnputPad[2]
L:i.nkOutputPad[2]
L:i.nklnputPad[l]
L:i.nkOutputPad[l]
L:i.nklnputPad[O]
L:i.nkOutputPad[O]
Vdd
ChanlTo3SpeedPad
H:i.ghFromPhilToPh:i.3Pad
ChanOSpeedPad
ChanSpeedSOMhzNot2SMhzPad
PLL...RefVddPad
PLL...BuffSMhzPad
DoNotWire
ClocklnPad
PLL...RefGndPad
Vdd
T:i.meslNotPLLSelPad
Gnd
HoldtoGnd
ChangePadsForTestPad
StatusErrorOutPad
BootFromRomNotLinksPad
ResetPad
D:i.sablelnternalRamPad

•

Microcomputer Division Confidential 94 Restricted Document September 27, 1988

	Content
	1 TRANSPUTER INSTRUCTION SET
	1.1 Notation
	Constants
	Procedures

	1.2 Summary of Registers, Flags and Special Locations
	Timer
	Priority 0 Queue control
	Priority 1 Queue control
	Sequential process execution
	Initialisation, booting and analysis
	Interrupt save area
	Extra registers
	StatusReg

	1.3 Workspace
	1.4 Special values
	1.5 Memory Access Procedures
	1.6 Processor and Link-Channel interactions
	Overview and terminology
	Occam description
	Reset
	Link-channel behaviour

	1.7 Initialisation
	1.8 Processor operation
	Prioritised scheduling
	Action performed by processor when timer becomes ready
	Action performed by processor as result of link-channel request

	1.9 Clocks and Timeslicing
	1.10 Procedures used in the description of the Instruction set
	Procedures related to scheduling
	Procedures concerned with Timer queue manipulation
	Procedure used in alternative input
	Procedures used to implement block move
	Procedures used for input and output
	Other procedures used in the instruction descriptions

	1.11 Function set
	Direct, Prefixing and Indirect Functions
	Operations
	Direct Functions
	load local
	store local
	load local pointer
	load non-local
	store non-local
	load non-local pointer
	equals constant
	load constant
	add constant
	jump
	conditional jump
	call
	adjust workspace

	Register Manipulation Etc
	reverse
	return
	load pointer to instruction
	general adjust workspace
	general call
	minimum integer
	loop end

	Checking
	check subscript from 0
	check count from 1
	test error false and clear
	set error
	stop on error
	clear halt-on-error
	set halt-on-error
	test halt-on-error

	Addressing
	byte subscript
	word subscript
	byte count
	word count

	Data Access and Move
	load byte
	store byte
	move message

	Logic and Bits
	and
	or
	xor
	not
	shift left
	shift right

	Basic Arithmetic
	add
	subtract
	multiply
	divide
	remainder

	Comparison and modulo arithmetic
	greater than
	difference
	sum
	product

	Scheduling
	start process
	end process
	run process
	stop process
	load current priority

	Communication
	input message
	output message
	output word
	output byte
	reset channel

	Timer Input
	load timer
	timer input

	Alternative Input
	alt start
	alt wait
	alt end

	Skip Guards
	enable skip
	disable skip

	Channel Guards
	enable channel
	disable channel

	Alternative Timer Input
	timer alt start
	timer all wait

	Timer Guards
	enable timer
	disable timer

	Partword arithmetic
	extend to word
	check word

	Long arithmetic
	extend to double
	check single
	long add
	long subtract
	long sum
	long diff
	long multiply
	long divide
	normalise
	long shift left
	long shift right

	Booting and analysing
	test processor analysing
	save high priority queue registers
	save low priority queue registers
	store high priority front pointer
	store high priority back pointer
	store low priority front pointer
	store low priority back pointer
	store timer

	Floating point support
	unpack single length floating point number
	round single length fp number
	post-normalise correction of single length fp number
	load infinity
	check single length fp infinity or NaN
	fractional multiply

	Testing
	store to D register for testing
	store to E register for testing
	store to StatusReg for testing
	load D register for testing
	load E register for testing
	load StatusReg for testing
	single step TimeOut for testing
	test hard channel stack

	2 INITIALISATION, BOOTING, ANALYSING AND CHECKING
	2.1 Introduction
	2.2 Resetting and Analysing
	Analyse
	Information available after booting an analysed transputer

	2.3 Instructions where processor may halt
	2.4 Booting
	Booting from ROM
	Booting from a link
	Actions to be performed by the booting program

	2.5 Error detection by hardware
	2.6 Instructions which may cause the Error flag to be set
	2.7 Differences between halt-on-error and analyse

	3 MEMORY CONFIGURATION
	3.1 Order of reading configuration information
	3.2 Memory interface configuration address
	3.3 Memory Map

	4 FUNCTION OF PADS AND PIN-OUTS
	4.1 Function of pads
	4.2 84 lead J-Bend pin-out
	4.3 84 lead PGA pin-out

