THE T9000
TRANSPUTER
HARDWARE
REFERENCE
MANUAL

1st edition 1993

‘_ THOMSON
Rﬂﬂ@lﬁi@E&E@Tj‘ E‘%i@Rﬂl]@S
OMSON Microelectronics

INMOS transputer databook series

Transputer Databook

Military and Space Transputer Databook

Transputer Development and iq Systems Databook
Transputer Applications Notebook: Architecture and Software
Transputer Applications Notebook: Systems and Performance
T9000 Transputer Hardware Reference Manual

T9000 Transputer Instruction Set Manual

T9000 Development Tools — Preliminary Datasheets

INMOS reserves the right to make changes in specifications at any time and without notice. The
information furnished by INMOS in this publication is believed to be accurate; however, no responsibility
is assumed for its use, nor for any infringement of patents or other rights of third parties resulting from
its use. No licence is granted under any patents, trademarks or other rights of INMOS.

INMOS Limited 1993

”[mmoss, IMS, occam and DS-Link are trademarks of INMOS Limited.

Lyy, 353 THOMSON i< 4 registered trademark of the SGS-THOMSON Microelectronics Group.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TRN 238 01

ORDER CODE:DBT9000RMST/1

Printed in ltaly

Contents overview

Part 1: IMS T9000 Product Family Overviewcccoane,
1 Introducingthe IMSTO000ccoiiiiiinnniiinnnnn 3
2 The IMS TO000 transputerooeee it 7
3 Simplicity of systemdesign i 17
4 Protectionand errorhandling 21
5 Support for multiprocessing e e 23
6 Communication links ... 31
7 Network communicationst 39
8 Other communicationsdevicescoiviiiiii .. 47
9 Software and systemsi i 49
Part 2: IMS T9000 Transputer PreliminaryData
1 IMS T9000 introductionccoiiriiiiiiiiii i 59
2 Pindesignations i e 63
3 Central processing unitoiiiiieiiiiiennnnennn. 65
4 Floatingpointunit e 77
5 Memory management i 79
6 Instruction set e 85
7 Performancec.c.o i e e 101
8 Control systemttt e 105
9 Instruction and datacachet 129
10 Programmable memory interfaceo 149
11 CommuNICatioNS e 187
12 Events ... 205
13 Data/Strobe links e 209
14 Clocking phase locked 100pS 221
15 Configuration register reference guide 225
16 Package specificationso 233
17 Thermal managementoiiirrriniinenennnnieninns 235
18 Electrical specifications i, 239
Part 3: Communications SupportDevicescciiiiiviinirneaanas
1 IMS C100 system protocol converter preliminary data 245
2 IMS C104 packet routing switch product preview 305
3 IMS C101 parallel DS-Link adaptor product preview 307
Y o o =T 4 T T
A IMS T9000 special valuesc.oiiiiiiiiiiiiiiann. 309

B IMS T9000 quick reference guide 311

Contents overview

Contents

Prefaceoviiii e
Notation and nomenclaturec.ccoiiiiiiiiiiiiiiiiiinenn
SN CANCE ...t e
Signal naming conventionst
Timing diagram ConVentions it e
Font ConveNtions e
References e
Transputer product NUMDEIS et aee e
Part 1: IMS T9000 Product Family Overview e
1 Introducing the IMSTO000ccoiviiirrrnnnnnnnnnnncnnnnns
1.1 Performance e

1.2 MURIPIrOCESSING . .ot e e

1.3 Communications support deviCesoiuiiiiiiiiniininnene,

1.4 SOMWaAIE ...t e

1.5 Applications

2 TheIMS TI000 transputerciiiriiirrainranrrnnnrennans
2.1 OV BIVIBW .« . o ettt et e e e e
2141 PrOCESSOr ..\

21.2 Hierarchical memory system it

2.1.3 Communications SYStem it e

21.4 Multiple internalbuses oo i

215 CoNtrol SYStEM e

2.1.6 ClOCKS oo e

2.2 Thetransputer architecture
2.3 Support for CONCUITENt ProCESSESo\ttt et
2.4 Pipelined, superscalar implementation il
2.441 Thepipeline

2.5 Hierarchical memory system
251 Maincacheo e

Cache operationc.c.eiiiini e

Useason-chip RAM s

252 Workspace cache i

3 Simplicity of systemdesignl
3.1 Single 5 MHz clock input e
3.2 Programmable memoryinterface
3.3 Control links and configuration it
3.4 Loadingand bootstrapping

8.5 EXamMPles e e

g~ b 0w W

©OWWOWmw®mo~N N ~N

iv Contents
4 Protectionanderrorhandlingccoiiiiiiiiii i 21
4.1 Errorhandlingc i s 21

42 Protected mode 21
421 Protected mode proCessesoviiiiiii i 21

422 Executing illegal instructions 21

423 Memory management 22

5 Support for multiprocessingcoiiiiiiiiiii i i 23
Fast interrupt response and process switch 23

5.1 The transputer model of CONCUIMENCY i 23
5141 Processesandchannelsc.ociiiiiiiiiiiiiiiiins 23

5.1.2 Programstructure ... 23

Example ... e 24

5.1.3 Multiprocessor programs, 25

5.2 Othermodels of CONCUITENCY i it e 26
5.2.1 Shared MemMOry e 26

5.3 Hardwarescheduler i 27
54 Interrupts, events and timers 28
5.5 Shar@drESOUICESeriiiiit ittt i nanas 28

6 Communication linksc.coiiiii it 31
6.1 Using links between fransputers i i 31
6.2 Advantagesofusinglinks i 31
6.2.1 EffiCienCy ..o 31

6.2.2 SIMPliCItY .. o 31

6.2.3 Hardware independencettt 32

6.3 IMSTI000 INKS ... vt e 32
6.3.1 Virtualchannels e 33

Virtual links s 33

Sendingpackets ... 34

Receivingpackets ... 34

The virtual channel processorcoi it 34

Implementation i 35

6.3.2 Levels of link protocol e 35

Packet level protocol ... 36

Token level protocol ...t i e 36

Bitlevel protocol 37

7 Network communications e aaararaaas -]
71 MesSSage roUtingcvviiiii 39
Advantages forthe programmert 39

ROULEIS . . e 39

Separating routers and proCeSSOISoviiiiiiiirnenneennn. 40

Parallel networkst 40

7.2 ThelMS G104 ... e e et 40
Wormholerouting ... e 40

Minimizing routing delayst 41

Control INKS i ettt et e 42

Contents v
7.2.1 Using IMS T9000s with IMS C104s ...t 42
Headerdeletion i 42

Routing controlchannels 44

7.3 Routingalgorithms i s 44
7.3.1 Labelingnetworks s 45

7.3.2 Avoidingdeadlock 46

8 Other communications devicesoviieiiriiniininnennnns 47
8.1 Mixing transputer types: the IMS C100o it 47
8.2 Interfacing to peripherals and hostsystems o 47

9 Softwareand systemscciiniiiiiiiiinria s i 49
9.1 Development softwareot s 49
9.1.1 Configurationtoolsc i e 49

Hardware description 50

Software description ... i 50

Mapping softwaretohardware, 50

Configuration fanguages i 50

Types of NEtWOrKS o e e 50

9.1.2 Initializing and loadinganetwork oo i il 51

Levels of initialization 51

Bootinga systemfromlink i, 51

Bootinga systemfromROM i 51

9.1.3 HoSt servers s 51

9.1.4 Debugging ...t 52

9.2 IMS T9000 systems productsooiiiiinn i 53

vi Contents

Part 2: IMS T9000 Transputer Preliminary Data 55
1 IMS T9000 introductioncoiiiiiiiiiiiiiiirieaiinnanns 59
2 Pindesignationsc.cciiiiiiiiiiiii i i aaas 63

SUPPIES . e 63

Phaselocked loops ...t e 63

Programmable memory interface 63

Control SYSteM o 64

Communication links 64

EVeNtS .. e 64

Miscellaneous 64

3 Central processingunitco i iiiiiiiiiaaas 65
3.1 Registers 65
3.2 Workspacecachec i 66
Cache operation it s 66

3.3 Processes and CONCUITENCYutrteinnee et 67
B4 PHIOMY ..t 68
3.5 L-processes: local error handling and debugging ... 69
B8 TiMIrS .ot 71
37 Blockmove........................ e 72
3.8 SemMaPOreS e 72
3.9 PIpeline 72
3.91 Grouping of instructionso i 73

3.10 CPU configurationregisterso 75
Reason e 75

EmIBadAddressiiiiiii e 75

Initiallptr and InitialWptr ... 75

4 Floatingpointunitc..cciiiiiii it rainranarnncnas 77
4.1 Floating pointregisters 77
411 Floating-pointstack 77

41.2 Floating-point status register i 77

4.2 Floating point inStructions i 78
5 Memory management i i it e s 79
5.1 Protection, stack extension, and logical to physical address translation 79
5.1.1 Protection 79

51.2 Stack eXIENSION e 79

513 Logical to physical address translation 79

5.2 Regionso 80
5.2.1 Regiondescriptorsot 82

5.2.2 Non-overlapping regionsouiiiiii i 82

5.3 P-process machineregisters............ 83

5.4 Debuggingooiiiii 83

Contents vii
6 Instructionset.........c.iiiiiiiiiiii i i i e i 85
6.1 Efficiency of encoding s 85
6.2 Interaction of the processor pipeline and the instructionset 85
6.3 Instruction characteristicsc. o i 88
6.4 Instruction settables e 90
6.4.1 Primary instructions 90

6.4.2 Secondary instructions i e 91
Sequential instructions 91

Communication instructions il 95

Process scheduling instructions oo i, 97

Initialization and configuration instructions 98

Cache operation instructions 98

Floating point instructions i 99

7 PerformancCecuvicnrnrnrarenensnsnnnnsnsasannnsnnnsnnns 101
71 Integer operations 101
7.2 Floating point operationsottt e 103
7.3 Predefines ... i e 104
8 Controlsystemciiiviiiiieniiirrrriaasaasrarnsnnnrans 105
8.1 OVBIVIBW ettt e e e e 105
8.1.1 Tiersof handshaking o i 106

8.1.2 Autonomous operation i e 107

8.2 Control system interconnectionsc..oeoiiiininin ... 108
8.3 Control system functional description it 109
8.3.1 Control INKS e, 110

8.3.2 Packethandler i 111

8.3.3 Control UNit e 112
Command handler 112

AUutonomMOUS CONtrol o e 112

8.3.4 System ServiCes ... e 113
DevicelD ... e 113

DeVviCeREVISION e 113

ModeStatus e 113

ErrorCodeoo o e 114

DSLINKPLL . .. o e 114
SysServWriteLocK 114

8.4 Control COMMANAS ... ittt e 115
£ = o 115

Reset . .o e 115

Identify 115

5 o o 115

RECOVEIEITOr . .o e e e 116

CPEEK .. s 116

CPOKE ..o 116

PEEK . e 116

POKE o 116

BOOt . .o 116

viii

Contents

RUN L e 116

Reboot ... 116

Error MeSSaget e et 119

8.4.1 IMS T9000 gross state and validity of commands 119

B 5 EITOIS e e 121
8.5.1 Recording Of Errors o e 121

8.5.2 Stand alonemode errors i 122

8.5.3 Errorsoncontrol links e 122

8.5.4 Post-mortem debugging of IMS T9000 systems 123

State delivered to the bootprogram 123

8.6 Configuration e 124
8.6.1 Booting from link ... 124

8.6.2 Boot from ROMthenlink i i, 125

8.7 Resetlevels ... 126
8.7.1 Level O —hardwareresetttt 126

8.7.2 Level 1 —labelled control network, 126

8.7.3 Level 2 —configured network i i, 127

8.7.4 Level 3—booted network i i 127

8.75 Loading codeo 127

8.7.6 Levels ofreseteffect i 127
Instruction and datacachecociiiiiiinnnriniincnnns 129
9.1 CaChe OVEIVIEW e e e e 129
9.1.1 Cache organizationot e e 130

9.2 Cache functionaldescription i i 133
9.21 Port crossbar switchand arbiterco o oLl 134

9.2.2 Refillengineo 135

9.23 Replace pointer 135

9.3 Cache operationoiiiriiii it 136
9.31 Cacherequest i e 136

9.3.2 Arbitration 138
Queueingtoensure fairmnessccoiiii e i, 138

9.33 Cacheable and non-cacheable accessescoovvvvnenn. 140
Non-cacheable accessesc.ccuiiiiiieiiiinnaiinnnnn. 140

Cacheable aCCeSSeSot e e 140

9.3.4 Cacherefillcycles 141
Cache refills from 8/16 bitports L 142

Write-back cycles 143

DMA and cache-refillcyclesc oo 143

9.4 Cacheinstructions it 144
9.41 Flushing datafromthecacheoiiiit, 145

Flush dirty cache address (fdca)ccooiiiiii.... 145

Flush dirty cache line (fdcl) ..., 145

9.4.2 Invalidate cache blocko i 145
Invalidate cache address (ica)coveiiii. .. 145

Invalidate cacheline (icl)c.c i 145

9.4.3 Cache instruction performance ittt 145

9.5 Cache configurationregistersccoiiiiiii i 146
9.5.1 RamSize and DoRamSizeregisterscccoivvieiena.... 146

9.5.2 RamLineNumber, RamAddress and DoAllocate registers 147

9.6 Initializationofthecache i 147

Contents iX
9.6.1 Resetstatet e 147

9.6.2 Startingthecache i 148

10 Programmable memory interfaceccoiiiiiiiiiiiin, 149
101 PIinfunClions e 150
10.1.1 MemData0-63ciiitt it e e 150

10.1.2 MemAddr2-31 ... e 150

10.1.3 notMemWIBO-3 e 150

10.1.4 notMemRASO-3 s 150

1015 notMemCASO-3 e 151
10.1.6 nOtMemPS0-3 e 151

10.1.7 MemWalto e 151

10.1.8 MemRegin, MemGrantedccciiiiiiiiiiiiiiiiaa 151

10.1.9 MemReqOUL oot e 151
10.1.10 nOtMemBOOICE i et 152
10111 notMemRf e 152
10.1.12 notMemStrobe e e 152

10.2 External BuS CYCIESt e 152
10.2.1 External DRAMCYCIES e e 155

1022 Externalnon-DRAMcycles ... i 158

10.2.3 Bankswitchingcoiiiiiiii i s 159

10.24 Cacherefilleycles ... s 162
Cache refills from 8/16 bitportso, 162

Write-back cycles 162

Wait states and cache-refillcyclesol 162

1025 Bxternal DMA e 163

10.3 PMIl configurationregisters i e 164
10.3.1 Bank address registers: e e e 164
Address registers e 164

Mask registers 165

RAS bits registersoiii i e 165

Format controlregisters 165
DoPMIConfiguredregister ...t 168
Erroraddressregister e 168

10.3.2 Strobe timing registers e 169
Stroberegisters ... 169

Timing control registerso it 171

Refresh controlregister i 174

Remap boot bankregister ... 175

10.3.3 PMlwritelockregister 175

10.4 PMIITOrS . .o s 176
10.4.1 Errorsdetected bythe PMI P 176

PMl errors signalled bythe CPUot 176

PMlerrors signalledbythe PMIt 176

10.5 Initialization ofthe PMI e e s 177
10.5.1 Bootspace allocation 177

10.5.2 TheboOtSeqUeNCeot nieeiens 177

10.56.3 Bootspacetimingc.coiiiii i 178

10.6 Booting from ROM e e e 178
10.6.1 Bootingfrom EPROM s 178

10.6.2 BootingfromFlashEPROM it 179

Contents

1

10.6.3 Re-mappingthebootbank it 180

10.7 PMIAC timing characteristics i 181
Readcycle e 183

Write cyele 184

Consecutive CYCleS o e 185

Memory wait e e 186
CommuNicationscirriirriiiananansannaaaaaaaaas 187
11 OVBIVIEW . . oot e 187
1111 Channels 187
Internalchannels 187
Externalchannels i 187

11.1.2 Channel addresses o.i it 187

11.1.3 Communication instructions i 187

11.1.4 Efficient variable-length communications 188

11.2 Virtual channel ProCeSSOrttt et aea s 189
11.2.1 VCOP pProtoCol ..o e 189

11.2.2 Virtual links ... 189

11.283 VCPIHNKQUEeUES i 190

11.2.4 Virtual link control blocks i 191
vl.HeaderCtriword i 191
vl.DataQueueLink and vl.AckQueueLinkwords 192

11.3 Operationof the VCP e 193
11.3.1 Channel stateso e 193
Resettingchannels i 193
Stoppingchannels e 194

1104 RESOUICES ... i e 194
11.5 Byte-streammode ... 195
11.6 Memory and channel address Spacescoeiiiiiiinniinineennnns 196
11.6.1 Channel address SPacettt 196

11.6.2 Memory allocation for virtual linkso oL, 197
Memory start valueregister 198

Minimum invalid virtual channelregister 198

External resource channel baseregister 198

11.7 VCP configurationregisters e 199
11.7.1 VCP commandregister i 199

11.7.2 VCP statusregister 199

11.7.3 Header areabaseregisterot 200

11.7.4 Header offsetregisterst 200

11.7.5 Packet header limitregisters i, 202

11.7.6 VCPIlinkmoderegisters iiiiiiiiiiiiiineanns 202

11.7.7 ChanWriteLoCK e 202

11.8 Initialization of the VCP 203
11.8.1 VCPstateonstartup ..ot 203

11.8.2 VCPstatefollowingreset i, 203

T T = o ¢ P 204

Contents Xi
L7023 117 205
Inputeventchannel 205

Output eventchannel i 205

Use of event channels with interrupts 205

12.1 Eventchannel addressesuuuriure i et 206
122 Eventchannelstate i e 207

13 Data/Strobe linksc.coiiiiii i iiiiie i et 209
13.1 Link format and protocoli i e 209
13.2 Link functional descriptionu e 21
13.3 Low-levelflow control 212
13.4 Linkspeed select e 212
13.5 Errors on DS-LiNKS riii i e s 213
13.5.1 Reliable [iNks 214

Handling of errors onreliable finks o i il 214

13.5.2 Unreliable iNks e 214

13.6 Link configurationregisters 215
13.7 Initialization e 217
13.7.1 Linkstateonstartupo 217

13.7.2 Linkstatefollowingreset 217

13.8 Link CONNECHIONS e, 218
13.9 DS-LinK tmiNgsv ot e 219

14 Clocking phase locked IoOpScciiiiiiiiiii i iannnnnnnnns 221
141 CloCK iNPUL ... e 221
142 PLLAECOUPING ...t 221
14.3 Processor speed selection 222
14.4 Processor clock output e 222
145 ClocKIN timingst e e e e 223
14.6 ProcClockOut timingscouii e e s 224

15 Configuration register referenceguidec.coovvte. 225
15.1 Configurationbus e 225
15.2 Subsystem addreSSesttt s 225
15.2.1 Shared registerst e 225

153 CPUWrte IoCKINg it e 226
15.4 Subsystemregisters e 226
15.4.1 CPU configuration registersociiiiiiiiiiiinann. 227

15.4.2 PMlconfigurationregisters i 227

PMI bank address configuration registers 227

PMI strobe timing configuration registers, 228

15.4.3 VCP configuration registersc.. i 229

15.4.4 System services configuration registers 229

15.4.5 Cache configurationregisters, 230

15.4.6 Scheduler configurationregisterst iiin... 230

15.4.7 Link configuration registers i 230

15.4.8 Control link configuration registers 231

Xii) Contents

.16 Package specificationsccoiiiiiii it 233
16.1 208 pin CLCC package pinoutcoiirii i ennas 233
16.2 208 pin CLCC package dimensionst 234
16.3 208 pin CLCC package thermal characteristics 234

17 Thermal managementccoviirrrrrrnnnnnrnrsrennnnnnnns 235
171 Forcedairflow cooling i i 236
17.2 Heat SinKS o e 236
17.3 Other thermal managementtechniquesccoiiiiiiiiinnnan. 237

18 Electrical specificationscocioiiiiiiiii e 239
18.1 Absolute maximum ratings ...t e 239
18.2 Operating CoNditionNSottt e e e 239

18.3 POWEK 1atiNg . .. e 240

Contents Xiii
Part 3: Communications supportdevices 243
1 IMS C100 system protocol converter preliminary data 245
1.1 IMS C100 introductionot e e 246
1.2 IMS C100 modes of operationciiuiiiiiiii i, 248
1.2.1 MOdE PINS .« v ottt e e 248
1.2.2 Mode 0: Enables a single T9-series transputer to be used in a
T2/T4/T8-SerieS NBtWOIK\ttt e i 249
123 Mode 1: Enables a T2/T4/T8-series system to use a T9-series
subsystem ... 251
1.2.4 Mode 2: Enables a T9-series system to use an existing T2/T4/T8-series
subsystem ... 252
1.25 Mode 3: Enables a T9-series system to use a T2/T4/T8-series
. SUbSYStemM ... 254
1.3 LINKProtocols ocr et e 256
1.31 T2/T4/T8-series oversampled links oot 256
1.3.2 T9-series data/strobe links i 257
Byte-streammode 259
1.4 Link protoCol CONVEISIONttt e e e 260
141 Byte-stream conversion—modes0and2 260
Messages from the T9000to the T2/T4/T8ccvvviiinnn... 261
Messages from the T2/T4/T8tothe T9000ccoevun... 262
14.2 Packetized conversion—modes1and3 262
Messages from the T2/T4/T81t0the T9000ot 263
Messages from the T9000 to the T2/T4/T8ccoiiiinn... 263
1.5 Control ProtoCoISot e 265
1.5.1 T2/T4/T8-type CONtrolo i 265
15.2 TO-type control i e 265
Control ink protocols ..o e 266
1.6 Control protocol CONVEISIONu vttt it ieens 267
1.6.1 RAE master control (mode 0) ...t 268
Control commands sent by the IMS C100 in RAE master control mode . 269
Handshake and Error messages received by the IMS C100 from
the IMSTI000 ...ttt e e e 270
Behavior of the control system in RAE mastermode 270
ErrOrS . 271
1.6.2 CLinkO master control (modes 1,2and 3)ccovivvennn. 272
Control commands sent by the controlling processor (IMS T9000) to
the IMS C100 e e 273
ErrOrS e 278
OS-Link 0 special function—modes2and3 279
Commands which correspond to the protocol of an unbooted T2/T4/T8
raNSPULEr ... s 279
Resettingand Analyzing ...t e 280
1.7 LIRS e e 281
1741 Data links 281
Datalinkspeed pinscoviii e 281
DS-Link speeds inmode 0coiiiiiiiii e 281
DS-Link speedsinmodes1,2and 3.............cciiiinivnnnnnn... 281
Errors on DS-Links 282
Link conNectionsot e 284
1.7.2 Control INKSo vt 286
Control link speedsttt s 286
1.7.3 Starting and resetting links i 286

Xiv

Contents

1.8 Levelsofreset 287
1.8.1 Level 0 —hardwarereset i 287

1.82 Level 1 —labelled control network, 287

1.8.3 Level 2 —configured network 287

1.8.4 LeVel B o 287

1.85 Effects of different levels ofreset 287

1.9 Configuration e 288
1.9.1 Configuration spacec i 288

192 Configuration register addresses ..., 288

193 Configuration registers 290
System services configurationregisters 290

Data DS-Link configurationregisters, 291

Alldata links 292

Control link configuration registersol 292

Write lockregisterso i 292

1.10 Electrical specificationsc.c..iiiiiiii i 293
1.10.1 Absolute maximum ratingso i 293

1.10.2 Operatingconditions i 293

1.11 Recommended decouplinguuimiititet i 294
1111 Powerdecoupling i 294

1.11.2 Phase locked loop decoupling ..., 294

112 ClOCKS e e 294
1.12.1 Clockinputo 294

1.13 Timing specifications 295
1.13.1 Reset and Analyse timings 295
ResetOut and AnalyseOut timings, 295

TReset and Analyselntimings ool 295

1.13.2 ClockIn timings ...t e 296

1.13.3 DS-LinKtimings 297

1.13.4 OS-LinKtmMINgso e 298

114 Pindesignationsttt e e e 299
SUPPIES .. e 299

ClOCKS .o 299

LINKS oo e 299

Control unit 300

JTAG SUPPOI . . ottt 300

Miscellaneouso e 300

1.15 Package specifications e 301
1.15.1 IMS C100 100 pin cavity-up ceramic quad flatpack package pinout 301

1.15.2 100 pin ceramic quad flatpack package dimensions 302

1.15.3 IMS C100 100 pin cavity-up plastic quad flatpack package pinout 303

1.15.4 100 pin plastic quad flatpack package dimensions 304

IMS C104 packet routing switch product preview 305
21 IMS C104 introdUuCtionottt e 306

3 IMS C101 parallel DS-Link adaptor product preview 307

Contents XV

Appendices
A IMS T9000 special values e s «e... 309
A1IMS T9000 special valuescviiiirinnrrcncrnansnnsnans 310
B IMS T9000 quick referenceguidecccovuennt. 311
B1IMS T9000 quick referenceguideccoiiiiiiiiiiinnnn. 312
B1.1 Electrical specifications 313
B1.1.1 Absolute maximumratingso s 313
B1.1.2 Operating conditions 313
B1.1.3 Powerratingc.oii 314
B1.2 Timing specifications e 315
B1.21 Clockintimings i s 315
B1.2.2 ProcClockOuttimingso i e 316
B1.2.3 Programmable memory interface timings 317
Read CyCleo s 318
Write CycCle ... o 319
Consecutive Cyelest e 320
Memory wait 321
B1.24 Linktimingsooiun 322
B1.3 Processorspeed select e 323
B1.4 Linkspeed select i 323
B1.5 Package details oo e s 324
B1.5.1 208 pin CLCC package pinout i, 324
B1.5.2 208 pin CLCC package dimensionsooo.... 325
B1.5.3 208 pin CLCC package thermal characteristics 325

Contents

xvii

Preface

The T9000 Transputer Hardware Reference Manual provides information on the latest member of the
transputer range of microprocessors, the IMS T9000. Transputers are designed to provide extremely high
performance in single processor applications and are also designed with hardware and software features
for the construction of multiprocessing systems.

Other transputer products include the IMS T225, a 16 bit microprocessor, the 32 bit IMS T4xx series and
the IMS T8xx series, which are 32 bit microprocessors with an on-chip 64 bit floating point processor.
Details of these and their support devices can be found in The Transputer Databook, which is available
as a separate publication. Other transputer related documents, including various application and technical
notes, are also available from INMOS.

This manual consists of three parts. Part 1, an overview section, introduces the transputer architecture
and then the features and benefits of the IMS T9000 family. Part 2, the IMS T9000 transputer preliminary
datasheet, contains more detailed information on the IMS T9000 transputer. Part 3 contains information
on the communications support devices and includes the IMS C100 system protocol converter preliminary
datasheet, IMS C104 packet routing switch product preview and the IMS C101 parallel DS-link adaptor
product preview.

More detailed information on the IMS T9000 family communications devices is in preparation, and will be
issued as a separate document, titled the Transputer Networks Manual. It will contain datasheets on the
IMS C104 packet routing switch, the IMS C100 system protocol converter and the IMS C101 parallel DS-
Link adaptor.

For full details of the IMS T9000 instructions refer to the T9000 Transputer Instruction Set Manual.

Software and hardware examples given in this databook are outline design studies and are included to
illustrate various ways in which transputers can be used. The examples are not intended to provide accu-
rate application designs.

In addition to transputer products the INMOS product range also includes development systems and
systems products. For further information regarding INMOS products please contact your local SGS-
THOMSON sales outlet.

Xviii

Notation and nomenclature

The nomenclature and notation in general use throughout this databook is described below.

Significance

The bits in a byte are numbered 0 to 7, with bit 0 least significant. The bytes in words are numbered from 0,
with byte 0 least significant. In general, wherever a value is treated as a number of component values,
the components are numbered in order of increasing numerical significance, with the least significant com-
ponent numbered 0. Where values are stored in memory, the least significant component value is stored
at the lowest (most negative) address.

Similarly, components of arrays are numbered starting from 0 and stored in memory with component 0
at the lowest address.

Transputer memory is byte addressed, with words aligned on eight-byte boundaries on 64 bit devices,
four-byte boundaries for 32 bit devices and on two-byte boundaries for 16 bit devices.

Hexadecimal values are prefixed with #, as in #1DF.

Where a byte is transmitted serially, it is always transmitted least significant bit (0) first. In general, wherev-
er a value is transmitted as a number of component values, the least significant component is transmitted
first. Where an array is transmitted serially, component 0 is transmitted first. Consequently, block transfers
to and from memory are performed starting with the lowest (most negative) address and ending with the
highest (most positive) one.

In diagrams, the least significant component of a value is to the right hand side of the diagram. Compo-
nent O of an array is at the bottom of a diagram, as are the most negative memory locations.

Signal naming conventions

Signal names identifying individual pins of a transputer chip have been chosen to avoid being cryptic, giv-
ing as much information as possible. The majority of transputer signals are active high. Those which are
active low have names commencing with not. Capitals are used to introduce new components of a name,
as in ProcClockOut.

Composite signal names are given for names which refer to a number of pins, with the number of the pins

given atthe end ofthe signal name. For example, MemData0-63 refers to the 64 data pins. Note that Mem-
Data0 represents the least significant bit.

Timing diagram conventions
Cross hatch shading on a waveform diagram indicates that the signal can be high or low.
A minimum timing value with a negative value indicates that the transition of the second signal can occur

before the first signal. For example the minimum timing specification for address setup to strobe valid is
—6 ns, i.e. the strobe can be valid 6 ns before address setup.

Font conventions

The following font conventions are used throughout this databook.

XiX

References

Parameter Font Example
Signal / pin names bold ProcClockOut
Register names bold Areg

Bit names bold SpeedMultiply
Flag names bold FPErrorFlag
Errors italic FPError
Workspace special values italic Notprocess.p
Workspace offsets bold Link.s

Queue pointers bold eh.wptr
Memory locations bold MemStart
Instruction codes italic stopch
Command messages italic CPoke
occam program notation typewriter ChanOut

Table 1.1

Font conventions

This book is divided into three parts with each part having a number of chapters, sections and subsections.
Figures and tables have reference numbers tied to relevant chapters of a particular part of the manual.

Unless otherwise stated, all references refer to those within the current part of the manual.

Transputer product numbers
Product numbers take the following form:
IMS abc-xyyz
IMS = INMOS company identifier
a = Product group

T = Transputer

C = Communications peripheral
S = general software

D = Development software

F = Application software

B = Motherboards and TRAMs

b = Unique 3 or 4 digit product identifier
e.g. 9000 = 32 bit transputer with on-chip floating point unit.
¢ = Revision code

This is not present on all products.
Product traceability is guaranteed by a separate lot number found elsewhere on the package.

x = Package type

G =PGA

P = Plastic DIL

S = Ceramic DIL
J=PLCC

F = Ceramic QFP
X = Plastic QFP
N = Ceramic LCC
E = Plastic SOJ

yy = Speed variant
z = Specification

S = Commercial 0°C to +70°C

E = Extended —55°C to +125°C

| = Industrial 40°C to +85°C

M = Mil Std 883C —55°C to +125°C

(Note: x, yy and z apply to product groups T and C oniy.)

Part 1

IMS T9000
Product Family
Overview

Product Family Overview

1 Introducing the IMS T9000 3

1 Introducing the IMS T9000

The IMS T9000 is the latest member of the transputer family and is designed for embedded systems and
high performance computing applications.

INMOS has used advanced CMOS technology to integrate a 32-bit integer processor, a 64-bit floating
point processor, 16 Kbytes of cache memory, a communications processor and four high bandwidth serial
communications links on a single IMS T9000 chip.

The IMS T9000 transputer excels in real-time embedded applications, dellverlng exceptional single pro-
cessor performance and scaleable multiprocessor capability.

There is extensive, industry standard software support for all members of the transputer family; this in-
cludes high-level language compilers, systems software (such as real-time operating systems) as well as
an extensive range of development tools.

1.1 Performance

Itis essential that any microprocessor family designed for the embedded system market provides the re-
quired performance at low cost.

The transputer family includes a 16 bit processor, a range of 32 bit fast integer and |IEEE floating point
processors and now, the highest performance member of the family, the IMS T9000. These are all de-
signed to make it easy to design low cost, high performance systems.

* Single processor performance: the IMS T9000 transputer boasts exceptional single proces-
sor performance; the new superscalar pipelined CPU is capable of a peak performance of 200
MIPS and 25 MFLOPS.

¢ Real-time performance: the IMS T9000 offers sub-microsecond interrupt response and con-
text switch times, making it ideal for high performance real-time systems.

« Communications performance: the four IMS T9000 communication links provide a total of
80 Mbytes/second bidirectional bandwidth.

¢ Multiprocessor performance: the interprocessor communications architecture and multipro-
cessing architecture gives scaleable performance — the ability to increase the performance of
a system by adding more processors.

« Usable performance: the IMS T9000 implementation makes it easy for compilers to fully exploit
the superscalar performance using a range of industry standard programming languages.

¢ Price/performance: the IMS T9000 offers supercomputer performance at an embedded sys-
tems price.

1.2 Multiprocessing

For applications that demand performance that single processors cannot provide, the IMS T9000 has
complete on-chip support for multiprocessing:

« Hardware scheduler: the transputer architecture includes instruction level support for the cre-
ation and scheduling of any number of concurrent processes

« Inter-process communication: the transputer instruction set includes instructions for commu-
nicating between concurrent processes. The same instructions are used to communicate be-
tween processes running on a single transputer and between processes running on separate
transputers.

4 Product family overview

« Inter-processor communication subsystem: the presence of a dedicated communications
processor which operates concurrently with the main processor, makes interprocessor commu-
nications flexible and efficient. The integration of the communications system on-chip makes it
easy to write programs for multiprocessor systems and eliminates the need for communications
hardware such as shared memory or bus arbitration.

¢ System control and monitoring: all the IMS T9000 transputers in a system can be initialized,
loaded with code and monitored for errors through a completely independent control communica-
tions system.

1.3 Communications support devices

The IMS T9000 transputer is complemented by a range of communications peripherals that extend the
communications capabilities of the IMS T9000. The IMS C1XX family ensures that any size of IMS T9000
system can be constructed, connecting first generation and second generation transputers and providing
an interface to the outside world.

« IMS C104 packet routing switch: the IMS C104 is a complete routing switch on a single chip.
The IMS C104 connects 32 links to each other via a 32 by 32 way, non-blocking crossbar switch
with sub-microsecond latency. This allows simple, fast communication between IMS T9000
transputers that are not directly connected. Muitiple IMS C104s can be connected together to
make larger and more complex networks, linking any number of IMS T9000 transputers, or any
other devices that use the link protocol.

« |IMS C100 system protocol convertor: the IMS C100 system protocol convertor converts be-
tween the first generation transputer links and control signals and the new IMS T9000 protocol.
The IMS C100 provides an inter-networking solution for transputer systems, allowing networks
to be constructed using the optimum mix of transputers to satisfy processing power, communica-
tion bandwidth and system cost.

e IMS C101 link adaptor: the IMS C101 link adaptor interfaces between IMS T9000 links and ex-
ternal systems such as buses, peripheral devices and even other microprocessors.

1.4 Software

The success of any microprocessor is determined as much by the quality of its software development tools
as by any other feature.

INMOS has over a decade of experience in developing software tools for transputers and for multiproces-
sing systems. The range of compilers and powerful development tools support all the requirements of soft-
ware developers.

« Compilertoolsets: for fast time to market, and to satisfy the diverse programming requirements
of different application areas, the transputer can be programmed in one, or a mixture of the fol-
lowing languages:

= ANSI C, an IMS T9000 optimized version of the INMOS externally validated ANSI C tool-
set.

= C++

= 0ccam 2, a language designed by INMOS for efficient implementation of highly parallel
systems.

Each compiler is packaged as a separate Toolset product containing a complete set of develop-
ment tools for programming transputer systems. Designed to exploit the architectural features/
optimizations of the transputer, the toolsets offer a leading development environment for em-

1 Introducing the IMS T9000 5

bedded systems developers whether working on single or multiprocessor target systems.
Toolsets are available for industry standard Sun 4 and IBM PC compatibles (DOS 5, 386 mini-
mum spegcification).

INQUEST: targeting customer requirements for debugging and performance maximization, [N-
QUEST provides an advanced software development environment supplementing language
toolsets. INQUEST contains debugging and profiling tools using windowing graphical user
interfaces. .

System software: the transputer incorporates in hardware many of the features normally
offered by real-time executives. The efficient hardware operation offers significant performance
gains over equivalent microprocessor plus real-time executive combinations. Real-time execu-
tives are available for the transputer, such as products from CHORUS Systems including distrib-
uted Unix SVR3.2.

This impressive array of development tools, industry standard compilers and system software satisfies
the demands of the embedded systems market. It also ensures that the user can benefit from a significant
improvement in the critical time to market.

1.5

Applications

The transputer family provides unprecedented price/performance solutions for a wide range of embedded
systems applications.

The IMS T9000 transputer has been specifically developed to satisfy the requirements of three segments
of the embedded systems market:

Imaging: the imaging market comprises applications that involve the generatlon mampulatlon
and transmission of image data. Such applications include:

= Laser printers

= Graphics systems

= |mage processing systems

* |ndustrial inspection systems
= Robotics

= Scanners

Embedded computing: the embedded computing market comprises applications that are run
within a computer environment and add overall performarice and functionality to the computer
system. Such applications include:

= Application accelerators: (graphics, numerical, scientific, DTP)
= Disk arrays and high performance file servers

= Databases

= Xterminals

= Factory automation

Supercomputers: the supercomputers market targets heavy numerical algorithms to run with
considerable compute resource. The IMS T9000 and IMS C104 form an environment with scal-
able high performance distributed computing power. Applications include:

= Geophysical data analysis

6 Product family overview

= Simulation and modelling
= CAD
= High performance graphics

« Communications: the embedded communications market can be segmented into two main ar-
eas that require high performance microprocessors. These are:

= Networking: low cost LAN interfacing — FDDI, Ethernet; inter-networking systems —
bridges, gateways and routers.

» Packet switching systems.

The IMS T9000 transputer is highly applicable to the communications market due to its inte-
grated architecture combining high performance CPU and communication links with a packet
based protocol. The IMS C104 packet routing switch has been designed to support the
IMS T9000, and is useful in a range of telecommunications switching applications.

The transputer family provides a range of price/performance solutions for all the above applications.

2 The IMS T9000 transputer

2 The IMS T9000 transputer

The IMS T9000 is part of a broad range of 16 and 32 bit microprocessors. As well as providing high per-
formance processing, they are designed to be simple to use and enable the construction of low cost sys-
tems. Transputers include functions to enable multitasking on a single processor and the building of multi-

processor systems.

2.1 Overview

The IMS T9000 integrates a high performance central processing unit (CPU), a 16 Kbyte cache, commu-
nications system and other support functions on a single chip. The main functional blocks of the
IMS T9000 are shown in figure 2.1. The function of each of these is outlined below, more details will be

found in the following sections.

Central Processing Unit

32 bit Integer Unit

5 Stage Pipeline

64 bit Floating Point Unit

16Kbyte
Cache/
Internal
Memory

Programmable
Memory
Interface

Control Link

[/

Control Link

Virtual
Channel
Processor

DS Link
DS Link

DS Link
DS Link

Figure 2.1 Block diagram of IMS T9000

2141 Processor

The IMS T9000 CPU contains a 32 bit arithmetic and logic unit (ALU) and a 64 bit floating point unit (FPU).
The FPU operates on 32 and 64 bit floating point numbers as specified by the IEEE 754 standard. The

8 Product family overview

CPU also includes instructions for byte and half word operations. The CPU uses 32 bit linear addressing
and can address up to 4 Gbytes of memory.

The instruction set is designed for efficient execution of compiled code and there is a wide range of lan-
guage compilers available for the transputer including a Plum-Hall validated ANSt C compiler, 0ccam
and C++ compilers. These are complemented by a full set of software tools for developing and debugging
programs for single transputers and networks of transputers. In addition there are a number of system
level software products, such as real-time kernels and distributed operating systems.

The transputer includes hardware support for scheduling processes and performing communications.
These operations are directly supported in the instruction set.

The IMS T9000 can run code in protected mode. In this mode all memory accesses are made through
a memory management unit which checks and translates addresses before using them to address the
memory system. Further, a restricted subset of the full instruction set may be executed, preventing pro-
tected code from executing privileged instructions.

There is improved support for error handling over earlier transputers; errors can be trapped and handled
independently for each process in addition to the global error handling provided previously.

2.1.2 Hierarchical memory system

The IMS T9000 includes a 16 Kbyte unified cache to provide single cycle access to instructions and data.
The cache provides a peak bandwidth of 200 Mwords/s. The CPU also includes another small cache for
the most frequently used local variables of a program which provides an additional 150 Mwords/s of
memory bandwidth.

The external memory interface is highly programmable, allowing large memory systems, containing differ-
ent types of devices, to be built with little or no external logic. There are four independent sets of memory
control signals simplifying the use of different device types in the same system. The memory interface
operates with 8, 16, 32 or 64 bit wide devices. The maximum data transfer rate across the memory inter-
face is 50 Mwords/s.

2.1.3 Communications system

An important issue in multiprocessor system design is the communications architecture. To achieve effi-
ciency and ease of use, communications must be properly integrated into the entire processor architec-
ture.

The transputer hardware and instruction set provides simple and efficient communications between pro-
cesses and between processors. Both internal and external communications are handled identically, us-
ing the same source code and machine instructions.

To support interprocessor communications, there is a complete communications subsystem on chip. This
includes four 100 Mbits/s full-duplex, serial communication links each with its own pair of direct memory
access (DMA) channels. The links can be directly connected between transputers with no external buffer-
ing or other glue logic. The use of serial links simplifies routing of links on circuit boards and the intercon-
nection of boards in a system. A communications processor, which manages all link communications, op-
erates concurrently with the main CPU so that data transfers do not adversely affect CPU operation.

The communications subsystem also includes four ‘Event’ channels. As well as acting as interrupt inputs,
these can be used, as inputs or outputs, for more general synchronization and signalling.

2.1.4 Multiple internal buses

To support the high degree of concurrent operation on the IMS T9000, and to maintain the high internal
data rates required, there are four sets of 32 bit address and data buses internally. These provide
multi-port access to the on-chip cache from the various functional units of the IMS T9000.

2 The IMS T9000 transputer ~] 9

2.1.5 Control system

The control system handles most of the general facilities necessary for the operation of the IMS T9000
transputer including: initialization and configuration; reporting of errors; and resetting.

The control system comprises a control unit and a pair of control links. The control links are in addition
to the four communication links, and are provided for system control and monitoring independent from
program execution. Initialization and booting of the processor can optionally be done through these links.
The control links are connected in a chain which allows a control master at the head of the chain to commu-
nicate with, control and monitor, any device in the network through this fully independent communications
system.

The IMS T9000 transputers which do not boot from ROM are generally connected to a control processor,
possibly another IMS T9000. A high-level protocol is defined for the controlling network to allow the con-
trolling process to issue commands to, and receive responses from, devices in the control network. The
control unit handles commands and issues responses to the controlling processor.

There is also a reset input—however, as the IMS T9000 includes on-chip power-on reset circuitry, external
reset logic may not be required in an embedded control application.

2.1.6 Clocks

Two on-chip phase locked loops (PLL) generate all the internal high frequency clocks from a single clock
input (5 MHz), simplifying system design and avoiding problems of distributing high speed clocks external-
ly. The PLL’s require a decoupled power supply for satisfactory operation. The decoupling is performed
externally by connecting a 1uF ceramic capacitor.

The processor internal clock rate is variable in discrete steps. The clock rate at which the IMS T9000 runs
is determined by the logic levels applied on the three processor speed select lines.

2.2 The transputer architecture

An important design decision was that transputers should be programmed in a high-level language. The
instruction set has, therefore, been designed for simple and efficient compilation. The instruction format
eliminates redundancy ensuring maximum performance through fast internal datapaths. Variable length
instructions are chosen to give a compact representation of the operations most frequently occurring in
programs.

The CPU of the IMS T9000 contains three registers (Areg, Breg and Creg) used for expression evalua-
tion, which form a hardware stack. Loading a value into the stack pushes Breg into Creg, and
Areg into Breg, before loading Areg. Storing a value from Areg pops Breg into Areg, and Creg
into Breg. Similarly, the FPU includes a three register floating-point evaluation stack. When values are
loaded onto, or stored from, the stack the floating-point registers push and pop in the same way as
the Areg, Breg and Creg registers. Analysis of a large number of programs, shows that 3 registers pro-
vides an effective balance between code compactness and implementation complexity.

A separate floating point evaluation stack is provided, consisting of FPAreg, FPBreg, and FPCreg. The
floating point evaluation stack behaves in a similar way to the integer evaluation stack.

10 Product family overview

Registers Locals Program

Areg

Breg

Creg

Workspace pointer »~

Next Instruction pointer

Figure 2.2 Processor registers and memory
The transputer has two other registers used when executing code. These are:
¢ The instruction pbinter which points to the next instruction to be executed.

¢ The workspace pointer which points to an area of store where local variables are kept. This area
is also used as a stack for procedure calls, etc.

The addresses of floating-point values are formed on the CPU register stack, and values are transferred
between the addressed memory locations and the FPU register stack under the control of the CPU.

Most transputer functions use the contents of these stacks, and most instructions reference the stacks
implicitly. For example the add instruction adds the top two values in the CPU stack, leaving the result on
the top of the stack. The use of a stack reduces the need for instructions to specify the location of their
operands, which reduces the size of instructions and hence of compiled code. Transputer object code is
typically 70% of the size of equivalent CISC code.

2.3 Support for concurrent processes

Most computers have the ability to effectively run several user tasks or processes concurrently. These
processes are created and scheduled by the host operating system. The operating system kernel provides
the ability for processes to communicate with the operating system and with each other.

Every transputer includes a hardware scheduler with the ability to execute many software processes at
the same time, to create new processes rapidly, and to perform communication between processes within
a transputer and between processes on different transputers. All of these operations are integrated into
the hardware and instruction set of the transputer and are very efficient. Further details of the transputer’s
scheduling mechanism will be found in section 5.

24 Pipelined, superscalar implementation

To increase the execution rate of the transputer instruction set, the IMS T9000 is able to issue several
instructions per cycle. A superscalar pipelined architecture was designed which implements the same
high-level architecture as the IMS T805 but with much higher performance.

Some recent implementations of pipelined and superscalar microprocessors have required very careful
programming to obtain the claimed performance. They require that instructions are presented to the pipe-
line in a sequence that will keep the processor busy. This makes developing effective compilers very diffi-

2 The IMS T9000 transputer 11

cult, often forcing programmers to resort to assembly code to achieve the required performance. This puts
the burden of arranging the correct sequencing of instructions on the programmer, adding to the develop-
ment time and hence costs of a product.

The IMS T9000 incorporates an instruction grouping mechanism which scans the instruction stream,
collating groups of instructions, to achieve optimum loading of the CPU pipeline. This hardware grouper
relaxes the requirement on compilers or users, presenting instructions in particular sequences to obtain
peak performance.

Instruction
fetch

U

Instruction
grouping

V.

)
Workspace Non-local Main ALY/ :> Store/ |,
cache address cache :> FPU conditional

jump

Figure 2.3 Block diagram of grouper and pipeline

The details of the IMS T9000 pipeline are transparent to the programmer. The processor appears to be
the simple transputer architecture described above and straightforward code written for that programming
model will get nearly the best performance out of the processor. INMOS’ optimizing compilers for the
IMS T9000 take account of the internal architecture to generate even more efficient code.

2.4.1 The pipeline

Instructions are executed in a five stage pipeline: the first stage can fetch two local variables; the second
stage can perform two address calculations, for accessing non-local or subscripted variables; the third
stage can load two non-local variables; the next can perform an ALU or FPU operation; and the final stage
can do a conditional jump or write.

A conventional pipeline is designed to allow several instructions to be executed simultaneously; different

. parts of each instruction being handled in different stages of the pipeline. In order to allow multiple instruc-
tions to be issued per cycle (as well as multiple instructions being executed in each cycle) the IMS T9000
does not simply send a sequence of instructions through the pipeline but has hardware which assembles
groups of instructions from the instruction stream. These groups are chosen to make the best use of the
available hardware and one group can be sent through the pipeline every cycle. Instructions are put into
groups in the order that they arrive at the CPU; dependencies within the group are handled automatically
by the pipeline.

12 Product family overview

The grouper can be thought of as a hardware optimizer; it recognizes commonly occurring code se-
quences that the processor can execute efficiently. The design of the grouping mechanism and the pipe-
line is based on analysis of the code typically generated by high-level language compilers.

2.5 Hierarchical memory system

(-

CPU VCP € 4 full-duplex
(with internal registers) Scheduler Link engine | 3 serial links
>
| A A A A
~ |Instruction 32 bit data
buffer Workspace cache 32 bit address
(32 bytes)
|
\ [I Y ¥
Crossbar switch L Main cache
64 bit data

32 bit address

[

External memory

Figure 2.4 IMS T9000 hierarchical memory system

The IMS T9000 has a complete, hierarchical memory system providing fast and efficient access to data
and instructions. There are two separate caches on chip, a general purpose unified (code and data) cache
and a small cache for local variables.

These caches can provide fast, multi-ported access to data because they are on chip. They also reduce
the number and frequency of accesses to external memory, allowing lower cost, external components to
be used without degrading performance. Finally, because the majority of external memory accesses will
be cache refills (and therefore muitiple word reads and writes) fast memory access methods, such as page
mode, can be used.

2 The IMS T9000 transputer 13

CPU
Read Local read Write
| . Workspace cache
(write-through cache)
uncacheable read uncacheable write
Main cache

(write-back cache)

cache read cache write

Main memory

Figure 2.5 Levels of caching

25.1 Main cache

The main cache consists of four independent banks, each containing 256 lines. Each line holds data from
four consecutive words (16 bytes) in memory. An access can be made to every bank on every cycle which,
with the multiple internal buses, means there is a very high bandwidth between the cache and different
functional units within the IMS T9000.

14 Product family overview

CPU VCP PMI Scheduler

TOng g 8

Crossbar switch and arbiter

4 x 32 bit address buses
4 x 32 bit data buses

Four banks of cache

Figure 2.6 Diagram of four banks of cache

The four cache banks are accessed by a number of different functional units in the IMS T9000, some of
these units have multiple ports into the cache. To allow four simultaneous reads and writes to take place
in each cycle, there are four sets of address and data buses. An arbiter controls access from the various
functional units to the cache banks.

Cache operation

Each of the four banks is addressed by a quarter of the memory space. This division of the address space
is done using bits 4 and 5 of the address, the bottom four bits are used to select a byte within a line. Each
line consists of: 16 bytes of RAM for the data; 26 bits of associative memory which holds the address of this
line of data; and two control bits to indicate if the line is valid and if it has been modified since it was read in
(is ‘dirty’). When a memory access is made, the address is checked against the contents of the appropriate
bank. If the address is present (and the line is valid) then the access can go ahead, reading or writing the
data in a single cycle.

A cacherefill engine ensures that there is always one empty line available. Then, if a requested address is
not in the cache (a ‘cache miss’), the four words containing the data are read from memory into the empty
line. The refill engine then has to ensure that a new empty line is created. It does this by choosing a line at
random and, if the data has been modified since it was read into the cache, writing it out to memory. The
line is then marked as invalid, i.e. empty and available for use. This is known as ‘early write—back’ as it
writes the chosen line out to memory before a cache miss occurs.

The reading and writing of cache lines takes advantage of any fast memory access methods that are avail-
able (e.g. 64 bit wide accesses or page mode DRAM).

2 The IMS T9000 transputer 15

Use as on-chip RAM

At reset, the cache behaves as 16 Kbytes of on-chip RAM, enabling the IMS T9000 to be used with no
external memory. There may be many applications where a number of transputers are used, each requir-
ing little or no external memory — used in this way the IMS T9000 provides extremely high performance
(single cycle memory reads and writes) combined with extremely low cost (possibly no external compo-
nents except a clock). Starting up in this mode provides compatibility with earlier transputers which have a
fixed amount of on-chip RAM. It also makes it possible to test the hardware of a new transputer system as it
is known that there is 16 Kbytes of working RAM which can be used by test software.

During the initialization of the IMS T9000 the cache may be programmed to behave as 16 Kbytes of cache,
as 16 Kbytes of RAM, or as half cache and half RAM. This can be very useful when certain data or code,
e.g. aninterrupt handler, must be accessed quickly and in a more deterministic way than a cache provides.
The remaining 8 Kbytes of cache will be large enough to achieve high performance.

2,52 Workspace cache

The workspace cache holds a copy of the first 32 words of procedure stack and workspace. It is triple
ported, allowing two reads and a write in every cycle. The workspace cache allows local data to be ac-
cessed without going outside the CPU, effectively giving zero cycle access and reducing the load on the
main cache and external memory. It also means that the pipeline can do four data reads (as well as an
instruction fetch) in each cycle: 2 from the local cache and 2 from the main cache.

Because local variables can be accessed quickly, they can be read in the first stage of the pipeline and
can then be used for non-local address calculations in the next stage. The workspace cache is
write-through; whenever data is written into the local cache it is also written to the main cache. This means
there is no overhead for flushing the cache on interrupt or context switch.

The workspace cache is part of the processor pipeline and, in many ways, it is equivalent to the general
purpose register set found on other microprocessors, providing fast access to frequently used data. To
make use of this architecture, the INMOS ANSI C compiler recognizes the ‘register’ keyword and
places those variables lower in the function’s workspace so they are more likely to be cached.

16

Product family overview

3 Simplicity of system design 17

3 Simplicity of system design

Many features of the IMS T9000, as with the original transputer range, exist to simplify the user’s design
task and to reduce the amount of support hardware and software that is required. This means that design-
ers can spend more time working on their application and less time worrying about details. Using
transputers results in smaller, simpler designs, easier system debugging, faster time to market and lower
system cost. Some of these features and their benefits are outlined below.

3.1 Single 5 MHz clock input

All transputers, no matter what the processor speed, and all support devices require only a single 5SMHz
clock input; on-chip phase locked loops generate all the high frequency internal clocks required for the
processor and links. Transputer link operation is independent of clock phase, thus differences in the clock
phase between devices is notimportant. This means that each processor can have alocal clock or a single
system clock may be used for multiple devices.

This simplifies system clock generation and distribution, especially where multiple transputers are used.
The use of low frequency signals around a system can be particularly important in electrically noisy envi-
ronments such as industrial control systems.

3.2 Programmable memory interface

The first generation of 32 bit transputers have a memory interface which can be programmed to generate
all the timing signals required by a memory system, meaning that little external logic is required to build
a complete system.

The IMS T9000 takes this idea further by providing greater functionality and flexibility. The IMS T9000 pro-
grammable memory interface (PMI) provides complete support for DRAM including multiplexing of row/
column addresses, refresh, and page mode accesses. It is possible to connect many Megabytes of exter-
nal DRAM with no external logic. The amount of memory which can be connected directly is limited only
by capacitive loading; larger amounts of memory will require only the addition of buffering on the address
and data lines.

The IMS T9000 memory interface automatically exploits any fast access modes for the memory system.
For example if 64 bit wide DRAM is used then an entire cache line can be read in two memory operations.
If page mode DRAM is available, then reads or writes with the same row address will be done using page
mode, greatly reducing the cycle time. This will always be used for cache line reads and writes, where
four consecutive words will be transferred, but it will also work for any set of reads and writes from the
same page.

In addition to supporting fast DRAM, the IMS T9000 will also efficiently interface to other devices, such
as SRAM, ROM or memory mapped peripherals. The PMI on the IMS T9000 divides the address space
into four banks (not to be confused with the four banks in the main cache). Each bank provides separate
decoding and timing control, generating all the signals needed for the device types in that bank. The ad-
dress range, timing, memory type and bus width can be programmed independently for each bank. There
is an additional preset bank for slow, byte-wide ROM. This is intended for systems where the processor
is booted from ROM. Only memory reads can be done from this bank.

The parameters for the memory interface are programmed into a number of configuration registers. A soft-
ware tool is provided in the development toolsets to simplify the task of designing with the PMI. This tool
can be used interactively to describe the parameters for each memory bank. It then produces an output
file which can be used by other parts of the development system for initializing and loading transputers.
The program also produces timing diagrams and descriptions which can be used in documenting the sys-
tem design.

3.3 Control links and configuration

The IMS T9000 has a pair of control links. One is used by the IMS T9000 for receiving commands and
sending status information, the other provides a cascade connection so that some or all devices in a

18 Product family overview

system can be daisy-chained together. The control links use the same link protocol as the IMS T9000 data
links and provide a control network which is completely independent of the normal data communication
network.

The control links have through routing hardware so that the controlling processor (possibly an IMS T9000)
appears to have a direct connection to every device in the system.

The control links are kept totally separate from the links used for program communication in a system.
A program running on the IMS T9000 cannot send messages down the control links. The separation of
control and data links ensures that the control links are reliable and secure. For extra reliability, they can
be run at a lower bit rate.

CLinkO CLink1 CLink0 CLink1 CLinkO CLink1
— T9000 —— — T9000 |—— — T9000 —

Figure 3.1 Network of control links

The control links provide an independent communication network which can be used to load code, do
hardware debugging, monitor a running system for errors and perform diagnostic functions, both for a
single IMS T9000 and a network.

Because of the great flexibility of the memory interface and the communications system of the IMS T9000
there are a number of configuration registers that need to be programmed. For all of these, the develop-
ment tools will program the registers using high-level descriptions of the system. For example, as noted
above, there is an interactive tool for developing configuration data for the PMI. Similarly, the communica-
tion system is set up using high-level language descriptions of the software and hardware networks.

There are two ways of programming the configuration registers: by writing to them from a program running
on the IMS T9000 itself; or via a control link from the host system. The first method is used when the sys-
tem is booted from ROM, for example in an embedded system. The second method can be used in a de-
velopment environment or, in a multi-transputer system, where only one processor is initialized (or ‘confi-
gured’) from ROM and all the others are configured via their control links from that root processor. In both
cases the IMS T9000 development tools will generate the data to be programmed into ROM or sent to
the control link of a processor.

There are a number of stages of initializing and loading code onto the IMS T9000 after it has been reset.
These are known as ‘reset levels’ and during the initialization process, every IMS T9000 must go through
each level from complete reset, to having application code running. This can be done from ROM or through
a control link. The toolsets allow ROM systems to be built with a single system ROM or multiple local
ROM’s.

3.4 Loading and bootstrapping

The transputer can also be bootstrapped in two ways: from code received down a link or from ROM. All
INMOS development tools generate programs to be loaded by either method as required during develiop-
ment or in a production system.

There are a number of advantages to the ability to load code from a link. It greatly simplifies the develop-
ment cycle — there is no need to keep programming new EPROMs with new versions of code (or use an

3 Simplicity of system design 19

EPROM emulator); it can simply be loaded down a link. It simplifies testing of hardware — a transputer
provided with the minimal essential external signals (5 volts, clock, etc) will be guaranteed to work; there
is then16 Kbytes of on-chip RAM in which to load test code. In a multiprocessor system, only the root pro-
cessor needs to be booted from ROM — the others can be booted down a link with code contained in that
system ROM. It is even possible to switch between ROM and link booting, in order to do field testing and
diagnose faults in an installed system.

3.5 Examples

To show how simple it is to build systems using the IMS T9000, a few example block diagrams are given
here. In the simplest cases these are almost complete circuit diagrams.

The first example (figure 3.2) is a complete working system using the IMS T9000s internal RAM as the
system memory. The processor boots from ROM which contains the application software. This processor
can communicate with other transputers or peripherals through its data links. It can be set to boot from
ROM or from link for development and test purposes. The full16 Kbytes of on-chip RAM is available for
program workspace.

1]
+5V 1T ’ ‘ I
L VDD CapPlus CapMinus
StartFromROM
Q7 IMS T9000
EPROM
4 CLinko
18 Link0-3 J‘ OE
notMemBootCE CE
Reset MemAdd2-31 Address
Circuit Reset 8
MemData0-7 Data
5MHz Clockin
Clock
GND
Al other inputs tied to ground

Figure 3.2 Complete IMS T9000 system with EPROM

Figure 3.3 shows how a low cost system can be built using a small amount of SRAM. This could be com-
bined with ROM and peripherals for a low cost embedded application.

20

Product family overview

notMemPS1

MemAdd2-15
notMemWrB2
notMemWrB3

notMemWrBO

MemData0-7

2 x (64K x 4 SRAM)

E E

18 _{ Ao-15 A0-15
a0
Al B B

W DO0-3 W DO0-3

4 4
8

The third example in figure 3.4 shows how a large amount of DRAM can be connected to the IMS T9000

Figure 3.3 Low cost system with 64 Kbyte of SRAM

with no external logic for decoding, control signal generation or buffering.

——— 8Mbytes of IMx4 DRAM ————

notMemPS0 OE OE | ___. ___I0OE
notMemRAS RAS RAS | ___. —_IRAS
notMemCAS CAS CAS | _._. __lcAas
MemAdd2-31 AO-n AO-n be-a- AO-n
W DO-3 W Do-3 W DO-3
notMemWrB0 o
notMemWrB1 o
notMemWrB2 .
notMemWrB3 o
4 4 4
MemData0—63 6 el

The memory in each bank is enabled by separate strobe signals so all of the above memory types could

Figure 3.4 High performance system with 8 Mbytes of DRAM.

be combined on a single IMS T9000.

4 Protection and error handling 21

4 Protection and error handling

The IMS T9000 extends the error handling of earlier transputers to allow error conditions to be easily
trapped and handled in software. It can run code in a protected mode where all memory accesses are
checked and certain, privileged, instructions cannot be executed.

4.1 Error handling

The first transputers have only a global mechanism for trapping errors; stopping the entire processor when
an error is detected. The IMS T9000 extends this to allow a trap handler to be associated with a process
to provide more localized error handling (hence these processes are known as L-processes for local error
handling). When an error occurs, control is transferred to the trap handler with information about the nature
of the error and where it occurred.

The action of a trap handler will, in general, be dependent on the language or operating system being used
and will be invisible to the applications programmer. Some languages may include support for user written
error handlers. After taking the appropriate action, for example to report or correct the error, the trap han-
dler can return control to the process which caused the error which can then continue execution. Each
process can have its own trap handler, or one trap handler can be shared by several (or all) of the pro-
cesses on the transputer. :

4.2 Protected mode

The IMS T9000 can run code in protected mode. This is designed to allow run-time checking of programs
written in ‘unsafe’ languages such as C and also to provide memory management. For example, C allows
pointers to data or functions. Without checks for valid pointers, these could contain an illegal memory ad-
dress such as: another process’s data or code; a non word aligned address; or a function pointer which
does not point to valid code. As no checks are defined in the language it is important to be able to check
such accesses at run time, if needed.

The protection mechanism is intended to support software development and debugging, and program-
ming secure systems. It protects the user’s processes or tasks from each other and also protects an oper-
ating system kernel, or other run time support, from user code. Although code run in this mode is frequently
referred to as a ‘protected process’, it is not the process which is protected but the rest of the world that
is protected from errors in the process.

421 Protected mode processes

Any L-process can run a piece of code as a protected mode process (or P-process); the processor saves
the state of the L-process and starts executing the P-process. The P-process is executed until control is
returned to the L-process because of an error, protection violation or some other reason. It is important
to realize that P-processes are not scheduled by the transputer’s own scheduler — they only run under
the control of a supervisor L-process. Any of the instructions or other events that might cause a P-process
to be descheduled, will cause control to be returned to the supervisor. The relationship between a P-pro-
cess and its supervisor is analogous to that between an L-process and its trap-handler. In both cases the
processor can be thought of as swapping between the two pieces of code.

4,2,2 Executing illegal instructions

Because control is returned to the supervisor when a P-process attempts to execute a privileged or illegal
instruction, it is possible to provide communication and other facilities to a P-process in a controlled way,
but one which is invisible to the programmer. For example, the input and output instructions are privileged,
so if a P-process attempts a communication then it will trap to the supervisor L-process. This L-process
can examine the state of the P-process and, if the attempted communication is ‘legal’, perform the commu-
nication and return control to the P-process. The P-process will continue as if a normal communication
had occurred.

22 Product family overview

There is also a syscall (system call) instruction which can be used by a P-process to explicitly request
some action by the supervisor.

4.2.3 Memory management

When running in protected mode, all memory accesses are checked and translated. Each P-process can
access four regions of memory. The size and base address of each region can be set, and each can have
different protections. Each area can be given permission for code to be executed from it and for data to
be read or written. For example an area of memory containing code would normally be marked with ex-
ecute permission but write protected.

All addresses generated when the processor is running in protected mode are logical addresses. These
are translated to physical addresses by combining the low order bits of the logical address with the high
order bits from the control register for that region. The translation and checking is done in parallel with other
address generation operations and so imposes no overhead on memory access time.

The IMS T9000’s memory management can be used to implement swapping of memory to and from disk
and relocation (although it does not support page-based virtual memory). This can be used to implement
operating system kernels. It can also be used for ‘stack extension’. All the instructions which move the
workspace pointer are checked for a valid address after the operation. If it is found that the workspace
address is no longer valid then a trap occurs, the supervisor process can then allocate more memory for
the processes stack and restart it.

5 Support for multiprocessing 23

5 Support for multiprocessing

The requirement for processing performance in embedded systems is continuously increasing as control
algorithms become more sophisticated and as systems become more complex. In the long term, the only
solution to these ever increasing demands for performance is the use of multiple processors to perform
independent co-operating system functions.

Transputers are the only microprocessors specifically designed to tackle the problems of building multipro-
cessor systems.There are advantages other than just performance to using multiple transputers in a sys-
tem: it allows ease of system partitioning; it allows scaleable systems to be built, where more processors
can be added as demand increases, or to provide the optimum balance of price versus performance. The
communications facilities of the transputer family can also be used to build distributed systems where,
for example, the processors are located near the equipment or components they control and use links to
communicate with other processors in the system. In addition, transputers can be used to build high reli-
ability, fault tolerant systems.

Fast interrupt response and process switch

In most embedded applications, there is a need for fast real-time response (both to external interrupts and
for context switching in multitasking systems). The design of the IMS T9000 processor exploits the pres-
ence of the two on-chip caches by having only a small number of registers in the CPU. This means that
there is little state to be saved when an interrupt or task switch occurs, so these operations are extremely
fast. These types of operations are very efficient on the transputer because of the hardware scheduler.

The register stacks are duplicated so that, when a process running on the IMS T9000 is interrupted, the
contents of the stacks do not need to be written to memory. This results in a sub-microsecond interrupt
response. Furthermore, the duplication of the register stacks enables floating-point arithmetic to be used
in an interrupt routine without any performance penalty.

5.1 The transputer model of concurrency

The model of concurrency and communication implemented by the transputer hardware is based on the
ideas of communicating sequential processes. All the features for creating processes and communicating
between them are accessible from any high-level language for the transputer and are implemented direct-
ly by the occam programming language, see the occam 2 reference manual.

5.1.1 Processes and channels

Each process can be regarded as a black box with internal state, which can communicate with other pro-
cesses using communication channels. Each channel is a point to point connection between two pro-
cesses. One process always inputs from the channel and the other always outputs to it. Communication
is synchronized: the first process ready to communicate waits until the second is also ready, then the data
is copied from the outputting process to the inputting process and both processes continue.

Each process starts, performs a number of actions and then terminates. An action may be a set of sequen-
tial processes performed one after another, as in a conventional programming language, or a set of parallel
processes to be performed at the same time as one another. Since a process is itself composed of pro-
cesses, some of which may be executed in parallel, a process may contain any amount of internal concur-
rency, and this may change with time as processes start and terminate. Ultimately, all processes are con-
structed from three primitive processes: assignment; input and output.

Within the context of C programming, transputer processes with different semantics may also be used,
these are known as threads. A thread is a special case of a transputer process. Whereas processes have
a purely message based interface, threads of a process share code, static data and heap space. This
allows communication through techniques using shared memory objects such as semaphores, shared
memory areas and shared variables.

5.1.2 Program structure

Figure 5.1 shows an example of a system constructed from three communicating processes. In this case
there are separate processes to handle the external hardware (the screen and keyboard) and to execute

24 Product family overview

the main, application, process. This is a modular design — only the hardware handling processes have
to be changed if the software is moved to a new environment, the same interface (the data sent and re-
ceived on channels or ‘protocol’) can be presented to the application process. The keyboard handler can
be interrupt driven, only being scheduled when a character is typed, the interrupts appearing as communi-
cations. The input and output processes can provide buffering and other filtering of the data, all of which
is invisible to the main application process, which could even be placed on a separate processor. This use
of separate processors need not just be for performance reasons but might be done, for instance, if there
are a large number of peripheral devices which could be better handled by a low cost 16 bit transputer.
One or more high performance transputers could then be used for the main computing processes.

Keyboard Keyboard o
handler to application
Application
from application
Screen |-« Screen ppl

handler

Figure 5.1 Processes and channels
Example

The code for creating parallel processes in C is very simple. For example, if the three processes in the
example above are external functions, then the following code is all that is needed to run them in parallel:

#include <stdlib.h>
#include <channel.h>
#include <process.h>

/*
declare externally defined functions
*/
extern keyboard handler (Process *p, Channel *to_app, Channel
*echo);
extern screen_handler (Process *p, Channel *echo, Channel
*from_app);
extern application (Process *p, Channel *to_app, Channel *from app);

/*
declare pointers to process and channel data structures
*/
Process *kbd p, *scrn_p, *appn_p;
Channel *to_app, *from_app, *echo;

5 Support for multiprocessing

25

/*

allocate and initialize channel data structures
*/
to_app = ChanAlloc();

from app = ChanAlloc();

echo = ChanAlloc();
/*
allocate and initialize the process data structures
*/
kbd p = ProcAlloc (keyboard handler, 0, 2, to_app, echo);
scrn_p = ProcAlloc (screen_handler, 0, 2, echo, from_app);
appn_p = ProcAlloc (application, 0, 2, to_app, from app);
/*
now run the three processes in parallel, this call
will return when all three processes have terminated
*/

ProcPar (kbd_p, scrn_p, appn p, NULL);

A more complete explanation of how parallel programs can be written for the transputer can be found in
INMOS Technical Note 68, “Developing parallel C programs for transputers”, which is included in The

Transputer Development and iq Systems Databook (2nd edition).

The equivalent program in 0CCam would be:

CHAN OF BYTE to.app, from.app, echo
PAR
keyboard.handler (to.app, echo)
screen.handler (echo, from.app)
application (to.app, from.app)

5.1.3 Multiprocessor programs

\
/

Figure 5.2 Transputers and links

Every transputer implements these concepts of concurrency and communication. As a result, the same
model can be used to program an individual transputer or to program a network of transputers. Figure 5.2
shows a typical network of transputers connected by serial links. When a number of processes run on an

26 Product family overview

individual transputer, the processor shares its time between the concurrent processes, and channel com-
munication is implemented by moving data within memory. When this programming model is used to pro-
gram a network of transputers, each transputer executes the process, or processes, allocated to it.

Communication between processes on different transputers is implemented directly by transputer links.
Thus the same program can be implemented on a variety of transputer configurations, with one configura-
tion optimized for cost, another for performance, or another for an appropriate balance of cost and per-
formance as illustrated in figure 5.3.

Figure 5.3 Mapping processes onto one or several transputers

5.2 Other models of concurrency

Although the transputer has direct support for concurrent processes which communicate via channels,
it is possible to use the same features of the transputer to build other types of multiprocessor system or
to support different scheduling models. The IMS T9000 includes a number of instructions for manipulating
the transputer process queues; these make it simple to write real-time kernels, exploiting the efficient task
switching of the transputer architecture. There are also instructions for ensuring that the data in the cache
and in memory are consistent. These can be very useful when implementing a shared memory system.

5.2.1 Shared memory

In a shared memory system, a number of processors have some sort of common area of memory which
they can all access. This has some advantages over the channel communication model, especially where
very large amounts of data need to be shared or moved between processors. The transputer has hard-
ware and software support for shared memory systems.

The PMI has a set of signals for controlling access to the external memory interface by an external device.
This is primarily intended for use with a DMA based co-processor. It can also be used, with external arbitra-
tion logic, to allow all of the processors in a system to access the shared memory.

Alternatively, there may be a number of blocks of memory that can be switched into the memory map of
different processors under software control. These blocks can be used for exchanging data and passing
messages between processors. To synchronize the switching of these blocks of memory between proces-
sors, the ideal method is to pass messages over the transputer links; as the memory is switched to a pro-
cessor’s address space, it is sent a message from the previous user of the memory to inform it that it is
now the new ‘owner’ of the memory. This allows large amounts of data to be moved from one processor
to another but without the overhead of copying all of it over a link.

In any shared memory system, the use of a cache can be a problem. In the IMS T9000 there are instruc-
tions for forcing changed data in the cache to be written out to main memory and for marking data in the

5 Support for multiprocessing 27

cache as invalid so that it will be read from main memory. As the exchange of data is synchronized be-
tween processors, these instructions can be used to make sure that the correct data is in both the main
memory and the cache of the processors involved.

Itis also possible to mark banks of external memory to be ‘un-cacheable’; data from that area of memory
will never be put in the cache. This ensures that a number of processors or other devices which make
random reads and writes of that memory will always get the most up to date data. In this case there must
still be some synchronization of the memory accesses to make sure that information is not read by a pro-
cessor until it has been written; again, this synchronization can be done over the transputer links.

53 Hardware scheduler

The IMS T9000 processor includes a hardware scheduler which implements the transputer model of con-
currency. In many applications this will remove the need for a software kernel. However, the transputers
own scheduling mechanisms can be accessed from software to provide efficient support for the implemen-
tation of standard real-time kernels.

At any time, a transputer process may be:

Active — Being executed.
— Interrupted by a higher priority process.
— On alist waiting to be executed.

Inactive — Ready to input.
— Ready to output.
— Waiting until a specified time.
— Waiting on a semaphore.

The scheduler operates in such a way that inactive processes do not consume any processor time. The
active processes waiting to be executed are held on a list of process workspaces. This is implemented
using two registers, one of which points to the first process on the list, the other to the last. In figure 5.4,
P is executing, and @, R and S are active, awaiting execution.

Current process

Next Instruction

Workspace ptr

Active processes on queue
Front ptr
Back ptr

Figure 5.4 Transputer process queue

28 Product family overview

A process runs until it is unable to proceed because it is waiting to input or output, or waiting for the timer.
Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved;
it is not necessary for the processor to save the evaluation stack on descheduling.

5.4 Interrupts, events and timers

As well as process scheduling and communications, the scheduling hardware also supports simple handl-
ing of interrupts and timers. Any event that a process might need to wait for (whether it be a communica-
tion, an interrupt or a timeout) can be treated in the same way as a communication. For example, an inter-
rupt handler simply has to wait for an input from a special channel which is mapped onto an interrupt
(‘Event’) input. Because inputs are synchronized, that process will not proceed until the ‘input’ becomes
ready, i.e. until there is an interrupt.

This makes interrupts on the transputer very easy to use. An interrupt handler is simply a process like any
other waiting on an input from the interrupt ‘channel’. This contrasts greatly with the traditional idea of an
interrupt handler as something difficult which needs to use special instructions and be written in a very
different way from other program code (usually in assembler).

The IMS T9000 has four sets of pins, known as ‘Event’ channels, which can be used for control and syn-
chronization purposes. Each Event channel can be configured either as an input or an output. As inputs
they can be used as interrupts, to cause a fast processor response to external signals. When an Event
channel is configured as an output, the process outputting to it will be descheduled until the external device
provides the necessary handshake signal.

The transputer has two timers; one of which ‘ticks’ every microsecond, the other ticks every 64 microsec-
onds. The current value of the processor timer can be read, or a process can perform a timer input in which
case it will become ready to execute when a specified time has been reached. Both these uses of the timer
are treated as inputs similar to channel communication. If the timer is simply being read then the current
timer value is provided immediately; if the process is waiting for a particular time, then it is descheduled
until that time.

5.5 Shared resources

The IMS T9000 also provides efficient hardware support for controlling access to a shared resource. This
could be a hardware resource (e.g. a printer) or a piece of software running on a particular processor in
a network. Each process which wants to use the resource (a ‘client’) can make a request to the controlling
process (the ‘server’). This request is done in the form of a channel communication and can, therefore,
be done across a network by using transputer links. If the resource is available then the requesting client
is given access to it, otherwise it is put on a queue until the resource becomes free. If multiple clients re-
quest a resource then they are all automatically queued until it is available.

5 Support for multiprocessing 29

Server process

Client processes

Figure 5.5 Client/server model of resources

The resource mechanism can provide pairs of channels between the server and the processes accessing
it. This can be used, for example, to implement remote procedure calls across a transputer system.

30

Product family overview

6 Communication links 31

6 Communication links

Transputer links provide a simple and regular way of interfacing to peripherals and host systems as well
as communicating between transputers. On a single transputer, processes can communicate via chan-
nels; the provision of links allows processes on different transputers to communicate in the same way.
The IMS C104 routing device enables this communication to take place across a network, even between
transputers that are not directly connected.

The same communication model can be used to communicate with peripheral devices or a host system
using a link adaptor which converts from the bit-serial protocol of the links to a parallel port.

6.1 Using links between transputers

Transputer links can be used to implement point to point communication between transputers. This allows
transputer networks of arbitrary size and topology to be constructed. Point to point links have many advan-
tages over bus based communications in a multiprocessor system:

* There is no contention for the communication mechanism, regardless of the number of proces-
sors in the system. .

¢ There is no capacitive load penaity as more processors are added to the system.

¢ The communications bandwidth does not saturate as more communicating devices are added
to the system. Rather, the larger the number of transputers, the greater the total communications
bandwidth of the system.

* Because each transputer in a system uses its own local memory, overall memory bandwidth is
proportional to the number of transputers in the system. This is in contrast to a large, global
memory where the processors must share the available memory bandwidth.

For small systems, the four transputer links on the IMS T9000 can provide complete connection between
up to five devices. By using additional message routing devices such as the IMS C104, networks of any-
size can be built with complete connection between all IMS T9000s. If a system does not need complete
connection or the flexibility of routing that the IMS C104 provides, then networks can be built just from
directly connected transputers.

6.2 Advantages of using links

The advantages of using links for communication are efficiency, simplicity and hardware independence.

6.2.1 Efficiency

There is a separate DMA controller for every input and every output channel which allows data to be trans-
ferred without processor involvement. To exploit this, the transputer deschedules a process which is wait-
ing for a communication to complete, freeing the processor to execute another process. When the com-
munication is complete, the process is requeued, providing automatic synchronization with the data
transfer.

6.2.2 Simplicity

The communication links are very simple to use. The transputer has simple instructions for performing
input and output and these are available to the programmer either as function/procedure calls in a high-
level language or, in the case of 0CCam, as an integral part of the language. For example, in a C program,
to transfer an array of 256 bytes from the array data to a channel c, the following call could be used:

ChanOut (c, data, 256);

32 Product family overview

In 0OCccam, a similar operation could be written as:
c ! 256::data

This output operation requires four instructions: three to load the address of the channel, the address of
the data and the number of bytes, followed by the output instruction itself. It is worthwhile comparing this
with the complex code required to do the equivalent transfer on a traditional microprocessor. For example,
it would require a DMA controller to be programmed and, in order to allow some degree of multitasking,
it would be necessary to set up the interrupt hardware and write an interrupt handler to control the data
transfer. All of this is done automatically by the input and output instructions on the transputer.

As a more concrete example, consider the case of a file server running on a host system talking to a pro-
gram running on the transputer. This would provide the transputer program with all the host operating sys-
tem facilities such as filing system, terminal i/o etc. At the transputer end, the communication is very sim-
ple: a single line of code, as outlined above. At the host end, a lot of complex code (probably written in
assembler) is required to handle the data transfer, either programming a DMA controller or polling the sta-
tus registers of the memory mapped port. In the case of a Unix system, it will also be necessary to write
a device driver to interface to the hardware.

Of course, when the communication is between two transputers, then both ends of the communication
are equally simple.

6.2.3 Hardware independence

As well as being fast and easy to use, channel communications provide a degree of hardware indepen-
dence.

The same communication mechanism can be used to communicate between concurrent processes, with
peripherals or a host system, and even to handle interrupts. This simplifies the development and testing
of code as each process can be functionally tested before being used in the complete system. A good
description of program development for transputers can be found in INMOS Technical note 5: “Program
design for concurrent systems”, which is included in The Transputer Applications Notebook — Systems
and Performance.

Furthermore, exactly the same code can be used to communicate between processes on the same
transputer (using so called ‘soft channels’) and to communicate between transputers (using links, or ‘hard
channels’). Not only is the source code the same, but the same transputer instructions are used — the
transputer determines at run time whether it is using a hard or a soft channel. This saves the programmer
from having to make decisions about the final hardware implementation while developing and testing
code. The IMS T9000 takes this separation of software from hardware one step further than previous
transputers.

6.3 IMS T9000 links

On previous transputers the programmer was limited to assigning two channels, one in each direction,
to each link. To map a particular piece of software onto a given hardware configuration the programmer
has to map processes to processors within the constraints of available connectivity. The problem is illus-
trated in figure 6.1 where 3 channels are required between two processors, but only a single link connec-
tion is available.

One possible solution, and one that is frequently suggested by transputer users, is the addition of more
links. However this does not really solve the problems; there is still limited connectivity available. The num-
ber of extra links that can be added is limited by VLS| technology. This ‘solution’ does not address the more
general communication problems in networks, such as communication between non-adjacent proces-
sors, or combining networks in a simple and regular way.

As an intermediate solution INMOS has incorporated software routing mechanisms into the C and occam
toolsets to provide ‘unlimited’ connectivity.

6 Communication links

33

Process
A

Process
B

Process

Process
D

Process
E

Figure 6.1 Multiple communication channels required between processors

6.3.1 Virtual channels

The solution chosen in the IMS T9000 was to add multiplexing hardware to allow any number of processes
to use each link, so physical links can be shared transparently. These channels which share a link are
known as ‘virtual channels’; they have the same behavior as software channels.

The IMS T9000 has four data communication links, each with a DMA controller and the ability to synchro-
nize with the scheduling of processes. The links and DMA engines are controlled by a separate communi-
cations processor, the virtual channel processor (VCP), which works concurrently with the CPU. This sup-
ports practically a large number of virtual channels on each link.

Process
A

Process VCP

VCP

Process
D

Figure 6.2 Shared links between IMS T9000s

Virtual links

~ Each message sent across a link is divided into packets. Every packet requires a header to identify its
destination process. Packets from different messages are interleaved on the link. There are a number of .

advantages to this, as detailed below.

¢ It makes the transputer simpler to use as it separates the software configuration from the hard-
ware. The programmer does not need to limit the number of channels between processors or

explicitly allocate channels to links.

34 Product family overview

* Channels are, generally, not busy all the time therefore the VCP can make better use of hardware
resource by keeping the links busy with messages from different channels.

* Messages from different channels can effectively be sent concurrently — the processor does not
have to wait for a long message to complete before sending another.

Virtual channels are always created in pairs to form a ‘virtual link’; this means there is no need for a return
address in packets, the acknowledgements are simply sent back along the other channel of the virtual
link.

Sending packets

The IMS T9000 sends the first packet of a message and then waits for an acknowledgement from the
receiving processor before sending the next. The process which sent the message cannot proceed until
the last packet of the message has been acknowledged. Messages and acknowledgements from other
virtual links can be sent while waiting for an acknowledgement on a virtual link. This ensures that a single
virtual link cannot monopolize a physical link or cause deadlock.

/e N
— %
Packets arriving on link ////////

Figure 6.3 Multiple channels sharing a link

Receiving packets

The initial packet of a message is acknowledged if a process has requested a message on that virtual link.
The acknowledgement can be sent as soon as the inputting process is identified, as long as the inputter
is able to accept another packet. This means that the entire packet does not have to be received before
the acknowledgement is sent. In this way the acknowledgement can be received by the transmitter before
all of the data packet has been sent and the transmitter can send the next message packet immediately.

The IMS T9000 provides one packet buffer for each virtual link so that each input can be ready to accept
an unsolicited packet. This means that other virtual channels sharing a physical link are not delayed if one
virtual channel is not ready to input. This buffering of the first packet only takes place if the receiving pro-
cess is not ready to input, otherwise the data is written directly to the inputting process’s workspace. This
buffer is not visible to the programmer; all communications are still synchronized at the message level.

The virtual channel processor

The VCP routes messages to and from processes on IMS T9000s. It shares each physical link between
any number of processes. It also supports non-local communications by using the IMS C104 to route mes-

6 Communication links 35

sages in a network of transputers. This can provide multiple virtual channels between any two transputers
in a network. Requests to send messages are queued by the VCP so that the main CPU is not delayed
waiting for packets to be sent.

Implementation

To achieve the speed required to match a faster processor, and to support the virtual channel protocol,
a new, simple link standard has been implemented. The original transputer links are referred to as over-
sampled (OS) links and use a pair of wires. The IMS T9000 links have four wires for each link (a data and
strobe line in each direction) and are known as DS-Links. All signals are TTL compatible.

The links are asynchronous; the receiving device synchronizes to the incpming data. This simplifies clock
distribution within a system, the exact phase or frequency of the clock on a pair of communicating
IMS T9000s is not critical. It also means that devices with different processor speeds can communicate.

6.3.2 Levels of link protocol

As with many communications systems, the links can be be described at a number of levels with a hierar-
chy of protocols. At the highest level a message consists of the data that the user sends down a channel
from one process to another. Any type of data or message can be sent in this way. This communication
is synchronized; it will not take place until both processes are ready and the two processes will not continue
until the message transfer is complete.

First

header 32 data bytes end of packet| packet

°

.
header 32 data bytes end of packet

Last
header 1 to 32 data bytes end of message | packet
Long message (greater than 32 bytes)

header 0 to 32 data bytes end of message

Short message (0 to 32 data bytes)

header | end of packet

Acknowledge packet

Figure 6.4 High level protocol

36 Product family overview

Packet level protocol

In order to transfer a message from one IMS T9000 to another, the virtual channel processor sends it as
one or more packets. This allows packets from a number of different channels to be interleaved on the
same link. Each packet is acknowledged by the receiving IMS T9000, to maintain synchronized communi-
cation and to limit the amount of buffering required.

Every packet has a header defining the destination address followed by the data bytes and, finally, an ‘end
of packet’ or ‘end of message’ token. See figure 6.4.This simple protocol supports messages of any length;
the receiving device knows when each packet and message ends without needing to keep track of the
number of bytes received. It also maintains synchronization at the message level.

A packet can contain up to 32 data bytes. If a message is longer than 32 bytes then it is split up into a
number of packets all, except the last, terminated by an ‘end of packet’ token. The last packet of the mes-
sage, which may contain less than a full 32 bytes, is terminated by an ‘end of message’ token.

Shorter messages can be sent in a single packet, containing 0 to 32 bytes of data, terminated by the ‘end
of message’ token. With this protocol zero length messages can be sent, allowing efficient synchronization
between processors.

Packet acknowledgements are sent as zero length packets terminated with an ‘end of packet’ token. This
type of packet can never occur as part of a message because a zero length data packet must always be
the last, and only, packet of a message, and will therefore be terminated by an ‘end of message’ token.

Token level protocol

In order to support the packet level protocol described above, a lower level protocol is needed for encoding
tokens which may contain a data byte or control information. Each token has a parity bit plus a control
bit which is used to distinguish between data and control tokens. In addition to the parity and control bits,
data tokens contain 8 bits of data and control tokens have two bits to indicate the token type (e.g. ‘end
of message’).

Control bit
Parity bit 8 Data bits
|
Data token P 0 D D D D D D D D
End of packet token P 1 0 1
End of message token | P 1 1 0

Figure 6.5 Low level protocol

6 Communication links 37

Bit level protocol

At the lowest, hardware, level the signals on the data and strobe lines of a link encode a sequence of bit
values. The protocol guarantees that only one of the two wires has an edge in each bit time. The levels
on the data wire give the values of the transmitted bits. The strobe signal changes state whenever the
data wire does not. These two signals encode a clock with the data bits, enabling asynchronous detection

of the data at the receiving end.

Data

Strobe

Figure 6.6 Hardware level

The first generation of transputers use a phase locked loop to synthesize a high frequency clock signal
which is then used to sample the link data. This is adequate for the data rates involved, but would not easily

support the bit rates of 100 Mbits/s and greater used by the IMS T9000.

38

Product family overview

7 Network communications 39

7 Network communications

The use of INMOS links for directly connecting transputers has already been described. The new link pro-
tocol not only simplifies the use of links between processors but also provides hardware support for routing
messages across a network.

71 Message routing

The VCP (virtual channel processor) on the sending IMS T9000 packetizes messages to be sent over a
link and adds a header to each packet to identify the destination process. At the receiving end, the VCP
uses the header to send the data in each packet to the intended process. These headers can also be used
for routing packets through a communication system connecting a number of IMS T9000s together. This
extends the idea of multiple channels on a single hardware link to multiple channels through a communica-
tions system; a communications channel can be established between any two processes even if they are
running on transputers that are not directly connected. The header still just specifies the destination of
the packet; the programmer does not need to know how to route that message to its destination.

Advantages for the programmer

The ability to have channels between any two processes in a network has a number of significant advan-
tages for the programmer. It simplifies the description of multiprocessor systems by separating the hard-
ware architecture from the software configuration. The programmer doesn’t need to be concerned with
the details of placing channels on links or routing messages through the network. This removes a lot of
the problems with placing of processes on processors — the decision now can be made just on the basis
of the resources (memory size, etc.) available on each processor without worrying about the available
connectivity.

The programming model for networks of IMS T9000 transputers is unchanged from that for the first gener-
ation of transputers. There is, however, greater flexibility in configuring software. An important feature is
that the hardware and software configurations, and therefore their descriptions, can be kept completely
independent. The same hardware, and the same description of that hardware, can be used for many differ-
ent programs.

Routers

The routing components in a network can be separated from the processing elements. Messages can be
passed from one processor, through any number of routing devices, to the destination processor. This
creates a temporary path through the routing system for that message so, from the programmers point
of view, there still appears to be a single channel directly connecting a process on one transputer with a
process on another.

T9000 T9000 T9000 T9000

Routing system of one or
more routing devices

Figure 7.1 A routing system

As a packet arrives on a link, the destination address must be inspected before the outgoing link can be
determined. The time before the output link can be determined is therefore proportional to the address

40 Product family overview

length. Further, the address itself must be transmitted through the network and consumes network band-
width. It is therefore important that this address be as short as possible, both to minimize latency and maxi-
mize bandwidth.

The router needs to arbitrate between packets which arrive at the same time and have to be sent out of
the same link. Ideally, it should start to output the packet as soon as possible; i.e. immediately after the
output link is determined, provided that the link is not already in use by another packet. This keeps the
latency through the network small, in contrast to a typical packet switching network which uses a ‘store
and forward’ algorithm in which each packet is read into a buffer, the address information is decoded and
then the packet is sent out. The delay that would be introduced by this may be unacceptable for many
applications. Also the amount of buffering needed would make a VLS| implementation of a large routing
switch impractical.

Separating routers and processors

There are a number of advantages to keeping the communications devices and processing elements sep-
arate in a system. Processors can be directly connected where appropriate, which avoids the silicon costs
and extra routing delays in a small system that doesn’t need to use the routers. Also, the design of the
routing devices and processing elements can be optimized for their different roles. For example, the rout-
ing component can have a larger number of links than would be possible if the two devices were integrated,
because the processor already needs a large number of pins for the memory interface and other functions.
Having a routing device with many links means that large network with a small number of routers can be
built, hence minimizing cost and latency and maximizing bandwidth. If messages had to flow through the
processor, it would increase the pin count, power consumption and packaging costs. This approach also
allows the construction of scaleable architectures where the communications throughput and processing
power can be balanced.)

Parallel networks

Because the new link architecture allows all the virtual channels of a transputer to use a single link, com-
plete, system-wide connectivity can be provided by connecting just one link from each transputer to the
routing network. This means that the IMS T9000, with its four links, can be connected to several different
networks. This can be exploited in a number of ways. For example, two or more networks can be used
in parallel to increase bandwidth, to provide a general purpose communications network and an indepen-
dent monitoring/debugging network, or as a ‘user’ network running in parallel with a physically separate
‘system’ network.

7.2 The IMS C104

An important benefit of the IMS T9000’s serial links is that it is easy to implement a full crossbar in VLSI,
even with a large number of links. The use of a crossbar allows packets to be passing through all links
at the same time, making the best possible use of the available bandwidth.

If the routing logic can be kept simple it can be provided for all the input links in the router. This avoids
the need to share the hardware, which would cause extra delays when several packets arrive at the same
time. Itis also desirable to avoid the need for the large number of packet buffers commonly used in routing
systems. The use of small buffers and simple routing hardware allows a single VLSI chip to provide effi-
cient routing between a large number of links.

Wormhole routing

The IMS C104 (figure 7.2) is one of a family of compatibile communications support devices for the
IMS T9000. It includes a full 32 x 32 non-blocking crossbar switch, enabling messages to be routed from
any of its links to any other link. In order to minimize latency, the switch uses ‘wormhole routing’ — the con-
nection through the crossbar is set up as soon as the header has been read. The header and the rest of
the packet can start being transmitted from the output linkimmediately. The path through the switch disap-
pears after the ‘end of packet/message’ token has passed through. This is illustrated in figure 7.3. This
method is simple to implement and provides very low latency as the entire packet doesn’t have to be read
in before the connection is made.

7 Network communications 41

CLink 0 -
System Command —

services processor CLink 1 3

éf? Link 0 »
32x32 .
Crossbar :
switch

ﬂD Link 31 >

Figure 7.2 Block diagram of IMS C104
Minimizing routing delays

The ability to start outputting a packet while it is still being input can significantly reduce delay, especially
in lightly loaded networks. The delay can be further minimized by keeping the headers short and by using
fast, simple hardware to determine the link to be used for output. The IMS C104 uses a simple routing
algorithm based on interval routing (described in section 7.3.1).

T9000
or

C104

T9000
or

C104

T9000
or

C104

Figure 7.3 Packet passing through IMS C104

Because the route through each IMS C104 disappears as soon as the packet has passed through and
the packets from all the channels that pass through a particular link are interleaved, a single virtual channel
cannot ‘hog’ a route through a network. Messages will not be blocked waiting for another message to pass
through the system, they will only have to wait for one packet.

42 Product family overview

Control links

Like the IMS T9000, the IMS C104 has two control links. One link receives control and programming infor-
mation, the other enables all the devices in a system to be daisy-chained. The routing information for each
link of each IMS C104 is programmed, via the control link, from the controlling processor.

7.2.1 Using IMS T9000s with IMS C104s

A single IMS C104 can be used to provide full connectivity between 32 IMS T9000s. It can also be used
to connect other compatible communications devices, for example to provide an interface to first genera-
tion transputers via a protocol convetrter, or to peripheral devices via a link adaptor. IMS C104s can also
be connected together to build larger switches connecting bigger networks of IMS T9000s.

The IMS C104s that the packets pass through do not need to have information about the complete route
to the destination, only which link each packet should be sent out of at each point. Each of the IMS C104s
in the network programmed with information that determines which output link should be used for each
header value. In this way, each IMS C104 can route packets out of whichever link will send it towards its
destination.

Header deletion

An approach that simplifies the construction of networks is to provide two levels of header on each packet.
Note, headers are added by the VCP and values and lengths are set at initialization by the development
system. The first header specifies the destination transputer (actually, the output link from the routing net-
work), this header is removed as the packet leaves the routing system. This exposes the second header
which tells the VCP in the destination transputer which process (actually, which virtual channel) this packet
is for. To support this, the IMS C104 can route packets of any iength. Any information after the initial head-
er bytes used by the IMS C104 is just treated as part of the packet, even if it is going to be interpreted
as a header elsewhere in the system. The IMS C104 can set any output link to do header deletion, i.e.
to remove the routing header from the front of a packet after it has been used to make the routing decision.
The first part of the remaining data is then treated as a header by the next device that receives the packet.

Header used to select
T9000 ‘ virtual link in T9000

T9000

L.

VCP | T w7 IMS C104 T3

»| VCP

Header used to select
output link of C104

Figure 7.4 Header deletion

As can be seen from figure 7.5, by using separate headers to identify the destination processor and a
channel within that processor, the labeling of links in a routing network is separated from the labeling of
virtual channels within each processor. For instance, if the same 2 byte header were used to do all the
routing in a network, then the virtual channels in all the transputers would have to be uniquely labelled with
a value in the range 0 to 64K. However, by using two 1 byte headers, all the IMS T9000s can use virtual
channel numbers in the range 0 to 255. The first byte of the header will be used by the routing system
to ensure that the packets reach the appropriate IMS T9000 before the virtual channel number is decoded.

7 Network communications

(a) labeling the system with 2 byte headers

Network of C104s
T9000 T9000 T9000
Virtual
channels: 0-255 256-511 6528065535
(b) labeling the system with two 1 byte headers
Network of C104s
0 1 255
T9000 T9000 T9000
Virtual
channels: 0-255 0-255 0-255

Figure 7.5 Using header deletion to label a network

T9000

sub-network of C104s \

used to route packet
through sub-network,
deleted on output.

sub-network of C104s

used to route packet
through sub-network,
deleted on output.

| |]
final header used to idents‘

virtual channel on T9000

T9000

Figure 7.6 Using header deletion to route through sub-networks

44 Product family overview

The advantages of using header deletion in a network are:

« |t separates the headers, and therefore the routing information, for virtual channels from those
for the routing network.

¢ The labeling of the network can be done independently of the application software running on
the network.

¢ There is no limit to the number of virtual channels that can be handled by a system.

Any number of headers can be added to the beginning of a packet so that header deletion can also be
used to combine hierarchies of networks as shown in figure 7.6. An extra header is added to route the
message through each network. The header at the front of each packet is deleted as it leaves each net-
work to enter a sub-network.

Routing control channels
For very large networks, the usual method of connecting control links, in a chain, might introduce an unde-

sirable delay. In this case, because of the common virtual link protocol, an IMS C104 can be used to route
the control links to all the devices in a system more directly, as shown in figure 7.7.

CLinkO
CLinQ T9000
Control link CLinko
from host
IMS C104 CLinko
T9000
CLink0
CLinkO
Data link T
from host
IMS C104
CLink0
T9000

Figure 7.7 Routing control links through an IMS C104

7.3 Routing algorithms

In order to route a message through a network, an algorithm is required which is: complete (ensures that
all messages arrive); deadlock free; optimal (packets take the shortest route); scaleable (networks of any
size can be built) and simple to implement.

7 Network communications

45

7.3.1 Labeling networks

Link O

Link 1

Link 3|

Destinations reachable
from this output link

> 40, 18, 49
> 25,45 17, 6,39
Link2—» 54 20 28 34

— 36, 42

40

18

Link O X 549
Link1| 25' 4517 ' 6 ' 39
Link2| 24 22 ' 28 ' 34
Link 3 36? 42§

Lookup table required

Figure 7.8 Labeling a network

For each routing component there will be a number of destinations which can be reached via each of its
output links. Therefore, there needs to be a method of deciding which output link to use for each packet
that arrives. The addresses that can be reached through any link will depend on the way the network is
labelled. An obvious way of determining which destinations are accessible from each link, is to have a
lookup table associated with all the outputs (see figure 7.8). In practice, this is difficult to implement. There
must be an upper bound on the lookup table size and it may require a large number of comparisons be-
tween the header value and the contents of the table. This is inefficient in silicon area and also potentially

slow.

Link O
Link 1
Link 2

Link 3

Destinations reachable
from this output link

> 25,28,34,36,39
> 6,17
> 40, 42, 45, 49

—> 18,22,24

.18

.25 ..

40 ...

50
|

—— Link 2

™ Link 3

’i Link 1

Interval routing table required

Figure 7.9 Interval labeling

However, a labeling scheme can be chosen for the network such that each output link has a range of node
addresses that can be reached through it. Ifitis then ensured that the ranges for each link are non-overlap-

ping, a very simple test is possible. The header just has to be tested to see into which range, or interval,

it falls and, hence, which output link to use. For example, in figure 7.9, a header with address n would be

tested against each of the four intervals shown below:

Interval
6<n<18
18<n<25
25 <n<40
40 <n<50

»
»
»
»

Output link
1

3
0
2

46 Product family overview

The advantages of interval labeling are that:
e Itis ‘complete’ — any network can be labelled.

¢ ltis simple to implement in hardware —it requires little silicon area which means it can be provided
for a large number of links as well as keeping costs and power dissipation down.

e Because it is simple, it is also very fast, keeping routing delays to a minimum.

7.3.2 Avoiding deadlock

Deadlock can occur in a network unless the routing algorithm is designed to avoid it. Any program with
communicating processes can also deadlock if not designed carefully. It is important here, to distinguish
between deadlock as a property of the network and as a property of a program running on the network.
A deadlock free network cannot cause a program to deadlock (but, of course, neither can it prevent a badly
designed program from deadlocking). An essential property of a router in a deadlock free network is that,
like a transputer or an IMS C104, it can communicate on all of its links concurrently.

As a simple example consider a network of four nodes (see figure 7.10) with one link in each direction
between each node. If the routing algorithm sends all messages clockwise and all nodes start sending
to the opposite corner at the same time, every link will become busy and the network will deadlock. It is
possible to add buffers to the network, but this will only delay the point at which deadlock occurs. The
amount of buffering needed to avoid deadlock is dependent on the network size and the application pro-
gram running on the network.

Figure 7.10 Deadlock in a network

In this example, deadlock can easily be avoided by modifying the routing algorithm to send messages in
opposite directions from alternate nodes. In this case, each node will only need to send one message in
each direction at any time. In this network, buffering can be added just to smooth the flow of data (i.e. to
prevent a process having to wait to send a message when the network is busy) but it is not needed to
prevent deadlock.

It is possible to use interval labeling to label any network in a deadlock free way. Many regular networks
have optimal, deadlock free routing algorithms. Examples are trees, hypercubes and grids. These net-
works can then be combined, so that any network can be optimally labelled as if constructed from these
sub-networks.

8 Other communications devices 47

8 Other communications devices

To complete the IMS T9000 family, a full range of communications products are planned. These will pro-
vide the ability to interface transputers to a range of devices and technologies.

8.1 Mixing transputer types: the IMS C100

The first of these devices is the IMS C100. This allows an IMS T9000 to communicate with a first genera-
tion transputer. The two transputer families have different electrical characteristics and data protocol. The
IMS C100 converts between the four wire DS-Links of the IMS T9000 and the two wire OS-Links of the
earlier transputers.

The other conversion done by the IMS C100 is between the IMS T9000 control links and the Reset, Error
and Analyse signals used to control the IMS T805 and similar device.

The IMS C100 provides an inter-networking solution for transputers, allowing transputer systems to be
constructed using the optimum mix of devices. The IMS C100 has four modes of operation to enable:

¢ Asingle IMS T9000 to work in a network of first generation transputers.

¢ An existing transputer system to control a sub-system of IMS T9000s.

* An IMS T9000 network to interface to a network of first generation transputers.
* Afirst generation transputer to emulate an IMS T9000.

The IMS C100 converts both data and control protocols between the two transputer types and is intended
to be used in conjunction with software running on the attached transputers.

Full details of the IMS C100 are given in Part 3: Communications Support Devices.

8.2 Interfacing to peripherals and host systems

To complete the family of communications devices, a range of interface devices are being designed.
These will convert between the serial link format and a parallel interface, for example. The first of these
devices will be the IMS C101 link adaptor. The IMS C101 link adaptor interfaces between IMS T9000
DS-Links and external systems such as buses, peripheral devices and other microprocessors.

48

Product family overview

9 Software and systems 49

9 Software and systems

INMOS provides a wide range of standard software and hardware products to support development for
the transputer. These have been designed to enable users to evaluate transputers and to develop systems
easily and within the shortest possible timescales.

Development tools include compilers for languages such as C, C++ and occam as well as the software
needed to test, program and debug systems built from one or many transputers. All the special features
of the transputer are available from high-level languages (either as part of the language or as library calls).

INMOS also supplies a range of modular hardware products. These exploit the ability to build very com-
pact transputer systems (such as an IMS T805 with 4 Mbytes of memory on a board measuring approxi-
mately 2.5 cms by 9 cms) to provide a range of small, cost effective ‘TRansputer Modules’ (TRAMSs).
These modules can be mounted on a variety of motherboards, which are available for a range of host sys-
tems. The motherboards provide an interface to the host development system and can be connected to
build larger systems. The standard sizes and interfaces of the modules and motherboards have been
adopted by a number of third party developers to extend the range of compatible systems products avail-
able to transputer users.

More details of the systems and software products currently available for the transputer family can be
found in The Transputer Development and iq Systems Databook.

To support the IMS T9000, a new industry standard based on 100 Mbits/s links has been developed called
HTRAMs. Refer to The T9000 Development Tools Preliminary Datasheets (document number
72-TRN-249-00) for further details.

9.1 Development software

INMOS has a range of development software, running on different hosts, for the transputer family. These
tools are aimed mainly at developing code for embedded systems, i.e. not necessarily running under the
control of an operating system. It is expected that the end products will either be connected to a host sys-
tem or will be completely self-contained units.

Software can be developed in standard high-level languages using cross-compilers running on a range
of host machines. Programs for single transputers can be developed using conventional programming
tools, such as compilers and linkers. All the languages include extensive support, in the form of run-time
libraries, for concurrency and communication. It is possible to write a program consisting of many concur-
rent processes entirely in C (or any other language available for the transputer).

Programs are written for transputer networks, of any size, using a standard set of tools and libraries. The
language toolset contains the appropriate language compiler plus support tools for linking and configuring
for arbitrary network architectures (from a single IMS T9000 to large T9000/C104/C10X). The toolset in-
cludes configuration tools which are used for describing the hardware, mapping processes to transputers
and setting up the communications channels. It is possible to boot and load a network with code from the
host development system, or from ROM connected to one of the transputers in the network; configuration
is a separate phase preceding booting a network and can be via control links from a host or system ROM
or configured by a local ROM. Programs can communicate with a server on the host system to get access
to host facilities such as file /0. T9000 network initialization and checking tools are also provided. IN-
QUEST builds upon the standard language toolsets to provide advanced debugging and performance
maximization utilities.

The programming tools for the IMS T9000 are source compatible with those for the first generation trans-
puter family. Separate compatible toolsets will be maintained, each toolset targeting the hardware configu-
ration and development systems hardware product most efficiently.

9.1.1 Configuration tools

In discussing IMS T9000 transputer systems, the word ‘configuration’ is used in two senses. The first is
when an IMS T9000 transputer, or an IMS C104, is initialized — at this time a number of internal ‘configura-

50 Product family overview

tion’ registers have to be written to program the PMI, the VCP and other subsystems. The process of pre-
paring a program for loading onto a transputer network is also referred to as ‘configuration’ (and the soft-
ware tools used are known as ‘configurers’). In this description of the development process, the word
‘configuration’ is reserved for the latter meaning of software configuration; the setting up of the hardware
will be called ‘initialization’.

The configuration tools are used to build programs consisting of a number of processes or sub-programs
running in parallel on one or more transputers. Input files are used to describe the hardware, the software
and a mapping of the software onto the hardware. From these, the configuration toois produce the files
which are used to initialize and load the transputer network.

Hardware description

The hardware is described using a Network Description Language (NDL). For each transputer in the sys-
tem, this specifies the processor type, the amount and types of memory and peripheral devices. It also
describes the routing network used, if any, and how the data and control links of all the devices in the sys-
tem are connected.

The configuration tools use this description to program the PMI and VCP registers of the IMS T9000 and
to label the links of any IMS C104s used. The information in this file is also used to create the bootable
version of a program to run on the network.

If certain simple rules are followed in the construction and labelling of networks, then the tools can check
the descriptions for errors and deadlock freedom. The NDL description can also be checked against the
actual hardware.

Software description

The NDL file for a particular system will normally be provided by the hardware vendor or designer. The
programmers using the system only need to include a reference to the NDL file in the software configura-
tion file.The NDL description exports the names of the processors and routes in the network for use in
the software and mapping description.

The software description has to specify the linked process image for each process in the system and the
procedure interface (parameters and their types). Optionally, other language dependent attributes can be
defined. For example, the size of stack and heap areas for a C program can be specified. The software
description must also specify the way that any communication channels are used between processes.

Mapping software to hardware

A mapping of software (processes) onto hardware (transputers) must also be given. The mapping can
be as simple as a series of statements of the form: ‘place process on processor’ for each process in
the program. Any number of processes can be placed on each processor, allowing a program to be initially
tested on a single processor before the multi-processor version is tried. The configuration tools automati-
cally work out the mapping of channels onto virtual links. If necessary, for example to access the host sys-
tem or a particular piece of hardware, the programmer can explicitly map channels onto links or routes
through the network.

Configuration languages

To provide a degree of flexibility for the user, there are two ‘dialects’ of configuration language: a C-like
one and an 0ccame-style one. These perform identical functions but each has a different syntax, loosely
based on these languages. These configuration languages are used for describing the structure of the
software and how it is mapped onto the hardware.

Types of networks

The INMOS development tools support development of programs for:
Networks consisting of IMS T9000 transputers only (‘non-routed’ networks).
Networks consisting of IMS T9000 transputers and IMS C104 routers (‘routed’ networks).
Networks consisting of mixed T2/T4/T8 transputers and IMS T9000 transputers.

9 Software and systems 51

The tools do not directly support arbitrary, mixed networks of IMS T9000 transputers and first generation
devices. However, it is possible to connect the two types of networks, via an IMS C100, although the code
for the two sub-networks has to be developed separately. The two networks can then be loaded from the
host, via separate routes, or by getting one network to load the other.

In the case of non-routed networks (of any transputer type) the configuration tools automatically add rout-
ing software to the program to provide any communications required between processors which are not
directly connected. This software routing technology compliments IMS T9000 and IMS C104 hardware
virtual routing.

9.1.2 Initializing and loading a network

Transputer systems can initialize and boot either from ROM or from control link. The initialization stage
defines device configuration, this configuration may be via a control link or from ROM. Subsequent to this
booting of the device occurs, again this can be via a control link or from ROM. This flexible approach allows
for a number of options for optimizing the use of ROM’s in embedded systems.

Levels of initialization

The initialization and loading of code for the IMS T9000 are done in a number of stages. The various levels
of initialization can be done either by code running on an IMS T9000 booted from ROM, or from the host
system via the control link. In a network, different processors may be initialized to different levels from
ROM with the later stages being done via the control link.

Booting a system from link

The ‘boot from link’ option is normally used during program development or whenever a system needs
to be able to run different programs at different times.

Boot from link is used to free each processor from having a program fixed in its memory (either in develop-
ment environment or reducing ROM’s in a system down a single system boot ROM).

In order to load a network from a host system, connections to a single control link and a single data link
are required. This data link normally goes directly to an IMS T9000, the rest of the network being loaded
via this processor. The development tools generate data files which are used to do all the initialization and
loading of code onto the network.

Booting a system from ROM

The development tools can produce a number of different types of ROM. These range in function from
performing the (partial) initialization of a single IMS T9000, to booting an entire system.

When booting a system completely from ROM, it is possible to have a single ROM on one processor. This
root processor boots from the ROM and then initializes and loads the rest of the network via links; all other
transputers in the network being set to boot from link.

9.1.3 Host servers

A server is a program that runs on the host machine to give software, running on an attached transputer
system, access to various host facilities such as i/o and disk storage. The server typically loads the execut-
able code onto the transputer network via a link interface. It then waits for requests and data to be sent
by the transputer program. These requests generally come from the run-time library, when the program
makes calls to standard input and output functions (e.g. printf() in C).

The server allows the development tools running on the host to control the target transputer system in
order to reset the system, do any initialization needed and then load a bootable program file. Software
running on the host can also use the server to access the transputer system for testing and debugging.

The nature of the connection from the host to the transputer system depends on the type of the host sys-
tem, but generally provides access to transputer links either directly, via a link adaptor on the host bus,

52 Product family overview

or through some other standard communications system such as shared memory or Ethernet. In many
cases the server software includes a device driver, which handles the low-level details of the hardware
interface, plus a set of functions to access the data transfer of the device driver.

9.1.4 Debugging

INMOS provides an interactive symbolic debugger for debugging programs running on networks of
transputers. This supports source level debugging of programs which consist of a number of parallel pro-
cesses running on any number of processors. The user can set breakpoints, inspect the state of pro-

cesses (including expression evaluation, modification of variables, backtracing procedure calls, etc) as
well as examining the low-level state of each transputer in the system.

INMOS debugging technology offers a leading environment for the development of embedded applica-
tions through to massively paralliel systems. The debugger offers a wide range of facilities for sequential

code execution, monitoring and control. It also provides advanced features specifically designed for work-
ing with parallel processes and communications. This debugger is included in the INQUEST product.

The INQUEST package contains a windowing debugger and performance optimization tools and has the
following features:

¢ Windowing operation (OSF/Motif and Microsoft Windows 3)
» Single stepping of transputer instructions and source statements (with threads)
« Conditional/Programmable breakpoints and watchpoints

« Source or assembly level views

¢ Programmable command language

¢ Program interrupt and restart facilities

* Percentage of time executing each procedure

* Percentage of time at high priority for transputer

* [dle time analysis for transputer

¢ Percentage of time in each process

e Utilization of network over time - displays an interactive chart
* Remote download for booting over network

¢ Access to host O/S

¢ Integration of user supplied host services

¢ Distributed access to services

9 Software and systems 53

9.2

IMS T9000 systems products

Assembled IMS T9000 transputers are available on small printed circuit boards, known as High perfor-
mance TRAnsputer Modules (or HTRAMs). These supercomponents integrate an IMS T9000 processor
and up to 16 Mbytes memory on a board approximately the size of a credit card. HTRAMs are plugged
into specially designed motherboards, and communication is achieved via the transputer’s four 100
Mbits/s links. This packaging option offers a number of benefits:

Simplified design-in — An IMS T9000 surface mount component has 208 pins on a 0.5 mm pitch.
An HTRAM supercomponent has just 40 pins on a 2.0 mm pitch.

Reduced time to market — HTRAMSs are fully-tested assemblies that are ready-to-use straight
from the box.

Extra performance as required — system performance can be upgraded at any time by simply
adding more HTRAMs.

Reduced cost of ownership —using HTRAMs minimizes high value inventory, and eases the tran-
sition to faster devices.

Inter-operability — public HTRAM specification is supported by vendors worldwide.

Cost effective — volume manufacturing operation makes HTRAMs affordable in production sys-
tems.

Refer to the The T9000 Transputer Development Brochure and The T9000 Development Tools Prelimi-
nary Datasheets for further details.

54

Product family overview

inmos”

f Part 2

IMS T9000
transputer
preliminary data

56

IMS T9000 transputer preliminary data

57

“Mos:

IMS T9000
transputer

Preliminary Data

The information in this datasheet is subject to change

FEATURES

Pipelined superscalar micro-architecture
Workspace cache

Programmable memory interface

4 Gbyte physical address space

16 Kbyte instruction and data cache

200 MIPS peak

>70 MIPS sustained

25 MFLOPs peak

>15 MFLOPs sustained

Sub-microsecond interrupt response

Per process error handling

Enhanced support for pre-emptive schedulers
Memory protection and address translation
64 K virtual communication channels
Support for message routing

80 Mbytes/s total bi-directional link bandwidth
Separate control system

Single 5 MHz clock input

40, 50 MHz speed options

208 pin CLCC package

Single 5 V = 5% power supply

MICROELECTRONICS

‘Y_ SGS-THOMSON

INMOS is a member of the SGS—THOMSON Microelectronics Group

64, 32, 16, 8 bit

Central Processing Unit
1 32 bit Integer Unit ‘
‘ 5 Stage Pipeline ‘
| 64 bit Floating Point Unit |
Workspace Q
Cache
<:> Scheduler
16Kbyte é -_32 bit Timers
Cache/
internal <:> & C",EXﬁQL
Memory g
©
% Control Unit
g <:> Control Link
._"é
) Control Link
Programmable F
C:) Memory @ =
Interface s System
] Services
[e]
'] Phase
Locked
Loops

il

Virtual
Channel
Processor

-{ DS Link

4* DS Link

DS Link l—
[osn -

February 1993
42 1460 04

58

IMS T9000 Transputer Preliminary Data

1 IMS T9000 introduction 59

1 IMS T9000 introduction
This part contains hardware information for the IMS T9000 transputer.

The IMS T9000 transputer is a 32-bit CMOS microprocessor designed to be used in applications which
require high performance combined with high integration and simplicity of use. Software support for the
IMS T9000 transputer includes ANSI C compilers and 0ccam toolsets developed and supported by
INMOS.

Figure 1.1 shows the major operational units of the IMS T9000 transputer.

The IMS T9000 has a pipelined superscalar architecture, which allows multipie instructions to be executed
every processor cycle. Compilers can generate code without considering any details of the pipeline as
the hardware organizes the incoming instruction stream into optimum groups of instructions. Other
features which contribute to performance are a 16 Kbyte instruction and data cache, a 64-bit floating point
unit, and a high bandwidth programmable memory interface. A separate workspace cache stores 32
locations relative to the workspace pointer to provide zero latency access to local variables. The IMS
T9000 has four communication links for fast inter-processor communications.

The floating point unit (FPU) incorporates hardware to perform divide and square root. The FPU provides
single and double length arithmetic to floating point standard IEEE 754-1985. The IMS T9000 running at
a processor speed of 50 MHz is able to perform floating point operations at a rate of 15 Mflops sustained
and 25 Mflops peak.

The 16 Kbyte cache provides a peak bandwidth of 200 Mwords/sec. It can also be programmed to function
as 16 Kbyte of on-chip memory, or as 8 Kbyte of on-chip memory and 8 Kbyte of cache. This allows small
applications to run with no external memory, and guarantees deterministic code behavior for applications
where this is critical.

The highly integrated programmable memory interface has a 4 Gbyte physical address space, and
provides a peak bandwidth of 50 Mwords/sec. Four independent banks of external memory are supported,
and this allows the implementation of mixed memory systems, with support for DRAM, SRAM, EPROM
and VRAM. It has a 64-bit data bus, and each bank of memory can be configured to be 8, 16, 32 or 64
bits wide. The full performance of the IMS T9000 can be exploited using low-cost DRAM, and up to 8
Mbytes of DRAM can be connected with no external components.

Transputers provide hardware support for scheduling processes, and this can be used directly by applica-
tions written, for example, in C or 0ccam. It can also be used to simplify the software implementation
of real-time kernels and operating systems. The process model of the IMS T9000 transputer provides per
process error handling and debugging support, and allows programs to be run in a protected logical
address space. To improve the efficiency of real-time kernels access to the state of the processor has been
simplified, and full control over interrupts and timeslicing has been provided.

Communication between processes takes place over channels, and is implemented in hardware. The
same machine instructions are used for communication between processes on the same processor as
for communication between processes on different IMS T9000 processors. On the IMS T9000, communi- -
cation between processes on different processors takes place over virtual channels. Virtual channels are
multiplexed onto each physical link by the virtual channel processor. Communication between IMS T9000
transputers that are not directly connected is achieved by using a separate dynamic routing switch, the
IMS C104.

With virtual channels it is not necessary for the programmer to allocate channels to physical links, and
the allocation of processes to processors is simplified. The programming of powerful multiprocessor
systems is therefore flexible and elegant.

The IMS T9000 has four high-bandwidth serial communication links which support virtual channels and
dynamic message switching and provide a high data bandwidth with high data integrity. Each physical link
consists of four wires, two in each direction, one carrying data and one carrying a strobe. The links are
therefore referred to as data-strobe (DS-Links). The four DS-Links support a total bidirectional data
bandwidth of 80 Mbytes/sec.

60

IMS T9000 transputer preliminary data

MemAddr2-31 (|
MemData0-63 @

notMemRf «—
MemWait —

Programmable

-

ICrossbar

Address

Processor Pipsline
Address
FPU
Instruction| Decoder/ | Workspace Gen:zrator
Buffer Grouper Cache
Address
Generator| | ALU
2
16Kbyte Scheduler
Cache/
Internal <:> <:> 32 bit Timers
Memory

4 Event
Channels

=— Eventin0-3
+— EventOut0-3

4x32 bit

Data/ Control LinkO

J: gteasrttelgromROM

— CLinkinData0

T CLinkOutData0
#— CLinkinStrobe0

7 CLinkOutStrobe0

Bus

*— CLinkinData1

Memory | o X0
MemReqin —| i CLinkOutData1
MemGranted | terface Control Link! 4 ELinkinStrobe1
MemReqOut <—| T CLinkOutStrobe1
notMemBoOtCE «— SSyst_em
notMemRAS0-3 ~— ervices
"Otxﬁ:ﬁsgg'g: H— ProcClockOut
n s Phase Locked [[— GapPlus
notMemWrB0-3 <~ Loops -+— CapMinus
P *— Clockin
— ProcSpeedSelect0-2
LinkinData0 — «— LinkinData2
Lnkoutbatad 1] ostmo (—| - |— Dstne [[~ HnkOubata
LinkOutStrobe0 < Channel > LinkOutStrobe2
LinkinData1 — > Processor «— LinkinData3
Lnkoucasi 1] osum | osumo |- Hniodba
LinkOutStrobe1 < — LinkOutStrobe3
Figure 1.1 IMS T9000 block diagram

1 IMS T9000 introduction 61

Two separate control links are provided to enable networks of IMS T9000 processors to be controlled and
monitored for errors, even during the presence of faults in the normal data communications network. The
control links of IMS T9000s and IMS C104s can be daisy chained, and/or connected into a tree by
connection to a IMS C104. Whatever the physical connectivity the controlling network forms a logical tree,
and a control processor is connected at its root. For small systems (such as a single IMS T9000
transputer) there is no need to use the control links as all necessary functionality can be controlled from
software.

The hardware scheduler enables the creation and execution of any number of high and low priority
processes. It handles timeslicing and message passing, often eliminating the need for a software kernel.
Context switch time is sub-microsecond. Two 32-bit clocks tick at 1us and 64us intervals. The scheduler
provides each process with a timer, simplifying real-time programming.

Four Event I/O pins provide asynchronous handshake interfaces between external events and internal
processes and can be used as interrupts or as control for external peripherals. Response time is sub-
microsecond.

Two on-chip phase locked loops generate all the internal high frequency clocks from a single clock input,
simplifying system design and avoiding problems of distributing high speed clocks externally. The nominal
input clock frequency used by all transputer family components is 5 MHz, regardless of device type, trans- -
puter word length or processor cycle time.

62

IMS T9000 transputer preliminary data

2 Pin designations 63

2 Pin designations

The following tables outline the function of each of the pins. Pinout details are given in chapter 16.

Signal names are prefixed by not if they are active low, otherwise they are active high.

Supplies
Pin In/Out Function
VvDD Power supply
GND Ground
Table 2.1 IMS T9000 supplies

Phase locked loops

Pin In/Out Function
CapPlus, CapMinus External capacitor for internal clock power supply
Clockin in Input clock
ProcSpeedSelect0-2 in Processor speed selectors
ProcClockOut out Processor clock
Table 2.2 IMS T9000 phase locked loops

Programmable memory interface

Pin In/Out | Function

MemAddr2-31 out Address bus

MemData0-63 infout Data bus

notMemRASO0-3 out RAS strobes — one per bank
notMemCASO0-3 out CAS strobes — one per bank
notMemPSO0-3 out Programmable strobes — one per bank
notMemWrBO0-3 T out Byte-addressing write strobes
MemWait in Memory cycle extender

MemReqin in Direct memory access request
MemGranted out Direct memory access granted
MemReqOut out Processor requires memory bus
notMemBootCE out Bootstrap ROM chip enable
notMemRf out Dynamic memory refresh indicator
notMemStrobe out Reference strobe for external bus cyéles.

T these pins have different functions depending on the external port sizes

Table 2.3

IMS T9000 programmable memory interface

64

IMS T9000 transputer preliminary data

Control system

Pin In/Out Function

StartFromROM in Boot from external ROM or from link
Reset in System reset

CLinkinData0-1 in Control link input data channels
CLinkIinStrobe0-1 in Control link input strobes
CLinkOutData0-1 out Control link output data channels
CLinkOutStrobe0-1 out Control link output strobes

Table 2.4 IMS T9000 control system

Communication links

Pin In/Qut Function

LinkinData0-3 in Link input data channels
LinkinStrobe0-3 in Link input strobes
LinkOutData0-3 out Link output data channels
LinkOutStrobe0-3 out Link output strobes

Table 2.5 IMS T9000 communication links

Events

Pin In/Out Function

Eventin0-3 in Event inputs

EventOut0-3 out Event outputs

Table 2.6 IMS T9000 event

Miscellaneous

Pin In/Out | Function

HoldToGND Must be connected to GND
HoldToVDD Must be connected to VDD
DoNotWire Must not be wired

Table 2.7 IMS T9000 miscelianeous pins

3 Central processing unit 65

3 Central processing unit

The IMS T9000 central processing unit (CPU) contains a 32 bit arithmetic and logic unit (ALU) and a 64
bit floating point unit (FPU). This chapter describes the architecture and operation of the CPU. Specific
details on the FPU are described separately in the Floating point unit chapter 4.

3.1 Registers

The design of the IMS T9000 transputer processor exploits the availability of a fast on-chip cache and a
workspace cache by having only a small number of registers; five registers are used in the execution of
a sequential integer process. The five registers are:

* The workspace pointer (Wptr) which points to an area of store where local variables are kept.
« The instruction pointer (IptrReg) which points to the next instruction to be executed.
* The Areg, Breg and Creg registers which form an evaluation stack.

Areg, Breg and Creg are sources and destinations for most arithmetic and logical operations. Loading
a value into the stack pushes Breg into Creg, and Areg into Breg, before loading Areg. Storing a value
from Areg, pops Breg into Areg and Creg into Breg, the value left in Creg is undefined.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For exam-
ple, the add instruction adds the top two values in the stack and places the result on the top of the stack.
The use of a stack removes the need for instructions to re-specify the location of their operands. No hard-
ware mechanism is provided to detect that more than three values have been loaded onto the stack. It
is easy for the compiler to ensure that this never happens.

A separate floating point evaluation stack is provided, consisting of FPAreg, FPBreg, and FPCreg. The
floating point evaluation stack behaves in a similar way to the integer evaluation stack.

Registers Locals Program

Areg

Breg

Creg

Wptr

IptrReg

Figure 3.1 Registers used in sequential integer processes

Any location in memory can be accessed relative to the workspace pointer, enabling the workspace to
be of any size. The first 32 words relative to the workspace pointer may be cached by the workspace
cache.

66 IMS T9000 transputer preliminary data

3.2 Workspace cache

The workspace cache can hold a copy of the first 32 words of procedure stack and workspace. It is triple
ported, allowing two reads and a write in every cycle. The workspace cache allows local data to be ac-
cessed without going outside the CPU, effectively giving zero cycle access and reducing the load on the
main cache and external memory. It also means that the pipeline can do four data reads (as well as an
instruction fetch) in each cycle: 2 from the local cache and 2 from the main cache.

Local variables can be accessed quickly and therefore can be read in the first stage of the pipeline and
can then be used for non-local address calculations in the next stage. The workspace cache is
write-through; whenever data is written into the local cache it is also written to the main cache. Thus there
is no overhead for flushing the cache on interrupt or context switch.

Cache operation

The cache is organized as a 32 word circular buffer and is addressed using the bottom five bits of the work-
space pointer. As the workspace pointer moves up and down, it rolls around the cache. When the work-
space pointer is moved down, on a procedure call for instance, the locations that ‘roll into’ the cache are
marked as invalid and become valid as they are read or written. The first time a variable is read, it is copied
from the main cache (and fetched from main memory if it is not in the main cache). Lines are marked as
invalid when they ‘roll out’ of the cache as the workspace pointer is moved up (e.g. on areturn from a proce-
dure call). On a context switch or interrupt, the entire contents of the cache are marked as invalid.

This is illustrated in figure 3.2, where the state of the workspace cache during a procedure call and return
sequence is shown. Before the call, the locations in the workspace cache above the workspace pointer
which have been read or written by the program contain valid data. After the call, the workspace pointer
moves down — initially the locations which are above the workspace pointer are invalid; as they are ac-
cessed by the program they are filled with data and marked as valid. When the procedure returns, the
locations which it used will be marked as invalid. As long as the workspace of the called procedure is less
than 32 words, some of the workspace of the calling procedure will still be valid after the return. Nested
procedure calls, or calls of procedures with a large workspace requirement will cause the workspace point-
er to wrap around so that some of the data at the top of the program workspace is no longer in the cache.

i v VA1
% N 7777777 A7
00 e Y Y,
VS S L LY S
workspace QNN workspace
pointer NN Locations available pointer
NNy for use by called
Locations NNNNNNNY] procedure Locations
marked as NMANNNNN newly marked
invalid workspace as invalid
pointer
Before procedure call After procedure call After return from
procedure

Figure 3.2 Effects of call and return on workspace cache

As the cache is a circular buffer, moving the workspace pointer by 32 or more will cause the pointer into
the cache to wrap right round, marking every line as invalid.

3 Central processing unit 67

3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any num-
ber of each.

The processor has a microcoded scheduler which enables any number of concurrent processes to be ex-
ecuted together, sharing the processor time. This removes the need for a software kernel, although ker-
nels can still be written.

At any time, a process may be

Active — Being executed.
— Interrupted by a higher priority process.
— On alist waiting to be executed.

Inactive — Ready to input.
— Ready to output.
— Waiting until a specified time.
— Waiting on a semaphore.

The scheduler operates in such a way that inactive processes do not consume any processor time. Each
active high priority process executes until it becomes inactive. The scheduler allocates a portion of the
processor’s time to each active low priority process in turn (see section 3.4). Active processes waiting to
be executed are held in two linked lists of process workspaces, one of high priority processes and one
of low priority processes. Each list is implemented using two registers, one of which points to the first pro-
cess in the list, the other to the last. In the linked process list shown in figure 3.3, process S is executing
and P, Q and R are active, awaiting execution. Only the low priority process queue registers are shown;
the high priority process ones behave in a similar manner.

Registers Locals Program
FptrReg1 pw.lptr ———>
P .
pw.Link
BptrReg1
pw.Iptr
Q pw.Link
Areg
pw.lptr
Breg R
Creg
S
Wptr
IptrReg

Figure 3.3 Linked process list

Function High priority Low priority
Pointer to front of active process list FptrOReg FptriReg
Pointer to back of active process list BptrOReg BptriReg

Table 3.1 Priority queue control registers

68 IMS T9000 transputer preliminary data

Each process runs until it has completed its action or is descheduled. In order for several processes to
operate in parallel, a low priority process is only permitted to execute for a maximum of two timeslice peri-
ods. After this, the machine deschedules the current process at the next timeslicing point, adds it to the
end of the low priority scheduling list and instead executes the next active process. The timeslice period
is 256 us.

There are only certain instructions at which a process may be descheduled. These are known as desche-
duling points. A process may only be timesliced at certain descheduling points. These are known as times-
licing points. As aresult, an expression evaluation can be guaranteed to execute without the process being
timesliced part way through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list.

The processor provides a number of special instructions to support the process model, including starip
(start process) and endp (end process). When a main process executes a parallel construct, starip is used
to create the necessary additional concurrent processes. A startp instruction creates a new process by
adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be ex-
ecuted together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the endp instruction. This uses a data
structure that includes a counter of the parallel construct components which have still to terminate. The
counter is initialized to the number of components before the processes are started. Each component
ends with an endp instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and
the main process continues.

3.4 Priority

The IMS T9000 transputer directly supports two levels of priority: low priority and high priority. Low priority
processes are executed whenever there are no active high priority processes.

High priority processes are expected to execute for a short time. If one or more high priority processes
is able to proceed, then the first on the queue is selected and executes until it has to wait for a communica-
tion, a timer input, or until it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority is able to proceed,
then one is selected. Low priority processes are periodically timesliced to provide an even distribution of
processor time between computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority pro-
cess becomes active to the time when it starts processing is 2 n —2 timeslice periods. It is then able to
execute for between one and two timeslice periods, less any time taken by high priority processes. This
assumes that no process monopolizes the transputer’s time; i.e. it has a distribution of timeslicing points.

When the processor is executing a low priority process and a high priority process becomes ready to ex-
ecute, an interrupt occurs. The state of the low priority process is saved into ‘shadow’ registers and the
high priority process is executed. When no further high priority processes are able to run, the state of the
intérrupted low priority process is re-loaded from the shadow registers and the interrupted low priority pro-
cess is re-started.

Instructions are provided on the IMS T9000 transputer to allow a high priority process to store the shadow
registers to memory and to load them from memory. Instructions are also provided to allow a process to
exchange an alternative process queue for either priority process queue. These instructions enable a pre-
emptive scheduler to be constructed.

3 Central processing unit 69

35 L-processes: local error handling and debugging

When running a process, the IMS T9000 transputer provides a set of localized, per-process, trap-handling
and debugging mechanisms. Processes are therefore referred to as L-processes.

An L-process allows error conditions to be handled. The layout of the workspace for an L-process is shown
in table 3.2.

Word offset | Slot name Purpose
0 pw.Temp Slot used by some instructions for storing temporary values

—1 pw.iptr Instruction pointer of a descheduled process
-2 pw.Link Address of the workspace of the next process in scheduling list
-2 pw.Count Message length in variable length communication
-3 pw.TrapHandler |Pointer to trap-handler data structure (THDS)
—4 pw.Pointer Saved pointer to communication data area
—4 pw.State Saved alternative state
—4 pw.Length Length of message received in variable length communication
-5 pw.TLink Address of the workspace of the next process on the timer list
—6 pw.Time Time that a process on a timer list is waiting for

Table 3.2 Word offsets from Wptr and names for data slots in an L-process workspace

Each L-process has a trap-handler, a set of error flags, and a set of trap enable bits. Whenever an error
is detected either the appropriate error flag is set or, depending on the state of the trap enable bits, the
trap-handler is invoked. Trap-handlers may be shared between processes of the same priority.

When an L-process is executing, the pointer to the trap-handler is held in the trap-handler register
(ThReg). When an L-process is inactive the pointer to the trap-handler is held in the pw.TrapHandler slot
of the process workspace.

If the value of the trap-handler pointer in the workspace of an L-process is NotProcess.p this indicates
anull trap-handler (refer to Appendix A for values and definitions of special constants). Any process which
executes with the null trap-handler ignores any floating point errors and any invalid non-word aligned ac-
cesses. Any other error results in the processor halting and an error message being output on the control
link CLinkO.

A trap-handler consists of a trap-handler data structure (THDS) and a process to be executed when an
error occurs. The THDS must be word-aligned but can be placed anywhere in memory. It contains: a block
of store into which state can be saved when an error occurs; a pointer to the trap-handler code; and a
queue of processes waiting to use the trap-handler. The layout of a THDS is shown in table 3.3.

70 IMS T9000 transputer preliminary data

Word offset | Slot name Purpose
11 th.sCreg L-process C register
10 th.sBreg L-process B register
th.sAreg L-process A register

8 th.slptr L-process instruction pointer
7 th.sWptr L-process descriptor
6 th.eWu Upper bound of L-process watchpoint region
5 th.eWl Lower bound of L-process watchpoint region
4 th.Eptr Pointer to instruction causing trap
3 th.Bptr Back of trap sharing process queue
2 th.Fptr Front of trap sharing process queue
1 th.Iptr Trap-handler instruction pointer
0 th.Cntl Control word

Table 3.3 Layout of the THDS (trap-handler data structure)

The control word is used to control the operation of the trap-handler, and to store the flags and trap enable
bits whenever the trap-handler is not being used by an executing process. When an L-process starts to
execute its trap-handler pointer is loaded from its workspace into ThReg, the trap control bits in its control
word are loaded into the status register and the process is allowed to execute. The status register (Status-
Reg) contains status and control information for the current process. The 32-bit word held in the status
register comprises ‘status bits’ (‘flags’) and ‘control bits’. Status bits describe current state, such as the
mode of operation (protected/unprotected) and any errors which may have occurred. Control bits specify
future behavior which may occur, such as trapping and timeslicing.

The IMS T9000 can detect various error conditions, including integer errors, word alignment errors, illegal
instructions and IEEE floating point exceptions. If a trap enable bit for a particular error is set, a trap will
be taken. Although for some errors if this bit is not set, a flag will be set instead. Further details can be
found in the T9000 Transputer Instruction Set Manual.

The IMS T9000 prevents more than one process using the same trap-handler. It achieves this by setting
a bit (sb.ThinUse) in the control word when the trap-handler is entered and clearing it when the trap-han-
dler is exited. Before an L-process is executed the processor checks the sb.ThinUse bit in the control
word of its trap-handler. If the trap-handler is found to be in use then the L-process is queued onto the
trap-handler’s process queue. All of the processes on the trap-handler’s process queue are dequeued and
inserted onto the front of the appropriate priority scheduling list when the trap-handler is exited.

When a trap-handler is invoked the integer state of the processor is written to the THDS. The floating point
state is restored to the state which was present before the operation was performed. (This makes it simple
for the trap-handler to compute the correct value to be delivered to an IEEE exception handler.). The float-
ing point and block move state of the processor is not saved by the hardware, and it is left to the trap-han-
dler to save this state as necessary using the fpstall (floating point store all) and stmove2dinit (store 2D
move) instructions. The error flags and trap enable bits are written from StatusReg to the control word
of the trap-handler, and the sb.ThinUse bit is set. The trap-handler code is then started with the trap
reason and error type being returned in Areg and Breg.

Once a trap-handler has completed, it loads any floating point and block move state using the fp/dall and
moveZ2dinit instructions respectively, and executes the tret (trap return) instruction. Areg contains a condi-
tional argument to the tret instruction. Ifthe value in Areg is not zero then the errant process will be desche-
duled. If it is zero then the error flags and trap enable bits will be re-loaded into StatusReg from the
trap-handler control word, the integer state of the processor will be re-loaded from the THDS, and the
trapped process will be allowed to continue.

3 Central processing unit 71

The current error flags and trap enable bits may be examined by using the /dfiags (load error flags) instruc-
tion, which copies the error flags and trap enable bits from StatusReg into Areg. The error flags and trap
enable bits in StatusReg may be set to the value in Areg using the stflags (store error flags) instruction.

When running an L-process the IMS T9000 transputer provides support for breakpointing, for single-step-
ping of instructions, and for a watchpointed region. The IMS T9000 transputer interprets the jO instruction
as a breakpoint which causes the trap-handier to be called, with the state of the process being saved as
described above.

3.6 Timers

The transputer has two 32-bit timer clocks which ‘tick’ periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling
completely in approximately 4295 seconds. The other is accessible only to low priority processes and is
incremented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of
approximately 76 hours.

Register Function

ClockReg0 Current value of high priority (level 0) process clock

ClockReg1 Current value of low priority (level 1) process clock

TnextReg0 Indicates time of earliest event on high priority (level 0) timer queue
TnextReg1 Indicates time of earliest event on low priority (level 1) timer queue
TptrReg0 High priority timer queue

TptrReg1 Low priority timer queue

Table 3.4 Timer registers

The current value of the processor clock can be read by executing a /dtimer (load timer) instruction. A
process can arrange to perform a tin (timer input), in which case it will become ready to execute after a
specified time has been reached. The tin instruction requires a time to be specified. If this time is in the
‘past’ then the instruction has no effect. If the time is in the future’ then the process is descheduled. When
the specified time is reached the process is scheduled again.

A Stop command (see section 8.4, page 115 for a complete description of control commands sent via the
control links), causes the timers to stop scheduling processes, however it does not stop the clock registers
from ticking, thus the processes remain on the timer queue.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

72 : IMS T9000 transputer preliminary data

Workspaces Program

— —
Alarm —|_,

21

ClockReg0

Comparator

TnextReg0

TptrReg0 Empty

31

Figure 3.4 Timer registers

3.7 Block move

The block move instruction (move) on the transputer moves any number of bytes from any byte boundary
in memory, to any other byte boundary, using the smallest possible number of word reads, and word or
part-word writes. move is interruptible, to guarantee low latency.

3.8 Semaphores

The IMS T9000 transputer provides an efficient implementation of an n-valued semaphore for processes
on the same processor. signal and wait instructions are provided which operate on a data structure which
may be located at any address in memory. A semaphore is implemented by a three word data structure.
The word slots in the data structure are shown in figure 3.5. For further details refer to the 79000
Transputer Instruction Set Manual.

Slot name | Purpose

s.Count Number of extra processes that the semaphore will allow to continue running after a wait
on the semaphore.

s.Front Pointer to workspace of first process waiting on the semaphore queue.

s.Back Pointer to workspace of last process waiting on the semaphore gqueue.

Table 3.5 Contents of a semaphore data structure

3.9 Pipeline

The CPU of the IMS T9000 performs its computation on a processor pipeline. This pipeline consists of
5 stages and, where possible, multiple instructions are combined into a group and passed down the pipe-
line together. This allows more than one instruction to be executed on each processor cycle. The details
of the pipeline are transparent to the programmer. The processor appears to be the simple transputer ar-
chitecture described above and code can be generated for the IMS T9000 transputer without considering
the details of the pipeline. However, optimizing compilers can produce more efficient code if these details
are taken into consideration.

Instructions are executed in a 5 stage pipeline: the first stage can fetch two local variables; the second
can perform two address calculations, for accessing non-local or subscripted variables; the third stage

3 Central processing unit 73

can load two non-local variables; the fourth can perform an ALU or FPU operation; and the final stage can
do a conditional jump or write.

The IMS T9000 incorporates hardware to assemble groups of instructions from the instruction stream,
enabling multiple instructions to be issued per cycle (as well as multiple instructions being executed in
each cycle). These groups are chosen to make the best use of the available hardware and one group can
be sent through the pipeline every cycle. Instructions are put into groups in the order that they arrive at
the CPU; dependencies within the group are handled automatically by the pipeline.

Fetch ~ Decode Local Address Cache ALU/FPU Write
1word/ Groupupto8 2 reads from 2non-local 2reads/cycle 1 integer or 1 write/
cycle bytes/cycle tri-ported addresses/ from 4 cache floating point cycle
workspace cycle banks operation
cache

Figure 3.5 Pipeline operation

The grouper can be thought of as a hardware optimizer; it recognizes commonly occurring code se-
quences that the processor can execute effectively. The design of the grouping mechanism and the pipe-
line is based on analysis of the code typically generated by high-level language compilers.

3.9.1 Grouping of instructions

The grouping of instructions takes advantage of the high degree of concurrency and multiple buses in the
processor. For example, both caches are multi-ported and can each support two reads by the CPU simul-
taneously. This allows two /d/ (load local) instructions to go into one group, and the group could also contain
two sets of instructions to calculate addresses and fetch non-local variables. These could all be combined
with an arithmetic operation such as add.

74 IMS T9000 transputer preliminary data

As an example of how the grouper works, consider the assignment and expression evaluation shown be-
low. The code produced is shown along with the number of the pipeline stages in which it is executed.

a[i+l] = b[j+15] + c[k+7];

1d1 j load local variable j

1dl b load base address of array b
wsub calculate address of b[7j]
ldnl 15 load value of element b[j+15]
1d1 k

1d1 o}

wsub

1dnl 7 load value of c[k+7]

add add two values on top of stack
1d1 i

1d1 a

wsub

stnl 1 storeinto a[i+1]

This code sequence will be executed as three groups as shown below (i.e. in 3 cycles achieving 217 MIPS
at a processor speed of 50 MHz). The exact contents of each group will depend on the code which pre-
cedes and follows this. The first group might contain other instructions from earlier in the instruction
stream.

firstgroup | 1d1, 1dl, wsub, ldnl
second group | 1d1, 1dl, wsub, ldnl, add
third group | 1d1, 1dl, wsub, stnl

Since the processor can fetch one word, containing four bytes of instructions and data, in each cycle it
is possible to achieve a continuous execution rate of four instructions per cycle (200 MIPS). However, if
any of the instructions require more than one cycle to execute, then the instruction fetch mechanism can
continue to fetch instructions so that larger groups can be built up. Up to 8 instructions can be put into one
group and there may be five groups in the pipeline at any time.

3 Central proc ing unit 75

3.10 CPU configuration registers

The CPU (in common with a number of other sub—systems of the IMS T9000) is controlled via registers
in the configuration space. The registers are accessed via the /dconf and stconf instructions, or via CPeek
and CPoke command messages received along control link CLinkO0.

Three of the CPU configuration registers are described below. In addition to these three registers there
are a number of CPU configuration registers which are shared between the VCP and also the scheduler,
details of these are given in the Communication chapter 11. For the complete list of registers refer to chap-
ter 15, Register Reference Guide.

Reason

The Reason register contains a reason code if the IMS T9000 is halted for any reason. The reason code
is either a trap reason code, indicating that an L-process with a null trap handler caused an unmasked
error, or one of ‘stopped’, ‘halted’ or ‘external memory error’. Further details on the reason code can be
found in the T9000 Transputer Instruction Set Manual.

EmiBadAddress

The address of the memory error is stored in the EmiBadAddress register if the reason code is ‘external
memory error’.

A reason code of ‘external memory error’ is returned if a memory error other than an access error is re-
turned by the memory interface and if it is detected by the processor. Memory errors not detected by the
processor, for example VCP memory accesses, cause a ‘halted’ reason code.

The Reason and EmiBadAddress registers must be read after resetting but before rebooting the IMS
T9000, by the control link CPeek command, as the values of these registers become undefined after re-
booting.

Initiallptr and InitialWptr

After reset the processor is initially inactive. A Wptr and Iptr are written into the Initiallptr and InitialWptr
configuration registers by the control unit over the configuration bus, which the processor uses when it
starts executing.

76

IMS T9000 transputer preliminary data

4 Floating point unit 77

4 Floating point unit

The IMS T9000 has an on-chip scalar floating point unit (FPU) which performs floating point operations
sustaining a rate of 15 Mflops and a peak of 25 Mflops at a processor speed of 50 MHz.

The FPU has been designed to operate on both single precision (REAL32) and double precision (REAL6 4)
floating point numbers, and returns results which fully conform to the IEEE 754-1985 floating point.arith-
metic standard. The FPU incorporates hardware to perform divide and square root. Denormalized num-
bers are fully supported in hardware. All rounding modes defined by the standard are implemented, with
the default being round to nearest.

4.1 Floating point registers

The FPU consists of a computing engine with a three deep floating point evaluation stack for manipulation
of floating point numbers and a status register.

4.1.1 Floating-point stack
The FPU contains a three deep stack of floating-point registers:

FPAreg floating-point stack register A
FPBreg floating-point stack register B
FPCreg floating-point stack register C

Each floating-point register can hold a value in either single precision or double precision floating-point
format and has a tag associated with it (stored in the floating-point status register) to signify the precision
of the data it contains. The floating-point stack behaves in a similar manner to the integer stack. When
avalue is loaded in FPAreg the values in FPAreg and FPBreg are pushed down into FPBreg and FPCreg
respectively. When a value is stored from FPAreg, FPBreg is popped into FPAreg and FPCreg into
FPBreg.

The addresses of floating point values are formed on the integer stack, and values are transferred be-
tween the addressed memory locations and the floating point stack.

The representation of single precision and double precision floating point numbers in memory is as set
out in the |IEEE standard.

« Single precision format floating-point values are represented in memory within a single machine
word (32-bit).

« Double precision format floating-point values are represented in memory by two contiguous ma-
chine words. The word which contains the sign bit is held at the memory location with the higher
address of the two.

4.1.2 Floating-point status register

The currently executing process has a floating-point status word associated with it. This is stored within
the floating-point status register (FPstatusReg). The type information and rounding modes are detailed
in FPstatusReg, see table 4.1, and can be accessed using the fpldall, fpstall, Idshadow and stshadow
instructions.

Bit position | Bit field Function

1:0 Roundmode Rounding mode

3:2 FPA type Type of fioating-point value in FPAreg
5:4 FPB type Type of floating-point value in FPBreg
7:6 FPC type Type of floating-point value in FPCreg

INMOS reserved

Table 4.1 FPstatusReg fields
Note: All INMOS reserved bits must always be written with 0’s.

318

78 IMS T9000 transputer preliminary data

When an operation yields a floating-point result, this result is by default rounded to the nearest represent-
able value to the exact result (Round-to-nearest). In addition to this defauit, the other three rounding
modes specified in the IEEE standard are provided on the IMS T9000. The rounding mode can be set in
the FPstatusReg to one of the four modes. This is reset as soon as the floating point load, operate or
store is complete. The rounding mode is encoded into a two bit field and the binary value for each mode
is shown in table 4.2.

Code |Rounding mode
00 IEEE round zero
01 IEEE nearest
10 IEEE round + infinity
11 |IEEE round — infinity

Table 4.2 Floating-point rounding mode

The format of the floating-point value stored in any of the floating-point stack registers, can be single preci-
sion or double precision. This information is represented as shown in table 4.3. Note, the effect of loading
any value other than 00 or 01 into these bits is undefined.

Code | Floating-point type
00 single precision — IEEE format 32-bit floating-point number
01 double precision — [EEE format 64-bit floating-point number

Table 4.3 Floating-point type

4.2 Floating point instructions

Instructions are provided to perform floating point arithmetic on the FPU. In the IMS T9000 all basic FPU
operations can be performed by an equivalent single instruction coding, the names of these instructions
begin with fp. These instructions allow floating point values to be transferred from memory to the FPU
evaluation stack and vice versa, and to manipulate values on the FPU evaluation stack.

T9000 running at 40 MHz T9000 running at 50 MHz
Operation Single length | Double length | Single length | Double length
add 50 ns 50 ns 40 ns 40 ns
subtract 50 ns 50 ns 40 ns 40 ns
multiply 50 ns 75 ns 40 ns 60 ns
divide 200 ns 375 ns 160 ns 300 ns
square root 200 ns 375 ns 160 ns 300 ns

Timing is for operations where both operands are normalized floating point numbers

Table 4.4 Typical floating point operation times

Further details on the operation of the FPU and the floating point instructions can be found in the T9000
Transputer Instruction Set Manual.

5 Memory management 79

5 Memory management

This chapter describes the protection and memory management system of the IMS T9000. The memory
management mechanism in the IMS T9000 transputer is designed to support the development and debug-
ging of programs, to allow the safe execution of programs written in insecure languages, and to support
address translation. It also supports the dynamic extension of a calling stack. The mechanism does not
provide virtual memory, or page-based memory protection.

The memory management mechanism is only invoked for a special type of protected process - known as
a P-process. A P-process is run under the control of a parent L-process, known as the supervisor (or
sometimes the stub). A P-process is created by the supervisor process executing a goprot (go protected)
instruction. This instruction loads the state of the P-process from memory, loads the memory management
registers, and starts to execute the P-process.

The P-process may execute only a subset of the IMS T9000 instruction set, known as privileged instruc-
tions. The addresses of all memory accesses generated by the P-process are treated as logical address-
es; they are checked and translated into physical addresses by hardware. If the P-process attempts to
access an illegal address, execute a privileged instruction, or causes an error, control is returned to the
supervisor process. Control will also be returned to the supervisor process if the P-process exceeds its
timeslice or executes a syscall (system call) instruction. When a trap occurs the P-process’s state is saved
to memory and the supervisor process is restarted.

5.1 Protection, stack extension, and logical to physical address translation

5.1.1 Protection

The memory management mechanism in the IMS T9000 provides for the checking and translation of four
independently sized regions of addresses. The P-process may read from any region, but may only write
to or execute code out of regions which have the appropriate permissions. All read, write and instruction
fetch accesses attempted by the executing P-process are checked. If an illegal access is attempted then
the P-process traps back to the supervisor process. It is not normally possible to continue execution of
a P-process after an illegal access has been attempted.

5.1.2 Stack extension

In addition to checking the validity of memory accesses, the hardware checks that the location pointed
to by the workspace pointer (Wptr) is writable. If a call, ajw (adjust workspace) or gajw (general adjust
workspace) instruction causes the workspace pointer to address a non-writable address then the P-pro-
cess traps. However, in this case, the supervisor process can restart execution of the P-process after ex-
tending the region. In this way it is possible to execute stack extension on demand.

5.1.3 Logical to physical address translation

A region may be of size 2" bytes, with a minimum size of 256 bytes (64 words) and a maximum size of
230 pytes. A region of size 2" bytes may be translated onto any 2" byte boundary in the physical address
space. The physical addresses associated with the four regions must not overlap. The legal logical ad-
dresses within a region either occupy the top 2" addresses within that region or occupy the bottom 2" ad-
dresses within that region. A consequence of this is that, except for when the maximal sized region (230
bytes) is in use, it is possible to ensure that the addresses 0 and #80000000, which are commonly used
as null pointers, do not correspond to legal addresses and so access to such an address is immediately
detected as a violation.

80 IMS T9000 transputer preliminary data

5.2 Regions

The logical address space of a P-process is divided into four regions. Each region is sized, assigned ac-
cess permissions, and has its address accesses translated independently of the others. The two most
significant bits of a logical address are used to determine to which region reference is being made. The
terms region 0, region 1, region 2, and region 3 are used to refer to the regions having addresses with
the most significant bits set to 00, 01, 10 and 11 respectively.

Associated with each region is a region descriptor which:
« identifies the region as read-only, read-write, read-execute or read-write-execute.
¢ indicates whether valid addresses are located in the bottom or the top of the region.

« specifies the size of the region and the address of the physical region to which the logical region
should be relocated.

¢ indicates whether device access instructions must be used to access the region. (Refer to the
T9000 Transputer Instruction Set Manual for details on the device access instructions).

The legal logical addresses within a region either occupy the top 2" addresses within that region or occupy
the bottom 2N addresses within that region. The following table shows the legal addresses within each
region. The memory mapping for the logical addresses is illustrated in figure 5.1.

Positioned from top of region Positioned from bottom of region
Region | Size Most positive Most negative Most positive Most negative
address address address address
0 2! 230 1 280 _2l ol—1 0
1 ok LI 281 _ ok 2804 2k _ 1 230
2 an —230 14 —230 _2n . —28t4on_A —231
3 am - —2m —280 4 2m 4 230

Table 5.1 Region addresses

5 Memory management

T 2814
non-accessible
231 _ ok
Region 1 : 01XX......... N
) 230 4 ok _1q
non-accessible
—+— 230_14 230
non-accessible
230 _ ol
Region 0 : 00xx......... //\\?
21
non-accessible
S 0
non-accessible
Region 3 : 11xx......... %
—230 4 om _4
non-accessible
_030 | .
non-accessible
Region 2 : 10xx......... N .
_0o31 yon_4q
non-accessible
_ 9231
regions positioned at top regions positioned at bottom

Figure 5.1 Position of region addresses in logical memory space

82 IMS T9000 transputer preliminary data

5.2.1 Region descriptors

A region descriptor defines the size of a region, the position of the logical region, the address translation,
and the write and instruction fetch permissions (write-permit and execute-permit respectively) associated
with that region.

A region descriptor is a single word. Bit 0 indicates whether writes may be made to the region (1 =
write-permit). Bit 1 indicates whether instructions may be fetched from the region (1 = execute-permit).
Bit 2 indicates the position of the logical region (1 = top, 0 = bottom). Bit 3 indicates the device requirement
(1 = device-only, 0 = any).

The remaining bits specify the size of the region and the address of the physical region to which the logical
region should be relocated. For a region of size 27 bytes, bit n—1 is set to 1. All bits below bit n—7 are set
to 0 (except for the write-permit, execute-permit, position and device requirement bits; bits 0, 1, 2 and 3).
The remaining high-order bits, bits 31 through n, are used to replace the corresponding bits in the logical
address which is being translated.

Note that the minimum region size of 256 bytes implies that bits 4 through 6 of the region descriptor must
be set t0.0.

A region can be set to have zero size by programming its region descriptor with the null descriptor,
#8000000. A number of invalid region descriptors exist, and these should not be used.

An example of a logical to physical address translation which is positioned at the top of region 2 is shown
in the following diagram. This region has execute permission and is read-only.

p p
logical address |10 |1 1.1 1| Isb logical address
2 bits 30 — n bits n bits
32 0
RegionReg2 relocation 1|0/ 0.0 |O]1|1]|0
dpxw
32 — n bits n bits
physical address relocation Isb logical address
32 —n bits n bits
where,
w is write-permit bit
X is execute-permit bit
p is position bit
d is device requirement bit

Figure 5.2 Logical to physical address translation
Note that for the logical address to be valid, bits n through to 29 must be 1’s if the position bit (bit 2) in the
region descriptor is set to 1, and must be 0’s if the position bit is 0.
5.2.2 Non-overlapping regions

The translated regions must not overlap, that is no two distinct logical addresses may translate to the same
physical address. If the regions do overlap the effect is undefined.

5 Memory management 83

5.3 P-process machine registers

The register state of a P-process is similar to the register state of an L-process but also contains protection
registers. The IMS T9000 transputer has the following registers related to the operation of memory man-
agement for P-processes. The operation of a P-process requires that the supervisor causes its state to
be loaded and then causes the P-process to execute under protection until a trap occurs. When the trap
occurs the P-process’s state must be saved and the supervisor re-started.

The operations of loading and saving P-process state is shared between hardware mechanisms of the
IMS T9000 and the supervisor program. The hardware mechanism provides for the loading and storing
of state contained in Pstate vector, which consists of the StatusReg, watchpoint registers, Wptr, IptrReg,
Areg, Breg, Creg, Ereg and Xreg, and the loading of the protection registers. Other registers, such as
the floating point registers, are loaded and saved by the supervisor executing the appropriate instructions.

Register Description

RegionReg0 Register descriptor for region 0
RegionReg1 Register descriptor for region 1
RegionReg2 Register descriptor for region 2
RegionReg3 Register descriptor for region 3
PstateReg Pointer to the P-process state vector
WdescStubReg | Process descriptor of the supervisor

Table 5.2 Memory management registers

The RegionReg0, RegionReg1, RegionReg2, RegionReg3 registers contain the region descriptors for
region O, region 1, region 2, region 3 respectively. As described above, the region descriptor defines the
size, position, physical address and permissions of a region as a single 32-bit word.

The PstateReg register contains a pointer to a block of memory where the state of the executing P-pro-
cess is to be saved when it traps to its supervisor process.

The WdescStubReg register contains the workspace descriptor of the supervisor process which is con-
trolling the execution of the current P-process.

54 Debugging

The support provided for debugging a running P-process is an extension of that provided for L-processes,
which is described in section 3.5. However, whenever the trap-handler would have been invoked for an
L-process, for a P-process control is returned to its supervisor process. The supervisor process is respon-
sible for taking any necessary action. Thus, the following debug operations will cause control to be re-
turned to the supervisor process.

¢ a o instruction acting as a breakpoint
* execution of a single instruction when single-stepping enabled

* a write access to the watchpoint region

84

IMS T9000 transputer preliminary data

6 Instruction set 85

6 Instruction set

This chapter provides information on the IMS T9000 instruction set. It contains tables listing all the instruc-
tions and where applicable provides details of the number of processor cycles taken by an instruction. For
a more complete description of the instructions and their use refer to the 79000 Transputer Instruction
Set Manual.

The transputer instruction set has been designed for simple and efficient compilation of high-level lan-
guages. All instructions have the same format, designed to give a compact representation of the opera-
tions occurring most frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the
byte are a function code and the four least significant bits are a data value.

Function Data
7 4 3 0

Figure 6.1 Instruction format

6.1 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as /d/ (load local) and add require just one
processor cycle or less with grouping.

The instruction representation gives a more compact representation of high-level language programs than
more conventional instruction sets. Since a program requires less store to representit, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is a pre-fetch buffer which contains several words, so the processor rarely has to wait
for an instruction fetch before proceeding. Since the buffer is transparent on jumps, there is little time pen-
alty when a jump instruction causes the buffer contents to be discarded.

6.2 Interaction of the processor pipeline and the instruction set

The IMS T9000 has a pipelined processor with 5 pipeline stages. Each stage is dedicated to a particular
operation, which in the main correspond to individual instructions, although even some of the simple in-
structions are operated on in more than one pipeline stage.

Stage | Operation Function
0 Local Push constants and locals onto the execution stack.
1 Address Calculate addresses of non-local operands.
2 Read Read non-local variables.
3 ALU Stack-based ALU and FPU operations.
4 Conditional Jump/Store Conditional jump or write results back to memory.

Table 6.1 Pipeline stages

The IMS T9000 treats commonly occurring sequences of instructions as if they were a single ‘grouped’
operation. The pipelined execution unit is able to execute several groups at the same time. Most groups

86 IMS T9000 transputer preliminary data

execute in one cycle, thus delivering an instruction rate well in excess of one instruction per cycle. An ex-
ample of decoding is shown below:

Program Mnemonic Group
x:=0 Idc 0; stl x 1st group
y = #24 pfix 2; Idc 4, stly 2nd group
Wi=X+Yy ldl x; Idl y; add 3rd group
stlw 4th group
Z:=W+ (X+Y) ldi x; Idl y; add 5th group
Idl w; add; stl z 6th group
e[0] := a[3] + b[4] Idl a; Idnl 3; Idl b; Idnl 4; add 7th group
’ Idl e; stnl 0 8th group
b[j] := a[i] Idl i; ldl a; wsub; Idnl 0 9th group
ldi j; Idl b; wsub; stnl O 10th group

Table 6.2 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the num-
ber of these can be minimized by careful choice of the evaluation order.

Groups commonly take one cycle at each stage in the pipeline, so that as groups are passed continuously
down the pipeline one group is executed per cycle. However, a number of factors may cause a group to
take more than one cycle at a given stage in the pipeline. These are enumerated below:

1 Long ALU/FPU operations: Most ALU/FPU operations take one cycle; those frequently used
instructions which take longer are shown in the table below. The processor cycles column of the
instruction set tables detail all instructions which take longer than one cycle.

Operation Cycles Notes
prod 2-5
mul 2-5
div 5-12
rem 6-13
Imul 3-6
Idiv 15
Ishr 2
Ishl 2
crcbyte
creword
foadd
fosub

-
o

fomul (single)
fomul (double)
fodiv (single)
fodiv (double)

(oo 2NN 7 I \V B \C RN \V)
_ . a

e
8]

table continued overleaf

6 Instruction set 87

table continued from previous page

Operation Cycles Notes
forem (single) 5-74 1
forem (double) 5-529 1
forange (single) 5-11 1
forange (double) 5-18 1
fosqrt (single) 8 1
fosqrt (double) 15 1

Table 6.3 Speed of ALU/FPU operations
Notes:

1 These figures assume normalized values, there is a 2 cycle overhead for each denor-
malized operand or result (except there is no overhead for a denormalized result from
forem).

2 Stack conflicts: There are occasions when a group will produce a value on the integer or floating
point evaluation stack which will then be used by the following group. If the following group re-
quires it in an earlier pipeline stage than it is produced in, then the group will have to wait. This
occurs mainly with the subscript instructions. Table 6.4 below shows the stages in which values
are produced and consumed. If a value is produced and pushed onto the stack in stage nin a
particular group, and is consumed in stage m in the following group, then n —m extra cycles will
have to be allowed for.

Stage
Instruction Consumed Produced
Ide

fal

Idip

mint

Idnip

All subscript instructions

ldnl

load16

b

All ALU and FPU instructions
o

All store instructions

W NN NDDND 22 =2 O 0 0o

A D W 4 4 a a o

Table 6.4 Stages in which instructions operate

3 Load/store conflicts: Stores occur in later pipeline stages than loads, so if the load is to the
same address as the store, the memory is not yet in the state that the group expects it to be in.
When this happens, the second group proceeds until the operand that would have been loaded
is actually used, at which point it waits until the data that is to be written has passed it. All writes
generate their values at stage 4, which are then consumed in either stages 1 or 3. If it is in stage
3, then there will be no penalty, but there will be a 2 cycle penalty when the value is consumed
in stage 1. The load may not occur in the immediately following cycle, but in the subsequent one,
in which case any penalty is one cycle less.

88 IMS T9000 transputer preliminary data

4 Jumps: A jump causes a pipeline to be (partially) empty while the instruction at the destination
address is fetched and decoded. The number of cycles added to the normal time for a group is
given in the following table:

Instruction Cycles Notes
j 2 1
¢j (taken) 4 1
lend (loop back) 2 1
lend (terminate) 5 1
call 3 1
ret 2 1

Table 6.5 Jumps
Notes:

1 These figures assume cache hits, if cache misses occur it may take longer, dependent
on the PMI speed.

6.3 Instruction characteristics
Tables 6.8 to 6.37 give the complete set of instructions grouped by function.

The Primary Instructions table 6.8 gives the basic function code. Where the operand is less than 16, a
single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (pfix)
is required for each additional four bits of the operand. If the operand is negative the first prefix instruction
will be nfix. Examples of pfix and nfix coding are given in table 6.6.

For secondary instructions, which do not have an operand, the memory code is given in the instruction
tables.

Mnemonic Function code Memory code

Idc #3 #4 #43
Idc #35

is coded as
pfix #3 #2 #23
ldc #5 #4 #45
Ide #987

is coded as
pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47
Idc -31 (/dc #FFFFFFE1)

is coded as
nfix #1 #6 #61
Ide #1 #4 #41

Table 6.6 prefix coding

The load device identity (/ddevid) instruction (table 6.29) pushes the device type identity into the Areg
register. Each product is allocated a unique group of numbers for use with the lddevid instruction.

6 Instruction set 89

Where applicable the instruction set tables contain a processor cycles column. This refers to the number
of cycles taken by an instruction.

If a floating point instruction has one or more zero, infinity or NaN operands (except fpadddbsn with a
single zero operand) it will execute in 1 cycle.

There are a number of errors that can be trapped. When this occurs, an error code is returned to the trap
handler. Any instruction which is not in the instruction set tables is an invalid instruction and is flagged
illegal, returning an error code to the trap handler.

The Notes column of the tables indicates the descheduling and error features of an instruction as de-
scribed in table 6.7. It also indicates which instructions cannot be used in P-processes.

Ident | Feature
E Error can be explicitly set
(o) Integer overflow / divide by zero error
U Unaligned memory access to word / half word
M

Invalid memory address for P-process

i |EEE invalid operation exception
|IEEE divide by zero exception

N

IEEE overflow exception

o

|EEE underflow exception

“

IEEE inexact exception
T800 FPU error exception
Interruptible instruction

Instruction can cause a breakpoint
Timesliceable instruction

Instruction not allowed in P-process

Instruction is a descheduling point

|l W@ o~ ~

Each denormalized operand or result incurs an additional 2
processor cycles

Table 6.7 Instruction features

90 IMS T9000 transputer preliminary data

6.4 Instruction set tables

6.4.1 Primary instructions

Function | Mnemonic Name Notes
Code

0 jin jump B,T,D
1 Idipn load local pointer
2 pfix n prefix
3 Idnln load non-local M,U
4 Iden load constant
5 ldnlp n load non-local pointer
6 nfix n negative prefix
7 Idin load local M
8 adc n add constant (0]
9 calln call M
A cjn conditional jump
B ajwn adjust workspace M
C eqcn equals constant
D stin store local M
E stnln store non-local M,U
F oprn operate

Table 6.8 IMS T9000 primary instructions

6 Instruction set

N

6.4.2 Secondary instructions

Sequential instructions

Memory | Mnemonic Processor |Name Notes

Code cycles
24F6 |and 1 and
24FB |or 1 or
23F3 | xor 1 exclusive or
23F2 | not 1 bitwise not
24F1 | shl 1 shift left
24F0 | shr 1 shift right

F5 add 1 add 0

FC sub 1 subtract (o}
25F3 | mul 2-5 multiply (6}
27F2 | fmul 3-6 fractional multiply (0]
22FC | div 5-12 divide 0]
21FF |rem 6—-13 remainder (6]

F9 gt 1 greater than
25F5 |gtu 1 greater than unsigned

F4 diff 1 difference
25F2 |sum 1 sum

F8 prod 2-5 product

Table 6.9 IMS T9000 arithmetic and logical instructions
Memory | Mnemonic Processor | Name Notes
Code cycles
21F6 |ladd 1 long add (o}
23F8 |lIsub 1 long subtract (0]
23F7 | lsum 1 long sum
24FF | Idiff 1 long diff
23F1 Imul 3-6 long multiply
21FA | Idiv 15 long divide o}
23F6 | Ishl 2 long shift left
23F5 | lIshr 2 long shift right
21F9 |norm 2-3 normalize
Table 6.10 IMS T9000 long arithmetic instructions

92

IMS T9000 transputer preliminary data

Memory | Mnemonic Name Notes
Code
22F0 |ret return M
21FB | Idpi load pointer to instruction
23FC | gajw general adjust workspace M,U
F6 geall general call
22F1 lend loop end M,T,U,D
Table 6.11 IMS T9000 jump and call instructions
Memory | Mnemonic Name Notes
Code
24FA | move move message MI
25FB | move2dinit initialize data for 2D block move
25FC | move2dall 2D block copy MI
25FD | move2dnonzero |2D block copy non-zero bytes M,
25FE | move2dzero 2D block copy zero bytes M,I
Table 6.12 IMS T9000 block move instructions
Memory | Mnemonic Name Notes
Code
F2 bsub byte subscript
FA wsub word subscript
28F1 wsubdb form double word subscript
2CF1 |ssub sixteen subscript
23F4 |bent byte count
23FF |went word count
F1 Ib load byte M
23FB |sb store byte M
2CFA |lIs load sixteen MU
2CF8 |ss store sixteen MU
2BF9 | Ibx load byte and sign extend M
2FF9 |Isx load sixteen and sign extend MU
Table 6.13 IMS T9000 indexing/array instructions

6 Instruction set

Memory | Mnemonic Processor | Name Notes
Code cycles
2CF7 |cir 2 check in range E
2CFC |ciru 2 check in range unsigned E
2BFA |cb - check byte E
2BFB |cbu - check byte unsigned E
2FFA |cs - check sixteen E
2FFB |csu - check sixteen unsigned E
25F6 | cword - check word E
24FC |csngl - check single E
21F3 | csub0 - check subscript from 0 E
24FD | ccntl - check count from 1 E
2FF8 |xsword - sign extend sixteen to word
2BF8 | xbword - sign extend byte to word
23FA | xword - extend to word
21FD |xdble - extend to double

Table 6.14 IMS T9000 range checking and conversion instructions

Memory | Mnemonic Name Notes

Code

2FF0 |devib device load byte M
2FF2 | devis device load sixteen M,U
2FF4 | deviw device load word M,U
62F4 | devmove device move M,I
2FF1 | devsb device store-byte M
2FF3 |devss device store sixteen M,U
2FF5 |devsw device store word M,U

Table 6.15 IMS T9000 device access instructions

Memory | Mnemonic Processor |Name Notes
Code cycles
27F4 | crcword 16 calculate CRC on word
27F5 | crcbyte 4 calculate CRC on byte
27F6 | bitent 8 count bits set in word
27F7 | bitrevword 1 reverse bits in word
27F8 | bitrevnbits 1 reverse bottom n bits in word

Table 6.16 IMS T9000 CRC and bit instructions

IMS T9000 transputer preliminary data

Memory | Mnemonic Name Notes
Code
FO rev reverse
25FA | dup duplicate top of stack
27F9 | pop pop processor stack
63F0 | nop no operation
24F2 | mint minimum integer

Table 6.17 IMS T9000 general instructions

Memory | Mnemonic Name Notes
Code
22F2 | Idtimer load timer
25F4 | sttimer store timer P
22FB |tin timer input PD,I
24FE |talt timer alt start P
25F1 taltwt timer alt wait PD,I
24F7 | enbt enable timer P
22FE | dist disable timer J A

Table 6.18 IMS T9000 timer handling instructions

6 Instruction set

95

Communication instructions

Memory | Mnemonic Name Notes
Code
F7 in input message PD,LE,U
FB out output message PD,LE,U
FF outword output word PD,LE,U
FE outbyte output byte PD,LE,U
Table 6.19 IMS T9000 input/output instructions
Memory ;| Mnemonic Name Notes
Code
2CFO0 |Ident load message byte count PE
61FC |vin variable-length input message PLE,UD
61FD |vout variable-length output message PLE,UD
Table 6.20 IMS T9000 variable length input/output instruction
Memory | Mnemonic Name Notes
Code
2CF9 | chantype channel type PEU
61F6 initvicb initialize VLCB PE,U
2CF3 |lIdchstatus load channel status PE,U
21F2 |resetch reset channel PE,U
61F7 |setchmode set channel mode PE,U
61FE | stopch stop virtual channel PE,UD
61F8 |sethdr set virtual channel header PE,U
61F5 | writehdr write virtual channel header PE,U,I
61F4 | readhdr read virtual channel header PEU,I
2BFC |insphdr inspect virtual channel header PE,U
61F9 |swapbfr swap buffer pointer in VLCB PE,U
2BFD | readbfr read buffer pointer from VLCB PE,U

Table 6.21

IMS T9000 channel and virtual link instructions

96

IMS T9000 transputer preliminary data

Memory | Mnemonic Name Notes
Code .
61F1 grant grant resource P,U,D
61F2 |enbg enable grant PU
61F3 |disg disable grant PU
62F8 | Idresptr load resource queue pointer PEU
62F9 | stresptr store resource queue pointer PE,U
62FA | erdsq empty resource data structure queue PU
62FB | irdsq insert at front of RDS queue PU
62FC | mkrc mark resource channel PE,U
62FD | unmkrc unmark resource channel PE,U

Table 6.22 IMS T9000 resource channel instructions

Memory | Mnemonic Name Notes
Code
60F5 |wait wait PU,0,D
60F4 |signal signal PU,0

Table 6.23 IMS T9000 semaphore instructions

Memory | Mnemonic Name Notes
Code
24F3 alt alt start P
24F4 altwt alt wait PD
24F5 |altend alt end P
24F9 |enbs enable skip P
23F0 |diss disable skip P
24F8 |enbc enable channel PE,U
22FF |disc disable channel PE,U
24FE |talt timer alt start P
25F1 taltwt timer alt wait PD,I
24F7 |enbt enable timer P
22FE | dist disable timer Pl
61F2 |enbg enable grant PU
61F3 |disg disable grant PU

Table 6.24 IMS T9000 alternative instructions

6 Instruction set

97

Process scheduling instructions

Memory | Mnemonic Name Notes

Code
FD startp start process PU
F3 endp end process PD,U
23F9 |runp run process P
21F5 | stopp stop process PD
21FE | Idpri load current priority
Table 6.25 IMS T9000 scheduling instructions

Memory | Mnemonic Name Notes
Code
60F0 | swapqueue swap scheduler queue P
60F1 swaptimer swap timer queue P
60F2 |insertqueue insert at front of scheduler queue P
2BF0 | settimeslice set timeslicing status P
60F3 | timeslice timeslice T,D
Table 6.26 IMS T9000 process queue manipulation and timeslicing instructions

Memory | Mnemonic Name Notes
Code
2CF4 |intdis interrupt disable P
2CF5 |intenb interrupt enable P
60FE |fpldall floating point load all M,U
60FF | fpstall floating point store all MU
61F0 | stmove2dinit store move2dinit data M,U
60FC |ldshadow load shadow registers PU
60FD | stshadow store shadow registers PU

Table 6.27 IMS T9000 interrupt instructions

Memory | Mnemonic Name Notes
Code
2CF2 |Idth load trap handler P
60F9 |selth select trap handler PD,U
2BF6 |Idflags load error flags
2BF7 |stflags store error flags
60FA | goprot go protected PU
62FE | restart restart PU
60FB | tret trap return P
60F8 |syscall system call
62FF | causeerror cause error

Table 6.28 IMS T9000 trap handler instructions

98

IMS T9000 transputer preliminary data

Initialization and configuration instructions

Memory | Mnemonic Name Notes
Code
22FA | testpranal test processor analysing
25F4 | sttimer store timer P

2127FC | Iddevid load device identity
27FE | ldmemstartval load value of memstart address P
68FC | ldprodid load product identity

Table 6.29 IMS T9000 processor initialization instructions

Memory | Mnemonic Name Notes
Code
2BFE | Idconf load from configuration register PE
2BFF | stconf store to configuration register PE

Table 6.30 IMS T9000 configuration instructions
Cache operation instructions

Memory | Mnemonic Name Notes
Code
62F0 |fdca flush dirty cache address M
62F2 |fdcl flush dirty cache line P
62F1 ica invalidate cache address M
62F3 |icl invalidate cache line P

Table 6.31

IMS T9000 cache instructions

6 Instruction set

99

Floating point instructions

Memory | Mnemonic Processor cycles | Name Notes
Code
REAL32 | REAL64
28F7 |fpadd 2 2 floating point add 1,0,u,x,t,d
28F9 |fpsub 2 2 floating point subtract L,o,u,x,t,d
28FB | fpmul 2 3 floating point multiply 1,0,u,%,t,d
28FC | fpdiv 8 15 floating point divide i,z,0,u,x,t,d
2DFB |fpabs 1 1 floating point absolute value it
2DFA |fpexpinc32 2 2 floating point multiply by 232 i,o,uix,t,d
2DF9 |fpexpdec32 2 2 floating point divide by 232 Luxtd
2DF2 | fpmulby2 2 2 floating point multiply by 2 1,0,u,%,t,d
2DF1 | fpdivby2 2 2 floating point divide by 2 i,u,x,t,d
2CFF | fprem 5-74 5—529 |floating point remainder Liu,t,d
2DF3 | fpsqrt 8 15 floating point square root i,x,t,d
28FD |fprange 5-11 5—-18 |floating point range reduce i,u,t,d
2DFD |fpadddbsn 2 2 floating point add double producing 1,x,0,u,t,d
single
Table 6.32 [MS T9000 floating point arithmetic instructions
Memory | Mnemonic Name Notes
Code
28FE | fpldnisn floating point load non-local single MU
28FA | fpldnidb floating point load non-local double MU
28F6 | fpldnisni floating point load non-local indexed MU
single
28F2 | fpldnidbi floating point load non-local indexed M,U
double
29FF |fpldzerosn load zero single
2AF0 | fpldzerodb load zero double
2AFA | fpldnladdsn floating point load non-local and add M,U,i,0,u,
single x,t,d
2AF6 | fpldnladddb floating point load non-local and add M,U,i,o,u,
double x,t,d
2AFC | fpldnimulsn floating point load non-local and multiply M,U.i,o,u,
single x,t,d
2AF8 | fpldnimuldb floating point load non-local and multiply M,U,i,0,u,
double x,t,d
28F8 |fpstnisn floating point store non-local single MU
28F4 | fpstnidb floating point store non-local double MU
29FE | fpstnli32 floating point store non-local int32 MU
Table 6.33 IMS T9000 floating point load and store instructions

100 IMS T9000 transputer preliminary data
Memory | Mnemonic Processor cycles | Name Notes
Code
REAL32 | REAL64
29F4 | fpgt 2 2 floating point greater than it,d
29F5 |fpeq 2 2 floating point equality it,d
29F7 |fpge 2 2 floating point greater than or equals itd
29FB |fplg 2 2 floating point less than or greater than itd
29F2 |fpordered 1 1 floating point orderability it
29F1 |fpnan 1 1 floating point NaN
29F3 | fpnoffinite 1 1 floating point not finite
2DFE | fpchki32 2 2 check in range of int32 it
2DFF | fpchki64 2 2 check in range of int64 it
Table 6.34 IMS T9000 floating point comparison instructions
Memory | Mnemonic Processor | Name Notes
Code cycles
2DF7 |fpr32tor64 2 floating point real32 to real64 itd
2DF8 | fpr64tor32 2 floating point real64 to real32 i,0,u,%,t,d
29FD | fprtoi32 real to int32 ix,t
29F6 | fpi32tor32 2-4 int32 to real32 M,U,x
29F8 | fpi32tor64 2 int32 to real64 M,U
29FA | fpb32tor64 2 bit32 to real64 M,U
2AF1 | fpint 2 round to floating integer Lxt
Table 6.35 [IMS T9000 floating point conversion instructions
Memory | Mnemonic Name Notes
Code
2AF4 |fprev floating point reverse
2AF3 | fpdup floating point duplicate
Table 6.36 IMS T9000 floating point general instructions
Memory | Mnemonic Name Notes
Code
2DF0 |fprn set rounding mode to round nearest
2DF6 | fprz set rounding mode to round zero
2DF4 |fprp set rounding mode to round plus
2DF5 |fprm set rounding mode to round minus

Note: These instructions take no time (0 cycles) if grouped with an operation.

Table 6.37

IMS T9000 floating point rounding instructions

7 Performance 101

7 Performance

The performance of the IMS T9000 is measured in terms of the number of (internal) processor cycles re-
quired to execute the program. The figures here relate to 0cCam programs. For the same function, other
languages should achieve approximately the same performance as occam.

The following tables are based on the time it takes to do ALU and FPU operations and it should be noted
that many other instructions may be overlapped (see section 6.2).
7.1 Integer operations

These figures are estimates and give the minimum/maximum times for a particular operation.

Operation Time (cycles)
Names
variables
in expressions 0
assigned to or input to Oto1
in PROC or FUNCTION call 0
channels 1
Array Variables (1—d)
constant subscript 0
variable Oto1
plus subscript check 3
variable + constant subscript Oto1
plus subscript check 4
expression subscript 3
plus subscript check 1
Declarations
CHAN OF protocol 2
[size] CHAN OF protocol 3+5* size
PROC 0
Primitives
assignment 0
input 15 or [5 + move]
output 16 or [5 + move]
STOP (call error handler) 7
SKIP 0
Arithmetic Operators
+ - 1
* 2to5
/ 5to 12
REM 6to0 13
>> << 1

table continued overleaf

102

IMS T9000 transputer preliminary data

table continued from previous page

Operation

Time (cycles)

Modulo Arithmetic Operators
PLUS MINUS
TIMES
Boolean Operators
OR
first operand true
first operand false
AND
first operand true
first operand false
NOT
Comparison Operators

= <>
> <
>= <=
Bit Operators
N\ \/ >< o~

Expressions
constant
check if error
Timers
timer input
fimer AFTER
ALT (timer)
ALT guard
Constructs
SEQ
IF
IF guard
ALT (non timer)
ALT guard
PAR
WHILE
Procedures and Function
call and return
scalar parameter
array parameter

2t05

3to4
Oto1

410 oo
20 10 co
710 o

0
0
4
111017
7to 16
20 * branches — 6
4 +3 *loops

6t08
Oto1
2

table continued overleaf

7 Performance

103

table continued from previous page

Operation

Time (cycles)

Replicators
replicated SEQ
replicated IF
replicated ALT
replicated timer ALT
replicated PAR

range check on any of above

(1t03) +3 * count
(4to 6) +3 * count
(13 to 23) + (13to 22) * count
(210 00) + (13 to 00) * count
10 + 27 * count
2

Table 7.1
Floating point operations

7.2

Integer Performance

All references to REAL32 or REAL64 operands within programs compiled for the IMS T9000 normally
produce the following performance figures.

Operation REAL32 Time (cycles) | REAL64 Time (cycles) Notes
Names
variables
in expressions 0 Oto1
assigned to Oto1 1to2
input to 1 1
in PROC or FUNCTION call 0 0
Arithmetic Operators
+ - 2 2 1
* 2 3 1
/ 8 15 1
SQRT 8 15 1
REM 5to 74 510529 1,2
Comparison Operators
= <>
> <
>= <=
Conversions
REAL32 to - 2
REAL64 10— 2
INT32 to— 2to4 2
INT64 to— 10 10
To INT32 from— 4 4
To INT64 from— 1 1

Table 7.2 Floating point performance

Notes:

1 These figures assume normalized values, there is a 2 cycle overhead for each denormalized op-
erand or result (except there is no overhead for a denormalized result from forem).
2 Typical value for REAL32 is 5 to 11; for REAL64 is 5 to 18, longer times are extremely rare.

104

IMS T9000 transputer preliminary data

7.3

Predefines

Operation Time (cycles)
LONGADD 1
LONGSUM 1
LONGSUB 1
LONGDIFF 1
LONGPROD 3to6
LONGDIV 15
SHIFTRIGHT 2
SHIFTLEFT 2
NORMALISE 2t03
ASHIFTRIGHT 3
ASHIFTLEFT 4
ROTATERIGHT 3
ROTATELEFT 3
FRACMUL 3to6
BITCOUNT 8
CRCBYTE 4
CRCWORD 16
BITREVNBIT 1
BITREVWORD 1

Table 7.3 Predefines

8 Control system) 105

8 Control system

This chapter describes the control system on the IMS T9000. The control system handles most of the
general facilities necessary for the operation of the transputer.

8.1 Overview
The control system handles the following functions:
 initialization and configuration of the IMS T9000;
¢ loading and running a bootstrap program on the IMS T9000;
« resetting the IMS T9000;
¢ reporting errors and halting the IMS T9000.

An IMS T9000 is generally connected to a “controlling” processor, possibly another IMS T9000. A high-lev-
el protocol is defined for the controlling network to allow the controlling process to issue commands to,
and receive responses from, devices in the control network. The controlling process sends command
messages to the control system of the IMS T9000 which responds with handshake messages, see figure
8.1. The control system of the IMS T9000 can also send error messages to the controlling process, which
responds with error handshakes. Commands are sent as packets with the first byte after the header con-
taining a command code, which may be followed by additional data. Each command is terminated by an
End of Message (EOM) token.

command messages

handshake messages

controlling T9000 control
process system

error messages

error handshakes

Figure 8.1 Communication between the controlling process and the IMS T9000 control system

The IMS T9000 has two bidirectional control links. They use the same electrical and packet level protocols
as the four data links (see Data/Strobe links chapter 13), and a control link network is generally connected
to one of the data links of a controlling IMS T9000.

One control link (CLink0) receives control and programming information and returns status information,
the other (CLink1) enables all the devices in a system to be daisy-chained. This allows a simple physical
connectivity to be used for the controlling network, as shown in figure 8.2. The routing information for each
link of each device is programmed, via the control link, from the controlling processor.

106 IMS T9000 transputer preliminary data

. :
e Control link
——— Communication link
T9000 ——
Root T9000
0 1 0. 1 0 1
— T9000 T9000 — — T9000

Figure 8.2 A daisy-chained control link network

The control links on all IMS T9000 transputer family products allow a separate control network to be used
to assist in error handling and configuring, booting, resetting and analyzing processors and other compo-
nents connected in a system, even in the presence of errors on the data communications links in the net-
work.

For large systems IMS C104 routing devices can be used to connect the controlling network as a physical
tree. Whatever the physical topology, the controlling network provides an independent virtual link between
each device and the controlling processor.

8.1.1 Tiers of handshaking
There are three tiers of handshaking in the IMS T9000 control system.
¢ Flow control

Flow control tokens provide a low level of handshaking at the DS-Link level. Initially, tokens can-
not be sent until a flow control token has been received. Thereafter, tokens are allowed to be
transmitted so long as there is room in the input buffer of the receiving link to receive the data.

« Packet acknowledge
Each message packet received over a link is acknowledged by an acknowledge packet.
¢ Command handshake

Each command message received is acknowledged by a handshake message before the con-
trolling process can send another command message to the same device.

The exceptions to this are Reset and RecoverError command messages which can be sent in
violation of the normal protocol. The Reset command can be sent before a handshake message
is acknowledged. RecoverError may be sent to any node at any time to allow the controlling pro-
cess to handle error conditions in the network.

The strict exchange of a handshake for every message ensures that deadlock cannot occur at this level
even if an error message is sent concurrently with a command message, without demanding any parallel-
ism in the controlling process.

8 Control system 107

8.1.2 Autonomous operation

The IMS T9000 can operate without a control link network. This is referred to as stand alone mode. The
IMS T9000 must be set to stand alone mode if it is not connected to a control link network. Alternatively,
the IMS T9000 may be set to stand alone mode if errors are to be handled independently of a connected
control link network.

There are two independent flags which determine autonomous behavior.

« The stand alone mode bit in the ModeStatus configuration register.
This can be set either by a configuration access by the controlling process or by the CPU (possi-
bly from the boot code). When the stand alone mode bit is set errors are handled in a distinct
way. When an error is detected the control system performs an auto-reset of the chip.

¢ The StartFromROM pin.
Setting the StartFromROM pin causes the initial boot code to be loaded from ROM, as opposed
to loading code down CLinkO0. The StartFromROM pin is only effective after a hard reset (reset
0, see section 8.7).

In stand alone mode software running on the IMS T9000 can perform many of the functions otherwise
performed by the control links.

108 IMS T9000 transputer preliminary data

8.2 Control system interconnections
The control system interfaces to other subsystems of the IMS T9000.

A number of subsystems of the IMS T9000 are controlled through a separate address space, referred to
as the configuration space. The control system is connected via the configuration bus to registers in the
configuration space. The configuration space is accessed either by the CPU using ldconf and stconf
instructions, or by the control system using CPeek and CPoke command messages received along
CLink0. The control system has control of the internal configuration bus whenever the CPU is not running.

The control system handles memory accesses via the scheduler using peek, poke commands. Figure 8.3
shows how the control system interacts with some of the other sub-systems of the IMS T9000.

configuration
bus

Control system

configuration

space
) -
IS Auxiliary
- 5 _ _ _| | scheduler
$ = ° ge ®
3 5 > c
L2 5 g2 2 1} crossbar 2
@ 5/ 8 5/ 5|3 5 2 | 5
@ 1] I £ 3l ® £l o |
o a o| o 8| | o F o
Virtual Central Programmable Phase
channel processor memory locked
processor unit interface loops
Data links — (VCP) (CPU) (PMI) (PLL)

Figure 8.3 IMS T9000 control system connectability

8 Control system 109

8.3 Control system functional description

The control system functional block diagram is shown in figure 8.4.

CLinkinData0 — l«— CLinkinDatat
CLinkinStrobe0—= Control fink 0 Control link 1< CL!nkInStrobe1
CLinkOutData0<— —» CLinkOutData1

CLinkOutStrobe0<— r— CLinkOutStrobe1
Packet
handler

U

Command
FIFO
' i; Control unit '
| f)
re— StartFromROM
' Command Autonomous '
' handler control l<-— Reset
[} 22 288 S92 3
8 gl 283 88§ o
g ° 5 gelsl 2% s5 2o System services
0 S Oolp| O o = c
o 522 ggo % -
9 % g DevicelD
9= S DeviceRevision
[} 72}
= L ModeStatus
3 ErrorCode
9 PLL ratio
i PLL
Interface DSLinkPLL
i SysServWriteLock
CPU
memory
VCP i
links configuration bus
memory
CPU configuration space

Figure 8.4 Control system functional block diagram

110 IMS T9000 transputer preliminary data

The control system on the IMS T9000 consists of: a pair of control links; a packet handler; a control unit
and system services. A command packet enters the IMS T9000 via the control link and is forwarded to
the packet handler which handles the initial processing of the packet stream. Itis then passed to the com-
mand handler, via the command FIFO, which responds to the command and signifies receipt of the com-
mand to the controlling processor by returning a command handshake. System services is a subset of
the configuration registers. The set of configuration registers which make up system services contain con-
trol information.

The functionality within each unit of the control system is described in more detail below.

8.3.1 Control links

The IMS T9000 has two bidirectional control links; CLink0 and CLink1. They use the same electrical and
packet level protocols as the four data links (see Data/Strobe links chapter 13). All communications with
the controlling processor are via CLink0. CLink1 is provided to allow IMS T9000 product family compo-
nents to be connected in a daisy-chain.

The IMS T9000 control system includes a simple through-routing function and the controlling processor
(possibly another IMS T9000) appears to have a direct connection to every device in the system. The con-
trol link traffic consists of messages and acknowledgements, whose headers describe which device the
packet is for. CLinkO receives commands from the controlling process and sends back status information.

When the network is initialized the first communication with each device programs the label and return
addresses to establish the virtual channels between the control process and that device. The first two
bytes of the first packet received on CLink0 are recorded as the ‘label’ of the device. Thereafter the device
accepts only packets with the same header; all others are routed out of CLink1 (or destroyed, causing
a protocol error, if CLink1 is inactive). Note that this label can only be set after hard reset (i.e. assertion
of the Reset pin). The return header address is programmed by a command message called Start, which
includes a two byte return header. This header is prepended to all packets sent by the device. The return
header can be changed by sending subsequent Start command messages. If the first packet received on
CLinkO is not a Start command message, this is an error, which will be reported as soon as a return header
is programmed by a Start command message.

CLink0 is started automatically on receipt of the first token. CLink1 must be started by setting the Start-
Link bit of the CLink1 command register (CLink1Command) using a CPoke command.

Figure 8.5 shows an example of daisy-chaining the control links in a network. The header values given
in this example are fictitious and do not attempt to show how a network should be labelled. The Start com-
mand sent from T9000q to T90004 has header value 30, which becomes the label of T90004, and carries
the return header value 11. The subsequent Start command arriving on CLink0 of T9000; has header
value 35 and is forwarded down CLink1 to T9000.. It carries return header value 12. The first packet (Start
command) received by T90003 has header value 40 and carries return header value 13.

The link module hardware in each control link is identical to that in each data D/S link. Associated with
each control link is a set of configuration registers, which are equivalent to those described in section 13.6
in the Data/Strobe links chapter.

8 Control system

communication link

Controlling T9000 -~ - - control link
— T9000g
link A
‘ link B link C
0 1 0 1 0 1
—— T9000; T9000, T90004
| |
Controlling
process
channel header of T90004
header control unit
a header of T9000,
control unit
12 Virtual channel between controlling 35
process and T9000, control unit header of T90003
control unit
@ Virtual channel between controlling process and T90003 control unit @

link A carries packets for all processors
link B carries packets for processors T9000, and T90003
link C carries packets for processor T90003

Figure 8.5 Daisy-chain operation of control messages over the control links

8.3.2 Packet handler

The packet handler handles the initial front end processing of the packet stream and performs the following

tasks.

* Records the first header seen on CLinkO0 after power up.

¢ Checks headers on incoming CLink0 packets to determine whether they are for this device. If

the packets are not for this device they are forwarded down CLink1.

* Programs the return header to establish the virtual channels between the controlling process and

this device, by means of a Start command.
» Adds the return header to outgoing CLink0 packets.

¢ Forwards incoming CLink1 packets onto CLinkO.

112

IMS T9000 transputer preliminary data

Detects and handles acknowledge packets incoming on CLinkO.
Validates command length and termination type.
Detects asynchronous commands Reset, RecoverError and ErrorHandshake.

Rejects commands if another command is already in progress.

Note that only one command at a time can be in progress. If another command arrives it is discarded, and
an error will be signalled to the control unit, which handies error transmission. The exceptions to this are
the Reset, RecoverError and ErrorHandshake command messages which can be sent in violation of the
normal protocol.

8.3.3

Control unit

The control unit consists of:

a command handler which responds to commands and generates handshakes and error mes-
sages;

an autonomous control block which controls the behavior of the T9000 when it is operating inde-
pendently of a control network.

Command handler

The command handler generates command responses and handles errors in the system. It performs the
following functions.

Captures errors from error inputs, encodes them and forwards them to the controlling process
via CLinkO.

Responds to errors with appropriate stop/halt to sub-systems.

Arbitrates between command responses and errors, and forwards them on CLink0 to the con-
trolling process.

Filters illegal commands as errors. (lllegal commands are commands with invalid codes.)
Filters inappropriate commands received from the packet handler as errors.

Responds to Reset commands with appropriate stop/halt to sub-systems.

Responds to Peek, Poke and Boot commands and accesses the memory system.

Responds to CPeek, CPoke commands and accesses the configuration bus.

Autonomous control

The autonomous control block handies errors when the IMS T9000 is operating independently of the con-
trol link network. If an error occurs the control unit performs an auto-reset and boot from ROM.

8 Control system 113

8.3.4 System services

The subsystems of the IMS T9000 are controlled by a set of configuration registers in the configuration
space (see chapter 15). System services consists of a block of 8 configuration registers. This block of
system services configuration registers contain control information and general information which is not
integral to any of the other functional subsystems on the IMS T9000. For example, it is an area in which
the device identification code resides, enabling either the control unit or the CPU to identify the device.

The functionality to be controlled by the system services configuration registers, and the associated bit
fields are described below.

Note, all undefined bits of a configuration register must always be written with 0’s.
DevicelD

The DevicelD register contains a 16 bit device identification code unique to the device. The device
identification code can also be read using the Identify command. It can also be returned by instructions
Iddevid (load device identity) and /dprodid (ioad product identity). This register is read only.

DevicelD #1001 Read only
Bit Bit field Function

15:0 | DevicelD Device identification code.

31:16 Undefined

Table 8.1 Bit fields in the DevicelD register
DeviceRevision

The DeviceRevision register contains the revision of the device. It is a 16 bit read-only register.

DeviceRevision #1002 Read only
Bit Bit field Function

15:0 |DeviceRev Device revision.

31:16 Undefined

Table 8.2 Bit fields in the DeviceRevision register
ModeStatus

An IMS T9000 can be set to operate in stand alone mode by setting the StandAloneMode bit in the
ModeStatus configuration register. In stand alone mode the IMS T9000 transputer is booted from ROM.

When in stand alone mode if an unmasked/untrapped error occurs, the control unit resets all the subsys-
tems of the IMS T9000 and then causes the processor to boot from ROM. The ErrorSinceReset flag in
the ModeStatus register is set to indicate to the ROM code that an error has occurred.

ModeStatus #1003 Read/Write

Bit Bit field Function

0 ErrorSinceReset When set to 1 signifies to ROM code that an error has occurred since
power-on reset.

1 StandAloneMode When set to 1 sets the IMS T9000 in stand alone mode.

31:2 Undefined

Table 8.3 Bit fields in the ModeStatus register

114 IMS T9000 transputer preliminary data

ErrorCode

The ErrorCode register is an 8 bit register used for debugging after a crash. This register is read only.

ErrorCode #1004 Read only

Bit Bit field Function

7:0 ErrorCode Contains an error code which can be used for debugging after a
crash. Refer to table 8.9, page 121 for the error code definitions.

31:8 Undefined

Table 8.4 Bit fields in the ErrorCode register
DSLinkPLL

The DSLinkPLL register contains the SpeedMultiply bit field and is used to program the DS-Link speeds.
This takes the 10 MHz clock and multiplies it by a programmable value to provide the root clock for ali the
DS-Links. Refer to section 13.4 in the Data/Strobe links chapter for further details.

DSLinkPLL #1005 Read/Write

Bit Bit field Function '

5:0 SpeedMultiply Sets link master clock to required value (see Data/Strobe links
chapter).

316 Undefined

Table 8.5 Bit fields in the DSLinkPLL register
SysServWriteLock

The SysServWriteLock register protects the system services subsystem from writes by the CPU. The
system services registers require protection so that the control system is guaranteed to function regard-
less of program behavior.

Reset clears this register.

SysServWriteLock #1006 Read/Write

Bit Bit field Function

0 SysServWriteLock When set to 1 it inhibits modification of the system services registers
by the CPU.

Table 8.6 Bit fields in the SysServWriteLock register

8 Control system 115

8.4 Control commands

The following section details the command messages which can be sent from a controlling process to the
IMS T9000.

Each command is handshaken by the IMS T9000. The handshake message can contain the result of a
Peek, CPeek or Identify command, or it may be simply a handshake code corresponding to the command
message. Command response codes are the same as the command codes except with the top bit in-
verted. Many handshake messages include a status byte which indicates whether the received command
was valid as defined below.

e Status byte has value 0 if command is valid.
¢ Status byte has value 1 if command is invalid or has failed for some reason.

Note that the following definitions are of the messages as sent and received by the controlling process.
At the packet level there are headers and End of Message (EOM) indicators and also acknowledge pack-
ets which are not described here. They are however shown in figures 8.6 and 8.7 which show the com-
mand packets received by the IMS T9000 and the handshake packets returned to the controlling process
respectively.

Start

This command programs or re-programs the return header of the IMS T9000. The return header is 2 bytes
long, with byte 0 being the first byte transmitted following the command code. Note that if this command
is used to re-program the return header, the acknowledge for the command message packet will be sent
with the old header, whilst the handshake will be sent with the new header.

The Start command must be the first command received following power on reset. If an error occurs before
the first Start command is received, the start handshake will be returned before the error message is sent.

Reset

The Reset command message causes some or all of the subsystems of the IMS T9000 to be reset. The
level of reset is encoded in the ‘level’ byte of the command message. There are three different levels of
reset to which the IMS T9000 responds. Reset 1 is equivalent to a hard reset except that the control sys-
tem is not affected; reset 2 resets all subsystems of the IMS T9000 except the control system, and leaves
the configuration and the PMI activity unchanged; reset 3 simply halts the processor. See section 8.7 for
more information on reset levels. A Reset command with an invalid level is handshaken with a failure
status.

Note that a Reset command may cause a handshake for a previously transmitted command to be: termi-
nated prematurely (with an end-of-message token); completed with a failure status; or suppressed
entirely.

Note that any level of reset may abort the command which was executing when the Reset command was
applied. An illegal level of Reset will also result in a handshake with a failure status being returned.

Identify

The Identify command message causes the IMS T9000 to respond with a handshake containing a unique
identifier. This can be used to check the contents of a network. The lower 16 bits of the identifier are the
same as the contents of the DevicelD register (see section 8.3.4); the upper 16 bits are zero. Note, the
Identify command code is identical for all IMS T9000 family devices.

Stop

The Stop command message stops the processor ‘cleanly’ so that register values are preserved for de-
bugging. It acts like the Analyse pin on the T8 transputer. Refer to section 8.5.4 for further information
on the use of this command.

116 IMS T9000 transputer preliminary data

RecoverError

This command is used in error recovery on the control links (see section 8.5.3). It restores the protocol
after a link error in the control link system. Note that if there is an unhandshaken error, the RecoverError
handshake will be returned before the error message is sent.

CPeek

The CPeek command includes a 2 byte address which points to a register in the configuration address
space. The handshake message returns the value stored at the given address. If the address is invalid
the handshake message returns an invalid status.

CPoke

The CPoke command includes a 2 byte address and 4 bytes of data. It writes the data to the configuration
space register at the given address. If the address contained in the command message was invalid the
status byte of the handshake message indicates failure.

Note, some registers do not have a value, but writing to them causes some action to occur.
Peek

The Peek command includes a 4 byte address which points to a memory location in the normal address
space. The address location must be word-aligned. The handshake message returns the value of the loca-
tion, unless the status byte indicates that the command failed because the address given in the peek com-
mand message was invalid.

Poke

The Poke command writes data to a memory location. The 4 byte address of the location (which must be
word-aligned) and the value to be written (4 bytes of data) are included in the command message. If the
address contained in the command message was invalid, the status byte of the handshake message indi-
cates failure.

Boot

The Boot command starts a ‘booting’ sequence. The booting sequence makes the loading of code via the
control link more efficient than perfoerming a series of pokes. The Boot command message contains the
length in bytes {(which must be a multiple of 4) of the boot code to be loaded, and the address (which must
be word-aligned) of the memory into which the boot code is to be written.

BootData

The BootData command loads code as part of a booting sequence. Each BootData command message
contains 16 bytes of code. These code blocks are loaded into consecutive contiguous blocks of four
words, starting from the pointer given in the Boot command message, until as many bytes are loaded as
specified by the length field of the Boot command message. Any remaining bytes are discarded.

Run

The Run command causes the processor to start executing, with a workspace pointer (Wptr) (which must
be word-aligned) and instruction pointer (Iptr) contained in the Run command message.

Reboot

The Reboot command causes the processor to reboot from ROM. It starts executing, with a workspace
pointer (Wptr) (which must be word-aligned) and instruction painter (Iptr) read from memory locations
at the top of the address space.

The IMS T9000 reads a Wptr and an Iptr from two fixed locations at the top of memory:
Boot from ROM Iptr address is #7FFFFFF8
Boot from ROM Wptr address is #7FFFFFFC

8 Control system 117

direction of packet

A

Isb msb

Identify
Stop
RecoverError
Isb _msb
— Isb _msb Isb msb
CPoke [EE #66‘Address\ Data
Isb msb
Peek “74' Address -
msb Isb msb
Poke Address I Data -
msb Isb msb
Fun Wotr l Iptr -
msb Isb msb

Boot

Length | Address -
msb

Data (16 bytes) < [

BootData

Reboot |

2 byte label of T9000 device

- End of message indicator

Note: the ordering of the iength and address bytes of the Boot command has changed from that
stated in The T9000 Transputer Products Overview Manual.

Figure 8.6 Command messages from controlling process to the IMS T9000

118 IMS T9000 transputer preliminary data

direction of packet

StartHandshake - #92
ResetHandshake #91 Statu’

Isb msb
IdentifyResult | #80] weniy [
StopHandshake ’ |#80 ‘Status.
RecoverErrorHandshake - #90
Isb msb
CPeekHandshake [’#BZI Data ktatus-

CPokeHandshake | wi#EGWStatuj-

) Isb msb

PeekHandshake | |#F4] Data s
PokeHandshake | ren s}
RunHandshake | onfaudi]
BootHandshake | [#cAland}

BootDataHandshake | pac e}
RebootHandshake ‘ ‘#AO 'Status-

E 2 byte header address of control channel

- End of message indicator

Figure 8.7 Handshake messages from the IMS T9000 to the controlling process

8 Control system 119

Error message

The IMS T9000 control system can send an Error message to the controlling process to indicate that an
error has occurred. The Error message contains an error code which determines the type of error, as given
in section 8.5.1. The controlling process returns an ErrorHandshake message.

When there is an error record outstanding an error message is sent whenever:
« all previously sent error messages have been handshaken;

» all previously sent messages, since the last hard reset or RecoverError, have been acknowl-

edged.
< direction of packet
Error | [#01]cos i}
ErrorHandshake #81

- 2 byte header address of T9000 device
:] 2 byte header address of controlling process

- End of message indicator

Figure 8.8 Error message

8.4.1 IMS T9000 gross state and validity of commands

The overall state of the IMS T9000 determines which commands are valid. Certain commands change
this state, as does the occurrence of an error. This is detailed in the table 8.7 below. In this table, ‘stand
alone error’ is an error which occurs when the IMS T9000 is operating in stand alone mode (i.e. the
StandAloneMode flag in the system services ModeStatus register is set). This causes a reboot using
an Iptr and a Wptr read from the top of memory, and so returns to the Running state via a transitory state
which is not listed here. ‘Last boot data’ indicates a BootData command when the remaining number of
bytes to complete the boot sequence is between 1 and 16 inclusive. This table does not explicitly deal with
booting from ROM, which causes a ‘doubling’ of some states since Running and Error can both occur with-
out a Start having been received.

If the command is not valid for the state of the IMS T9000 then the command will be handshaken with a
failure status.

120 IMS T9000 transputer preliminary data
State Valid commands Commands or events which | Resulting state
change the state
Initial Start Start Ready
Ready Start, Identify, RecoverError, Boot Booting
Reset, CPeek, CPoke, Peek, Reboot Running
Poke, Boot, Reboot, Run chip error Error
Run Running
stand alone error Running
Booting Start, Identify, RecoverError, Reset Ready
Reset, CPeek, CPoke, FPeek, Reboot Running
Poke, BootData, Reboot last boot data Ready
chip error Error
stand alone error Running
Running Start, Identiiy, RecoverError, Reset Ready
Reset, Stop Stop Stopping
chip error Error
Stopping Start, Identify, RecoverError, Reset Ready
Reset, Stop chip error Error
stand alone error Running
Error Start, Identify, RecoverError, Reset Ready
Reset

Table 8.7 Gross state and validity of commands

Note that, once a Run command has been received, further Peek, Poke, CPeek, CPoke, Boot, BootData
and Run commands are invalid until the processor is halted by either a Reset command or a system error
(see section 8.5).

8 Control system 121

8.5 Errors
The IMS T9000 control system handles three distinct classes of errors, as listed below.
1 Errors on the control links, which include:
» parity/disconnect on CLink1 (down link);
e unexpected ackrnowledge;
* message of the wrong length or invalid command code;

* handshake protocol error, when a command is received (other than Aeset or RecoverError
commands) before the handshake for the previous command has been received.

2 IMS T9000 system errors — errors from one of the subsystems when stand alone mode is not
set.

3 Stand alone mode errors — subsystem error when stand alone mode is set.

The error may result in stopping the CPU and/or sending an error message to the host via CLinkO0, see
table 8.8 below.

Error class Result of error
Stops the CPU ErrorSinceReset Error message sent on
flag set CLink0
Control link error No No Yes
System error Yes Yes Yes
Stand alone mode error Yes Yes No

Table 8.8 Error effect

8.5.1 Recording of Errors

The IMS T9000 control system can send Error messages to the controlling process to indicate that an error
has occurred. The Error message contains an error code which determines the type of error, as given in
table 8.9 below. The control unit can record the occurrence of one error corresponding to each error value.

Code Error type Priority
#CO Control link 0 command error Highest
#C1 Control link O protocol error
#C2 Control link 1 parity or disconnect error

#80 Link O error
#81 Link 1 error
#82 Link 2 error
#83 Link & ztror
#01 CPU error

#02 VCP error

#03 PMI érror Lowest

Table 8.9 Error codes

The receipt of an error handshake causes the record of the last sent error to be removed.

122 IMS T9000 transputer preliminary data

The system services ErrorCode register always contains the value of the most recent error to occur.

A hard reset, reset 1 or reset 2 causes the record of untransmitted errors to be cleared.

8.5.2 Stand alone mode errors

When an IMS T9000 is set to operate in stand alone mode, errors are handled in a distinct way. If an un-
masked/untrapped error occurs, the control system resets all the subsystems of the IMS T9000 and then
causes the processor to boot from ROM. The ErrorSinceReset flag in the ModeStatus register is set
to indicate to the ROM code that an error has occurred.

The ErrorSinceReset flag is set by any unmasked/untrapped error and is setindependent of the StandA-
loneMode flag.

The ErrorSinceReset flag can be accessed by the tesipranal instruction. This flag is cleared by a hard
reset, a reset o level 1 or by a configuration write to the register.

8.5.3 Errors on control links

The control link network is assumed to be designed and connected by the user to achieve very high reliabil-
ity. The control links should be operated at a low enough speed to ensure this.

If a parity or disconnect error occurs on CLink1 then an error message is sent to the controlling process
along CLinkO. If a parity or disconnect error occurs on CLinkO0 then an error message cannot be sent to
the controlling process. However, the output of CLink0 is halted, and this will be detected by the adjacent
device, which will report the error to the controlling process. In this manner all errors on the contro! link
system are reported to the controlling process.

The RecoverError command allows the control link to recover from an error in the control links, enabling
the control network to avoid deadiock if for example an acknowledge packet gets corrupted. The Recover-
Error mechanism restarts the communication between nodes after there has been an error in the control
network. To achieve this, the RecoverError command is permitted to be sent in violation of the normal pro-
tocol.

A link error may, or may not, cause one or more packets to be lost, thus the state of the remote end of
the virtual link (the end which is implemented by the control system hardware) becomes uncertain. In this
instance the RecoverError command can be used to reset the state of the remote end of the virtual link
causing any un-handshaken error message (which may have been lost) to be re-sent.

Note, the RecoverError command may result in non-deterministic behavior if the error message was in
fact not destroyed. If the error message was not destroyed the following can occur.

e The Error message will arrive at the controlling process concurrently with the controlling pro-
cess’s sending of the RecoverError command.

= The controlling process will perform an input, expecting a handshake to the RecoverError, and
will receive the Error message instead, concurrently with the IMS T9000 receiving the Recover-
Error command.

* This will cause an acknowledge packet to be sent to the IMS T9000, concurrently with the IMS
T9000 transmitting a RecoverError handshake.

* The IMS T9000 will receive the acknowledge, assume that this is for the handshake, and proceed
to re-transmit the error.

« Itis now non-deterministic whether the next input by the controlling process will receive the hand-
shake message or the error message (if this arrives and overwrites it first).

The final non-determinism is the consequence of the original non-deterministic loss of packets. However
the same thing could happen even in the absence of link errors if the Reset command also reset the state
of the remote end of the virtual link, so for this reason it does not.

8 Control system 123

8.5.4 Post-mortem debugging of IMS T9000 systems
The following section details debugging of an IMS T9000 system following an error.

An IMS T9000 system is brought to a quiescent state for analysis by sending the Stop command to each
IMS T9000. .

The Stop command stops the processor cleanly so that register values are preserved and debugging can
be performed. The CPU continues execution until the process deschedules or reaches a timeslicing point.
The VCP deactivates all channels queued for output or addressed by incoming packets. The PMI and links
are not affected. The timers continue to operate until a reset is received, but no processes are placed on
the run queue after a Stop has been received. Sending Stop to a processor which is already stopped or
which has had an error has no effect.

Following the Stop command, the controlling process must send a Reset3 command to each IMS T9000
which halts the CPU. A delay of at least 64 ms from the receipt of the StopHandshake must be allowed
for the system to become quiescent, before the Reset3 command is sent.

Once the IMS T9000s have been reset the system is guaranteed to be static. The configuration can then
be checked using CPeek commands and if necessary ‘repaired’ using CPoke commands. Peek com-
mands can be used to save the contents of memory locations to be used by a debugging kernel. A kernel
can be loaded using a BootData sequence. A Run command can then be sent with the appropriate Iptr
and Wptr for the debugger process. The debugger process is run as a high priority process with the old
register values as its parameters.

Each debugger process should perform the following.

¢ Swap the run and timer queues and save the shadow registers.

¢ Reset the VCP.

* Re-initialize the system virtual links.

* Inspect the virtual channels and memory to determine what the problem was.
System analysis can then be carried out in the usual way, without further reference to the control network.
State delivered to the boot program

When the processor is rebooted, either by a control link Run or Reboot command or by rebooting from
memory in stand alone mode, the previous state of the processor is written into memory at word offsets
relative to the new Wptr as follows:

Offset from Wptr | Value Description
0 WdescReg process descriptor of the currently executing process
1 IptrReg pointer to next instruction to be executed
2 StatusReg status and control information for the current process
3 ThReg pointer to the current trap handler data structure
4 ReasonReg trap reason code, see Instruction Set Manual table 10.5
5 error type type of error, see Instruction Set Manual table 10.10
6 EptrReg pointer to instruction that caused the error

124 IMS T9000 transputer preliminary data

8.6 Configuration

The IMS T9000 transputer has several sub-systems which need to be initialized on bootstrap. This initial-
ization is performed via the configuration bus.

The IMS T9000 transputer can be bootstrapped from a ROM device, such as an EPROM or a Flash
EPROM. Refer to the Programmable Memory Interface chapter 10 for details on booting from ROM. The
IMS T9000 transputer can also be setup and bootstrapped using the control links and the four high speed
data links, enabling the transputer to be used without any external memory or external I/O.

The setting of the StartFromROM pin determines whether the IMS T9000 transputer is bootstrapped from
a ROM device or down control link (CLink0) from a controlling processor. When the StartFromROM pin
is held low the IMS T9000 will be bootstrapped down CLink0, when set high the IMS T9000 will be boot-
strapped from ROM.

For a system of IMS T9000’s, the controlling IMS T9000 can be booted from ROM and usually the other
IMS T9000s in the system will be booted down a link.

8.6.1 Booting from link

An example IMS T9000 system configuration is shown in figure 8.9. In this system, the IMS T9000 is reset
by the controlling system and then initialized. The controlling system can be another IMS T9000 transputer
which has been bootstrapped from ROM, or a computer with a link adaptor. The StartFromROM pin is
held low thus the IMS T9000 will bootstrap using the control link (CLink0). instructions sent from the con-
trolling processor to the transputer via this link can be used to configure the sub-systems on the device;
for example, the configuration space of the Virtual Channel Processor (VCP) needs to be initialized ready
for the receipt of program code. The cache is initialized to behave as 16 Kbytes of on-chip memory. Setting
up the device in this way can be accomplished using the relevant software tools.

This system design is very small and is useful for the design of transputer networks in which each node
requires less than 16 Kbytes of memory, and therefore no external memory is required.

The controlling processor can configure systems using CPoke commands, and can load code and data
into the IMS T9000’s memory using Poke and BootData commands.

Once the transputer has been setup, the program data can be passed to the device using the data links
(Link0-3), and once loaded, the application can be executed. Errors are reported to the controlling proces-
sor via CLink0, which can also be used to debug the system.

8 Control system

125

Controlling
processor

o

+1 uF (surface mount ceramic)

)

vDD CapPlus CapMinus Clock
) module
— LinkinData0 5 MHz
' LinkOutData0
1 LinkInStrobe0
; LinkOutStrobe0 Clocklin
IMS T9000
; CLinkinData0 5V
| CLinkOutData0
— | CLinkinStrobe0
; CLinkOutStropeo | ocSpeedSelect2
! ProcSpeedSelect1
: Reset ProcSpeedSelect0

StartFromROM
GND

8.6.2

Figure 8.9 Basic IMS T9000 system booting from link

Boot from ROM then link

An IMS T9000 may be booted from ROM, in order to perform local configuration and bootstrapping, and
then hand control to a controlling process connected via CLinkO0.

This is achieved if the ROM code terminates by setting error, which (in the absence of a trap handler)
causes the IMS T9000 to halt, and an Error message to be transmitted from CLink0. Receipt of this mes-
sage informs the controlling process that it has mastership of the IMS T9000’s memory and configuration
bus. Note that the ROM code can communicate data to the controlling process by storing it at a known
location before setting error. The controlling process can then access this data by means of Peek

commands.

126 IMS T9000 transputer preliminary data

8.7 Reset levels

The term configuration is used to refer to the sequence of operations required to take an IMS T9000 trans-
puter network from its power-on state to having an application, or operating system, running. In doing so
the state of the network must be taken through a sequence of defined levels or reset levels. These are
shown in figure 8.10.

reset reset reset reset o
power level 0 level 1 level 2 level 3 application
up running
i label control i configure J boot l‘
1 | network | network | code ‘
\ l T [1
| Links — wait state :Nodes — assigned Iabelq’ Links — speeds selected | Run command sent :
PMI — undefined |Control finks — running | PMI — defined Boot code executed
VCP — undefined | | VCP — defined | Virtual links setup |
Link engines — defined | | Start registers set | !
| Cache — default | ‘ | |
Configure Boot Load code
from ROM from ROM
or link or link

Figure 8.10 Stages of configuration and reset levels

Hardware reset, soft resets, and error responses are communicated between the control system and the
various other sub-systems. These levels of reset may either be initiated via commands along CLinkO or
by an autonomous response by the control system.

8.7.1 Level 0 — hardware reset
After a hardware reset (assertion of the Reset pin) each IMS T9000 is in the following state.

The processor is stopped, Wdesc is NotProcess.p (refer to Appendix A for this value) and the
scheduler queues are empty.

The state of the PMI and VCP is not defined, and both are inactive.

All the (data and control) links are in Wait state with a default speed of 10 MHz. The label and
return headers for the control links are undefined.

The cache is initialized to act as 16 Kbytes of on-chip RAM.

The network can be returned to level 0 by taking all the Reset pins in the network high, it cannot be
achieved by software. At this point the StartFromROM pin is sampled.

8.7.2 Level 1 — labelled control network

The labelling phase moves from level 0 to level 1. In it the label and return headers are set by a Start com-
mand message being received on CLink0. Level 1 for the network has all label and return headers confi-
gured and all connected control links operational.

In a small system, such as a single IMS T9000 operating in stand alone mode (refer to section 8.5.2), the
label and return headers remain undefined. Any error occurring which would normally output an error mes-
sage on CLinkO0 will result in the PMI fifth bank being re-enabled and the ROM code being restarted. Level
1 in this case is considered to have the label and return headers configured as undefined.

8 Control system 127

The network can be reset to level 1 by sending a Reset1 command message to each IMS T9000. After this
reset message the label and return headers are still valid. All other registers in the configuration space are
reset to their level 0 values.

8.7.3

The configuration phase moves from level 1 to level 2. The state (resident in the configuration space) re-
quired to make all subsystems of the IMS T9000 operational, is programmed. If the StartFromROM pin
was sampled high at the end of the hardware reset then a process will be executed from ROM. This will
use the sfconf instruction to program the configuration space registers. If the StartFromROM pin was
sampled low then the configuration space will be programmed by CPoke command messages received
down CLinkO0 or by stconf instructions executed by code loaded and run via CLinkO0.

The network can be reset to level 2 by sending a Reset2 command message to each IMS T9000. At this
level of reset the application program is stopped (possibly in order to reload and run another one that is
configuration compatible) whilst the hardware configuration is unchanged. This level of reset leaves the
PMI still active and the values in the configuration space of the PMI unaltered.

Level 2 — configured network

8.7.4 Level 3 — booted network

The booting phase moves from level 2 to level 3. This phase is responsible for setting up the virtual links
for the network using the instructions described in the communications chapter 11. This is always per-
formed by running code, but this code can either be executed from ROM, or be loaded down the control
link using the Boot and BootData command message.

The network can be reset to level 3 by sending a Reset3 command message to each IMS T9000. At this
level of reset the handshake state is cleared.

8.7.5 Loading code

The network is now connected and code can be loaded via the communication links, or executed from
ROM.

8.7.6 Levels of reset effect

The effect of different levels of reset on various aspects of the IMS T9000 state is summarized in the follow-
ing table.

When the handshake/acknowledge state is cleared any outstanding handshakes/acknowledges will be
ignored.

State Reset level Recover Error
0 1 2 3
DS-Links 0-3 Re-configured | Re-configured | Cleared no effect no effect
PMI Re-configured | Re-configured | Cleared no effect no effect
VCP Re-configured | Re-configured | Cleared no effect no effect
CPU Cleared Cleared Cleared Cleared no effect
Configuration CPU | Cleared Cleared Cleared no effect no effect
locks
Error state Cleared Cleared Cleared no effect no effect
Handshake state | Cleared Cleared Cleared Cleared Cleared
Acknowledge state | no effect no effect no effect no effect Cleared
Label and return Cleared no effect no effect no effect no effect
header

Table 8.10 Effect of the different levels of reset on various aspects of the T9000 state

128 " IMS T9000 transputer preliminary data

9 Instruction and data cache 129

9 Instruction and data cache

There are two separate high speed caches on the IMS T9000, a general purpose unified (instruction and
data) cache and a small workspace cache for local variables. This chapter describes the instruction and
data cache on the IMS T9000 and explains how it works.

The cache provides fast multi-ported access to the most commonly used data, reducing the number of
accesses to external memory. Thus, enabling lower cost, slower devices to be used as external memory
without degradation of performance. The majority of external memory accesses will be cache refills (i.e.
multiple word reads and writes) enabling fast access memory methods such as page mode to be used.

The IMS T9000 has a 16 Kbyte associative unified write-back (also known as copy-back) cache. That is,
memory writes update the cache (if applicable) without necessarily updating memory immediately. Updat-
ing of memory occurs when the line that has been changed is discarded from the cache, thus main memory
changes on a miss not on a write. This minimizes external bus accesses and reduces the latency of pro-
cessor write accesses. At power-on the cache behaves as 16 Kbytes of internal memory, so that the IMS
T9000 may be used with no external memory. During configuration the cache may be programmed to be-
have as 16 Kbytes of cache, 16 Kbytes of internal RAM, or 8 Kbytes of cache and 8 Kbytes of internal
RAM.

To summarize, the cache system has the following properties:
« Bandwidth of 800 Mbytes/s from a 50 MHz T9000
¢ 16 Kbytes of memory arranged in four banks with 16 bytes/line
¢ Each cache bank is 256 way set associative
¢ Write-back (copy-back)
* Random replacement strategy
¢ Physical address tags

* Allocate cache line on a read or write miss

9.1 Cache overview

The cache is accessed, via a crossbar switch, by a number of functional units within the IMS T9000, see
figure 9.1. The IMS T9000 memory system has been designed to provide fast and efficient access to data
and instructions.

130 IMS T9000 transputer preliminary data

Instruction
buffer
(32 bytes)
CPU
Workspace
cache
Instruction CfOS_tSbhar
and data SWi g
cache aq
arbiter
Scheduler
VCP
link engine
Links
PMI
External
memory

Figure 9.1 IMS T9000 memory system overview

9.1.1 Cache organization

The IMS T9000 cache system is organized as four independent 4 Kbyte, fully associative, cache banks.
Each bank (not to be confused with the four banks of the IMS T9000 Programmable Memory Interface
(PMI)) caches one quarter of the address space and each has its own address bus and data bus. This
allows up to four separate accesses to be made in a single cycle. The directory search covers all lines
in the cache bank selected. Each bank has 256 lines, with four 32 bit words per line and each line having
its own fully-associative tag, see figure 9.2.

9 Instruction and data cache

131

Address 32 bit data
MemAddr31:6 MemAddr3:2
i MemAddr5:4
| | I
| .
——————— — 4 x 32 bit data
] L)
Tag memory,| . Data memory
256 lines . 256 lines
L_| N B
———————— >

256 compare
signals

Figure 9.2 Cache organization

Allinternal addresses are 30 bits wide (MemAddr2-31) and are split into three fields, see table 9.1 below.

Address fields | Function
MemAddr31:6 | Cache line tag
MemAddr5:4 Selects the cache bank
00 bank 0
01 bank 1
10 bank 2
11 bank 3
MemAddr3:2 Selects the word in the cache line
00 word 0
01 word 1
10 word 2
11 word 3
Table 9.1 Address bit functions

The tag, stored in content addressable memory (CAM), records the physical address in external memory
which is being cached in the line. The tag is matched against incoming addresses. Each cache line has
a tag comparator which compares the address presented with the stored tag. The cache line is selected
when the address presented matches the stored tag.

The CAM also contains a valid bit which is set to 1 to indicate the line contains valid data, i.e. the address
and data are meaningful. The valid bit must be set for a match to be made. Lines without their valid bit
set are notincluded in the cache search. To write valid bits and tags the CAM is addressed using a conven-

tional row decoder. This is controlled automatically by the cache controller and refill engine.

132

IMS T9000 transputer preliminary data

The data memory is stored in four banks. Each bank consists of;

256 lines of data.

four 32 bit data words per line.

a dirty bit per data word — this indicates whether a write has taken place to the word since it was
loaded from main memory.

a dirty bit per line — this indicates whether any of the four words in the line are dirty.

The dirty bits allow the refill engine to write back to external memory only those words which have been
written to.

Four internal byte enables are provided to write bytes and part words.

CAM Data memory

\Y Tag DL|ID3] Word3 [D2| Word2 [D1] Word1 [DO| Word0

Where,
\% Valid line bit
Tag 26 bit physical address
DL Dirty line bit
D[0-3] Dirty werd[0-3] bit

Word[0-3] Four 32 bit data words

Figure 9.3 Cache line structure

9 Instruction and data cache

133

9.2 Cache functional description
Figure 9.4 shows the major functional units of the cache.

Address Data
crossbar 5 ‘ crossbar
] 3
5] 2] 5]
J— 3 32 —
H s | s |
— CAM DATA 32 —
j 256 lines 4 words per line
per bank |
g 5]
. 30
e - s |
— 26 bit tag | 32 bit| 32 bit | 32 bit | 32 bit —
1 word | word | word | word 32 [|
5] 5]
o o]
— 7 [
5] - o
- || " .
5] 5]
_ Hit _
32
| MemAddr6-31 -
g =
MemAddr2-3 | SRS
Address Data
ontrol contro|
Pol
States Crossbar
arbiter
PMI address PMI dat:
control control
Refill engine s
l : PMI
External External
Address Data

Ports

LoadA

LoadB

Store

IFetch

Comms0

Comms1

Comms2

Scheduler

Figure 9.4 Cache functional diagram

134 IMS T9000 transputer preliminary data

9.2.1 Port crossbar switch and arbiter
There are four subsystems which use the cache, with a total of nine sources of address, they are:

¢ CPU Pipeline (4 sources)
—CPU load A
—~ CPU load B
— CPU store
— Instruction fetcher

¢ Virtual channel processor (3 sources)
— Comms0
— Comms1
— Comms2

¢ Scheduler and control unit
* Programmable memory interface (PMI) / Refill engine

Each of the nine requesting sources has its own crossbar port which handles memory requests, and en-
sures the requesting source is connected to the required cache bank. The nine ports are connected to
the four cache banks using a crossbar switch. Figure 9.5 is a block diagram of the crossbar switch and
controller interconnections. An arbiter decides which functional unit of the IMS T9000 gains access to
each of the four cache banks on each cycle.

CPU

LoadNonLocalA
Cache

bank 0 KM&

LoadNonLocalB

I

IFetch

WriteResult
Cache @ Crossbar
bank 1 switch
@ and Scheduler

arbiter Scheduler

VCP
l(a:e?rfli1 Z %; Comms0
Comms1
Comms2
Cache Data
PMI

bank 3 @;

PMI

i

Figure 9.5 Crossbar switch and arbiter interconnections

A cache port has two operational stages, an arbitration stage and a cache access stage. Up to four ports
can access the cache (one per bank) at any one time. A port can make one access per cycle. Thus, up

9 Instruction and data cache 135

to 4 ports can make an access per cycle. An arbiter decides which functional unit of the IMS T9000 gains
access to each of the cache banks on each cycle. Each port has its own state machine which makes re-
quests to the arbitration unit. The port forwards the address to the PMI if a cache miss occurs.

9.2.2 Refill engine

If a physical address requested is missing from the cache, the address is passed to the cache refill engine.
The refill engine arbitrates between this and earlier accesses which have misses outstanding. If the miss-
ing address is cacheable, the refill engine generates all the addresses needed to refill the associated
cache line and generates requests to the PMI. The PMI fetches the line requested by the refill engine from
external memory and requests it is written to the cache. The refill engine writes-back another line (selected
using a random policy) in order to ensure there is a clean line ready for the next miss. If the address is
marked non-cacheable only the missed address is fetched and returned to the requesting subsystem with-
out being written to the cache.

Write-backs (dirty data written back to main memory) can be performed before refills (memory lines written
to the cache) have been completed. A cache line is selected by random choice for write back by the status
of the valid and dirty bits. The first word to be written back is read whilst the refill is in progress.

9.2.3 . Replace pointer

Each cache bank has its own random replace pointer. The line to be replaced is selected using a pseudo-
random number generator and conventional row decoder. The pseudo-random number generator gener-
ates 8 bit random numbers, sufficient to cover the 256 cache lines per cache bank.

136 IMS T9000 transputer preliminary data
9.3 Cache aperation
9.3.1 Cache request

The sequence of events in servicing a memory request are as follows:

The subsystem presents a request to the cache port. The port acknowledges the request once
it has finished servicing any previous requests.

The port decodes address bits MemAddr4-5 to determine which cache bank the address is in
and sends a cache bank request to the arbitration unit. On receipt of a grant signal from the arbiter
the port can access the cache bank for one cycle (see section 9.3.2 for details of the arbitration
algorithm).

If the access is a cache ‘hit’ (i.e. the address matches a valid cache line) the port either; returns
the read data, or handshakes the write data with the requesting subsystem. The portis now ready
to receive the next request.

If the access is a cache ‘miss’ (i.e. if the physical address requested is missing from the cache)
and the PMI is ready, the PMI arbiter grants one of the current misses.

If a miss occurs and the PMI is unable to service the miss immediately, the port goes into a retry
state. It waits in this state until the PMI becomes available. Once the PMI is available the port
must retry the cache to check whether the requested address has been brought into the cache
during the waiting period. If the retry is a miss, the port again attempts to access the PMI. If the
PMI is not granted the port must again go into a retry state and repeat the procedure.

Once the port has gained access to the PMI, the external memory access is granted and, if nec-
essary, the refill engine is started. On completion of the first read or write access, the port returns
the read data or handshakes the write data with the requesting subsystem, and the port is ready
to receive the next request.

Paints to note about the operation of the port are:

All ports (including the PMI/refill engine) are granted access to the cache banks on a cycle basis.
Thus, during refill the cache bank is available for use by other subsystems.

A port does not know whether an attempted access resulted in a cache hit or a miss. The time
taken for an access to be serviced is dependent on priority of arbitration, cache contents, state
of refill engine and external memory access time.

Accesses can only be made to the PMI at the end of a cache access. Therefore it may take sever-
al cache misses before the requested access is granted use of the PMI.

The cache and PMI are pipelined into the following three stages:

1

cache access

2 PMI analyzer

3

external memory pads

The cache and analyzer operate in a single cycle, the PMI pads take two or more cycles.

The possible states for a cache port are shown in figure 9.6.

9 Instruction and data cache 137

Wait in the Empty state until a request
arrives. If the cache bank requested (bits
MemAddra4-5) is available go straight to
InCache. Else goto WaitingForCache.
Acknowledge request.

Wait in WaitingForCache until the re-
. quired cache bank becomes available.
WaitingFor Then goto InCache.

Cache

Access the cache.

If a hit, signal DataValid and either;

goto Empty if there are no more re-
quests,

goto WaitingForCache if there is
another request but the bank requested is
not available

goto InCache if there is another
request and the bank is available.

InCache

—

Access external memory. i . ith
a miss, either;

goto InPMI if PMI available
goto WaitingForRetry.

When the access com-
pletes signal DataValid
and start the next request.

Missed
WaitingFor
Retry

Wait in WaitingForRetry until
the PMI becomes available,
then retry the cache.

Figure 9.6 Port state diagram

138 IMS T9000 transputer preliminary data

9.3.2 Arbitration

There are nine requesting ports (PMI, scheduler, 3 VCP ports, 4 CPU ports), and five available resources
(PMI, 4 cache banks). Each resource has its own arbitration logic. This makes sure the most efficient use
is made of the resource and that the resource is shared fairly between all requesting subsystems.

The order in which the requests are processed is governed by the order of priorities. The PMi is given the
highest priority and has priority over all other requesting sources. The other three co-processors (CPU,
VCP and scheduler) share equal priority under a dynamic priority allocation scheme. Within the VCP and
CPU, each port has a fixed order of priority as listed below. Priority O is the highest priority.

¢ Priority 0= PMi
¢ Priority 1= Scheduler
¢ Priority 1= VCP
1 Comms0
2 Commst
3 Comms2
¢ Priority 1= CPU
1 IFetch (nearly empty)
2 WriteResult
3 LoadNonlLocalB
4 LoadNonLocalA
e Priority 2= [Fetch

Note that the IFetch port has two priorities, low priority when filling the buffer and high priority when the
instruction grouper is stalled waiting for instructions. This appears as two ports in the arbitration logic, but
only one port in the crossbar switch.

Once the PMI/refill engine requests have been accounted for, the arbitration logic guarantees the CPU,
VCP and scheduler each a third of the remaining cache bandwidth. Each subsystem is also guaranteed
at least a third of the available external memory bandwidth.

Queueing to ensure fairness

The arbitration logic dynamically queues the three equal priority sources (CPU, VCP and scheduler) as
high, medium and low preference. If more than one source requests a single resource the source with
highest preference is serviced first. Each time a request is granted it is put on the back of the preference
queue.

9 Instruction and data cache 139

“ If the PMI is requesting an access
it will be granted use of the cache
SpC & SpY and no other requests will be

granted. If the PMI is not requesting
Scheduler an access another port will be
granted an access dependent on
Cpv, v the value of three state bits which
determine the dynamic priority.

IFetch,
nearly empty The three state bits are:

WriteResult The CPU rf)'orts SpC Scheduler has priority
have a fixed over CPU

NonLocalB order of priority.

SpV Scheduler has priority
NonLocalA over VCP

r—

Spv CpV CPU has priority over
s VCP
Scheduler

For example, if SpC=1 and SpV=1
— the scheduler request will be
granted.

The VCP ports
have a fixed order
of priority.

Comms0 The three state bits are evaluated
at the end of each request
Commst according fo the following rules:

Comms2 SpC and SpV are cleared when
the scheduler is granted a request.

L spc
CpV is cleared when the CPU is

Scheduler granted a request.

T

SpV and CpV are set when the
VCP is granted a request.

|IFetch,
nearly empty SpC is set when the CPU is
granted a request.

WriteResult

NonLocalB

NonLocalA

1

Scheduler

|

IFetch,
nearly full

Figure 9.7 Arbitration — dynamic priorities

140 IMS T9000 transputer preliminary data

9.3.3 Cacheable and non-cacheable accesses

The IMS T9000 Programmable Memory Interface (PMI) can support up to four memory banks (not to be
confused with the cache banks) of external memory. The PMI can mark the memory banks as cacheable
or non-cacheable. This can be used for peripheral devices (for example VRAM) and shared memory sys-
tems where cache coherency problems could occur if the memory was cached. Data from external
memory banks marked as non-cacheable will never be copied into the cache.

The cacheability status of addresses in the external memory banks are specified for each bank in the PMI
format control registers (FormatControl0, FormatControl1, FormatControl2, FormatControl3). The
CacheMode bit field of the register defines if the bank is occupied by devices whose contents can be
transferred to the IMS T9000 cache. If the CacheMode bit is set to 1 the bank addresses are cacheable.
Note, any bank which is programmed to have 64 bit memory is defined as a cacheable area. Refer to the
Programmable Memory Interface chapter for further details on the PMI and its configuration registers.

Both cacheable and non-cacheable accesses will check the cache to see if the address wanted is in it;
only if they miss the cache and are labelled cacheable will they be allocated a line in the cache.

For write accesses that hit, data is written into the cache and the dirty bits are set for the affected entries.
An external access is not made immediately. The dirty cache data is only written to external memory when:

« the line is replaced when another line is brought into the cache following a miss.
« the line is flushed using the cache flush instructions.

Non-cacheable accesses

The sequence of events for a non-cacheable access that misses the cache are:

¢ The cache port presents the address to the cache. Note that the port does not know whether an
address is marked cacheable or non-cacheable. The physical address requested is missing from
the cache and the address is passed to both the PMI address analyzer and the cache refill en-
gine. For a write access the write data is also passed to the refill engine.

¢ The PMI address analyzer determines that the address is non-cacheable and does not start the
refill engine.

¢ The PMI performs the external access and, for a read, returns the data to the requesting port.
A non-cacheable access that misses does not allocate a cache line.

The subsystem requesting the memory access never knows whether the address came from the cache,
generated a cache line refill, or was labelled as non-cacheable.

Note: When the cache is configured to behave as 16 Kbytes of internal RAM, the refill engine is disabled
and all external RAM behaves as non-cacheable.

Cacheable accesses

Each cache bank maintains an empty cache line ready to be refilled whenever a cache miss occurs at
a cacheable address.

The sequence of events for a cacheable access that misses are:

¢ The cache port presents the address to the cache. If a miss occurs the address is passed to both
the PMI address analyzer and the cache refill engine. For a write, the write data is also passed
to the refill engine.

« The PMI address analyzer determines that the address is cacheable and starts the refill engine.
The cache system operates in a write-back mode, thus, data which is changed is not always writ-
ten out to external memory immediately (updating of memory occurs when the line that has been
changed is discarded from the cache). For a write, the PMI converts the write to an external read
from the miss address.

9 Instruction and data cache 141

« The PMI performs the first external access and, for a read, returns the data to the requesting port
and to the refill engine which writes the data to the cache. For a read miss the line and word are
marked clean. For a write miss, in particular a part-word write miss, the refill engine merges bytes
from the write miss data with bytes read from the external memory to mimic the effect of a part-
word write before writing the merged word to the cache and marking it dirty.

* The refill engine generates the rest of the memory addresses needed to refill the cache line.
When the last word is written to the cache, the cache line is marked valid. For a 32 bit external
memory system three more external reads are performed. For a 64 bit external memory system
only one more external read is performed after the miss address. The order of external reads
is given in section 9.3.4 below which details cache refill cycles.

* The refill engine randomly chooses a cache line to write back to the external memory. It reads
the tag, valid bit and dirty line bit along with the first data word and dirty word bit for that line. If
the line is valid and dirty the write back machine is started. The cache line is marked as invalid
signifying that the line is empty and available for the next refill operation.

¢ The four write back words are passed to the PMI which writes them to external memory if dirty.

For cacheable read and write accesses that hit, the port returns the read data or handshakes the write
data with the requesting subsystem.

9.3.4 Cache refill cycles

Any read from external memory can become a cache-refill cycle. The refill engine examines the value of
the CacheMode bit in the PMI FormatControl0-3 register for the selected external memory bank (refer
to the Programmable Memory Interface chapter for further details on the PMI registers). If the access is
aread or write to a cacheable location the refill engine will initiate a cache-line refill cycle for all four words
of the cache line. The refill engine generates the subsequent addresses of the cache line. The refill engine
is defined to present the miss address first and then ‘wraparound’ the other addresses as defined in table
9.2 below.

64 bit port sizes are defined to be cacheable and any reads and writes always transfer full 64 bit data from
external memory to the internal cache. No byte transfers take place, therefore no byte writes are needed.
During 64 bit reads the notMemWrB0-3 strobes are all inactive. During 64 bit writes all of the not-
MemWTrB0-3 strobes are active. For transfers from a 64 bit interface the full cache line is transferred in
two external reads and MemAddr2 is not used. The first external read is the miss address, see figure 9.8.

Address bits MemAddr2-3 select the word in the cache line. The first MemAddr2-3 pair defines the miss
address presented by the refill engine and transferred to the external address pins. Table 9.2 defines the
low order address bit activity during a cache line refill cycle from a non-64 bit interface. This is also illus-
trated in figure 9.8 which shows the order of external reads for cache refill cycles from 64 bit and non-64
bit interfaces.

First Second Third Fourth
MemAddr3:2 MemAddr3:2 MemAddr3:2 MemAddr3:2
(miss address)

00 01 10 11
01 00 11 10
10 1 00 01
11 10 01 00

Table 9.2 Low order address bit activity for a non-64 bit cache line refill cycle

142 IMS T9000 transputer preliminary data

Word 3 Word 2 Word 1 Word 0
MemAddr3:2
selects a word in the 1 10 01 00
cache line

64 bit cache line refill

First external read Second external read
miss address
MemAddr3 is 1 Word 3 Word 2 Word 1 Word 0
miss address
MemAddr3 is 0 Word 1 Word 0 Word 3 Word 2

non-64 bit cache line refill

First read Second read Third read Fourth read

miss address

MemAddr3:2 is 00 Word 0 Word 1 Word 2 Word 3
miss address

MemAddr3:2 is 01 Word 1 Word 0 Word 3 Word 2
miss address

MemAddr3:2 is 10 Word 2 Word 3 Word 0 Word 1
miss address] b
MemAddr3:2 is 11 Word 3 Word 2 Word 1 Word 0

Figure 9.8 Order of external reads for cache refill cycles from 64 bit and non-64 bit interfaces
Cache refills from 8/16 bit ports

For port sizes of 16 or 8 bits the PMI generates the low order address bits (A0-A1) on the notMemWrB2-3
strobes, as defined in table 9.3 below, to assemble full 32 bit operands. This is repeated for each of the
four words which make up the required cache line.

External port size
16 bit 8 bit
notMemWrB3 becomes A1 becomes A1
notMemWrB2 undefined becomes A0

Table 9.3 Allocation of A0-A1 address bits

9 Instruction and data cache 143

Write-back cycles

The cache is a write-back cache, thus main memory is only updated when a line from the cache is selected
for displacement and written out to main memory. Each 32 bit word in the cache has a dirty bit associated
with it. This dirty bit is set whenever any of the IMS T9000 internal functional units writes to an address
location which is currently cached. When write-back cycles are performed, only those words in the line
which have their associated dirty bit set, are written to main memory.

For 64 bit write-back cycles, if one or more of the two 64 bit words in the line has a dirty bit set a write back
will occur. This is illustrated in table 9.4. Refer back to figure 9.3 showing the cache line structure to see
how the dirty bits map onto the cache line words.

Dirty bits Write activity
D3 D2 D1 Do
0 0 0 0 No writes
1 X 0 0 Writes 32 bit words 2 and 3 (64 bits)
X 1 0 0
0 0 1 X Writes 32 bit words 0 and 1 (64 bits)
0 0 X 1
1 X 1 X Writes 32 bit words 0, 1, 2 and 3 (two 64 bit writes)
1 X X 1
X 1 1 X
X 1 X 1
where,

D is the dirty word bit
1 indicates the word is dirty
X indicates 0 or 1

Table 9.4 64 bit write-back cycles

Table 9.5 below defines MemAddr2-3 activity for a non-64 bit write-back cycle, assuming all of the words
in the line are dirty. In this case the addresses follow the binary sequence defined below. If any of the ele-
ments are not dirty then the word is not written out. In which case the next address is the next dirty element
of the line whose address follows the sequence.

Table 9.5 Low order address bit activity for a non-64 bit write-back cycle

First Second Third Fourth
MemAddr3:2 MemAddr3:2 MemAddr3:2 MemAddr3:2
00 01 10 1

DMA and cache-refill cycles

External DMA requests are sampled at the end of the complete cache-refill write-back operation. Thus,

the operation is not interrupted with DMA activity.

144

IMS T9000 transputer preliminary data

9.4 Cache instructions

The IMS T9000 provides four instructions to support interfacing the cache to external hardware systems.
The instructions are provided to support coherency in shared memory systems when the internal memory

is configured as cache.

The cache instructions reference cache lines 0 to 1023, with the lines spread over the four cache banks.

The line structuring of the four cache banks is shown in figure 9.9.

80003FFC)
| line
; 1023
line
Bank3 1022
line
Bank2 1021
line
515 Banki 1020
511
BankO
514
510
513
509
512
word3]| word2| word1| wordO 508
word3| word2{ word1| word0
5
word3| word2| word1| word0| 1
word3| word2| word1 w\ordO
80000000
Figure 9.9 Line structuring of the cache banks
The allocation of the cache lines for different configurations are shown in table 9.6.
TSRAM Cache Cache lines
All cache 0 Kbytes 16 Kbytes 0to 1023
Half cache, half TSRAM 8 Kbytes 8 Kbytes 512 to 1023
All TSRAM 16 Kbytes 0 Kbytes -

Table 9.6 Cache/TSRAM allocation

9 Instruction and data cache 145

9.4.1 Flushing data from the cache

To maintain coherency between the data in the cache and external memory the IMS T9000 provides two
instructions to flush data from the cache in order to update external memory. The user can specify an
address to be flushed, if the address is present in the cache the entire line containing that address is
flushed, and the line is labelled clean. For large blocks of data the user can specify a line number and an
address range. If a line contains an address within the specified range, the line is flushed.

Flush dirty cache address (fdca)

If the byte address specified by AReg is present in the cache, and the line is dirty, the fdca instruction
causes the line to be written back to-external memory. If the address is not in the cache, no action is taken.
AReg is incremented by the number of bytes per line (16). The line in the cache remains valid and is
marked clean.

Flush dirty cache line (fdcl)

If the byte address (stored in the cache line tag) specified by AReg is within the address range specified
by BReg and CReg inclusive, and the line is dirty, the fdc/ instruction causes the line to be written back
to external memory. AReg is incremented by 1. The line in the cache remains valid and is marked clean.
The fdcl instruction will normally be repeated for all cache lines (512 or 1024 depending on cache alloca-
tion).

9.4.2 Invalidate cache block

There are two instructions on the IMS T9000 which can be used to invalidate specified cache lines.When
access is made to an invalid cache line the data is retrieved from external memory.

Invalidate cache address (ica)

If the byte address specified in AReg is present in the cache the line is marked as invalid. If the address
is not present in the cache, no action is taken. AReg is incremented by the number of bytes per line (16).
Note, if the line specified contains dirty data, it is not written back to memory, thus itis necessary to ensure
that other processes are not using the same cache line.

Invalidate cache line (icl)

If the address (stored in the cache line tag) specified by AReg is within the range specified by BReg and
CReg inclusive, the cache line is invalidated. AReg is incremented by 1. Note, any dirty data which was
in that cache line is not written back to memory and is lost. The ic/ instruction will normally be repeated
for all cache lines (512 or 1024 depending on cache allocation).

9.4.3 Cache instruction performance

The number of cycles required to perform an operation depends on whether the address is present in the
cache. For a flush operation it also depends on the number of dirty words which are flushed back, this is
specified in table 9.7 below.

146 IMS T9000 transputer preliminary data

Instruction Number of cycles | Condition Notes
fdca 5 Address not in cache 1

6 Address in cache, line clean

14 Address in cache, all 4 words in cache line dirty
fdcl 5 Address not in range 1

8 Address in range, line clean

17 Address in range, all 4 words in cache line dirty

Address not in cache
Address in cache

Address not in range
Address in range

ica

icl

oo oo,

Notes
1 Assuming three cycle, 32 bit external memory.

Table 9.7 Number of cycles taken by an instruction

9.5 Cache configuration registers

The cache (in common with a number of other sub-systems of the IMS T9000) is controlled via registers
in a configuration space. The registers are accessed via the /dconf and stconf instructions, or via CPeek
and CPoke command messages received along control link CLinkO0. This section describes the function-
ality of the cache to be controlled by the associated configuration registers.

Note: All undefined and INMOS reserved bits in the configuration registers must be written with O unless
otherwise stated.

9.5.1 RamSize and DoRamSize registers

The size of the cache is determined by the setting of the cache configuration registers. The RamSize reg-
ister defines the amount of RAM which is allocated to be internal RAM. It can be programmed to be 0,
8 or 16 Kbytes.

RamSize #2001 Read/Write
Bit Bit field Function
1:0 RAMsize Determines how much of the cache is allocated as internal RAM.

00 16 Kbytes of internal RAM
01 8 Kbytes of internal RAM
11 0 Kbytes of internal RAM

31:2 Undefined

Table 9.8 Bits in the RamSize register

Writing a ‘1’ to the DoRamSize register changes the size of the cache to that defined by the RamSize
register and forces a write-back so that there is a clean line ready for the next miss.

DoRamSize #2002 Write only

Bit Bit field Function

0 DoRAMsize Sets the size of the cache following the setting of the RAMSize
register.

Table 9.9 Bit in the DoRamSize register

9 Instruction and data cache 147

9.5.2

Internal RAM is implemented by locking lines into the cache. The RamLineNumber and RamAddress
registers allow the addresses of the locked cache lines to be configured by the user. This enables the RAM
to be located anywhere in the processors physical address range. The cache controller manages the allo-
cation of cache line addresses to ensure coherency.

RamLineNumber, RamAddress and DoAllocate registers

Writing a ‘1’ to the DoAllocate register allocates the cache line specified by the RamLineNumber register
with the RAM address specified in the RamAddress register. The previous content of the line are written
back, if necessary, and data at the RAM address is fetched from external memory.

RamLineNumber #2003 Read/Write
Bit Bit field Function
7:0 Line number Specifies line number of the locked line.
31:8 Undefined
Table 9.10 Bits in the RamLineNumber register
RamAddress #2004 Read/Write
Bit Bit field Function
31:4 |RAM address Address of locked cache line.
3.0 Undefined
Table 9.11 Bits in the RamAddress register
DoAllocate #2005 Write only
Bit Bit field Function
0 DoAllocate Locks cache lines following the setting of the RamLineNumber and
RamAddress registers.
Table 9.12 Bit in the DoAllocate register
9.6 Initialization of the cache
9.6.1 Reset state

Following a hard reset or a soft reset to level 1, the contents of the cache are discarded and the cache
is configured as the first 16 Kbytes of memory (byte addresses 80000000 to 80003FFF). The contents
of any external memory at these addresses are masked, and the previous contents of the internal memory
are lost. The cache is configured to behave like internal memory and the refill engine is turned off. All lines
are marked as clean. Following reset the hex addresses contained in each line are as shown in figure 9.13.

Line | Bank 3 Bank 2 Bank 1 Bank 0

255

128

80003FFF-80003FF0

8000203F-80002030

80003FEF—80003FE0

8000202F-80002020

80003FDF-80003FDO

8000201F-80002010

80003FCF-80003FCO

8000200F—80002000

127

80001FFF-80001FF0

8000007F-80000070
8000003F-80000030

80001FEF-80001FEO

8000006F-80000060
8000002F-80000020

80001FDF-80001FDO

8000005F-80000050
8000001F-80000010

80001FCF-80001FCO

8000004F-80000040
8000000F—80000000

Table 9.13 Addresses contained in each line after reset

148 IMS T9000 transputer preliminary data

9.6.2 Starting the cache

After power up and reset the PMl is disabled. The IMS T9000 transputer must be bootstrapped either from
a ROM device (such as an EPROM or a Flash EPROM), or down control link (CLink0) from a host trans-
puter (or a computer with a link adaptor) with the bootstrap code executed in internal memory. The PMI
configuration registers are set up by the bootstrap code to match the external hardware, and the PMI is
enabled.

The cache size can be configured using the RamSize and DoRamSize registers (see section 9.5.1). The
refill engine starts up and randomly chooses a cache line to write back so that there is space to store the
first miss address. The refill engine continues replacing lines at random when cache misses occur.

Following reset the address space for different cache/TSRAM allocations is shown in figure 9.10.

)
L

#0

N
«

#80003FFC

Cache Cache TSRAM

#80002000
#80001FFC

Cache TSRAM TSRAM

#80000000

Figure 9.10 Address space for different cache/TSRAM allocations

All 64 bit port sizes are defined as cacheable and always transfer a full 64 bit operand to and from external
memory to the internal cache. Thus, internal memory must be configured as 8 or 16 Kbytes of cache before
64 bit external memory accesses can be made. On start-up internal memory is configured as 16 Kbytes
of internal RAM and no cache. Therefore, in order to ensure correct operation of the cache system the
following sequence of events must be followed.

1 Enable the PMI and configure the external memory bank as 64 bit cacheable memory.
2 Configure internal memory as 8 or 16 Kbytes of cache.

Note: 64 bit external memory should not be used before the cache has been turned on.

10 Programmable memory interface 149

10 Programmable memory interface

The IMS T9000 programmable memory interface (PMI) can access a 4 Gbyte physical address space,
and provides a peak bandwidth of 200 Mbytes/sec. It is designed to support memory subsystems with
minimal external support logic. The interface has internal logic to provide decode and timing control
functions and can be programmed through the configuration registers as described in section 10.3 below.

The external address space is partitioned into four banks (not to be confused with the four cache banks).
This allows the implementation of mixed memory systems, with support for DRAM, SRAM, EPROM,
VRAM and [/O (see figure 10.1). The timing of each of the four memory banks can be programmed
separately, with a different device type being placed in each bank with no external hardware support. The
PMI has a 64 bit data bus, and each bank of memory can be configured to be 8, 16, 32 or 64 bits wide.
The PMI directly supports: 8, 16, 32 and 64 bit SRAM; 32 and 64 bit DRAM. All banks programmed to
be 64 bit wide memory are defined as cacheable and always transfer a full 64 bit operand to and from
external memory to the internal cache, providing fast cache refill. The full performance of the IMS T9000
transputer can be exploited using relatively low-cost DRAM, and up to 8 Mbytes of DRAM can be
connected with no external components.

IMS T9000
EPROM
notMemBootCE
Strobes 3
Strobes 2
Strobes 1
Strobes 0 8
MemAddr2-31
MembData0-63
64 32 8 32
DRAM SRAM /0 VRAM 32
4 cycle 3 cycle 4 cycle
1 Mbyte 64 Kbyte 1 Mbyte
Bank 0 Bank 1 Bank 2 Bank 3

Figure 10.1 Example of a mixed memory system using a T9000 transputer

In this chapter a cycle is one processor clock cycle and a phase is one quarter of the duration of one pro-
cessor clock cycle.

150 IMS T9000 transputer preliminary data

10.1 Pin functions

10.1.1 MembData0-63

The data bus transfers 64, 32, 16 or 8 bit data items depending on the bus width configuration. For 64-bit
data items the most significant bit is carried on MemData63. For 32 bit data items the most significant bit
is MemData31. MemData0-15 transfers 16 bit data items, and MemData0-7 transfers 8 bit data items.
The least significant bit of the data bus is always MemData0.

10.1.2 MemAddr2-31

The address bus may’be operated in both multiplexed and non-multiplexed modes. When a bank is
configured to contain DRAM, or other multiplexed memory, then the internally generated 32 bit address
is multiplexed as row and column addresses through the external address bus. The multiplexing is con-
trolled for each bank by the format control registers (FormatControl0, FormatControl1, FormatCon-
trol2, FormatControl3), see page 165.

10.1.3 notMemWrBo0-3
The transputer uses word addressing and four byte-write strobes are provided.

64 bit wide memory is defined as an array of 8 byte words with MemAddr3-31 selecting an 8 byte word.
MemAddr2 is 0 for 64 bit addressing. No further addressing is performed for 64 bit memory. 32 bit wide
memory is defined as an array of 4 byte words with MemAddr2-31 selecting a 4 byte word. Each byte
of this array is addressable with the byte enable pins notMemWrB0-3 selecting a byte within a word. 16
bit wide memory is defined as an array of 2 byte words with 31 address bits selecting a 2 byte word and
notMemWrBO0-1 selecting a byte within the word. 8 bit wide memory is defined as an array of 1 byte words
with 32 address bits selecting a word. For 16 bit and 8 bit wide memory, the lower order address bits (A0
and A1) are multiplexed onto the unused byte-write pins to give an address bus 31 or 32 bits wide respec-
tively.

notMemWTrBO0 addresses the least significant byte of a word. All four strobes have the same timing and
are only active during write cycles. The timing is controlled by the write strobe registers (WriteStrobeO,
WriteStrobe1, WriteStrobe2, WriteStrobe3), see page 169.

The function of the byte enables notMemWrBO0-3 for different bank size configurations is given in table
10.1 below. Note that other bus masters must not drive the same data pins during a write.

External port size
64 bit 32 bit 16 bit 8 bit

notMemWrB3 set active (0) enables becomes becomes

MembData24-31 A1 A1
notMemWrB2 set active (0) enables undefined becomes

MemData16-23 A0
notMemWrB1 set active (0) enables enables undefined

MembData8-15 MemData8-15
notMemWrB0O set active (0) enables enables enables

MemData0-7 MembData0-7 MemData0-7

Table 10.1

10.1.4 notMemRASO0-3

notMemWrBO0-3 pins

The four programmable RAS strobes are controlled by the timing control registers (TimingControl0, Ti-
mingControl1, TimingControl2, TimingControl3) and RAS strobe registers (RASStrobe0, RAS-
Strobe1, RASStrobe2, RASStrobe3), see section 10.3.2. One strobe is allocated to each of the four

10 Programmable memory interface 151

banks which are decoded on chip. If a bank is programmed to contain DRAM, or other multiplexed
memory, then the associated notMemRAS pin acts as its RAS strobe by default. For banks which do not
contain DRAM the notMemRAS pin is available as a general purpose programmable strobe.

10.1.5 notMemCAS0-3

The four programmable CAS strobes are controlled by the CAS strobe registers, see page 169. One
strobe is allocated to each of the four banks which are decoded on chip. If a bank is programmed to contain
DRAM, or other multiplexed memory, then the associated notMemCAS pin acts as its CAS strobe by de-
fault. For banks which do not contain DRAM the notMemCAS pin is available as a general purpose pro-
grammable strobe.

10.1.6 notMemPS0-3

These four additional programmable strobes are controlled by the programmable strobe registers, see
page 169. One strobe is allocated to each of the four banks which are decoded on chip.

10.1.7 MemWait

Wait states can be selected by taking MemWait high. MemWait is sampled during RASTime and CAS-
Time. MemWait retains the state of any strobe during the cycle in which MemWait was asserted. Mem-
Wait suspends the cycle counter and the strobe generation logic until deasserted. When MemWait is de-
asserted cycles continue as programmed by the configuration registers.

10.1.8 MemReqin, MemGranted

Direct memory access (DMA) can be requested at any time by driving the asynchronous MemReqin sig-
nal high. The address and data buses are tristated after the current memory access or refresh cycle termi-
nates. If the current memory cycle is part of a cache line write back or fill then the four words of the line
are transferred before the buses are tristated.

Strobes are left inactive during the DMA transfer. If a DMA is active for longer than one programmed re-
fresh interval then external logic is responsible for providing refresh.

MemGranted follows the tisirig o the bus being tristated and can be used to signal to the device request-
ing the DMA that it has control of the bus.

Table 10.2 below lists the processor pin state while MemGranted is asserted.

MemGranted asserted
Pin name Pin state
MemAddr2-31 floating
MemData0-63 floating
notMemWrB0-3 inactive
notMemRASO0-3 inactive
notMemCASO0-3 inactive
notMemPS0-3 inactive
notMemRf inactive
MemReqOut active
notMemBootCE inactive

Table 10.2 Pin states while MemGranted is asserted

10.1.9 MemReqOut

The MemReqOut pin indicates to external logic that IMS T9000 external bus cycles are pending and ex-
ecution will stall if a DMA transfer is initiated, or has stalled if a DMA transfer is in progress.

152 IMS T9000 transputer preliminary data

Once a DMA transfer has been granted the IMS T9000 processor can continue to execute out of the inter-
nal cache until an access to external memory is required. The MemReqOut pin will be taken high and
external logic can use this information to interrupt the DMA transfer in progress. The external logic should
deassert MemReqIn when the memory buses are available for the processor to use.

10.1.10 notMemBootCE

The IMS T9000 has a dedicated area of external memory address space of fixed size and timing. This
functions as a fifth bank with fixed decode and timing parameters. This is to provide slow access to
configuration/ bootstrap code stored in ROM. notMemBootCE is used to access external memory placed
in this dedicated address range. This address space can also be used to access code/data which is not
bootstrap code if required. Refer to the booting section 10.6 for more information.

10.1.11 notMemRf

The IMS T9000 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh signal is also determined.

notMemRYf indicates that the current cycle is a refresh cycle. It is asserted low at the beginning of the re-
fresh cycle and deasserted high at the end of the refresh cycle.

10.1.12 notMemStrobe

Reference strobe for external bus cycles.

10.2 External bus cycles

The IMS T9000 programmable memory interface is designed to provide efficient support for dynamic
memory without compromising support for other devices, such as static memory and 1/O devices. This
flexibility is provided by allowing the required waveforms to be programmed via the configuration registers
described in section 10.3.

Interaction of the PMI with the on-chip cache is highly optimized. In order to support specialized memory
types, addresses within 8, 16 or 32 bit memory banks can be specified to be cacheable or non-cacheable
Note, 64 bit memory is always defined as cacheable. In addition, each bank can be specified to contain: 8,
16, 32 or 64 bit wide SRAM; or 32 or 64 bit wide DRAM memory. The PMI synthesizes the required number
of cycles to assemble full words before transferring them to or from the internal cache.

Transputer memory is byte addressed, with words aligned on eight-byte boundaries for 64 bit devices,
four-byte boundaries for 32 bit devices and on two-byte boundaries for 16 bit devices.

During read cycles byte level addressing is performed internally by the IMS T9000. The PMI can read by-
tes, half-words, words or dual-words. It always reads the size of the bank.

During write cycles the IMS T9000 uses the notMemWrB0-3 strobes to perform addressing of bytes. If
a particular byte is not to be written then the corresponding data outputs are tristated. Writes can be less
than the size of the bank.

The internally generated address is indicated on pins MemAddr2-31, however the three low order ad-
dress bits A0, A1 and A2 have different functions depending on the size of the external data bus. The least
significant bit of the data bus is always MemData0. The most significant bit can be adjusted dynamically
to suit the required external bus size.

Note that pins which are not used during an access are tristated. For example; for an 8 bit bus, pins Mem-
Data8-63 are tristated. In addition, when partial writes are performed pins not used are tristated in order
to avoid bus contention. For example; for a 32-bit write to a 16 bit external bus with the internal byte writes
having the values 0110, MemData16-63 would be tristated throughout the two accesses because they
are not used, while during the first access MemData0-7 would be tristated, and during the second access
MemData8-15 would be tristated, to avoid bus contention.

10 Programmable memory interface 153

The two low order address bits A0 and A1 are encoded onto two of the byte enable pins (notMemWrB2-3)
as defined in table 10.1. The function of the byte write pins when writing 32 bit operands to 32, 16 or 8
bit port sizes are illustrated in figure 10.2.

Table 10.3 represents the byte writes and lower order address bits activity, whilst transferring operands
to arbitrary port sizes. For example; to transfer a write with internal byte enable values of 0110 to a 16 bit
port, two accesses are required as shown in table 10.3.

External port size

32-bit 16-bit 8-bit
Internal | Transfer | notMemWrB3:0 | notMemWrB1:0 notMemWrB0
byte size - A1 A1:A0
control | (bytes) sequence sequence sequence

Tn Tn Tn+1 Tn Tn+1 Tn+2 Tn+3
0001 1 1110 100 |- - 0 00 - - - - - -
0010 1 1101 o010 |- - 0 o1 e - -
0011 2 1100 00oo |- - 0 00 0 01 - - - -
0100 1 1011 10 1 - - 0 10 - = - - - -
0101 2 1010 100 10 1 0 00 0 10 - - - -
0110 2 1001 010 10 1 0 o1 0 10 - - - =
0111 3 1000 00 0 10 1 0 00 0 o1 0 10 - -
1000 1 o111 01 1 - - 0 11 - - - - - =
1001 2 0110 10 0 01 1 0 00 0 11 - - - -
1011 3 0100 00 0 01 1 0 00 0 0t 0 1 - -
1100 2 0011 00 1 - - 0 10 0 11 - - - -
1101 3 0010 10 0 00 1 0 00 0 10 oM - -
1110 3 0001 010 00 1 0 01 0 10 0 11 - -
1111 4 0000 00 0 00 1 0 00 0 01 0 10 0 11
where,

Tn = external bus cycle.
Tn+1, Tn+2, Tn+3 refer to subsequent bus cycles

Table 10.3 Low order address activity

Table 10.4 shows the mapping of the data bits onto the external data pins. It should be read in conjunction
with figure 10.2 to show the function of the byte write pins when writing operands to the different port sizes.

Port size Data pins
MembData63:32 | MemData31:24 | MemData23:16 |MemData15:8 |MemData7:0

64 bit d63:d32 d31:d24 d23:d16 d15:d8 d7:do

32 bit tri-stated d31:d24 d23:d16 d15:d8 d7:d0

16 bit tri-stated tri-stated tri-stated d15:d8 d7:do
tri-stated tri-stated tri-stated d31:d24 d23:d16

8 bit tri-stated tri-stated tri-stated tri-stated d7:d0
tri-stated tri-stated tri-stated tri-stated di15:d8
tri-stated tri-stated tri-stated tri-stated d23:d16
tri-stated tri-stated tri-stated tri-stated d31:d24

Table 10.4 Mapping of internal data bits (d63:d0) onto external data pins (MemData63:0)

154 IMS T9000 transputer preliminary data
M N - O
@ 2 oa
2222
. E E E E Address
Port size 2 22 2 Dbitsused
msb MemData63-0 sb § 8 % %
D63 Do € £ £ ¢
64 bit | : ‘ R ! R | [o]olo]lo] A3-A31
(Cacheable)
8 byte word
D31 DO
32 bit [[| | | [1]1]1]1] A2-A31
4 byte word T ?) ‘! [|
|
D15 po Al
16 bit | |] Lolul1]4]
2 byte word T [} ! [
A1-A31
D31 D16 Al
@
I
D7 Do A1 A0
[| [o]oful4]
D15 D8 A1 A0
8 bit |+| Lo] 1Juj1]
1 byte word
D23 D16 A1 A0 A0-A31
@ [1[olul1]
D31 D24 A1 A0
Q

Note: U denotes unused pins — these are undefined.

Unused data pins are tri-stated.

Figure 10.2 Setting of the byte write pins when writing 32 bit operands to 32, 16 or 8 bit port sizes

10 Programmable memory interface 155

A generic memory interface cycle consists of a number of defined periods, or times, as shown in figure
10.3. This generic memory cycle uses DRAM terminology to clarify the use of the interface in the most
complex situations, but can be programmed to provide waveforms for a wide range of other device types.
The timing of each of the four memory banks can be programmed separately, with a different device type
being placed in each bank with no external hardware support.

L BusReleaseTime |
T |
‘ RASTime ‘ CASTime _L PrechargeTime ‘
. . T~
Address bus k row * column
Data bus (read) i f data in]
Data bus (write) ' data out \'r
internal read
latch

Figure 10.3 Generic memory cycle

The RASTime and CASTime are consecutive. The CASTime can be followed by concurrent Precharge
and BusRelease times. Thus, for DRAM, the times are used for RAS, CAS, and precharge respectively.
For non-multiplexed addressed memory the RASTime can be programmed to be zero.

If the RASTime is programmed to be non-zero, and page-mode memory is programmed in a bank, the
RASTime will only occur if consecutive accesses are not in the same page. The RASTime will not com-
mence until the PrechargeTime for a previous access to the same bank has completed. During this time
the address is multiplexed by the amount specified in the format control register for the bank so as to output
the row address on the address bus. During the RASTime a transition can be programmed on the RAS
strobe, but not on any other strobe.)

During the CASTime the programmable strobes and byte-write strobes are active. The address is output
on the address bus without being shifted. Write data is valid during CASTime. Read data is latched into
the interface during the last clock cycle of the CASTime.

The PrechargeTime and BusReleaseTime commence concurrently at the end of the CASTime. A
PrechargeTime will occur to the current bank if:

* the next access is to the same bank but to a different row address.

* the next cycle is to a different bank.
The BusReleaseTime runs concurrently with the PrechargeTime and will occur if:

¢ the current cycle is a read and the next cycle is a write.

» the current cycle is a read and the next cycle is a read to a different bank.

The BusReleaseTime is provided to allow slow devices to float to a high impedance state.

10.2.1 External DRAM cycles

The IMS T9000 interface has logic to utilize page-mode DRAM. The internal logic determines if page-
mode accesses are appropriate and constructs the required waveforms as defined by the timing control
register for the bank. For random accesses to dynamic memory the interface will execute a RASTime,

156 IMS T9000 transputer preliminary data

followed by a CASTime, followed by a PrechargeTlme Figure 10.4 shows a random access to dynamic
memory in bank 0.

CAS Precharge RAS CAS Precharge
L T|me0 Time0 ”" Time0 Time0 ‘ Time0 Time0 _'
notMemRASO0] ! !/ ’ ! |I/

1 | | l |
notMemCASO . | T I | | |
notMemPS0 (OE) ’ 4 / 1 ‘ ‘ / ‘ ‘
MemAddr2-31 * rowMX column N * * row X * column Y J* ’
MemData0-63 ‘ ’ ‘ b ‘ ‘ j

| | | [| | |

Figure 10.4 Random read access to DRAM from bank 0

For consecutive accesses within the same page in a single bank the row address remains constant and
only subsequent column addresses change. To perform a cache line transfer 4 consecutive addresses are
transferred, and a RASTime sub-cycle is only required for the first transfer across the external data bus.
This may be omitted if the previous access to the bank was in the same page. To read a cache line from a
32 bit wide bank of DRAM in bank 2 the PMI will execute a single RASTime, followed by four CASTimes,
followed by a PrechargeTime, as shown in figure 10.5.

CAS CAS CAS CAS Precharg
JTlmeQ Time2 | Time2| Time2 | Time2 | Time2

notMemRAS2 \ L 4] l { / ‘

MemData0-63 —’—LDLDLD’I—D"—(
| | | | | | |

Figure 10.5 Page-mode access to DRAM — 32 bit interface cache refill from bank 2

10 Programmable memory interface 157

For a 64 bit wide bank of DRAM the PMI will execute a single RASTime, followed by two CASTime fol-
lowed by a PrechargeTime, as shown in figure 10.6.

RAS CAS CAS rechargT
Time3 | Time3 | Time3 | Time3

notMemRAS3 ’ ! ! / ‘

B

'

MemAddr2-31 * row M* colN *col N+2*

woossoss |l

Figure 10.6 Page-mode access to DRAM — 64 bit interface cache refill from bank 3

The IMS T9000 is not limited to performing only cache-line refills in page-mode. As long as the row address
remains constant, then the PMI will continually operate in page-mode. Memory contents can be fetched
from any consecutive or non-consecutive column locations so long as the row address remains constant.
Figure 10.7 shows an extended page mode cycle from DRAM.

CAS CAS CAS CAS Prechargf
T|me1 Time1 | Timed Time1 | Timed Timet

- ——_—

|
I | |

notMemCAS1 w W
I R R

notMemPS1 m W
S I

|
|

notMemRAS1 ‘

MemAddr2-31 * row * column *column *column column* column * column W

|
| |

MemData0-63

Figure 10.7 Extended page mode access from DRAM in bank 1

158 IMS T9000 transputer preliminary data

10.2.2 External non-DRAM cycles

The IMS T9000 interface does not explicitly distinguish between a bank which is programmed as dynamic
memory and a bank which is not dynamic memory. This is to allow complete flexibility in the use of the
strobes and the various timing parameters. The correct mode of access is determined by proper program-
ming of the TimingControl0-3 register parameters. Some of these parameters are inapplicable to a static
memory bank and should be programmed to zero. Static memory cycles can be adequately defined by
the CASTime parameter. For a cache line read from static memory the RASTime is programmed to be
zero and no RAS sub-cycle occurs. The PMI will execute four CASTime cycles for a cache line refill from

a 32 bit wide bank of non-DRAM, as shown in figure 10.8.

‘ CAS CAS CAS CAS
TimeO | TimeQ | Time0 | Time0

notMemCASO ‘ ‘ l])

MemAddr2-31 addr N Xaddr N+1Xaddr N+2Xaddr N+3

MemData0-63 —@—@—@—Q

notMemPS0 (ﬁw

Figure 10.8 32 bit non-DRAM bank 0 cache refill

10 Programmable memory interface 159

10.2.3 Bank switching

Precharge Time and Bus Release Time allow consecutive cycles to access different banks without the
need for any external controlling logic. Figure 10.9 shows switching between SRAM in bank 0 and SRAM
in bank1. A Bus Release Time is inserted between the two accesses. The CAS, PS and Write strobes
are inactive during this time, the RAS strobe is unaffected.

CAS CAS Bus ‘ CAS ‘ CAS

Time0 | TimeO |Release| Timel | Timel
! : ; Time 0 : ;
notemcaso |\ /I__/] | | |
notMemPS0 . . f : : :
notMemCAS1 ‘ ‘ ’ ‘ ‘ l
| | | |
notMemPS1 | | | |

MemAddr2-31 X addr N Xaddr N+1)- - - - - - '

Figure 10.9 SRAM bank 0 to SRAM bank 1 with bus release time

160 IMS T9000 transputer preliminary data

Figure 10.10 shows switching between DRAM in banks 0 and 1. During PrechargeTime0 the strobes for
bank 0 are inactive and the strobes for bank 1 operate as defined by their configuration registers. Access
is made to bank 1 whilst bank 0 is precharging. The example shown has the PrechargeTime programmed
as 2 cycles.

‘ RAS CAS | PrechargeTime0

Time0 | Tme0 | RAS | CAS ! PrechargeTimed :

‘ ‘ Time1 ! Timet
notMemRASO ! \ /

notMemCASO

'
i
'
'

I S S Sy
— I U

SpnS
=

MembData0-63

|
|
notMemPS0 T ’
|
|
|
|
|
i
|
|
|

|
|

Figure 10.10 DRAM bank 0 to DRAM bank 1 switching, no bus release time

10 Programmable memory interface 161

Figure 10.11 shows switching between DRAM in bank 1 and SRAM in bank 2. The example shown has
the PrechargeTime for bank 1 programmed as 1 cycle and the bank 2 CASTime as 2 cycles.

CASTime2

| RAS l CAS }Precharg%
Time1 Time1 ‘ Time1

notMemRASO \ /

CASTime2

notMemCASO

notMemPSO

notMemPS1

____}____________

|
[
notMemCAS1 i
|

|
. |
D

|
I
MemAddr2-31 %rowM%(col N)k address X)k address Y >[<
I
i !

.

MembData0-63 !
|

Figure 10.11 DRAM bank 0 to SRAM bank 1 switching, no bus release time

162 IMS T9000 transputer preliminary data

10.2.4 Cache refill cycles

The IMS T9000 instruction and data cache has four 32 bit words per line. Any read from external memory
can become a cache-refill cycle. The refill engine examines the value of the CacheMode bit in the format
control register (see page 165) for the selected bank. If the access is a read or write to a cacheable loca-
tion the refill engine will initiate a cache-line refill cycle for all four words of a cache line. The refill engine
generates the subsequent addresses of the cache line. The refill engine is defined to present the miss
address first and then ‘wraparound’ the other addresses as detailed in section 9.3.4 of the Cache chapter.

64 bit port sizes are defined to be cacheable and any reads and writes always transfer a full 64 bit operand
to and from external memory to the internal cache. No byte transfers take place and so no byte writes are
active. During 64 bit reads the notMemWrB0-3 strobes are all inactive. During 64 bit writes all of the not-
MemWTrBO0-3 strobes are active. For transfers from a 64 bit interface the full cache line is transferred in
two external reads and MemAddr2 is not used. The first external read is the miss address.

Table 10.5 defines the low order address bit activity during a cache line refill cycle from a 64 bit interface.
MemAddr2 is not used during 64 bit transfers.

First Second
MemAddr3:2 MemAddr3:2
0:X 1:X
1:X 0:X

where, X denotes 0 or 1

Table 10.5 Low order address bit activity during a cache line refill cycle from a 64 bit interface

The first MemAddr2-3 pair defines the miss address presented by the refill engine and transferred to the
external address pins. The low order address bit activity during a cache line refill cycle from a non-64 bit
interface is detailed in section 9.3.4 of the Cache chapter.

Cache refills from 8/16 bit ports

For port sizes of 8 or 16 bits the PMI generates the low order address bits (A0-A1) on the notMemWrB2-3
strobes to assemble full 32 bit operands. This is repeated for each of the four words which make up the
required cache line.

Write-back cycles

The IMS T9000 instruction and data cache is a write-back cache, thus main memory is only updated when
a line from the IMS T9000 cache is selected for displacement and written to main memory. Each 32 bit
word in the cache has a dirty bit associated with it. This dirty bit is set whenever any of the IMS T9000
internal functional units writes to an address location which is currently cached. When write-back cycles
are performed, only those words in the line which have their associated dirty bit set, are written to main
memory.

Wait states and cache-refill cycles

The IMS T9000 PMI will allow the MemWait pin to extend any of the cycles generated in the process of
a cache-line refill. The WaitEnable bit must be set in the timing control registers (see page 171).

10 Programmable memory interface 163

10.2.5 External DMA

The MemReqin pin high causes the transputer to tri-state its memory buses so that an external DMA can
access memory. MemReqIn is sampled during the last cycle of any external transfer. If the current cycle
is a four-word cache line refill then the four words of the line are read in before the PMI responds. If the
cycle is a refresh cycle it is allowed to terminate before the PMI responds. If the current cycle is a word
transfer to a smaller port then the interface completes the transfer of the sub-words before responding.
MemGranted is asserted during the first clock cycle after the current cycle terminates. The address bus,
data bus and control signals are floated during this clock cycle.

Deassertion of MemReqIn is sampled during each ProcClockOut and MemGranted is deasserted dur-
ing the next clock period.

Strobes are left floating during the DMA transfer. If DMA is active for longer than one programmed refresh
interval then external logic is responsible for providing refresh.

DMA allows a bootstrap program to be loaded into external memory for execution after reset. If MemRe-
qln is held high during reset, MemGranted will be asserted before bootstrapping from external memory
begins. The bootstrap sequence will continue when MemReqlIn is deasserted. This will not prevent boot-
strapping from the control links taking place.

The IMS T9000 processor can continue to execute out of the cache until a request to external memory
is required. If a DMA operation is in progress then execution will stall until the DMA is complete. The Mem-
ReqOut indicates to external logic that IMS T9000 external bus cycles are pending and execution has
stalled. External logic can use this information to continue or interrupt the DMA transfer in progress.

proccloskout /\ /" _/_/ T\ /NN

MemReqin T T
1. DMA device requests 5. Deasserted to indicate T9000
use of the memory buses has access to memory
MemGranted T

3. Signifies DMA device
has control of the buses

MemAdd2-31 X X0

2. Address and data
buses are tristated

MembData0-63

MemReqOut T

4. Signifies T9000 wants to
access external memory

Figure 10.12 DMA

164 IMS T9000 transputer preliminary data

10.3 PMI configuration registers

The PMI (in common with a number of other sub-systems of the IMS T9000) is controlled via a separate
configuration address space. The registers in this address space are accessed via the Idconf (load from
configuration register) and stconf (store to configuration register) instructions, or via CPeek and CPoke
command messages down CLink0. This section describes the functionality of the PMI to be controlled
by the associated configuration registers.

Note, all INMOS reserved bits in the following tables must always be written with 0’s.

The PMI configuration registers are divided into 2 sets. The bank address registers define the structure
of the external address space and how it is allocated to the four banks and the strobe timing registers de-
fine the timing of the strobe edges for the four banks. The function of the registers is to eliminate external
decode and timing logic.

The structural registers require external memory banks to be placed on ‘natural’ address boundaries for
the memory banks. If a bank is of size 2" words then the bank must be placed on a 2" boundary. Operation
of the PMI is undefined if this requirement is not met. External memory banks need not be placed on con-
tiguous boundaries as long as the requirement above is met.

External memory banks can be overlapped as long as the banks are placed on natural boundaries. Over-
lapping banks are handled according to the prioritization table below, with bank 0 having the highest prior-
ity and the boot bank the lowest priority.

— decreasing priority

Bank 0 Bank 1 Bank 2 Bank 3 | Boot bank | External activity

0 0 0 0 1 Access to boot bank

0 0 0 1 X Access to bank 3

0 0 1 X X Access to bank 2

0 1 X X X Access to bank 1

1 X X X X Access to bank 0
where,

0 represents address not in range
1 represents address in range
X denotes 0 or 1

Table 10.6 Prioritization of banks

10.3.1 Bank address registers

The addresses of operands generated by IMS T9000 internal subsystems are analyzed by the PMI. it uses
the values of the configuration registers to establish which bank the address is applicable to and the type
of access. The incoming address and the bank address registers are compared. The bits that are not of
interest are masked off by the mask address registers (Mask0, Mask1, Mask2, Mask3). This is performed
in parallel for all four banks.

Address registers

The address registers (Address0, Address1, Address2, Address3) define the base address for each of
the four banks. The base address must be word aligned.

Address0-3 #0202, #0205, #0208, #020B Read/Write

Bit Bit field Function
31:2 | BaseAddress Defines the word base for the bank address

1:0 INMOS reserved

Table 10.7 Bit fields in the Address0-3 registers

10 Programmable memory interface 165

Mask registers

The mask registers (Mask0, Mask1, Mask2, Mask3) define the bits in the address which should be com-
pared to the address register for the appropriate bank.

1 in a given bit position indicates that the corresponding bits should be compared.
0 indicates they should be ignored.

If all bits which are to be compared are the same in the presented address and the address register for a
bank then the address is a hit on the bank. :

Mask0-3 #0203, #0206, #0209, #020C Read/Write
Bit Bit field Function

31:2 | MaskField Defines the mask for the bank address

1:0 o INMOS reserved

Table 10.8 Bit fields in the Mask0-3 registers
RAS bits registers

The RAS bits registers (RASBits0, RASBits1, RASBits2, RASBits3) define the bits in the address which
should be compared to the last access to the same bank to determine whether a page hit has occurred.
The register contents are only used if the RASTime in the TimingControl register is programmed to be
non-zero.

1 in a given bit position indicates that the corresponding bits should be compared.
0 indicates they should be ignored.

If all bits which are to be compared are the same in the presented address as in the previous access, then
the address is a page hit and a RAS cycle will not be generated.

RASBIts0-3 #020E, #020F, #0210, #0211 Read/Write
Bit Bit field Function

31:2 | RASField Defines the RAS bits

1.0 | INMOS reserved

Table 10.9 Bit fields in the RASBIts0-3 registers
Format control registers

The format control registers (FormatControl0, FormatControl1, FormatControl2, FormatControl3)
control general aspects of operation of each bank of the PMI.

FormatControl0-3 #0204, #0207, #020A, #020D Read/Write
Bit Bit field Function

31:28 | ShiftAmount Right shift for the on-chip multiplexing for the bank address

4:3 PortSize Bit width of the bank (8, 16, 32 or 64 bits)

2 CacheMode Cacheability status of addresses in the bank

1:0, NMOS reserved

27:5

Table 10.10 Bit fields in the FormatControl0-3 registers

The ShiftAmount is defined as the amount of right shift to be applied to the external address field, for the
duration of the RASTime, see table 10.11. The shift amount is only active during the RASTime.

166

IMS T9000 transputer preliminary data

ShiftAmount (bits 31:28 of format control register)

0000

0001

0010

0011

0100

0101

0110

011

1000

1001

1010

1011

1100

1101

1110

111

MemAddr2

a2

a3

a4

ab

abé

a7

a8

a9

al0

all

al2

al3

al4

al5

alé

al7

MemAddr3

a3

a4

ab

a6

a7

a8

a9

al0

all

al2

al3

al4g

al5s

al6

al7

alg

MemAddr4

a4

ab

a6

a7

a8

a9

al0

all

al2

al3

al4

al5s

alé

al7

al8

al9

MemAddrs

ab

aé

a7

a8

a9

al0

alt

al2

al3

al4

al5

alé

al7

al8

al9

a20

MemAddré

aé

a7

a8

a9

al0

alt

al2

al3

al4

al5

alé

al7

al8

al9

a20

a21

MemAddr7

a7

a8

a9

al0

all

al2

al3

al4

ald

al6

al7

al8

al9

a20

a21

a22

MemAddr8

a8

a9

alo

alt

al2

al3

al4

ails

alé

al7

al8

al9

a20

a21

a22

a23

MemAddr9

a9

alo

all

al2

al3

al4d

albs

al6

al7

al8

al9

a20

a21

a22

a23

a24

MemAddr10

al0

all

al2

al3

al4

al5

alé

al7

al8

al9

a20

a21

a22

a23

a24

a25

MemAddr11

all

al2

al3

al4

at5

al6

al7

al8

al9

a20

a21

a22

a23

a24

a25

a26

MemAddr12

al2

al3

al4

ails

al6

al7

al8

al9

a20

a21

a22

a23

a24

a25

az26

az27

MemAddr13

al3

al4

aib

al6

al7

a8

al9

a20

a21

a22

a23

az24

a25

a26

az27

a28

MemAddri4

al4

al5

alé

al7

al8

al9

a20

a21

az22

a23

a24

a25

az26

a27

a28

a29

MemAddr15

al5s

alé

al7

ais

al9

a20

a21

a22

a23

a24

a25

a26

az27

a28

a29

a30

MemAddr16

alé

al7

al8

al9

a20

a21

az22

a23

a24

a25

a26

az27

a28

a29

a30

&
@

MemAddr17

al7

als

al9

a20

a21

a22

a23

a24

a25

a26

a27

a28

a29

a30

&
®

MemAddr18

al8

al9

a20

a21

a22

a23

a24

a25

a26

a27

a28

a29

a30

[V]
w
e

MemAddr19

al9

a20

a21

a22

a23

a24

az25

a26

az27

a28

a29

a30

a31

MemAddr20

a20

az21

a22

a23

az24

a25

a26

az27

a28

a29

a30

a31

MemAddr21

a21

az22

a23

a24

a25

a26

az27

a28

a29

a30

ju)
@
peg

MemAddr22

a22

a23

a24

a25

a26

a27

a28

a29

a30

&
@

MemAddr23

a23

a24

a25

a26

a27

a28

a29

a30

2
w
g

MemAddr24

a24

a25

a26

a27

a28

a29

a30

a31

MemAddr25

a25

a6

az27

a28

a29

a30

MemAddr26

a26

a27

a28

a29

a30

MemAddr27

a27

a28

a29

a30

MemAddr28

a28

a29

a30

a3t

MemAddr29

a29

a30

a31

u

MemAddr30

a30

a31

u

U

MemAddr31

a3l

U

U

U

c|Cc|c|C

c|c|lc|c|c

clcjc|c|c|c

c|jc|jcjc|c|c|c

clcjcjc|jc|jc,c|c

ccicjlc|lcjcic|c|Cc

c|jcjcjcicic|c|c|c|c

c|lcjc|jc|lc|jcjc|c|c|c|c

clcjlclc|lc|lcjc|c|cjc|c|c

ciclc|lcjcjcjc|c|c|c|c|c|C

cjlcjlcjlcicjc|jcjcjcjcjc|c|c|c

c|lcjlCc|]cjlCcjCc|Cc|jcjcjc|c|c|c|c|c

where, U denotes unused pins — these are undefined

Table 10.11

Mapping of internal address bits (a2-a31) onto external address pins (MemAddr2-31)

10 Programmable memory interface 167

The PortSize (bits 4:3 of format control registers) defines the size of the external port that occupies the
selected bank. The coding of the bits are defined in table 10.12. The PortSize parameter is used by the
byte-alignment network to assemble/disassemble data bytes to transfer arbitrary-sized operands to arbi-
trary-sized ports.

PortSize Programmed bus widths
00 64 bits
01 32 bits
10 16 bits
1 8 bits

Table 10.12 PortSize

The CacheMode bit (bit 2 of format control registers) field defines if the bank is occupied by devices whose
contents can be transferred to the IMS T9000 internal cache. Note, any bank which is programmed to have
64 bit memory is defined as a cacheable area.

CacheMode | Cacheability
0 Non-cacheable
1 Cacheable

Table 10.13 CacheMode

Figure 10.13 illustrates programming of the configuration registers for given bank configurations. Banks
0 and 1 are shown containing an external bus width of 32 bits, banks 2 and 3 with an external port size
of 64 bits. All the banks have a programmed RASTime, except bank 4 which has RASTime set to zero.
In the example shown in the figure the base addresses for each of the four banks are as follows:

Bank Physical address

0 C3C00000 ~ C3FFFFFF
1 B0300000 — BO3FFFFF
2 50E00000 — 50FFFFFF
3 OE1F8000 — OE1FFFFF

168

IMS T9000 transputer preliminary data

10 bit row 10 bit column
address address I
Address0 | 110000111 IXXXXXXXXXXXXXXXXXXX
Mask0|111111111100000000000000000000 Banko
RASBIts0 | 00000000001111111111/0000000000 Mx 4
FormatControl0 DRAM
9 bit row 9 bit column
address address
Address1 10110000001 LXXXXXXXXXXXXXXXXXX
Mask1|111111111111/000000000/000000000 BankT
RASBits1 111 256K X 4
FormatControl1 STy DRAM
9 bit row 9 bit column
address address
Address2 | 0101000011 IXXXXXXXXXXXXXXXXXX
Mask2[11111111111000000000000000000) Bank2
RASBIts2 | 00000000000111111111000000000 256K x 4
DRAM
FormatControl2 .
31 2 0
Address3[0000111000011111 1XXXXXXXXXXXXX
Mask3|111111111111111110000000000000 Bank3
RASBits3 [000000000000000000000000000000 8Kx 8
FormatControl3 0000} . SRAM
i L
ShiftAmount PortSize ’
CacheMode

DoPMiConfigured register

Figure 10.13 Programming page configuration registers

This register is write only. Once the configuration registers have been set up, a write to the DoPMIConfi-
gured register initializes the PMI. External memory accesses can then be performed.

Error address register

If an external memory error occurs (i.e. an attempt is made to access non-existent memory) which is de-
tected by the PMI, the processor is halted and the address which caused the error is saved in the error
address (ErrorAddress) register. Refer to section 10.4 for details of PMI errors and their effects.

1:0

INMOS reserved

ErrorAddress #0213 Read only
Bit Bit field Function
31:2 | Error address ‘lllegal’ address which caused an external memory error.

Table 10.14 Bit fields in the ErrorAddress register

10 Programmable memory interface 169

10.3.2 Strobe timing registers

The PMI constructs control waveforms with the required timing in the appropriate bank from the contents
of the timing control registers. The internal pipeline structure of the IMS T9000 allows internally pending
cycles to be analyzed while the bus is currently in use. The bus control logic can construct the required
timing and control waveforms from information about the current bus cycle and the next pending cycle.

Note: A cycle is one processor clock cycle and a phase is one quarter of the duration of one processor
clock cycle.

Strobe registers

The RAS strobe registers (RASStrobe0, RASStrobe1, RASStrobe2, RASStrobe3), CAS strobe regis-
ters (CASStrobe0, CASStrobe1, CASStrobe2, CASStrobe3), programmable strobe registers (Prog-
Strobe0, ProgStrobe1, ProgStrobe2, ProgStrobe3) and the write strobe registers (WriteStrobe0, Wri-
teStrobe1, WriteStrobe2, WriteStrobe3) all have a common format, as given in table 10.15. The falling
(E1) and rising (E2) edges of a waveform are defined to occur during the CASTime. During other sub-
cycles the programmable strobe pins are held in the inactive state. Figure 10.14 illustrates the strobe activ-
ity within a memory cycle.

RASStrobe0-3 #0401, #0402,#0403,#0404 Read/Write
CASStrobe0-3 #0405, #0406,#0407 #0408 Read/Write
ProgStrobe0-3 #0409, #040A,#040B,#040C Read/Write
WriteStrobe0-3 #040D, #040E,#040F,#0410 Read/Write
Bit Bit field Function Units
31:26 |E1Time Location of falling edge from CASTime start phases
25:20 | E2Time Location of rising edge from CASTime start phases
19:18 | ActiveCode Cycle type in which strobe is active -

17:0 INMOS reserved -

Table 10.15 Bit fields in the RASStrobe0-3, CASStrobe0-3, ProgStrobe0-3 and WriteStrobe0-3
registers

ActiveCode (bits 19:18 of the strobe registers) determines the type of cycle (read or write) during which
the strobe will be active. The coding of these bits is indicated below.

ActiveCode | Bus activity
00 Inactive
01 Active during read only
10 Active during write only
11 Active during read and write

Table 10.16 ActiveCode

The timing programmed in the WriteStrobe register for a bank is used for all four byte-write strobes for
writes in that bank.

170 IMS T9000 transputer preliminary data

Start of cycle

RASTime ‘ CASTime PrechargeTime

’ E1Time— l

' E2'I'|m%

notMemRASO0-3 \ / /
L;EZTime—>

notMemCAS0-3 ! E1Time‘

or | 1
notMemPS0-3 ! |

|
I
or ' '
notMemWrB0-3 l
A falling edge may A rising or falling edge, All strobes within
be programmed for |may be programmed| bank are inactive

| the RAS strobe for each strobe ’

|
|
|
|
|
|
|
|

Reset all
strobes in bank

Figure 10.14 Strobe activity within a memory cycle

The programmability of the strobe edges allows misplacement of the edges within the CASTime. Special
programming situations and the machine response are described below.

* The position of the rising edge is programmed to occur before the falling edge: In this case the
rising edge is omitted and a falling edge occurs at the programmed position. The strobe stays
low for the duration of the CASTime.

* The position of the falling edge is programmed to lie outside the sub-cycle: In this case the strobe
stays inactive and no transitions occur.

e The position of the rising edge is defined to lie outside the sub-cycle: In this case the strobe
makes the falling transition and stays low for the duration of the CASTime.

* The position of both are programmed to lie outside the sub-cycle: In this case the strobe remains
inactive and no transitions occur.

* The position of both edges are defined to be coincident within the sub-cycle: no edge transitions
occur and the strobe stays inactive.

If DRAM is present in a bank the E2Time for the associated RASStrobe register is typically programmed
to be shorter than the E1Time so that the RAS strobe falls during the RASTime of the cycle and rises again
during the CASTime of the cycle.

10 Programmable memory interface 171

Timing control registers

The timing control registers (TimingControl0, TimingControl1, TimingControl2, TimingControi3)
define for each bank timing parameters for the peripheral devices allocated to that memory bank. The
parameters defined by the register are shown in table 10.17.

TimingControl0-3 #0411, #0412,#0413,#0414 Read/Write

Bit Bit field Function Units

31:28 | RASTime Duration of RAS sub-cycle cycles

27:22 | RASEdgeTime Delay from start of RAS sub-cycle to falling edge of RAS | phases
strobe

21:18 | CASTime Duration of CAS sub-cycle cycles

17:14 | PrechargeTime Duration of precharge time cycles

13:10 | BusReleaseTime Duration of bus release time cycles

9 WaitEnable Enables the MemWait pin -

8:0 INMOS reserved -

Table 10.17 Bit fields in the TimingControl0-3 registers

RASTime sets the length of the RAS sub-cycle. If this is programmed to zero then no RAS sub-cycle will
occur.

RASEdgeTime sets the delay from the start of the RAS sub-cycle to when the RAS strobe goes low. This
is only required if RASTime is programmed to be non-zero.

The WaitEnable bit enables or disables the use of the external MemWait pin. The PMI is designed to
synthesize the required waveforms from the parameters in the TimingControl0-3 registers. However,
external control can be provided if required. If the WaitEnable bit is disabled (set to 0) then the external
cycles are controlled exclusively by the TimingControl0-3 registers. If the WaitEnable bit is enabled (set
to 1) then MemWait is defined to operate as follows:

* The MemWait pin is sampled during every clock cycle of the RASTime and the CASTime only.

* The action of MemWait is to suspend the state of the cycle counters and the level of the strobes.
This is maintained as long as MemWait is asserted.

¢ When MemWait is deasserted counting continues as defined by the TimingControl0-3 regis-
ters.

Figure 10.15 shows the effect of MemWait on the cycle and strobe definition. Figure 10.16 gives an exam-
ple of the programming of the strobe timing registers for bank 1.

Note: There is no defined relationship between ProcClockOut and MemWait or between ProcClockOut
and the strobe signals. .

172 IMS T9000 transputer preliminary data

’ RASTime ’ RASTime ’ CASTime | CASTime{ CASTime ’Prechargel Precharge,
cycle 1 cycle2 = cycle 1 ’ cycle2 cycle3 cycle 1 cycle 2

| | | | | |
/

notMemRASO0-3

| | | |
| i 1 i |
| | | | | |
notMemCAS0-3 | ‘ i | |
! I | | | |

| RASTime | RASTime | CASTime | CASTime | CASTime | CASTime | Precharge]

| cycle 1 | cycle 2 | cycle 1) Tw | cycle 2 l cycle 3 | cycle 1 |
notMemRAS0-3 | i | | 1 2
B e e
MemWait N\ ! L/ | | WA,

| RASTime | RASTime | CASTime | CASTime| CASTime | CASTime | Precharge|

! cycle 1 | cycle 2 ‘ cycle 1 | cycle 2 ' Tw ‘ cycle 3 ‘ cycle 1 '
notMemRAS0-3 [| | | ‘ L }/

| | | | | | T
notMemCASO0-3 | (| ’ | l ’ |
MemWait \EI \ | JI | 1 ! I/GZ;;4

\ RASTime] RASTime] RASTime] CAST.me{ CASTime’ CASTime | CASTime [
cycle 1 Tw cycle 2 ‘ cycle 1 | cycle 2 Tw cycle 3 ‘

| | | | |

notMemRAS0-3 | |

l
notMemCAS0-3 '

MemWait %

<;__r_’_

|
|
|
|

Figure 10.15 MemWait

10 Programmable memory interface

173

31 0

TimingControlt |0001]000010]0011/0010[0000/0| Reserved |

L i Il Il I |
I I I

RASTime ‘ CASTime ‘ BusRelease

Time
RASEdgeTime PrechargeTime WaitEnable

RASStrobet [000111]000011[11] Reserved]

Il |
I I

E1Time E2Time ActiveCode

CASStrobet [000001[001011]11] Reserved]

L i |
I I

E1Time E2Time ActiveCode

ProgStrobel [000011]001011[01] Reserved \

L | Il : H_'_l

E1Time E2Time ActiveCode

WriteStrobel [000011/001000]10) Reserved B

I
E1Time E2Time ActiveCode

RASTime CASTime PrechargeTime
NEREEEEEER RN
notMemRAS1 \
notMemCAS1
notMemPS1
notMemWrBO0-3 _ _ _ e mmeeaao
Read cycle
notMemRAS1 ——___—/—\
notMemCAS1
notMemPS1
notMemWrBo0-3 \
Write cycle

Figure 10.16 Example programming of the strobe timing registers for bank 1

174 IMS T9000 transputer preliminary data

Refresh control register

The refresh control register (RefreshControl) specifies the banks which require refreshing and the inter-
val between successive refreshes. The refresh timing is also programmed in this register, and is the same
for all banks.

The PMI ensures that CAS and RAS are both high for the required time before every refresh cycle by
inserting a PrechargeTime in the last bank being accessed and ensuring all PrechargeTimes are com-
plete.

The CASStrobe is taken low at the beginning of the refresh time. The position of the RAS falling edge
(RASedge) and the time before RAS and CAS can be taken high again (RefreshTime) are programmed.
Each of these actions occurs in sequence for each bank. A cycle is inserted between each bank in order to
spread current peaks. If no DRAM has been programmed for a bank then no transitions occur on the RAS
or CAS strobes.

When the CyclePendingMask bit is set the MemReqOut pin can be used to indicate that a refresh cycle
is pending. When this bit is not set the MemReqOut pin is set by the processor either to indicate to a DMA
device that it wants to access memory or that it wants to perform a refresh cycle.

The RefreshControl register is loaded during the configuration phase and if the Refresh Interval is zero,
then no refreshes will take place. The register bit fields are allocated the following functions.

RefreshControl #0415 Read/Write
Bit Bit field Function . Units
31:22 | Refreshinterval Defines DRAM refresh interval cycles
21:18 | RefreshTime Refresh time cycles
17:12 | RASedge Refresh RAS falling edge phases
11:8 | DRAMS3:0 Defines which banks require refresh -
7 CyclePendingMask Masks the memory access cycle. When this bit is setto 1 | —

the MemReqOut pin is used to indicate that a refresh cycle

is pending.
6:0 INMOS reserved

Table 10.18 Bit fields in the RefreshControl register

Figure 10.17 illustrates programming of the refresh control register. The example shows DRAM pro-
grammed in banks 0, 1 and 3, no DRAM programmed in bank 2. Each bank is programmed with a Refresh-
Time of 4 cycles and a Refreshinterval of 400 cycles. After a refresh, a PrechargeTime is introduced
after each bank has completed in turn. In the example shown the PrechargeTime for each bank is pro-
grammed (in the strobe timing registers) as 1 cycle. After refresh has completed in bank 3, further ac-
cesses may proceed for all banks once any precharge times are complete.

10 Programmable memory interface 175

31 0
RefreshControl | 0110010000 |O100’ 000010 ‘1011 ‘ 1 ’ ‘
L :) 1 Il | Il |
Refreshinterval ‘ RASedge \ CyctePendingMask
RefreshTime ‘ DRAMS3:0
Previous
bank
et P
N nnnm
RASedge
notMemCASO
notMemRASO \
notMemCAS1
notMemRAS1
notMemCAS2 C '
notMemRAS2 ﬁ_ _______ o,
notMemCAS3
notMemRAS3

Figure 10.17 Programming of the refresh control register

Remap boot bank register

The remap boot bank register (RemapBootBank) can be used to connect the boot bank (fifth bank with
fixed decode and timing parameters) to another bank, for example as part of a 32 bit ROM configuration,
refer to section 10.6.3 for full details. This register is write only.

10.3.3 PMI write lock register

The PMI write lock register (PMIWriteLock) provides the PMI configuration registers protection from con-
figuration writes by the CPU, so that the IMS T9000 is guaranteed to behave sensibly with respect to the
rest of the network regardless of program behavior. It prevents a program from stopping communications
by disabling memory.

Reset clears this register.
The PMI bank address subsystem and PMI strobe timing subsystem both have a write lock at the same

local address which can be set by a single write to the combined (PMI bank address and PMI strobe timing)
subsystem at address #0600.

176 IMS T9000 transputer preliminary data

PMIWriteL.ock #0600 Read/Write
Bit | Bit field Function
0 PMIWriteLock When set to 1 it inhibits modification of the PMI registers by the CPU.

Table 10.19 Bit fields in the PMIWriteLock register

10.4 PMIl errors

10.4.1 Errors detected by the PMI

The PMI detects illegal attempted memory accesses. lllegal accesses include: accesses to addresses
which are not in the range of any of the memory banks; and non-device accesses to banks defined by the
configuration registers as device banks.

Theillegal access may be ignored or may be signalied as an error either by the CPU or the PMI. ltis ignored
if the access was a speculative access initiated by the CPU and not used. Other illegal accesses by the
CPU will be signalled by the CPU or by the PMI. If the access was not initiated by the CPU then an error
is signalled by the PMI.

PMI errors signalled by the CPU

An illegal memory access signalled by the CPU causes the processor to halt with a reason code of ‘exter-
nal memory error’. The address which caused the error is saved in the EmiBadAddress CPU configura-
tion register.

PMI errors signalled by the PMI

lllegal memory accesses not signalled by the processor, such as illegal VCP memory accesses, are sig-
nalled by the PMI and cause the processor to halt with a reason code of ‘halted’. The address which
caused the error is saved in the ErrorAddress PMI configuration register.

The EmiBadAddress and ErrorAddress registers can be read to aid debugging. They must be read after
resetting but before rebooting the IMS T9000, by the control link CPeek command, as the values of these
registers become undefined after rebooting.

10 Programmable memory interface 177

10.5 Initialization of the PMI

After power up and reset the PMI is disabled. The IMS T9000 transputer must be bootstrapped either from
a ROM device (such as an EPROM or a Flash EPROM), or down control link (CLink0) from a host trans-
puter (or a computer with a link adaptor) with the bootstrap code executed in internal memory. The PMI
configuration registers are set up by the bootstrap code to match the external hardware, and the PMI is
enabled.

10.5.1 Bootspace allocation

The IMS T9000 includes support for a fifth bank (boot bank) of external memory which is not user program-
mable. It has fixed decode and timing parameters. The function of this bank is to provide a configuration/
bootstrap area of external memory. All parameters for this bank are hardwired into the PMI. The port size
of this bank is hardwired to be a byte wide interface. Reads for configuration words are assembled from
bytes. All addresses in the bootspace are regarded as legal. The boot bank address space covers 16
Mbytes down from the top of store. Note that the address space is signed, and as such the bottom of
memory occurs at #80000000.

Parameter name Function Address
TopOfStore Defines top of bootspace #7FFFFFFF
BootBankBase Defines bottom of bootspace #7F000000

Table 10.20 Bootspace

This is a large block of external store dedicated to bootspace and therefore once the PMI is configured
the user is able to reclaim this space by mapping the boot bank onto bank 0, see section 10.6.3 on re-map-
ping the boot bank.

10.5.2 The boot sequence

After power up and reset the control unit will perform two memory Peeks from the top of store fetching
first the BootWptr followed by the Bootlptr, refer to the memory map below.

BootWptr #7FFFFFFC
Bootlptr #7FFFFFF8
Boot code
BootBankBase #7F000000
Free memory

Figure 10.18 Memory map

The control unit then performs stconf (store to configuration register) instructions into the CPU configura-
tion space and allows the CPU to execute the first instructions. The first instructions allow configuration
- of the various functional parts of the IMS T9000 to begin their relevant actions.

178 IMS T9000 transputer preliminary data

Once the configuration registers have been setup, writing to configuration register DoPMIConfigured ini-
tializes the PMI and refresh timing commences as programmed. External memory accesses can then be
performed.

Before DoPMIConfigured is set only the boot bank can be accessed. If an access is attempted to one
of the four programmable banks an error occurs. Once DoPMIConfigured is set an error will occur if an
access is made to an address outside the four programmable banks. The ‘offending’ address following
an external memory error can be read from the ErrorAddress register.

10.5.3 Bootspace timing

The timing for accesses into the bootspace is not user programmable. The timing values used are defined
in figure 10.19. The timings have been deliberately relaxed to cover a wide range of ROM and T9000
speeds, typically 30 MHz to 60 MHz.

||—f 12 cycles 9—{
MemAddr0-25 {_ >‘
notMemBootCE |_ _I |
N — 10.75 cycles > |
. 1 cycle 0.25 cycles
MembData0-7 i >—‘

Figure 10.19 ROM timing for 8 bit bus

10.6 Booting from ROM

The IMS T9000 transputer can be bootstrapped from a ROM device, such as an EPROM or a Flash
EPROM, or down control link (CLinkO0) from a host transputer or a computer with a link adaptor. For details
on booting down CLInkO refer to chapter 8 on the control system. In order to boot from ROM the Start-
FromROM pin must be held high.

10.6.1 Booting from EPROM

EPROMs are normally byte wide devices that contain a programmable non-volatile memory array. These
can be programmed to bootstrap the IMS T9000 system using the relevant software tools to generate the
programming data. Figure 10.20 gives an example of booting from EPROM.

Prior to bootstrap the IMS T9000 transputer is not able to read an EPROM as the PMI strobe timings are
not yet defined. The boot bank provides slow access to configuration/ bootstrap code stored in ROM. The
notMemBootCE pin is used to access the boot bank of external memory. The PMI configuration registers
can then be set up by the ROM code. The StartFromROM pin must be held high during bootstrap when
bootstrapping from ROM.

The boot bank address space can also be used to access code/data which is not bootstrap code if re-
quired.

10 Programmable memory interface 179

IMS T9000
VDD—L noMemBootCE —|
StartFromROM o CE
MemAdd2-15 A0-15
notMemWrB3 j A1l
notMemWrB2 A0
Do-7 OE
MemData0-7 84 4, GND

Figure 10.20 Adding EPROM to the IMS T9000 transputer

The location of the EPROM within the external memory space is at the top 16 Mbytes of the address
space. The IMS T9000 reads a Wptr and an Iptr from two fixed locations near the top of memory, see
figure 10.18.

A high priority L-process then starts executing with this Wptr and Iptr. Configuration of the IMS T9000
can be performed by a series of stconf instructions.

Note that workspace is available even before the PMI is configured since after power-on-reset the cache
operates as internal RAM.

10.6.2 Booting from Flash EPROM

AFlash EPROM is a non-volatile electrically erasable ROM. Figure 10.21 shows an example system using
Flash EPROM. Flash EPROM can be used to boot a system, such as a prototype system, as it enables
changes to be made to the bootstrap code.

IMS T9000 Flash EPROM
VDD —
_!; notMemBootCE CE
StartFromROM Vppl___~___| Programming
Voltage
notMemWrBO WE Allow
device
MemAddr2-15 A0—15 programming
notMemWrB3 :‘ A1 16 L
notMemWrB2 A0 D0-7 OE
’ 1 Gnd

MembData0-7 5

Figure 10.21 Adding Flash EPROM to the IMS T9000 transputer

At bootstrap the Flash EPROM resides in the boot bank address space. The RemapBootBank register
can be used to make the Flash EPROM appear to reside in one of the four programmable external memory
banks. The PMI registers can then be accessed via the /dconf and stconf instructions, or via CPeek and

180 IMS T9000 transputer preliminary data

CPoke command messages received along control link CLink0, to program the timing parameters to en-
able configuration of the PMI.

The EPROM, which would now appear to be in the address space of one of the four memory banks can
be read, written or erased. During this time, the notMemCASO strobe for the bank 0 in which the Flash
EPROM has been mapped, is used to drive the notMemBootCE pin. Therefore, no external logic is re-
quired, provided the Flash EPROM timing parameters can be met.

Once programming is complete, the configuration registers can be reset and on bootstrap, the new data
stored in the Flash EPROM will be used to configure the transputer, and/or execute a new program.

10.6.3 Re-mapping the boot bank
The boot bank is read only, in order to write to the boot bank it must be re-mapped.

The boot bank is connected using notMemBootCE at boot time. The RemapBootBank register can be
used to connect the boot ROM to another bank, for example as part of a 32 bit ROM configuration. The
ROM should be connected to bank0. BankO can then be remapped so that the notMemCASO signal can
be routed internally to become what was notMemBootCE. This is achieved by performing a stconf
instruction to the RemapBootBank configuration register. Bank0 addresses must be configured to coin-
cide with the appropriate boot bank addresses.

It should be noted that overlaying the boot bank space with any other bank does not cause any internal
error, therefore care should be taken when connecting address and strobe pins.

RemapBootBank Bank 0 | Boot bank | External activity

register
X 0 0 No hits, no external activity
0 0 1 Normal hit to boot bank, notMemBootCE active
0 1 X Priority access to bank 0, bank 0 strobes active
1 0 1 Remapped access, bank 0 strobes active,

CAS timing for bank 0 copied onto notMemBootCE

1 1 X Remapped access, bank 0 strobes active,
CAS timing for bank 0 copied onto notMemBootCE

where,
0 represents address not in range
1 represents address in range
X denotes 0 or 1

Table 10.21 Remapping boot bank prioritization

10 Programmable memory interface 181

10.7 PMI AC timing characteristics

The following AC timing characteristics are based on simulations of the 50 MHz version of the IMS T9000
chip, and may change when full characterization is completed. The simulations were run under a loading
of 75 pF unless otherwise stated.

The IMS T9000 PMI has three types of pins; address, data and strobe pins. The falling and rising edges
ofthe strobe pins are programmable through the configuration registers. The following specification is giv-
en either as an absolute timing value or as a skew (AtsPEC) from the nominal programmed value (in). The
relationship between the parameter (tSPEC) as specified on the timing diagrams, the skew and the pro-
grammed value is as follows:

tSPEC = tn + AtSPEC

The following section gives the data setup and hold times for read, write and wait cycles It also specifies
the maximum skew from the nominal programmed values between the address and strobe pins.

The table below gives the PMI AC specifications and example timing diagrams follow.

Note, a minimum timing value with a negative value indicates that the transition of the second signal can
occur before the first signal. For example the minimum timing specification for address setup to strobe
valid is —6 ns, i.e. the strobe can be valid 6 ns before address setup.

182 IMS T9000 transputer preliminary data

Symbol | No. | Parameter Min Max Units | Notes

Atavsv |1 Address setup to strobe valid —6 +2 ns |12

Atsvav |2 Address hold after strobe valid —2 +6 ns |1,3

Atsvsv |3 Strobe valid to strobe valid —4 +4 ns (1,4

AtSLSH |4 Strobe low to strobe high —4 +4 ns |15

AtSHSL |9 Strobe high to strobe low —4 +4 ns |15

tRDS 5 Read data valid after notMem- 5((N*4)-e1)-18| ns |9
CAS low

tRDH 6 Read data hold after notMem- | 5((N+4)—e2)—10 ns |10
CAS high

Atwps |7 Write data setup before related —4 +4 _p.ns |6,8
strobe low Fa T

AtWDH |8 Write data hold after related —4 ns |7,8
strobe high :

tsvwv 10 | Wait setup time 5((m*4)-€1)-8 ns |11,12

tsvwi |11 |Wait hold time 5((m*d)—el)+7 | = ns | 11,12

Table 10.22 PMI AC specifications

Notes

1 The timings are based on the following loading conditions: address pin loaded with 75 pF and
strobe pins loaded with 75 pF.

2 The nominal value is given by the progréimmed position of the falling edge (RASEdgeTime or
E1Time) of the RAS, CAS or PS strobe.

3 The nominal value is given by the programmed length of the sub-cycle (RASTime or CASTime)
minus the programmed position of the falling strobe edge (RASEdgeTime or E1Time).

4 The nominal value is given by the absolute difference between any pair of falling edges
(RASEdgeTime or E1Time) or any pair of rising edges (E2Time) or any falling to rising pair of
strobes.

5 The nominal strobe pulse width is given by the difference between the programmed falling
(RASEdgeTime or E1Time) and the programmed rising edge (E2Time) of a RAS, CAS or PS
strobe. This Is applicable to a positive or negative pulse.

6 The nominal value is given by the programmed E1Time for notMemCASO0-3 or not-
MemWrBO0-3.

7 The nominal value is given by the programmed CASTime minus the programmed position of
the rising edge of notMemCAS0-3 or notMemWrB0-3. Output data may be held indefinitely if
there are no subsequent external cycles.

8 Timings are for all four byte write strobes notMemWrB0-3.

9 Where, N is the number of CASTime cycles and e1 is the programmed falling edge position
(E1Time).

10 Where, N is the number of CASTime cycles and e2 is the programmed rising edge position
(E2Time).

11 A wait state will be inserted between cycle m and cycle m+1 in an n cycle access if the specified
relationship is met.

12 In an n cycle access a wait cycle cannot be added after cycle n. Also, a wait cycle cannot be
added before cycle 1.

10 Programmable memory interface

183

Read cycle

? RASTime

CASTime

}

MemAddr2-31 j(row M

column N

|
|
notMemRAS0-3

(D tavsv .

@ tSVAV

r
|
=

/

.

|
<———L (@ tsLsH ——»

(3tsvsv

< (3) tsvsv—= (@ tsvsv
[

>
tavsv

e

notMemCASO0-3

|
|

|

< (3) tsvsv—>

@ tSvAv ﬂ

T
'

(4 tsLsH

<~ @tSLSH
3)tsvsv

notMemPS0-3

MembData0-63

~—— (3) tsvey ——

(@ tsvsv

~— (®tRos—=| (§)tRDH ‘
-

@L

tsvav

i

@ t$VAV

|

Figure 10.22 Read cycle timing

184 IMS T9000 transputer preliminary data

Write cycle

RASTime ‘ CASTime ' [

MemAddr2-31 * row M >’< column N T

|| @ tsvav | }

|
l“

notMemRAS0-3 I 4 ’
| L @ tsLsH !
tavsv, e

@ | ’ (3 tsvsv ‘
| e (@ tsvsv— N ¢@ tsvsv ‘

%D tavsv

| @ow—— "+
notMemCAS0-3 ! :
@ tquv
’ (@tsLsH
~— (3)tsvsv —>| (@ tsvey——

‘ <— (@ tsLsH
j (3 tsvsv

notMemPS0-3

|
|
|
|
|
|
|
|
i ‘ ~— (@tsvsv
|
1
|
|
|
1

@tWDsL tWD‘
_> !
notMemWrB0-3 ‘ T
tSLSH ———» }
! @ @toLs (@ tsvav. |
> (7)twD
’ tWDH ’
> (1) tavsv ‘
MemData0-63 ‘ '

— data out D
|

Figure 10.23 Write cycle timing

10 Programmable memory interface 185

Consecutive cycles

| Cycle 1 Cycle 2
Faf LR ASTime. CASTime]‘RASTimel CASTime
| R

|

| | |
MemAddr2-31j< row M X column N X row M X column N >{

] o |

| L

‘ !

|

notMemRASO0-3

| o
notMemCASO-;!——_—__m—_/_
{ j (9 tsHsL- !
| o |
[N/
’ ’@ tSHSL ‘44 ’

| o |

notMemPS0-3

|
|
|
|
|

Figure 10.24 Cycle to cycle timing

186 IMS T9000 transputer preliminary data

Memory wait

' Cycle 1 | ‘ Cyclem ’ Tw bycle m+1‘CycIe m+2$ ‘ Cycle n‘

l | | | |
|

MemAddr2-31 |

\

| | |
notMemRASO—a“—‘; ‘
|

notMemCAS0-3

| |

L
1
| |

A0 ts\wv ‘

— M
\ [

I | [\

Figure 10.25 Memory wait timing

11 Communications 187

11 Communications

The IMS T9000 provides hardware support for process—to—process communication by means of chan-
nels. Channel communication is point-to-point, synchronized, uni-directional and unbuffered. As a result,
a channel needs no process queue, no message queue and no message buffer, and so can be implement-
ed very efficiently.

11.1 Overview

11.1.1 Channels

A channel is used for synchronization and data-transfer between two processes and is termed either an
internal channel or an external channel as described below.

Internal channels

* An internal channel (sometimes referred to as a soft channel) connects processes that are on
the same processor.

External channels

For communication between processes on different transputers, or communication between a process
and a non-transputer device, external channels must be used. There are three types of external channel:
virtual channels, byte-stream channels and event channels.

« Avirtual channel allows communication between processes on different IMS T9000 transputers.
These transputers do not have to be directly connected, provided there is a connecting path via
a communications network.

¢ A byte-stream channel allows communication between a process on an IMS T9000 transputer
and a process on a neighboring T2/T4/T8-series transputer.
Note: Links between these transputers need data and control protocol translation. This can be
achieved using an IMS C100 system protocol converter. See the IMS C100 datasheet (document
number 42 1475 02) for details.

* Anevent channel allows a communication between a process and an external device. This type
of channel can carry no message: it is purely for synchronization. For example one use of the
event channel is as an external interrupt input. Events are described separately in chapter 12.

An internal channel between two processes executing on the same transputer is implemented by a single
word in memory; an external channel between processes executing on different transputers is implement-
ed by means of point-to-point links, which are described separately in the Data/Strobe links chapter 13.

11.1.2 Channel addresses

Achannelis uniquely identified by a ‘channel address’. For an internal channel, the channel address corre-
sponds to a memory location which may be allocated by the compiler. For an external channel, the channel
address belongs to a range of addresses reserved for external channels (see section 11.6).

11.1.3 Communication instructions

The processor provides a number of operations to support message passing along channels, the most
important being in (input message) and out (output message).

The in and out instructions use the address of the channel to determine whether the channel is internal or
external. Thus the same instruction sequence can be used for either, allowing a process to be written and
compiled without knowledge of whether its channels are connected to other processes on the same trans-
puter, or other transputers.

188 IMS T9000 transputer preliminary data

Channel communication takes place when both the inputting and outputting processes are ready. Thus,
the process which first becomes ready must wait until the second is also ready. A process performs an
input or output by loading the evaluation stack with: a pointer to a message; the address of achannel; and a
count of the number of bytes to be transferred, and then executing an input or output instruction. Data is
transferred if the other process is ready. If the other process is not ready then the one executing the com-
munications instruction will be descheduled. When the other process becomes ready they both continue to
execute.

Communication may be: zero-length; fixed-length; or variable-length.

11.1.4 Efficient variable-length communications

Communication using the in and out instructions requires both communication processes to have knowl-
edge of the length of the message that is to be transferred. To allow the secure and efficient communication
of variable-length data, the vin (variable input) and vout (variable output) instructions may be used instead
of in and out. Variable length communication requires only the outputting process to have knowledge ofthe
length of the message prior to transfer.

When both a vin and a vout instruction have been executed by processes referring to the same channel,
providing the length specified by vout does not exceed the length specified by vin, data is transferred from
the outputting process to the inputting process just the same as if in and out had been used.

However, in the case where the length specified by vout exceeds that specified by vin, a special value is
returned in the count location of the workspace of the inputting process, to indicate that an error has oc-
curred in communication.

The Idcnt (load count) instruction is provided to enable the inputting process to determine either how much
data was transferred during a variable length communication, or whether an error in communication oc-
curred.

11 Communications 189

11.2 Virtual channel processor

The IMS T9000 incorporates a hardware communications processor, called the Virtual Channel Proces-
sor (VCP), which is able to multiplex any number of virtual channels over each physical link. Each mes-
sage is split into a sequence of packets, and packets from different messages may be interleaved over
each physical link. Interleaving packets from different messages allows any number of processes to com-
municate simuitaneously via each physical link. IMS T9000 transputers may be connected directly or via
a network of IMS C104 dynamic routing devices. Communication channels can be established between
any two processes regardless of where they are physically located, or whether the channels are routed
through a network. Thus, programs can be independent of network topology.

In order that packets which are parts of different messages can be distinguished by the VCP of the trans-
puter which receives them, each received packet contains one or two bytes which identify a virtual input
channel of the receiving transputer. When a packet is transmitted it may also contain information to route
the packet through a packet switching network. The combination of any routing information and the identi-
fication of the virtual input channel of the receiving transputer is called the packet header. Every packet of a
message ends with an end-of-packet (EOP) token, except the last packet which ends with an end-of-mes-
sage (EOM) token.

The maximum length of data in each packet is 32 bytes. All but the last packet of a message contain the
maximum amount of data; the last contains the maximum amount of data or less. Each packet has the
structure illustrated in figure 11.1. The header bytes (containing routing and channel information) are
transmitted first, followed by the data bytes of the packet (if any), followed by the encoded end of packet
marker.

_ direction of packet

header data bytes end of packet

Figure 11.1 Structure of a packet

The VCP distinguishes three types of packet, depending on whether or not there are any bytes of data in
the packet, and whether it is terminated with an EOP or an EOM.

» |fthe packet is terminated with an EOM token it is the last, possibly the only, packet of a message.
» |f it contains data and is terminated with an EOP token it is part of a message.

« If it contains no data and is terminated with an EOP token it is taken as the acknowledgement
of a previously transmitted packet.

11.2.1 VCP protocol

The VCP enforces a high-level protocol on each virtual channel. Each packet of data sent along a virtual
channel must be acknowledged before the next is sent to ensure that no data is lost. The last packet must
be acknowledged before the outputting process is rescheduled to ensure synchronized communication.
Data packets received on a virtual channel are acknowledged by the VCP by sending acknowledge pack-
ets on another virtual channel back to the VCP which sent them. Iintermediate network components are
transparent and acknowledgement is process-to-process (processor-to-processor).

11.2.2 Virtual links

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual chan-
nel in each direction. If a message is being communicated in one direction the virtual channel in the oppo-
site direction is used to return acknowledge packets to the sender. The associated pair of virtual channels

190 IMS T9000 transputer preliminary data

is referred to as a virtual link. A virtual link can transfer messages in both directions at the same time with
data packets and acknowledge packets beinginterleaved on both of the virtual channels. Because virtual
channels are always paired in this way it is not necessary to include source information in the packets.
Thus packet headers only represent their destinations, thus maximizing the use of link bandwidth.

11.2.3 VCP link queues

The VCP sends messages out of links a packet at a time, waiting for the receipt of an acknowledge packet
for every data packet sent before sending the next data packet on that virtual link. The VCP sends an
acknowledge packet as soon as it receives the start of the data packet, provided a process is ready to
receive the message, thus acknowledge transmission can overlap data transmission. In this way, the next
data packet can be sent immediately after the previous one with no gap in between, in most cases.

The IMS T9000 sends all packets of a particular message down the same link. If more than one virtual
channel is using a link then packets belonging to messages on the different virtual channels are inter-
leaved.

T9000, T9000,

Process A
veP Packets arriving on link

Process B

Process D

Figure 11.2 Example of multiple virtual channels using a single link

There can only be one message on any channel at one time, and any process can only be communicating
on one channel at any time. Incoming packets (data or acknowledge) for any channel may arrive on any
link.

Channels share links. This is achieved by maintaining queues of packets ready to be sent for each link.
As a link finishes sending a packet it is fed the next packet off the queue. The receipt of an acknowledge
packet for a channel puts the next data packet, if there is more of the message to send, onto the back
of the queue for the appropriate link.

Four queues are maintained for each link, these are for:
¢ high priority data packets;
* high priority acknowledge packets;
* low priority data packets;
¢ low priority acknowledge packets.

Requests are only processed from the low priority queues of a link if both the high priority queues are
empty. Within each priority, acknowledge and data packets are sent alternately as long as neither queue is
empty.

Note, packetization, acknowledgements and link queuing are all handled automatically by the VCP.

11 Communications 191

11.2.4 Virtual link control blocks

In the IMS T9000, each end of a virtual link is represented by a data structure, called a virtual link control
block (VLCB). The VCP uses VLCBs to record the state of communications on the virtual links. A virtual
link has two associated VL.CBs, one in the memory of each transputer connected by the link. In these
blocks information is stored about the current progress of messages on both virtual channels of the virtual
link.

The following information on VLCB's is included for completeness only. The user does not need to know
full details of the VLCB’s as a number of instructions are provided on the IMS T9000 for manipulating these
data structures. These instructions may be used to establish the links, dynamically alter the connections,
activate, deactivate and reset the channels, place channels into resource mode and debug parallel
programs. For information on how VLCBs are set up, inspected and modified by means of specialized
instructions refer to the T9000 Instruction Set Manual.

Each VLCB is 8 words long and aligned on an 8-word boundary. Table 11.1 shows the information stored in
each VLCB. Note, users do not need to know the precise content of the VLCB, it is included here for refer-
ence only.

VLCB slot name Function

vl.HeaderCtrl Header and control word, see table 11.2.
vl.DataQueueLink | Pointer to next VLCB with a data packet to send.
vl.OutputWdesc Workspace descriptor of outputting process.

vl.OutputLimit Limiting address from which data may be sent.
vi.InputWdesc Workspace descriptor of inputting process.
vl.InputLimit Limiting address to which data may be written.
vl.BufferPointer Pointer to the input packet buffer.

vl.AckQueueLink | Pointer to next VLCB with an acknowledge packet to send.

Table 11.1 Content of the VLCB data structure

vl.OutputWdesc and vl.InputWdesc store the workspace descriptors of the processes (if any) sending
and/or receiving messages on the virtual link. The input workspace descriptor (vl.InputWdesc) must be
initialized to NotProcess.p (refer to Appendix A for this value) since there is initially no process communi-
cating.

vl.InputLimit and vl.OutputLimit are pointers to the limit address for input data and output data.

Associated with each virtual link is a buffer which is used to store a packet which arrives on that virtual link
in the case that no process has a pending input on that virtual link. vl.BufferPointer is a 32 bit pointerto a
region of memory allocated for this purpose. Buffers must be word aligned.

vl.HeaderCtrl word

The vl.HeaderCtrl word contains a number of bits of control and header information. The contents of the
three least significant bytes (bytes 0, 1 and 2) of the word are dependent on the information contained in
the most significant byte (byte 3) of the word, see table 11.2. Bytes 0, 1 and 2 either contain: one, two or
three bytes of packet header to be included with each packet (data or acknowledge) sent from the trans-
puter on that virtual link; or the length of the header and an unsigned word offset from the HdrAreaBase
register to the location in memory where the header is held. The header bytes (if any) are sent in the order
0, 1, 2. Table 11.2 shows the content of the most significant byte of the HeaderCtrl word.

192 IMS T9000 transputer preliminary data

Bit field Function

Link number (2 bits) The physical link used by this virtual link.

Input normal The virtual input channel is operating normally.
Output normal The virtual output channel is operating normally.

Header type (2 bits) Signifies the contents of bytes 0, 1 and 2.

00 bytes 0,1 are a word offset, byte 2 is the header length
01 byte 0 is the header

10 bytes 0,1 are the header

11 bytes 0,1,2 are the header

Table 11.2° Content of the most significant byte of the vl.HeaderCtrl word

Headers up to 3 bytes long are held in the VLCB; longer headers are held in a special region of memory.
The encoding of short headers within the vl.HeaderCtrl word saves a memory access on every packet
sent.

vl.DataQueueLink and vl.AckQueueLink words

The physical links are shared by a number of virtual links by threading the VLCBs of the virtual links waiting
to use the links, on linked lists.

Each channel of the virtual link may carry both data packets (sent as a result of outputs on the output virtual
link) and acknowledge packets (sent as a result of inputs on the input virtual link). Thus there may be data
and/or acknowledge packets to be sent on the virtual link. Therefore the VLCB contains two queue point-
ers for threading onto the lists; the vl.DataQueueLink and vi.AckQueueL.ink locations. These locations
must be initialized to zero.

Note, the vl.AckQueueLink location is not automatically free when an input completes, as the VLCB may
be on the queue to send the acknowledge for some time after the process is rescheduled.

11 Communications 193

11.3 Operation of the VCP

All internal (soft) channel communication is managed by the CPU. All external communication is handled
by the VCP. When a communication is started on an external channel, the CPU deschedules the process
(i.e. removes it from the scheduling queue) and passes it, and its request, to the VCP for processing. When
the communication has completed the VCP reschedules the process directly without the intervention of
the CPU. For full details of the requests which can be made between the CPU and the VCP, refer to the
T9000 Instruction Set Manual.

The VCP operates concurrently with the CPU so that data transfers do not suspend CPU operation.

T90004 T9000,

VCP VCP

Figure 11.3 Communication between two IMS T9000 transputers

Consider a communication between two transputers; T9000¢ and T9000, as shown in figure 11.3. The
VCP of T90004 will send the first packet of the message on a virtual channel to T9000, after the CPU
performs an output (out, outbyte, outword or vout) instruction. When the VCP of T9000, receives the pack-
et, it identifies the virtual channel on which the packet was received from the packet header. If the process
on T9000, has performed an input (in, vin) instruction on the channel, the data contained in the packet is
stored in the data space of the inputting process and an acknowledge is sent. Ifthere is no process ready to
receive the first packet then it is placed in an in-store packet buffer associated with the virtual link, which is
large enough to hold the 32-byte maximum data length. In order that the data contained in the buffer is not
overwritten, the VCP of T90004 does not send another packet on that channel until it receives an acknowl-
edgment that a process on T9000, has become ready to receive the message. When the inputting process
becomes ready the first packet is copied from the buffer into the data space of the process and an acknowl-
edge packet is sent. This buffering is transparent to the processes because it is never in use when the
processes are active.

11.3.1 Channel states
A channel may be deactivated, and later re-activated. If a channel is deactivated:
* no messages will be sent out of the channel.

¢ no actions (e.g. queueing acknowledge packets, scheduling processes) are performed but are
recorded as pending.

All pending actions are performed when the channel is re-activated.

Individual virtual channels may be stopped and/or reset. Stopping is a planned shutdown, while resetting is
a drastic action that cleans out a channel (that may be damaged, e.g. by incorrect software).

Resetting channels

In the event of a failure of a physical link (which may have resulted in the loss of one or more packets) a
virtual link can be reset, using the resetch (reset channel) instruction. This resets one end of the virtual

194 IMS T9000 transputer prelih'linary data

channel. Since there may be packets in transit, it is generally necessary to reset both ends of a virtual
channel, then wait long enough for any such packets to arrive, before resetting both ends again.

Resetting a channel does not affect whether it is deactivated.
Stopping channels

A channel can be stopped using the stopch (stop virtual channel) instruction. When an input channel is
stopping, any received packets are acknowledged. When an output channel is stopping, any packet
queued will not be sent, but acknowledges will be received for any packets which have already been sent.
When all transmitted packets have been acknowledged, the process that executed the stopch instruction
is rescheduled, leaving the output channel ready for re-use. The input channel can then be made ready for
re-use by a single resefch (reset channel) instruction.

11.4 Resources

The IMS T9000 supports the efficient implementation of shared resources. This is done by enabling a
number of (user) processes to communicate with a single server process via resource channels. The pro-
cesses may be on the same or different transputers. Access to the server process is controlled by a re-
source data structure (RDS) which resides on the same transputer as the server process. The resource
data structure consists of three words in memory. The word slots in the data structure are shown in table
11.3, and must be initialized with all three words set to NotProcess.p. The queue contains resource chan-
nels (local and/or remote) on which processes waiting to access the server have performed an output.

Slot name Purpose

rds.Front Pointer to workspace of first process waiting on the resource queue.
rds.Back Pointer to workspace of last process waiting on the resource queue.
rds.Proc Process descriptor of resource server process.

Table 11.3 Contents of a resource data structure

A resource channel is a channel which has been set into resource mode using the mkrc (mark resource
channel mode) instruction. A channel in resource mode has an additional two word data structure. The
contents of the resource channel data structure is shown in table 11.4. The re.ld slot is used to indicate the
mode of the channel. If it has the special value NotProcess.p, then the channel is in normal mode, other-
wise itis in resource mode. The initial state of the two-word data structure is rc.ld word set to NotProcess.p
as the channel is in normal mode when memory is first allocated.

Slot name Purpose

re.ld Resource channel identifier / mode indicator.
rc.Ptr Pointer to resource data structure or next resource channel.

Table 11.4 Contents of a resource channel data structure

The user processes communicate to the server process by executing normal output (out, outbyte, outword
and vout) instructions. The server process is connected to a user process by means of the grant instruc-
tion; once connected the server process can receive data from the user process by means of input instruc-
tions.

The enbg (enable grant) and disg (disable grant) instructions enable resources to be used in alternative
constructs.

11 Communications 195

11.5 Byte-stream mode

Each IMS T9000 data link (Link0-3) may be set to operate either in virtual channel mode or in byte-stream
mode by setting the associated bit in the VCP link mode registers (see section 11.7.6). The IMS T9000
links can be setindependently of each other, enabling each IMS T9000to be connected to several different
networks.

Byte-stream mode is for use in interfacing with individual T2/T4/T8-series transputers or transputer sys-
tems comprising both T2/T4/T8-series transputers and T9000 transputers. Links between T2/T4/T8-se-
ries transputers and T9000 transputers need data and control protocol translation which can be achieved
using an IMS G100 system protocol converter. Refer to the IMS C100 datasheet for details.

A special protocol is used between the IMS C100 and the IMS T9000. This protocol is invisible to the user,
and is described here for completeness. Data is transferred along the DS-Link in the form of packets each
with a single byte header. Each packet is terminated with either an EOP or EOM token. The packets sent
to/from a DS-Link in byte-stream mode are given in tables 11.5 and 11.6. Software on the IMS T9000
sends and receives messages normally via a pair of byte-stream channels.

Header |Data Terminator Interpretation Notes
0 32 bytes EOP Part of message
0 1t0 32 bytes | EOM End of message
0 none EOP Acknowledgement
1 1 to 4 bytes EOM Input count 1
Notes

1 The ‘input count’ packet contains the count of the data bytes the IMS T9000 expects to receive
from the T2/T4/T8 transputer, via the IMS C100.

Table 11.5 Packets from IMS T9000 to IMS C100

Header |Data Terminator Interpretation Notes
0 32 bytes EOP Part of message
0 1to 32 bytes |EOM End of message
0 none EOP Acknowledgement
0 none EOM Unsolicited byte 2
Notes

1 The acknowledgement packet is sent when the IMS C100 is ready to receive more data.

2 If a byte is received from the OS-Link whilst the output count is zero, the count is effectively re-
duced to —1 and an unsolicited packet is sent.

Table 11.6 Packets from IMS C100 to IMS T9000

For links operating in byte-stream mode the packet headers are fixed and the byte-stream channels can-
not be deactivated, stopped or put into resource mode. For compatibility with the T8xx, the Wdescriptors
of processes actually communicating on byte-stream channels are stored in the 8 words at the bottom of
memory. The base and limit pointers for the message are then stored in the pw.Link and pw.Pointer loca-
tions of the process workspace, see table 3.2, page 69.

Note that if a link is set into byte-stream mode, there should be no VLCB whose vl.HeaderCtrl word speci-
fies that link number. If there is and a communication is performed on the corresponding virtual link, the
behavior is unspecified.

196 IMS T9000 transputer preliminary data

Note, a link operating in byte-stream mode must be configured to expect 1 byte headers, otherwise its
behavior is undefined.

Note, two links in byte-stream mode connected directly together will not operate correctly.

11.6 Memory and channel address spaces

A channel address is the value used to access a channel in a communication instruction. The IMS T9000
channel address space is shown in figure 11.4. The IMS T9000 memory map is shown in figure 11.5.

The memory map is byte addressed. The main memory address space starts at address #80000000.

Event channels are always accessed via channel addresses. The physical links are normally accessed via
virtual channels. However, each IMS T9000 physical link set to operate in byte-stream mode is accessed
via the byte-stream channel addresses.

11.6.1 Channel address space

The bottom eight channels (0 to 7) are used for compatibility with T2/T4/T8-series transputers mapping
channels onto hard links. The next eight (8 to 15) are the event channels.

Each virtual link corresponds to two channels, one input and one output, which are represented by distinct
channel addresses. The input channel of the first virtual link will be represented by the address (Most-
Neg+16 words), and the output channel by (MostNeg+17 words), i.e. all the input channels are at even
word addresses, and all the output channels are at odd ones (see the channel address space). The chan-
nel address is the machine form of the channel number. The CPU input and output instructions identify
channels to the VCP by quoting the channel address.

Above the virtual channels there is a region of invalid channel numbers and then the region of valid soft
(internal) channel numbers.

11 Communications

197

Internal channels

MemStart

lllegal
MininvalidChannel

Virtual channels

MostNeg + 16 #80000040
Event channels
MostNeg + 8 #80000020
Byte-stream channel inputs
MostNeg + 4 #80000010
Byte-stream channel outputs
MostNeg #80000000

Figure 11.4 IMS T9000 channel address space

11.6.2 Memory allocation for virtual links

The data structure to implement virtual channel communication on the IMS T9000 consists of four parts:

« VLCBs;

« buffers for unsolicited data packets;

» two-word data structures for using input event and virtual channels in resource mode;

« area of memory for headers which are too long to fit into VL.CBs.

With the exception of the packet buffers, each part consists of a single block of store. The block of memory
for the VLCBs starts from a fixed location, at MostNeg+16 words. Each VLCB requires 8 words. The
blocks for the resource mode words and long headers are pointed to by the external resource channel
base register (ExternalRCBase) and the header base register (HdrAreaBase) respectively. The virtual

link packet buffers can be placed anywhere in memory.

198 IMS T9000 transputer preliminary data

Process workspace
MemStart _

Header area
HdrAreaBase

ExternalRCBase Resource channel extra words

Virtual link control blocks

Access via
special
instructions
Hard and event channel
control words
MostNeg _| (Base of memory)

Figure 11.5 IMS T9000 memory map showing memory allocation for virtual links
There are three CPU configuration registers which define the communication space allocated.
Memory start value register
The MemStart register contains a pointer to the start of memory.

The communications instructions operate by treating all channel addresses at or above MemStart as be-
ing internal (‘soft’) channel communications — that is between processes executing on the same proces-
sor. All channel communications below this address are transferred to the VCP, after checking for illegal
addresses.

The Idmemstartval instruction can be used to obtain the value of MemStart.
Packet buffers may be allocated below MemStart in the memory map.
Minimum invalid virtual channel register .

There is a range of channel addresses below MemStart which do not correspond to valid virtual channels,
and which will normally contain VLCBs and headers. The first channel address which corresponds to an
invalid virtual channel is held in the MinlnvalidChannel register.

MinlnvalidChannel should always be << MemStart

Note that all external communications can be disabled by setting the MininvalidChannel register to
MostNeg.

External resource channel base register

Aresource channelis a channel which may be in normal mode or resource channel mode, plus a two word
data structure (see section 11.4 on resources). For local users the extra two words are contiguous with the

11 Communications 199

word used as the channel. For remote users an extra two words are associated with each input virtual
channel and Event input. These extra words are allocated together in a block, and the base of the block is
defined by the ExternalRCBase register. Note that the two words must be allocated for all four event chan-
nels at the bottom of the block before any are allocated for virtual channels. Note also that, since the map-
ping between channels and this block is fixed, there must not be any gaps in the allocation. Cache usage
efficiency is maximized by ensuring that this block is two-word aligned.

11.7 VCP configuration registers

The functionality of the VCP is controlled by nineteen VCP configuration registers. Four are associated
directly with the VCP and four are associated with each of the four links. The registers are accessed viathe
Idconf (load from configuration register) and stconf (store to configuration register) instructions, or via
CPeek and CPoke command messages received along control link CLink0. This section describes the
functionality of the VCP to be controlled by bit fields in the associated configuration registers. It also de-
fines the relationship between the addressing of channels and the addressing of store.

Note, all INMOS reserved bits in the following tables must always be written with 0’s.

11.7.1 VCP command register

The VCP command register (VCPCommand) enables commands to be issued to the VCP. Each bit of the
register corresponds to a command, see table 11.7 below. The command is executed when the bit is set.
Each write to the register can set only one bit.

VCPCommand #0804 Read/Write

Bit Bit field Function

0 Reset Reset the VCP — stops the VCP and resets the registers to their
undefined level 2 state.

Start Start the VCP

2 Stop Stop the VCP ‘cleanly’ so that channel states are preserved. The VCP
accepts messages currently in transit but no new messages can be
sent.

31:3 INMOS reserved

Table 11.7 Bit fields in the VCPCommand register

11.7.2 VCP status register

The VCP status register (VCPStatus) contains information following the occurrence of an error on an input
packet. Once an error is flagged the packet body is discarded and the following information is returned to
the VCPStatus register; the header of the packet, the error code, and the link number on which the packet
was input. Any subsequent errors are not recorded.

Writes to this register clear the contents regardless of the value written.

VCPStatus #0802 Read/Write

Bit Bit field Function

0 Error Error indicator bit set to 1 to signal that an error has been de-
tected.

21 ErrorCode Details the type of error which has occurred, see table 11.9.

5:4 LinkNumber Number of link on which the packet causing the error was received.

31:16 | InputHeader Header of errant input packet.

3, INMOS reserved

15:6

Table 11.8 Bit fields in the VCPStatus register

200 IMS T9000 transputer preliminary data

Error type Error code
Header out of range 00
Header too short 01
Packet too short 10
Packet too long 11

Table 11.9 Error type

11.7.3 Header area base register

If the header associated with a virtual channel is longer than three bytes, it is not held in the VLCB
associated with that channel, but resides in a separate region of store. The (word-aligned) base of this
region is defined by the header area base register (HdrAreaBase).

HdrAreaBase #0901 Read/Write

Bit Bit field Function

31:0 |HeaderAreaBase Defines the base of the region of memory reserved for headers
longer than 3 bytes.

Table 11.10 Bit fields in the HdrAreaBase register

11.7.4 Header offset registers
The VCP must convert the channel address and header number to the memory address of the VLCB.

The VCP header offset registers for each link (VCPLinkOHdrOffset, VCPLink1HdrOffset,
VCPLink2HdrOffset, VCPLink3HdrOffset) are programmed with an offset which is subtracted from the
value contained in the header of a packet which has been input on the associated physical link. The ad-
dress of the VLCB to which a packet is directed is calculated by the VCP hardware using the following
formula:

Memory address = vlink.base + ((Header — HeaderOffset) << vlink.shift)
where for the IMS T9000: viink.base = MostNeg + 64, and vlink.shift = 5.

Figure 11.6 shows the mapping of channel addresses and header numbers to the memory address of the
VLCB. The example given shows 3 virtual links (6 virtual channels) using 2 words for long headers.

Note, the header offset registers must be initialized to 0 when not used.

VCPLink0-3HdrOffset #0808, #080C, #0810, #0814 Read/Write
Bit Bit field Function
15:0 |HeaderOfiset Header offset for associated link.

Table 11.11 Bit fields in the VCPLink0-3HdrOffset registers

11 Communications

201

%B0
%AC
%A8
%A4
%A0
%9C
%98
%94
%90
%8C
%88
%84

Channel space

Internal channels

%80 | _

%7C
%78
%74
%70
%6C
%68
%64
%60
%5C
%58
%54
%50

%4C |

%48
%44
%40
%3C
%38
%34
%30
%2C
%28
%24
%20
%1C
%18
%14
%10
%C

%8

%4

%0

Channel address

lllegal channels

Virtual Out
channels

Header value

TTT]

Event In
channels Out

-

Byte-stream
input
channels

—

Byte-stream
output
channels

=MWk oo

Channel number

Memory space

— Process workspace—|
44

— 22 Headerarea —|

|__ 41Resource channel __|
40 words
39 _|

’: 38

— 37 vicB .

— 36 for channels -

— 35 20,21 —

| 34 |

| 33 _|
32

| __ 31 |
3

— 28 _]

— VLCB —

— 28 for channels —

— 27 18,19 —

| 26 |

|_ 25 |
24

| 23 |

| 22 _|
21 _|

| 20 VLCB

[19 for channels]

18 16, 17]

17 _|
16

| 15 _|

’_ 14 _|

13
1o Eventchannel |

[41 controlwords

| 10

L 9 |
8

l_ 7 —

L. 6 |

= 5 Bytestream —

— 4 channel

— 2 control words —

L 1 _|
0

occam address

Note: %n represents a 32 bit hex value with the top bit implicitly set.

%B0
%AC
%A8
%A4
%A0
%9C
%98
%94
%90
%8C
%88
%84
%80
%7C
%78
%74
%70
%6C
%68
%64
%60
%5C
%58
%54

—| %50

%4C
%48
%44
%40
%3C
%38
%34
%30
%2C

—1 %28

%24
%20
%1C
%18
%14
%10
%C
%8
%4
%0

Machine address

Figure 11.6 Mapping of channel addresses and header numbers to the memory address of the

VLCB

202 IMS T9000 transputer preliminary data

11.7.5 Packet header limit registers

The base and limit of packet headers which are acceptable on each physical link are stored in the minimum
header registers (VCPLinkOMinHeader, VCPLink1MinHeader, VCPLink2MinHeader,
VCPLink3MinHeader) and maximimum header registers (VCPLinkOMaxHeader, VCPLink1MaxHead-
er, VCPLink2MaxHeader, VCPLink3MaxHeader) for each link Link0-3 respectively. Out of range
headers cause the associated packets to be discarded and, unless the LocalizeError flag (see section
11.7.6) is set, will generate errors. These registers can be used for enhanced system security.

Note, all bits in the minimum header registers should be setto 0 (packet header minimum value = 0) and all
bits in the maximum header registers should be set to 1 (packet header maximum value = 65,535) when
not used.

VCPLink0-3MinHeader #0807, #080B, #080F, #0813 Read/Write
Bit Bit field Function
15:0 | MinHeader Base of packet headers for associated link.

Table 11.12 Bit fields in the VCPLink0-3MinHeader registers

VCPLink0-3MaxHeader #0806, #080A, #080E, #0812 Read/Write
Bit Bit field Function
15:0 | MaxHeader Limit of packet headers for associated link.

Table 11.13 Bit fields in the VCPLink0-3MaxHeader registers

11.7.6 VCP link mode registers

The VCP link mode registers (VCPLinkOMode, VCPLink1Mode, VCPLink2Mode, VCPLink3Mode)
contain information about the four links Link0-3.

If bit 1 is setto 1 errors detected by the VCP on the associated link do not cause an error to be signalled to
the control unit, and if bit 2 is 1 then two byte headers are expected on that link.

If bit 0 is 1 the link operates in byte-stream mode in conjunction with an IMS C100. For a link operating in
byte-stream mode bit 2 must be 0, i.e. set to expect 1 byte headers, otherwise its behavior is undefined.

VCPLink0-3Mode #0805, #0809, #080D, #0811 Read/Write
Bit Bit field Function
0 ByteMode When set to 1 the associated link is set to operate in byte-stream

mode (see section 11.5).

1 LocalizeError When set to 1 link errors detected by the VCP are no longer reported
to the control unit, see section 11.9 for details of errors.
2 HeaderLength Programs the expected length of the incoming packet header (1 or 2
bytes) for each associated physical link.

0 1 byte header

1 2 byte header

31:3 INMOS reserved

Table 11.14 Bit fields in the VCPLink0-3Mode registers

11.7.7 ChanWriteLock

The ChanWriteLock register is a 1 bit register which when set to 1 prevents the CPU from writing to the
following registers: CPU registers; VCP registers; and scheduler registers including the write lock register
accessed via the configuration bus. Reads are not affected, nor are writes by the control unit.

11 Communications 203

The ChanWriteLock register is shared between the VCP, CPU and scheduler.

ChanWriteLock #4900 Read/Write

Bit Bit field Function

0 ChanWriteLock When set to 1 it inhibits modification of the VCP, CPU and schedul-
er registers by the CPU.

Table 11.15 Bit fields in the ChanWriteLock register

11.8 Initialization of the VCP

11.8.1 VCP state on start up

The VCP is initially in a waiting state. In this state it does not dequeue VLCBs or transmit packets, nor does
it initiate processing of incoming packets, which are stalled at the link inputs. However, if a packet is al-
ready being processed when reset is asserted it will be completed. In this state it will respond to requests
from the CPU, which may cause VLCBs to be put on queues.

11.8.2 VCP state following reset
The VCP may be reset either by:

e areset by the control unit.
In this case the VCP remains in the ‘resetting’ state for a fixed number of cycles.

¢ setting the Reset bit in the VCPCommand register.
The Reset bit must be set for a minimum of 256 cycles, when it is unset the VCP returns to the
‘waiting’ state with empty queues. The processor must not interact with the VCP other than to
unset the Reset bit whilst the VCP is in this state.

The VCP is putinto the ‘running’ state from the ‘waiting’ state by setting the Start bit in the VCPCommand
register. Once in this state the VCP responds to requests from the CPU and incoming packets on all links.
The VCP configuration registers should be programmed and all the VLCBs initialized before the VCP is
started. The VCP may be returned to the ‘waiting’ state at any time by unsetting the Start bit.

When the VCP is in the ‘running’ state and the control unit sends a stop signal, the VCP goes into a ‘stop-
ping’ state in which it deactivates every virtual channel on which it performs some action before performing
that action. The exception to this is activate channel which is not performed. If stop is signalled when the
VCP is in the ‘waiting’ state, it does not perform any actions until the Start bit is set, it then goes into the
‘stopping’ state. The effect of a stop signal from the control unit is the same as setting the Stop bit in the
VCPCommand register. Note that this information is preserved for debugging purposes. It is not guaran-
teed that communication can be resumed simply be re-activating the virtual channels.

If the control unit signals an error to the VCP when in any state other than the ‘resetting’ state, the VCP
goes into the ‘discarding’ state, which it remains in until reset. In the ‘discarding’ state the VCP does not
initiate any packets. In order to avoid blocking the network, it accepts packets on all links and discards
them.

204 IMS T9000 transputer preliminary data

11.9 Errors

The links can detect disconnection and parity errors. Both these errors cause an error to be signalled to the
control system, unless this is prevented by the setting of the corresponding LocalizeError flag of the link
on which the offending packet is received. Refer to the DS-Links chapter 13 for more information on link
errors and their localization.

The VCP can detect non-attributable errors (errors which cannot be attributed to a particular process) and
attributable errors as detailed below.

* Non-attributable soft errors:
— Invalid header
— Short non-terminal packet
— Over-size packet
« Attributable soft errors:
— Length overrun on an input

Alength overrun error is dealt with by recording an invalid message length in the workspace of the inputting
process. This can be detected by the process after it has been rescheduled by means of the /dcnt (load
count) instruction.

The other errors cause an error to be signalled to the control system. The invalid header, short packet and
long packet errors can be masked from the control system by setting the LocalizeError bit of the
VCPLink0-3Mode register of the link.

Note that there are two registers which contain a LocalizeError bit. The LocalizeError bit in
Link0-3Mode registers masks link errors detected by the link (refer to section 13.5, page 213). The Lo-
calizeError bitin VCPLink0-3Mode registers masks different classes of link errors detected by the VCP.
If the link errors are to be masked for a link the LocalizeError bits in both the VCPLink0-3Mode register
and Link0-3Mode register for the link should be set together.

Null buffer pointers

If a data packet arrives on a virtual link which has a null buffer pointer the packet will be written to the bottom
eight words of memory and no error will be signalled. This will cause undefined behavior if any of the links is
being used in byte-stream mode.

12 Events 205

12 Events

The EventIn0-3 and EventOut0-3 pins provide an asynchronous handshake interface between external
events and internal processes. Event channels provide process synchronization but cannot transfer any
data. Each pair of Eventln and EventOut pins can act either as an input or an output event channel, but
not both simultaneously.

Input event channel

When an external eventtakes an Eventln pin high the associated external event channel is made
ready to communicate with a process. When both the event channel and the process are ready
the processor takes the associated EventOut pin high and the process, if waiting, is scheduled.
EventOut is removed after Eventin goes low.

Output event channel

The IMS T9000 asserts the EventOut pin to instruct external hardware to perform an action.
When both the event channel and the external hardware are ready the external hardware asserts
the associated Eventin pin and responds to the instruction. Eventin should be removed after
EventOut goes low.

Only one process may use each event channel at any given time. If no process requires an event to occur
EventOut will never be taken high. Although an Eventlin triggers the channel on a transition from low to
high, it must not be removed before EventOut is high. EventOut is taken low when Reset occurs or when
a reselch instruction is executed on that channel.

Input event channel

Eventin /T \

External hardware asserts Eventin

EventOut T/ \

T9000 acknowledges event request

Output event channel

Eventin T \
External hardware acknowledges event request

EventOut /T \

T9000 asserts EventOut

Figure 12.1 Event
Use of event channels with interrupts

An input event channel can be used for interrupts. Refer to the T9000 Transputer Instruction Set Manual
for further information on how this can be achieved.

206 IMS T9000 transputer preliminary data

12.1 Event channel addresses

There are 8 words of memory reserved for event channels, from address #80000020 to #8000003C inclu-
sive, seefigure 12.2. These addresses are also the channel addresses of the event channel. Each succes-
sive pair of words corresponds to one event channel. The lower address is used when the event is confi-
gured for input, the higher address is used when the event is configured for output. Thus the event channel
address space is consistent with the virtual channel address space. In addition, provided the first event
channel (Event0) is configured for input, compatibility with the event channel address on the IMS T805
is achieved.

Each event input channel has a two word data structure to enable it to be used in resource mode. The
(word-aligned) base of the block of memory for the resource mode words is pointed to by the ExternalRC-
Base configuration register. The two words for each of the four event channels are allocated at the bottom
of the block.

Address Channel; Channel
word address

Internal channels
MemStartVal

lllegal
MinlnvalidChannel

Virtual channels

MostNeg +16 #80000040
- Out 15 __| #8000003C
in 14 __| #80000038
| Out 13 __| #80000034
L Event In 12 __| #80000030
_ channels Out 11 __| #8000002C

In 10 __| #80000028
- Out 9 __| #80000024
MostNeg +8 In_8 #80000020

Byte-stream channel inputs

MostNeg + 4 #80000010

Byte-stream channel outputs
MostNeg #80000000

Figure 12.2 IMS T9000 channel address space

12 Events 207

12.2 Event channel state

The values contained in each event channel word pair reflect the state of the event channel which is avail-
able for inspection. The following tables give the values corresponding to different states, when the event
channel is configured as an input and when it is configured as an output. Note that the words must be set
to the Empty state by writing NotProcess.p to both words before the channel is used. The constant Deacti-
vated.p has the value #80000001. Refer to Appendix A for values and definitions of all the constants.

State Word 0 Word 1

Empty (deactivated) NotProcess.p Deactivated.p
inputting Process WDesc NotProcess.p
Inputting (deactivated) Process WDesc Deactivated.p
Enabled Process WDesc NotProcess.p
Enabled (deactivated) Process WDesc Deactivated.p
Resource mode ResChan.p NotProcess.p
Resource mode (deactivated) ResChan.p Deactivated.p

Table 12.1 Event channel states when event configured as input

State Word 0 Word 1

Empty (deactivated) Deactivéted.p NotProcess.p
Outputting NotProcess.p Process WDesc
Outputting (deactivated) Deactivated.p Process WDesc

Table 12.2 Event channel states when event configured as output

208 IMS T9000 transputer preliminary data

13 Data/Strobe links 209

13 Data/Strobe links

The IMS T9000 has four bidirectional links for normal inter-processor communications, and two additional
links which can only be used for control purposes. All of these links use a protocol with two wires in each
direction, one for data and one to carry a strobe signal, see figure 13.1. These links are therefore referred
to as data/strobe (DS-Links). The DS-Links are capable of:

« Up to 100 Mbits/s.
e 80 Mbytes/s peak total bidirectional data rate (20 Mbytes/s per link).
* Support for virtual channels and through routing.

The links are TTL compatible and are series matched to 100 ohm transmission lines. The links can be
directly connected with no external buffering or other glue logic.

Figure 13.1 shows two transputers connected via DS-Links. In this example Link0 of T9000+ is connected
to Link3 of T90005.

T9000 T9000,
Link0 Link3
LinkOutData0 LinkinData3
LinkOutStrobe0 LinkinStrobe3
_ LinkinData0 LinkOutData3
LinkinStrobe0 LinkOutStrobe3
4 signal wires per
DS-Link

Figure 13.1 DS-Links

13.1 Link format and protocol

Each DS pair carries tokens and an encoded clock. The tokens can be data bytes or control tokens. Figure
13.2 shows the format of data and control tokens on the data and strobe wires. Data tokens are 10 bits
long and contain a parity bit, a flag which is set to 0 to indicate a data token, and 8 bits of data. Control
tokens are 4 bits long and contain a parity bit, a flag which is set to 1 to indicate a control token, and 2
bits to indicate the type of control token.

210 IMS T9000 transputer preliminary data

E Data token . Control token ,

: ; Parity bit :

' Parity bit : :

! + | Control flag '

Data fla ! !

' g ! Token type!

. Data ' e.g. FCT.

' | N .

: 0 O 1 1 1 0 1 0 ' 0 O '

Data , : :
: }4— Bits covered by parity bit in control:token—*| :

' 1 L}

Strobe ! l

Figure 13.2 Link data and strobe formats

The DS-Link protocol ensures that only one of the two wires of the data strobe pair has an edge in each
bit time. The levels on the data wire give the data bits transmitted. The strobe signal changes whenever
the data signal does not. These two signals encode a clock together with the data bits, permitting asynch-
ronous detection of the data at the receiving end.

The data and control tokens are of different lengths, for this reason the parity bit in any token covers the
parity of the data or control bits in the previous token, and the data/control flag in the same token, as shown
in figure 13.2. This allows single bit errors in the token type flag to be detected. Odd parity checking is
used. Thus the parity bit is set/unset to ensure that the bits covered, inclusive of the parity bit (see figure
13.2), always contain an odd number of 1’s. The coding of the tokens is shown in table 13.1.

Token type Abbreviation | Coding
Data token - PODDDDDDDD
Flow control token FCT P100
End of packet EOP P101
End of message EOM P110
Escape token ESC P111
P = parity bit
D = data bit

Table 13.1 Token codings

One of the four control tokens is an escape token. The escape token is used to construct other ‘composite’
control tokens, see table 13.2. One of these is the null token. Null tokens are sent in the absence of other
tokens to ensure the immediate detection of parity errors and to enable link disconnection to be detected.

13 Data/Strobe links 211

Another type of composite control token is data alignment tokens (DATs). These are not supported at pres-
ent, although they will be implemented in future revisions of the chip. Data alignment tokens are sent to
compensate for any skew. Although the data and strobe signals follow near identical paths, it is possible
in extreme cases for there to be sufficient skew to corrupt the data. To overcome this problem, the
DS-Links permit an automatic skew correction system. On start up a burst of 128 DAT tokens are sent
to compensate for static skew, subsequently intermittent DATs are sent to compensate for any low fre-
quency dynamic skew.

Note: The skew correction system is notimplemented on early silicon, and bit 4 in the Link0-3Mode regis-
ters (see table 13.5) should be set to 1 to disable DATs. At present DATs are transmitted and decoded
but no skew correction takes place.

Token type Composite token | Coding Abbreviation | Function
Null token ESC P100 P111 P100 NUL Disconnect detection
Data alignment token | ESC POx1 P111 POx1 DAT Skew correction

P = parity bit

x=0or1

Table 13.2 Composite control tokens

13.2 Link functional description

A link module consists of the units shown in figure 13.3. The link control unit controls: link initialization,
speed control, error reporting, etc. It connects to the link registers in the configuration space (refer to sec-
tion 13.6). The link input unit interprets edge streams as tokens. The link output unit converts tokens to
streams of edges.

— LinkinData
9 bit . Link input LinkInStrobe
internal Link
data bus control
(to VCP) . LinkQutData
Link output LinkOutStrobe

Link
configuration
registers

Figure 13.3 Link module

212 IMS T9000 transputer preliminary data

13.3 Low-level flow control

The DS-Link protocol separates the functions of flow control and process synchronization. Flow control
is done entirely within the link module and process synchronization is built into the higher-level packet sys-
tem, which is described in chapter 11, Communications.

The IMS T9000 sends all packets of a particular message down the same DS-Link. After the first packet,
subsequent packets are only sent once the previous packet has been acknowledged. If more than one
virtual channel is using a link then packets belonging to messages on the different virtual channels are
interleaved.

There can only be one message on any channel at one time, and any process can only be communicating
on one channel at any time. Incoming packets (data or acknowledge) for any channel may arrive on any
link.

Token-level flow control is performed in each link module, and the additional flow control tokens used are
not visible to the higher-level packet protocol. The token-level flow control mechanism prevents a sender
from overrunning the input buffer of a receiving link. Each receiving link input contains a buffer for at least
8 tokens (more buffering than this is in fact provided). Whenever the link input has sufficient buffering avail-
able to receive a further 8 tokens a FCT is transmitted on the associated link output. The FCT gives the
sender permission to transmit a further 8 tokens. Once the sender has transmitted a further 8 tokens it
waits until it receives another FCT before transmitting any more tokens. The provision of more than 8 to-
kens of buffering on each link input ensures that in practice the next FCT is received before the previous
block of 8 tokens has been fully transmitted. Thus, the token-level flow control does not restrict the maxi-
mum uni-directional bandwidth of the link. The DS-Links of the IMS T9000 are capable of recording the
receipt of up to 8 FCTs at any one time.

Note that FCT and ESC/NUL tokens are local to the connection between T90004 and T9000,, whereas
data, EOP and EOM are passed to and from logic within T90004 and T9000..

13.4 Link speed select

The IMS T9000 DS-Links support a range of communication speeds. The speed of a DS-Link is pro-
grammed by writing to registers in the configuration space.

Only the transmission speed of a DS-Link is programmed as reception is asynchronous. This means that
DS-Links transmitting at different speeds can be connected, provided that each device is capable of
receiving at the speed of the connected transmitter.

The transmission speed of all four DS-Links on the IMS T9000 are related to the speed of the 10 MHz
base clock. This 10 MHz clock is multiplied by a programmable value to provide the root clock for all the
DS-Links. The multiplication factor is programmed by writing to the SpeedMultiply bit in the DSLinkPLL
register in System Services, see section 8.3.4. This root clock is then optionally divided (by programming
the SpeedDivide bits) by 1, 2, 4 or 8 independently for each DS-Link, giving a range of speeds. This ar-
rangement allows each DS-Link to be run at one of four transmission speeds, as shown in table 13.3.

13 Data/Strobe links 213

SpeedMultiply SpeedDivide1:0 BaseSpeed

0:0 0:1 1:0 1:1
/1 /2 /4 /8

8 80 40 20 10.0 10

10 100 50 25 12.5 10

12 Reserved 60 30 15.0 10

14 Reserved 70 35 17.5 10

16 Reserved 80 40 20.0 10

18 Reserved 90 45 22.5 10

20 Reserved 100 50 25.0 10

Table 13.3 DS-Link transmission speed in Mbits/sec

Note also that each DS-Link can be programmed to use a base rate clock of 10 MHz. Atreset all DS-Links
are configured to run at the BaseSpeed of 10 Mbits/sec. The SpeedSelect bit in the Link0-3Mode regis-
ters when set to 1 sets the respective DS-Link (Link0-3) to the speed selected by the SpeedMultiply and
SpeedDivide bits, as opposed to the default base speed of 10 Mbits/s.

13.5 Errors on DS-Links

DS-Link inputs can detect parity and disconnection conditions as errors. A single bit odd parity system
will detect single bit errors at the link token level. The protocol to transmit NUL tokens in the absence of
other tokens enables disconnection of a DS-Link to be detected. A disconnection error indicates one of
two things:

¢ the DS-Link has been physically disconnected;
* an error has occurred at the other end of the DS-Link, which has then stopped transmitting.

The LinkError bit in the Link0-3Status registers flags that a parity and/or disconnection error has
occurred on the Link0-3. The bit fields ParityError and DiscError indicate when parity and disconnect
errors occur respectively.

When a DS-Link detects a parity error on its input it halts its output. This is detected as a disconnect error
at the other end of the DS-Link, causing this to halt its output also. Detection of an error causes the DS-Link
to be reset. Thus, the disconnect behavior ensures that both ends are reset. Each end can then be re-
started.

Note, when one end of a DS-Link is started up before the other end of a DS-Link, a disconnect error does
not occur as no tokens have been received and once the other end of the DS-Link is started communica-
tion can commence. A disconnect error is only flagged once a token has been received on a DS-Link and
transmission is subsequently interrupted.

The DS-Links are designed to be highly reliable within a single subsystem and can be operated in one
of two environments, ‘reliable’ or ‘unreliable’ determined by the LocalizeError bit (set in Link0-3Mode
register) in each DS-Link. Note that there is also a LocalizeError bit in the VCP configuration registers
VCPLink0-3Mode which when set masks different classes of link errors detected by the VCP (refer to
section 11.9). If the link errors are to be masked for a DS-Link the LocalizeError bits in both the
VCPLink0-3Mode register and Link0-3Mode register for the DS-Link should be set together.

The LocalizeError bit is set on a per link basis, therefore it is possible to have some DS-Links in a system
marked as reliable and others as unreliable. The consequence of a link error depends on which environ-
ment the DS-Link is in.

214 IMS T9000 transputer preliminary data

13.5.1 Reliabie links

In the majority of applications, the communications system should be regarded as being totally reliable.
In this environment errors are considered to be very rare, but are treated as being catastrophic if they do
occur, requiring the intervention of the control system. This environment is the default on power-on reset,
with all DS-Links having their LocalizeError bit set to 0. If an error occurs it will be detected and reported
via a message sent along CLink0, or will cause a reset and reboot if in stand-alone mode. The CPU and
VCP of the IMS T9000 will be halted. Normal practice will then be to reset the subsystem in which the error
has occurred and to restart the application.

Handling of errors on reliable links

« An error is reported from both devices connected by the DS-Link and the location of the error
identified.

¢ The DS-Link halts and stops transmitting on its output. All communication on the DS-Link is fro-
zen until both ends are restarted. Packets in transit at the time will be stopped, although headers
may propagate through a network, blocking other communication through the network.

e The VCP goes into the ‘discarding’ state (see page 203).
¢ The CPU is stopped enabling debugging to be performed.
¢ An error message is sent on control linkO.

* An external control process (root process) analyses the status of the network and records any
error information.

« The system is reset and restarted, by the external control process, via CPoke commands down
CLinko0.

Alternatively, to avoid the need to explicitly reset the network the error can be localized to the
link. Localizing the error and resetting the link causes any truncated packets to be terminated
thus clearing the blockage in the network. Note, this can cause a ‘packet too short’ error to be
generated by a subsequent node, in this case the truncated packet is discarded. Alternatively
it may cause a process to be incorrectly rescheduled, this can be avoided by ensuring the receiv-
ing transputer is stopped first. Before the links are localized, reset and restarted, the Stop com-
mand should be sent to all the T9000’s so that any error messages resulting from the truncation
of packets will be distinguishable from the errors which occur before the processes are stopped.
Thus ensuring no processes will be rescheduled with invalid or incomplete data.

13.5.2 Unreliable links

For some applications, for instance when a disconnect or parity error may be expected during normal oper-
ation, an even higher level of reliability is required. This level of fault tolerance is supported by localizing
errors to the link on which they occur. This is achieved by setting the LocalizeError bit in the Link0-3Mode
register to 1. When the LocalizeError bit is set, errors are no longer reported to the control link and conse-
guently do not result in stopping the CPU. In this mode the link is considered ‘unreliable’.

When in unreliable mode, processes must communicate using defensive software which can detect errors
atthe message level. These processes are responsible for establishing and maintaining a higher level flow
control, using time-out to detect that a message has not completed, and requesting re-transmission. If
an error occurs, packets in transit at the time of the error will be discarded or truncated, and the link will
be reset without the error being reported via the control link. Code to implement error recovery must be
run on each virtual channel. This application software is provided for the user in libraries contained in
INMOS toolset products.

A link error in unreliable mode results solely in packets in transit at the time of the error being discarded
or truncated.

13 Data/Strobe links 215

13.6 Link configuration registers

The DS-Links (in common with a number of other sub-systems of the IMS T9000) are controlled via a'seb'-
arate configuration address space. The registers in this address space are accessed via the /dconf and
stconf instructions, or via CPeek and CPoke command messages received along CLinkO.

The tables below describe the functionality of the DS-Links to be controlled, and the associated bit fields
in the configuration registers. All INMOS reserved bits should be set to 0.

Each DS-Link has four registers, the LinkMode register, LinkCommand register, LinkStatus register
and LinkWriteLock register.

In addition the configuration space contains the DSLinkPLL register which contains the SpeedMultiply
field. This determines the multiplication factor for the 10 MHz clock, to provide the root clock for all the
DS-Links.

DSLinkPLL #1005 Read/Write
Bit Bit field Function
5:0 SpeedMultiply Sets DS-Link master clock to required value (see table 13.3).

Note, 0 through to 7 are invalid values and should not be used.
31:6 INMOS reserved

Table 13.4 Bit fields in the DSLinkPLL register

The LinkOMode, LinkiMode, Link2Mode, Link3Mode registers (one for each of the four DS-Links)
power up into a default state and may be re-programmed before or after the DS-Link has been started.

Note also that each DS-Link can be programmed to use a base rate clock of 10 MHz. At reset all DS-Links
are configured to run at the BaseSpeed of 10 Mbits/sec. The SpeedSelect bit in the Link0-3Mode regis-
ters when set to 1 sets the respective DS-Link (Link0-3) to the speed selected by the SpeedMultiply and
SpeedDivide bits, as opposed to the default base speed of 10 Mbits/s.

Link0-3Mode0-3 #8001, #8101, #8201, #8301 Read/Write
Bit Bit field Function
1:0 SpeedDivide The master link clock frequency is divided down by setting the Speed-

Divide bits to obtain the transmission frequency for each DS-Link.
Sets the transmit speed of the DS-Link (see table 13.3).
00=/1,01=/2,10=/4,11=/8

2 SpeedSelect Sets the DS-Link to transmit at the speed determined by the Speed-
Divide bits as opposed to the base speed of 10 Mbits/s.
3 LocalizeError When set errors detected by the DS-Link are no longer reported to the

control unit. Packets in transit at the time of an error will be discarded
or truncated.

4 DisableDATs When set to 1, disables the transmission of Data Alignment Tokens
(DATs), otherwise DATs are sent every 1024 bit periods.
31:5 INMOS reserved

Table 13.5 Bit fields in the Link0-3Mode registers

The Link0Command, Link1Command, Link2Command, Link3Command registers are write only and
contain four bits which when set cause a specific action to be taken by the DS-Link.

216

IMS T9000 transputer preliminary data

Link0-3Command #8002, #8102, #8202, #8302 Write only
Bit Bit field Function
0 ResetLink Resets the link engine of the Link0-3. The token state is reset, the
flow control credit is set to zero, the buffers are marked as empty, and
the parity state is reset. It also resets the LinkStatus register error
bits.
1 StartLink When a transition from 0 to 1 occurs Link0-3 will be initialized and
commence operation.
ResetOutput Sets both outputs of Link0-3 low.
WrongParity The Link0-3 output will generate incorrect parity. This may be used
to force a parity error on the transputer at the other end of the Link0-3.
31:4 INMOS reserved

Table 13.6 Bit fields in the Link0-3Command registers

The Link0Status, Link1Status, Link2Status, Link3Status registers are read only and contain six bits
which contain information about the state of the DS-Link.

Link0-3Status #8003, #8103, #8203, #8303 Read only
Bit Bit field Function
0 LinkError Flags that an error has occurred on the Link0-3.
1 LinkStarted Flags that the output Link0-3 has been started and no errors have
been detected.
2 ResetOutputCom- Flags that ResetOutput has completed on the Link0-3.
plete
ParityError Flags that a parity error has occurred on the Link0-3.
DiscError Flags that a disconnect error has occurred on the Link0-3.
TokenReceived Flags that a token has been seen on the Link0-3 since ResetLink.
31:6 INMOS reserved

Table 13.7 Bit fields in the Link0-3Status registers

In addition to the above mentioned registers each DS-Link has an associated LinkWriteLock register.
The write lock register provides protection from writes by the processor, so that the link is guaranteed to
function regardless of program behavior.

Setting the write lock register inhibits all configuration writes to this link from the CPU. All control link reset

commands clear all write locks.

Note, the CPU can start and reset the links by means of resetch and setchmode instructions even if the
write lock is set.

Link0-3WriteLock #8004 ,#8104,#8204,#8304 Read/Write
Bit | Bit field Function
0 WriteLock When set to 1 it inhibits link configuration writes from the CPU.

Table 13.8 Bit fields in the Link0-3WriteLock registers

13 Data/Strobe links 217

13.7 Initialization

13.7.1 Link state on start up

After power-on all LinkData and LinkStrobe signals are low, without clocks. Following power-on reset
an initialization sequence sets the speed of the link clock. The DS-Links are initially inactive, with a default
configuration. They are configured and started by configuration writes. Their status can be determined
by configuration reads. Each DS-Link (Link0-3) must be explicitly started by writing to the Link0-3Com-
mand registers respectively. When a DS-Link is started up it transmits control tokens.

Data may not be transferred over the link until the receiving link has sent a FCT to signify that it has enough
free buffer space to receive the data. The data/strobe outputs are held low until the first FCT is sent.

The receiving link receives and correctly decodes the tokens. However, only when the receiving link has
been explicitly started by writing across the (internal) configuration bus can it send tokens back. Figure
13.4 gives the sequence of initial tokens sent on start-up, when the DS-Link is configured to run at the
base speed. NUL tokens are then sent until data is required. If the DS-Link is not configured to run at the
base speed, these initial tokens are preceded by a burst of 128 DATs.

FCT NUL FCT NUL NUL

[1 [1 [1 I 1 T 1

FCT ESC FCT FCT ESC FCT ESC FCT
P1|OO P111 P100 P100 P111 P100 P111 P1|OO
\
1

| [| 1 | |
parity field | | I | | | |
|

r | I 1 | |
odd parity O 0 0 0 0 0 0 0

Figure 13.4 Sequence of tokens sent on start-up

13.7.2 Link state following reset

Both LinkData and LinkStrobe are low following reset to level 0 or level 1. The DS-Links output pins are
unchanged after a reset to level 2. Note that a particular DS-Link can be explicitly reset via the configura-
tion bus.

The control logic is responsible for resetting the link input, output and skew alignment logic following an
error, however it does not reset the configuration registers, or the Data and Strobe outputs. These may
all be reset independently via the configuration registers.

Physical links can be reset in one of the following ways:

* A resetch (reset channel) instruction whose channel parameter designates a byte-stream
channel.
This resets the queue registers for the link and resets and restarts the link.

* A setchmode (set channel mode) instruction with a parameter of 0, or by setting the ResetLink
bit in the Link0-3Command configuration register via the configuration bus.
The token state is reset, the flow control credit is set to zero, the buffers are marked as empty,
and the parity state is reset.

¢ VCP global reset.
This resets all four links.

The link automatically enforces a delay between reset and restart sufficient to guarantee that the other
end will detect a disconnect error and complete its reset.

218 IMS T9000 transputer preliminary data

13.8 Link connections

DS-Links are not synchronized with Clocklin or ProcClockOut and are insensitive to their phases. Thus,
links from independently clocked systems may communicate.

DS-Links are TTL compatible and intended to be used in electrically quiet environments, between devices
on a single printed circuit board or between two boards via a backplane. Direct connection may be made
between devices separated by a distance of less than 300 millimeters. For longer distances a matched
100 ohm transmission line should be used, see figure 13.5.

The inputs and outputs have been designed to have minimum skew at the 1.5 V TTL threshold.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable
within the skew tolerance of the link, although the absolute value of the delay is immaterial.

T90004 T9000,
Z0=100 ohms

LinkOutData—————) »———|LinkinData
LinkOutStrobe———) »——— LinkinStrobe

Linkinbatal————((35— LinkOutData
Linkinstrobe———(()———— LinkOutStrobe

Figure 13.5 DS-Links connected by transmission line

T90004 T9000,
LinkOutData > LinkinData
LinkOutStrobe 1’> LinkinStrobe
LinkinData < LinkOutData
LinkIinStrobe <} LinkOQutStrobe

Figure 13.6 DS-Links connected by buffers

13 Data/Strobe links 219

13.9 DS-Link timings

The following AC timing characteristics are based on simulations of the IMS T9000 chip, and may change
when full characterization is completed.

Symbol Parameter Min Nom Max Units
tLoDSr LinkOut rise time 4
tLoDsf LinkOut fall time 4
tLIDSr Linkin rise time 4
fLIDSf Linkln fall time 4
tLIHL Input edge resolution | ns
tDSDS Bit period 10 100 | ns
AtDSO Data / strobe output skew 1 ns
CLiz Linkin capacitance 7 pF
Table 13.9 DS-Link timings
LinkOutData
LinkOutStrobe
«— tLODSf
LinkinData
LinkinStrobe
| tDsDS
LinkOutData
LinkOutStro 15V
AtDso AtDso
LinkinData LinkinStrobe
LinkinStrobe LinkinData
tLIHL—>] tLIHL—>] L
Figure 13.7 DS-Link timing

220 IMS T9000 transputer preliminary data

14 Clocking phase locked loops 221

14 Clocking phase locked loops

Two on-chip phase locked loops (PLL) generate all the internal high frequency clocks from a single clock
input, simplifying system design and avoiding problems of distributing high speed clocks externally. This
chapter details the PLL input specifications, decoupling requirements and speed selections.

There is one PLL for the system clocks and one for the link clocks. Each PLL has six outputs, four quad
phase signals and two bi-phase signals. The global system clocks use the four quad phase signals from
the system clock PLL. The link clock is one of the bi-phase 100 MHz clocks from the link PLL.

141 Clock input

The high frequency internal clocks are derived from the clock frequency supplied by the user. The user
supplies the clock frequency for input to the PLL’s via the Clockln input. The nominal frequency of this
clock for all transputer family components is 5 MHz, regardless of device type, transputer word length or
processor cycle time.

A number of transputer devices may be connected to a common clock, or may have individual clocks
providing each one meets the specified stability criteria. In a multi-clock system the relative phasing of
ClockIn clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is
unimportant provided the specified limits of ClockIn pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. ClockIn must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

The timing requirements for Clockln are given in section 14.5.

14.2 PLL decoupling

The PLLs require a decoupled power supply for satisfactory operation. The decoupling is performed exter-
nally by connecting a 1uF ceramic capacitor between the CapPlus and CapMinus pins on the chip. A
surface mounted ceramic capacitor with an ESR (Equivalent Series Resistance) of less than 3 ohms
should be used. In order to keep stray inductances low, the total PCB track length should be less than
20 mm, thus the capacitor should be no more than 10 mm from the chip. The connections must not touch
power supplies or other noise sources.

VDD
CapPlus P.C.B track
' |

Phase-locked Decoupling
loops T capacitor 1 uF

I
E CapMinus P.C.Btrack

GND

Figure 14.1 Recommended PLL decoupling

222 IMS T9000 transputer preliminary data

14.3 Processor speed selection

The processor internal clock rate is variable in discrete steps. The clock rate at which the IMS T9000 runs
at is determined by the logic levels applied on the three speed select lines ProcSpeedSelect0-2 as de-
tailed in table 14.1. Note that the processor cycle time given in table 14.1 is a nominal value; it can be
calculated more accurately using the phase lock loop factor PLLx (see section 14.4 below).

ProcSpeed ProcSpeed ProcSpeed Processor Processor Phase lock
Select2 Select1 Select0 clock speed cycle time loop factor
MHz ns (PLLX)
0 0 0 30 33.3 6.0
0 0 1 35 28.6 7.0
0 1 0 40 25.0 8.0
0 1 1 45 22.2 9.0
1 0 0 50 20.0 10.0
1 0 1 INMOS reserved
1 1 0 INMOS reserved
1 1 1 INMOS reserved

Table 14.1 Processor speed selection

14.4 Processor clock output

The processor output clock (supplied on the ProcClockOut output) is derived from the internal processor
clock, which is in turn derived from ClockIn. It provides an output timing signal at the rated clock frequency
of the device. -

Its period is equal to one internal microcode cycle time, and can be derived from the formula
trcLPeL = tocLbeL / PLLX

where tPcLPCL is the ProcClockOut Period, tocLbcl is the Clockin Period and PLLx is the phase lock
loop factor for the relevant speed part.

14 Clocking phase locked loops 223

14.5 Clockin timings

Symbol Parameter Min | Nom | Max | Units | Notes
tDCLDCH Clockln pulse width low 40 ns

tDCHDCL Clockin puise width high 40 ns

tocLbCL Clockin period 200 ns 1,2
tocr Clockln rise time 10 ns

toct Clockin fall time 8 ns 3

Table 14.2 Clockin timings

Notes

1 Measured between corresponding points on consecutive falling edge:

2 This value allows the use of 200 ppm crystal oscillators for two devi onnected together by

a link.

3 Clock transitions must be monotonic within the range VIH ta VIL efer to Electrical specifications

chapter). 0

tDCHDCL

tbcLDbCL

Figure 14.2 Clockin timing

224 IMS T9000 transputer preliminary data

14.6 ProcClockOut timings

The following timings are based on simulations of the 50 MHz version of the IMS T9000 chip, and may
change when full characterization is completed. The simulations were run under a range of output loads
from 10 pF to 70 pF (capacitive only).

Symbol Parameter Min Nom Max Units | Notes
tPCLPCL ProcClockOut period 20 ns

tPCHPCL ProcClockOut puise width high 9.0 10 1.4 ns

tPCLPCH ProcClockOut pulse width low 8.6 10 11.0 ns

tPCstab ProcClockOut stability % 1

Table 14.3 ProcClockOut timings

Notes

1 Stability is the variation of cycle periods between two consecutit s, measured at corre-

sponding points on the cycles.

15V——————— N

tPCLPCH

15 Configuration register reference guide 225

15 Configuration register reference guide

The following chapter lists the full set of configuration registers for each of the sub-systems of the IMS
T9000 transputer and gives the addresses of the registers in the configuration space. The complete bit
format of each of the registers and its functionality is given in the relevant sub-system chapter.

15.1 Configuration bus

The IMS T9000 transputer has several sub-systems which need to be initialized on bootstrap. This
initialization is performed via the configuration bus.

The configuration bus is an internal serial bus that allows restricted sharing of certain registers, referred
to as configuration registers, between the subsystems or units of the IMS T9000.

There are two bus masters: the CPU; and the control unit. Any of the subsystems may be bus slaves. The
bus gives the bus masters (CPU and control unit) restricted read and/or write access to all the configura-
tion registers. None of the other subsystems can write to a configuration register via the bus.

The configuration bus has full address decoding and any invalid address will be reported as an error.

15.2 Subsystem addresses

The registers in the configuration space are accessed via the Idconf (load from configuration register) and
stconf (store to configuration register) instructions, or via CPeek and CPoke command messages re-
ceived along CLinkO0. A 2 byte 16 bit address is issued, the most significant byte refers to the subsystem,
the least significant byte refers to the local register within the subsystem.

There are 13 subsystems which access the configuration space. The subsystems and their assigned
addresses are listed in table 15.1 below.

Subsystem A15 | A14 | A13 | A12 | A11 | A10 | A9 A8 Hex
CPU 0 0 0 0 0 0 0 1 #01

PMI bank address 0 0 0 0 0 0 1 0 #02
PMI strobe timing 0 0 0 0 0 1 0 0 #04
VCP 0 0 0 0 1 0 0 0 #08
System services 0 0 0 1 0 0 0 0 #10
Cache 0 0 1 0 0 0 0 0 #20
Scheduler 0 1 0 0 0 0 0 0 #40
LinkO 1 0 0 0 0 0 0 0 #80
Link1 1 0 0 0 0 0 0 1 #81

Link2 1 0 0 0 0 0 1 0 #82
Link3 1 0 0 0 0 0 1 1 #83
Control link0 1 1 1 1 1 1 0 1 #FD
Control link1 1 1 1 1 1 1 1 0 #FE

Table 15.1 Subsystem addresses

15.2.1 Shared registers

There are a number of registers which are effectively shared between two or more slave subsystems. This
is implemented by having a separate copy of each shared register in each slave subsystem which uses

226 IMS T9000 transputer preliminary data

it. The addressing system allows all the copies to be addressed simultaneously, using a unique ‘subsys-
tem set’ address, see table 15.2. The shared address referring to the set of subsystems should be used
when writing (poking) to those registers and when reading (peeking) from those registers. Writing to a
single copy causes an address error. These shared registers can only be modified via the configuration
bus, thus ensuring all copies hold the same value.

Subsystem set A15 | A14 | A13 | A12 | A11 | A10 | A9 A8 Hex
PMI bank and strobe 0 0 0 0 0 1 1 0 #06
CPU and VCP 0 0 0 0 1 0 0 1 #09
CPU and Scheduler 0 1 0 0 0 0 0 1 #41
CPU, VCP and Scheduler 0 1 0 0 1 0 0 1 #49

Table 15.2 Subsystem set addresses

15.3 CPU write locking

Every subsystem except the cache includes a 1 bit register called a write-lock. If this register is set to 1
the effect is to prevent all writes from the CPU to any register in that subsystem including the write-lock.
Reads are not affected nor are writes by the control unit.

Reset clears the write lock registers.

There are two write-lock registers which are shared between subsystems and therefore if set prevent
writes from the CPU to any register in either subsystem. These are the PMIWriteLock register and the
ChanWriteLock register. The PMIWriteLock register prevents the CPU from writing to any of the PMI
strobe timing and PMI bank address registers. The ChanWriteLock register prevents the CPU from writ-
ing to: all CPU registers; all VCP registers; and all scheduler registers.

15.4 Subsystem registers

The following tables list all the registers in each subsystem and their addresses. For shared registers the
Shared with: column indicates which subsystem the register is shared with. The shared address is given
for registers which are shared between subsystems as this is the address which should be used to write
to or read from the register. The Read/Write column indicates whether the register is read-only (R), write-
only (W), or read-write (R/W).

Allregisters are 32 bits long, and 32 bits are always read or written. The column labelled Bit size indicates
the number of valid bits in the register. A register is listed as having 30 bits when it is used to contain a
word—aligned pointer, in this case only the upper 30 bits (bits 31:2) of the register are significant. The byte
selector (bits 1:0) are not significant. For registers listed as less than 30 bits, the lowest bits in the register
are significant. This is shown in the Significant bits column. When writing to a register, any non-signifi-
cant bits must always be zero. When reading from a register, any non-significant bits are undefined. For
registers listed as containing 0 bits, any write to the corresponding address causes some action to occur.

15 Configuration register reference guide

227

15.4.1 CPU configuration registers
Register Address Bit Significant | Read/Write | Shared with:
size bits
ChanWriteLock #4900 1 0 R/W VCP and scheduler
HdrAreaBase #0901 30 2-31 RW VCP
MemStart #410E 30 2-31 RW scheduler
MininvalidChannel #010F 30 2-31 R/W —
ExternalRCBase #4110 30 2-31 RW scheduler
Initiallptr #0111 32 0-31 R/W -
InitialWptr #0112 30 2-31 R/W -
Reason #0113 32 0-31 R/W -
EmiBadAddress #0115 32 0-31 R/W -
Table 15.3 CPU configuration registers

15.4.2 PMI configuration registers

PMI bank address configuration registers

Register Address Bit Significant | Read/Write | Shared with:

size bits

PMIWriteLock #0600 1 0 R/W PMI strobe timing
Address0 #0202 30 2-31 R/W -
MaskO #0203 30 2-31 R/W -
FormatControl0 #0204 30 2-31 RW -
Address1 #0205 30 2-31 R/W -
Mask1 #0206 30 2-31 R/W -
FormatControl1 #0207 30 2-31 R/W -
Address2 #0208 30 2-31 R/W —
Mask2 #0209 30 2-31 R/W -
FormatControl2 #020A 30 2-31 RW -
Address3 #020B 30 2-31 R/W -
Mask3 #020C 30 2-31 R/W -
FormatControl3 #020D 30 2-31 R/W -
RASBIts0 #020E 30 2-31 R/W -
RASBiIts1 #020F 30 2-31 R/W -
RASBits2 #0210 30 2-31 R/W -
RASBIts3 #0211 30 2-31 R/W -
DoPMiConfigured #0212 0 - w -
ErrorAddress #0213 30 2-31 R -

Table 15.4 PMI bank address configuration registers

228 IMS T9000 transputer preliminary data

PMI strobe timing configuration registers

Register Address Bit Significant | Read/Write | Shared with:
size bits

PMIWriteLock #0600 1 0 R/W PMI bank address
RASStrobe0 #0401 30 2-31 R/W -
RASStrobe1 #0402 30 2-31 R/W -
RASStrobe2 #0403 30 2-31 R/W -
RASStrobe3 #0404 30 2-31 R/W -
CASStrobe0 #0405 30 2-31 R/W -
CASStrobe1 #0406 30 2-31 RW -
CASStrobe2 #0407 30 2-31 R/W -
CASStrobe3 #0408 30 2-31 R/W -
ProgStrobe0 #0409 30 2-31 R/W -
ProgStrobe1 #040A 30 2-31 R/W -
ProgStrobe2 #040B 30 2-31 R/W -
ProgStrobe3 #040C 30 2-31 R/W -
WriteStrobe0 #040D 30 2-31 R/W -
WriteStrobe1 #040E 30 2-31 RW -
WriteStrobe2 #040F 30 2-31 RW -
WriteStrobe3 #0410 30 2-31 R/W -
TimingControl0 #0411 30 2-31 R/W —
TimingControl1 #0412 30 2-31 R/W -
TimingControl2 #0413 30 2-31 R/W -
TimingControl3 #0414 30 2-31 R/W —
RefreshControl #0415 30 2-31 R/W -
RemapBootBank #0416 0 - w -

Table 15.5 PMI strobe timing configuration registers

15 Configuration register reference guide

229

15.4.3 VCP configuration registers

Register Address Bit Significant | Read/Write | Shared with:
size bits
ChanWriteLock #4900 1 0 R/W CPU and scheduler
HdrAreaBase #0901 30 2-31 RW CPU
VCPStatus #0802 32 0-31 R/W -
VCPCommand #0804 3 0-2 R/W -
VCPLinkOMode #0805 3 0-2 R/W -
VCPLinkOMaxHeader | #0806 16 0-15 RW -
VCPLinkOMinHeader | #0807 16 0-15 R/W -
VCPLinkOHdrOffset | #0808 16 0-15 RW -
VCPLink1Mode #0809 3 0-2 R/W -
VCPLink1MaxHeader |#080A 16 0-15 RW -
VCPLink1MinHeader |#080B 16 0-15 RW -
VCPLink1HdrOffset #080C 16 0-15 RW -
VCPLink2Mode #080D 3 0-2 RW -
VCPLink2MaxHeader |#080E 16 0-15 RW -
VCPLink2MinHeader | #080F 16 0-15 R/W -
VCPLink2HdrOffset | #0810 16 0-15 R/W -
VCPLink3Mode #0811 3 0-2 R/W -
VCPLink3MaxHeader | #0812 16 0-15 R/W -
VCPLink3MinHeader |#0813 16 0-15 R/W -
VCPLink3HdrOffset | #0814 16 0-15 R/W -

15.4.4 System services configuration registers

Table 15.6 VCP configuration registers

Register Address Bit Significant | Read/Write
size bits
DevicelD #1001 16 0-15 R
DeviceRevision #1002 16 0-15 R
ModeStatus #1003 2 0-1 R/W
ErrorCode #1004 8 0-7 R
DSLinkPLL #1005 6 0-5 R/W
SysServWriteLock #1006 1 0 RW
Table 15.7 System services configuration registers

230

IMS T9000 transputer preliminary data

15.4.5 Cache configuration registers

Register Address Bit Significant | Read/Write
size bits
RamSize #2001 2 0-1 R/W
DoRamSize #2002 0 - w
RamLineNumber #2003 8 0-7 RW
RamAddress #2004 32 0-31 R/W
DoAllocate #2005 0 - w
Table 15.8 Cache configuration registers
15.4.6 Scheduler configuration registers
Register Address Bit Significant | Read/Write | Shared with:
size bits
ChanWriteLock #4900 1 0 RW CPU and VCP
MemStart #410E 30 2-31 R/W CPU
ExternalRCBase #4110 30 2-31 R/W CPU
Table 15.9 Scheduler configuration registers
15.4.7 Link configuration registers
Register Address Bit Significant | Read/Write
size bits
LinkOMode #8001 5 0-4 RW
Link0Command #8002 4 0-3 w
LinkOStatus #8003 6 0-5 R
LinkOWriteLock #8004 1 0 R/W
LinktMode #8101 5 0-4 R/W
Link1Command #8102 4 0-3 w
Link1Status #8103 6 0-5 R
Link1WriteLock #8104 1 0 RW
Link2Mode #8201 5 0-4 RW
Link2Command #8202 4 0-3 w
Link2Status #8203 6 0-5 R
Link2WriteLock #8204 1 0 R/W
Link3Mode #8301 5 0-4 R/W
Link3Command #8302 4 0-3 w
Link3Status #8303 6 0-5 R
Link3WriteLock #8304 1 0 R/W

Table 15.10 Link0-3 configuration registers

15 Configuration register reference guide

231

15.4.8 Control link configuration registers

Register Address Bit Significant | Read/Write
size bits
CLinkOMode #FDO1 5 0-4 R/W
CLinkOCommand #FD02 4 0-3 w
CLinkOStatus #FDO3 6 0-5 R
CLinkOWriteLock #FD04 1 0 R/W
CLink1Mode #FEO1 5 0-4 R/W
CLink1Command #FEO02 4 0-3 w
CLink1Status #FEO3 6 0-5 R
CLink1WriteLock #FEO04 1 0 R/W
Table 15.11 CLink0-1 configuration registers

232 IMS T9000 transputer preliminary data

|
|
|
i

16 Package specifications 233

16 Package specifications

The IMS T9000 is available in a 208 pin ceramic leaded chip carrier (CLCC) package. It is intended for
cavity down assembly. The dimensions and thermal characteristics detailed below apply to cavity down
installation.

16.1 208 pin CLCC package pinout

robe

DI MO,

=2 MemData39

) 165 160 =T GND
= =
: MemAc-f}{‘qy = 85 PP 047
MemAddr18 c— emDota 48
MemAddr]9 = (5 === MemData49
MemAddr20 c== === MemDa ta50
M Irel o= 150| ==MemData5SL
emAddr22 o= = MemData52
Addr23 = MemData53
Addred — 10 == GND
25 = SSSA)I)
26 o= 145 ===MemData54
1Z ==z =2 MemData 2D
28 o= F——MemDatads
9= 15 === MemData3/
MemAdor30 == === MemDo ta38
MemAddr31 — 40| E===MenDatad?
VDD Databl
GNI) == == MemDato6l
Roencas =y 2 IMS T9000 ==
notMen
notMemPS2 c— f . 135| E===MenDatab2
ngmgmgz === 208 pin ceramic = Mg%)at'%?a
notMenCAS3 == i 1 notMen
O thenbs3 = (25 leaded _ch|p carrier = MenReqin
CLinkInDa-ta o= cavity down == MenGranted
CLinkInS trobe e t : 130| E===MerReqlut
CLinkDutData0 == op view == notMenBootCE
CLinkOutS trobe —j == StartFromROM
CLinkOutS{robel === |30 [=3Reset
CLinkOytDatal == =2 DoNotWire
CLinkInStrobel == 125| ===DoNotWire
ClinkInDotal === == DoNotWire
ockln == == VDD
ProcSpeedSelecte == |35 E==GND
GND == === HoldToGND
VDD == 120| ===HoldToVDD
CapPlus = === DoNotVire
CapMinus = HoldToVDD
VDD == (40| HoldToVDD
GND == HoldToGND
ProcSpeedsSelect] === 115 | E==EventDut0
ProcSpeedSelect) == Eventln
ProcClocklut == == EventOutl
HoldToGND === (45 === EventInl
MemDatal === F=—=Eventlute
MemDatal == 10| F==Eventn2
MemDatag === == Eventllut3
MemData3 = =—=EventIn3
MemData4 =—= |50 F==LinkOutStroked
VDD =—— =
GD=={ 55 60 65 70 75 80 85 90 95 100 105/ ==G\D
BSRANWONONSHARMM T IO AR SO TNV OO QT MMM UM Z P S0 oan
S S o e e SE P VP AR R SRR R S S
T EREREat ELEERLEE U BEEES P
TEEEERR Sfoaadga 338338333552 CETSESESESeREsY
00UTUES EEELEEEE EEEEEEEEEEEE O SUTOSOYRIRTAS
Iu CEUO VUL Y 0300000 000Y XeopleoposarEcn
== ==zzzzzzzz=> 595593 S5Y¥SSY
55% 55 55 55
3 3 -

Figure 16.1 208 pin CLCC package pinout

234 IMS T9000 transputer preliminary data

16.2 208 pin CLCC package dimensions

DIM CONTROL DIMENSIONS mm ALTERNATIVE DIMENSIONS INCH
MIN NOM MAX MIN NOM MAX
A - - 3.500 bl - 0138
Al 0.25 = - 0.010 - bl
A2 2.33 2.63 293 0,092 0.104 0.115
A3 bl bl 1,000 bl bl 0.039
B 0.180 - 0.280 0,007 - 0.011
C 0.100 - 0.200 0.004 bl 0.008
D 30.300 30.600 30.900 1193 1,205 1.217 A3
D1 | 27.700 28.000 28.300 1.091 1102 1114
2 24.75 = 25.25 0974 - 0.994
3 - S.500REF - - 1,004REF -
4 2515 d 26.25 0.990 bt 1.033
E 30.300 30,600 30.900 1,193 1.205 1217
El] 27.700 28.000 28.300 1,091 1102 1114
E2 2475 - 25.25 0,974 - 0.994
E3 - 2S.5S00REF - - 1,004REF -
E4 2515 - 26.25 0.990 - 1,033
e - 0.500BSC - - 0.020BSC ol
G - - 0.100 - - 0.004
K| @ = 7° 0 = 7°
L 0,300 0.500 0.700 0,012 0.020 0.028
Zp - 1.250REF - - 0.049REF -
Ze - 1.250REF - 0,049REF -
E1
8 ' £3 —=f = ZE
~N ' ~— A
i BR0R0000 008 AR00000008RARRAARA00R0ERRRAROAAAA0NARD | P
— o1/ 205 200 185 180 185 180 175 170 165 160) j=o
= 455, g
= =
= 180| ==
= ol =
= s B3
= 4 =]
= 1hol ;:;
= |2d| =
= 1s| B2
= |25 = o
s B = wWE o s
= [= a
= 1os| 5
= =
= 1oo| 5
401 =
= =
= |as| =
= o E
504 =
R ———
J—g 85 60 65 70 75 80 85 90 95 100 105/
LB L LR L REEEY
E
Notes; @7 .
G (Seating Plane Coplanarit
1. Moaximum lead displacement from (9 P)
notional centre line = £0.Imm,

Figure 16.2 208 pin CLCC package dimensions
16.3 208 pin CLCC package thermal characteristics

The junction to case thermal resistance (0c) of the package is given below. Information on thermal
management of the IMS T9000 is given in chapter 17.

Symbol Parameter Min Nom Max | Units

84c Junction to case thermal resistance 1 °C/W

Table 16.1 Thermal resistance

17 Thermal management 235

17 Thermal management

In order to achieve the specified IMS T9000 device speed and performance, it is necessary to optimize
the method of heat removal. The method of heat removal should be chosen taking into account system
requirements. The die temperature will increase as a function of power dissipation and duty cycle of the
external memory interface. As specified in table 16.1 the junction to case thermal resistance of the 208
pin CLCC package is 1 °C/W.

Table 17.1 gives the maximum ambient temperature at which device performance is guaranteed when
operating under continuous loading for different power dissipations.

Power Heat spreader temperature 1 Still air temperature
(Watts) (°C) (°C)

3 97 35.5

4 96 16

5 95 -4

6 94 -23

7 93 -42

8 92 -61

1 Case temperature at center of heat spreader
Table 17.1 Device thermal characteristics in still air for various power dissipations

The 208 pin CLCC package is a cavity down package, thus heat can be dissipated at the package surface
from the heat spreader.

Die A-A

Heat spreader

Bond wires

Detail A-A

Exposed metal area
is at VDD (+5V)

hmj

0.3mm

Figure 17.1 Cross-section of package showing die and heat spreader

236 IMS T9000 transputer preliminary data

17.1 Forced air flow cooling

The maximum operating ambient temperature can be increased with the use of forced air flow cooling.
Table 17.2 gives the maximum allowable air temperature for various air flows when 7 W of power is being
dissipated from within the package.

Power Air velocity Air temperature
(Watts) (m/sec) (°C)

7 1 16

7 1.5 30

7 2 38

7 25 47.5

7 3 51

7 35 52.4

Table 17.2 Maximum air temperatures for forced air flow cooling

17.2 Heat sinks

To enable the IMS T9000 device to be used at higher ambient temperatures, further methods of heat re-
moval, for example heat sinks, must be used. Heat sinks are available in various forms from external
sources (for example, Redpoint, Thermalloy, EG&G Wakefield). Small light-weight heat sinks may be at-
tached directly to the heat spreader on the upper surface of the package, after soldering to the board.
Where larger heat sinks are necessary, these should be affixed to the board after applying a flexible,
thermally conductive material to the underside of the heat sink.

WARNING

« The exposed metal area around the heat spreader is at +5 V (VDD). If elec-
trically conductive material is used to connect the heat sink it should not
» run over the edge of the package, see figure 17.1. !

Table 17.3 shows typical air temperatures, when forced air flow cooling and a heat sink is used, for various
types of heat sink.

17 Thermal management 237

Power Air velocity Air temperature
(Watts) (m/s) (°C)
Heat sink 1 T Heat sink 2 Heat sink 3 Heat sink 4
7 1 2 25 56 66
7 1.5 9.5 39 67 73
7 2 37 49 72 78
7 2.5 47.5 60 75 81
7 3 54.5 65 77 83
7 3.5 65 68 79 84

Table 17.3 Typical air temperatures for four types of heat sink each used in conjunction with forced
air cooling

Where,

Heat sink 1 is a 28 mm diameter circular aluminium heat sink with 4 horizontal fins at 2 mm pitch.
Heat sink 2 is a 38 mm diameter circular aluminium heat sink with 7 horizontal fins at 2 mm pitch.
Heat sink 3 is a 45 mm square aluminium heat sink with vertical pins 10mm high at 4 mm pitch.
Heat sink 4 is a 38 mm square aluminium heat sink with vertical fins 25 mm high at 1.3 mm pitch
and air flow parallel to fins.

T Note that heat sink 1 has worse performance at air velocities of less than 2.5 m/s than if only air flow
cooling is used.

As shown above a reasonable operating ambient temperature range can be achieved using a heat sink
and/or forced air flow cooling.

17.3 Other thermal management techniques

In multiple component systems it may not be possible to remove the heat locally. In these situations some
other, more efficient, method of heat transfer may be used to ‘pipe’ the heat away to a point where it can
be removed more readily. These include copper cored boards, water cooled plates and immersion in fluo-
rocarbons. In all of these cases, the heat should be removed directly from the heat spreader on the top
of the package to gain maximum benefit.

The above information is based on typical values obtained under ideal test conditions. Thermal perform-
ance will vary from one system to another as a function of the system design and method of assembly.

238 IMS T9000 transputer preliminary data

18 Electrical specifications 239

18

Electrical specifications

Inputs and outputs are TTL compatible.

18.1 Absolute maximum ratings
Symbol Parameter Min Max Units | Notes
VDD DC supply voltage 0 7.0 \% 1,2,3,4,
5
Vi, Vo Voltage on input and output pins —0.5 VDD+0.5 \% 1,345
I Input current " +25 mA 6
tosc Output short circuit time (one pin) 1 ‘ ‘ s 4
Ts Storage temperature -85 150 °C 4
Table 18.1 Absolute maximum ratings *

Notes

1 All voltages are with respect to GND. -

2 Power is supplied to the device via the VDD and GND-pins. Sevéral of each are provided to mini-
mize inductance within the package. All supply ping be connected. The supply must be de-
coupled close to the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between
VDD and GND. Four layer boards are recomme ded if two layer boards are used, extra care
should be taken in decoupling. .

3 Input voltages must not exceed specific i;,th respect to VDD and GND, even during power-
up and power-down ramping, otherwi up can occur. CMOS devices can be permanently
damaged by excessive periods of

4 This is a stress rating only ' | operation of the device at these or any other conditions
beyond those indicated in the eperating sections of this specification is not implied. Stresses
greater than those listed ma e permanent damage to the device. Exposure to absolute
maximum rating condf xtended periods may affect reliability.

5 This device contains circuitr to protect the inputs against damage caused by high static voltages
or electrical fields. However, it is advised that normal precautions be taken to avoid application
of any volta igher than the absolute maximum rated voltages to this high impedance circuit.
Unused should be tied to an appropriate logic level such as VDD or GND.

6 The inp tent applies to any input or output pin and applies when the voltage on the pin is
betwean GN and VDD.

18.2 Operating conditions
Symbol Parameter Min Max Units | Notes
VDD DC supply voltage 4.75 5.25 \' 1
Vi, Vo Input or output voltage 0 VDD \'% 1,2
CL Load capacitance on any pin pF 3
Table 18.2 Operating conditions
Notes

1 All voltages are with respect to GND.

2
3

Excursions beyond the supplies are permitted but not recommended.
Maximum capacitance per address/ strobe/ data pin given in table 18.3, page 240.

240 IMS T9000 transputer preliminary data

18.3 Power rating

Theinternal power dissipation of the IMS T9000 depends on VDD, as shown in figure 18.1, and is substan-
tially independent of temperature. It is dependent on operating frequency and program execution. The
typical peak internal power dissipation (PINT) for an IMS T9000 operating at 50 MHz is 3 W. Derating
curves of maximum operating frequency against power dissipation will be included in the final datasheet.

The total power dissipation of the IMS T9000 is dependent on operating frequency, program execution,
external memory configuration, and output pin loading.

The total peak power dissipation PD of the chip is:

Pb = PinT + Ppmi

The peak power dissipation of the PMI (Ppy) can be determined for a given m
the following equation:

Ppmi = VDD? x ((npa * Cpina * fa) + (Nps * Cpins * Ts) + (nmj

where,

np is the total number of active (address/ strobe/ data) pins
Cpin is the actual capacitance per (address/ strobe/ data) pin:.
f is the effective operating frequency per (address/ strobe/ data) pin

Symbol Max Units

Coina 250 pF

CpinS 60 pF

CpinD 60 pF

Npa * Cpina : 2500 pF

nps * Cpins | Total strobe pins capacitance 500 pF

Total data bus capacitance 5000 pF

Table 18.3 Capacitance specifications

T9000-50

] T9000-40
Power 7
PINT 3.0
w 2.4
.

T T T T 1
52 54

T T 1
44 46 48 5.0

VDD Volts

T

5.6

Figure 18.1

Internal power dissipation vs VDD

18 Electrical specifications

241

3.4

3.2+
Power
PINT 3.0+

2.8
2.6
2.4
2.2

2 T T T T T
30 35 40 45 50 55 60

Processor frequency MHz.

n with processor speed

Figure 18.2 Typical peak internal power

242 IMS T9000 transputer preliminary data

inmos’ 243

i Part 3
4

Communications
support devices

244 Communications support devices

Chapter 1 IMS C100 system protocol converter preliminary data 245

IMS C100
system protocol
‘ converter
ﬁ[ﬁ]mOS® Preliminary Data

The information in this datasheet is subject to change

FEATURES

Communicates between T2xx/T4xx/T8xx and
T9000 transputers
T2/T4/T8-series and T9-series data link

Control
protocol CLink 0 <:f> conversion unit CIF\‘> CLink 1

T2/T4/T8-series and T9-series control

protocol

Converts data and control protocols ﬁ

Four modes of operation:

Mode 0: Enables a single T9-series transputer) LN convc-g:'t:n unit ||)

to be used in a T2/T4/T8-series network 0S Link 0= and bluffer Kr—|DS Link 0

Mode 1: Enables a T2/T4/T8-series transputer Data

system to use a T9-series subsystem 0S Link 1= conversion unit <”rf:> DS Link 1

Mode 2: Enables a T9-series transputer and buffer

system to use an existing T2/T4/T8-series Dt

subsystem without modifications to the . N ata ALl .

T2/T4/TS softwars 0S Link 2= Convzrf,ioﬁ unit =i DS Link 2
and buffer

Mode 3: Enables a T9-series transputer

system to use an existing T2/T4/T8-series [|0s Link 3\1/‘;:> Data Q—;ﬂ DS Link 3

subsystem, and enables a T2/T4/T8-series conversion unit I

transputer to emulate a T9-series transputer and buffer

System services

February 1993

® MICROELECTRONICS 42 1475 02
INMOS is a member of the SGS-THOMSON Microelectronics Group

246 Communications support devices

1.1 IMS C100 introduction
This document contains information on the IMS C100 system protocol converter.

The IMS C100 is part of a new product family based around the IMS T9000 transputer, referred to as the
‘T9-series’. The current family of T2xx/T4xx/T8xx transputers are referred to as ‘T2/T4/T8-series’.

T9-series transputers have different physical links and data protocols than T2/T4/T8-series transputers.
The IMS C100 is a system protocol converter which converts between these protocols. It allows mixed
systems, consisting of both T9-series and T2/T4/T8-series transputers, to be constructed. Enabling
T2/T4/T8-series transputers to be added as low-cost peripherals to a T9-series network, or enabling
T9-series transputers to be used to upgrade the performance of an existing transputer application.

T2/T4/T8-series transputer links consist of two wires, one in each direction, and use an asynchronous
bit-serial (byte-stream) protocol. Each bit received is sampled five times and hence the links are referred
to as oversampled links (OS-Links). Each link provides a pair of channels, one in each direction and can
operate at up to 20 Mbits/sec, providing a bidirectional bandwidth of 2.4 Mbytes/sec.

T9-series transputer links consist of four wires, two in each direction, one carrying data and one carrying
a strobe. The links are therefore referred to as data-strobe links (DS-Links). Each link can operate at up
to 100 Mbits/sec, providing a bidirectional bandwidth of 20 Mbytes/sec. The DS-Link protocol supports
virtual channels and dynamic message routing, and provides a high data bandwidth.

T2/T4/T8-series transputers are controlied by means of Reset, Analyse and Error pins on each device
and are inspected and booted by means of a special protocol on their links. On T9-series transputers this
is achieved by special links, called control links.

The IMS C100 provides an inter-networking solution for transputer systems, allowing systems to be
constructed using the optimum mix of transputers, for processing power, communication bandwidth and
system cost.

The IMS C100 converts both data and control protocols of T9-series transputer systems to those of
T2/T4/T8-series, and vice versa. It is intended to be used in conjunction with software running on either
T9-series or T2/T4/T8-series transputers and can operate in one of four modes.

This document describes the operation of the IMS C100 in detail, and summarizes the background infor-
mation necessary to understand the full implications of each mode of operation.

The IMS Dx2xx toolsets refers to the C, occam and FORTRAN toolsets written in C and supporting
T2/T4/T8-series transputer networks. A set of C, C++ and 0ccam toolsets are available which incorpo-
rate T9-series transputer support. The tools provide supportin the configuration and initialization of T9-se-
ries networks. The IMS T9000 configuration tools do not directly support the configuration of mixed T9-se-
ries and T2/T4/T8-series systems. Systems made up of T9-series networks and T2/T4/T8-series
networks connected together via IMS C100s can be configured, with each network being configured and
loaded separately using the appropriate toolset. Refer to The T9000 Development Tools Preliminary In-
formation (document number 72 TRN 249 00) for further details.

1 IMS C100 system protocol converter preliminary data 247
CLinkinData0 —] g'l:i":g'D%m ;
CLinkOutData0~—| ~, . ["] ink 1 [CLinkOutData
CLinkInStrobeo—] CLink© - CLnkT L CLinkinStrobe
CLinkOutStrobe0= Control copversion > CLinkOutStrobe1
Reset ~t unit
TReset | Error
Analyseln | /\\ ResetOut
AnalyseOut™] ﬁ r J Mode0-1
|
L _ OSLinkoOHalfSpeed
| Ptatus - OSLink123HalfSpeed
| rqgisters L1 ps inkoHalfSpeed
| |- DSLink123HalfSpeed
[
[|
[1
OSLinkino ' IData DSLinkinData0
INKinQ —= . o ; 1. a——>DSLinkOutData0
g i cohversion DS-Link 0
OSLinkOuto <—0S-Link 0| _ || Switch || : arld buffer l«<— DSLinkinStrobe0
T DSLinkOutStrobe0
OSLinkin | Data DSLinkinData1
OSLinkOut] < PS-Hink 1 Ico version DS-Link 1]~ DSLinkOutDatat
3 arld buffer t«— DSLinkInStrobe1
} | |~ DSLinkOutStrobe1
0SLinkin2 | IData <— DSLinkinData2
inkin2 —= ; | . : > DSLinkOutData2
g OS-Link 2 DS-L
OSLinkOut2 < o oo k2 bsLinkinStrobe2
: ql — DSLinkOutStrobe2
' Ipata [<— DSLinkinData3
OSLinkin3 — ; \ . . o> DSLinkOutData3
. 0S-Link 3 DS-L
OSLinkOut3 ~— |(;ortjvg[1$flfgrr1 k3 DSLinkinStrobe3
; | —> DSLinkOutStrobe3
l l configuratjon bus
VDD — | N
GND V4
CapPlus—— System services > JTAG port
CapMinus :D
Clockin
]

Figure 1.1

IMS C100 block di

agram

248 Communications support devices

1.2 IMS C100 modes of operation

This section describes the modes of operation of the IMS C100 and gives examples of its use in each
mode. The figures given are included to illustrate how an IMS C100 may be used, they are not intended
to provide accurate application designs. For a complete understanding of the implications of this section
consult sections 1.3 to 1.6, which describe the link and control protocols of T2/T4/T8-series and T9-series
components, and how the IMS C100 converts between these protocols.

The four modes of operation of the IMS G100 are listed below:

Mode 0: enables a T9-series transputer with ROM, from which the transputer boots, to emu-
late a T2/T4/T8-series transputer.

Mode 1: enables a T2/T4/T8-series system to use a T9-series subsystem.

Mode 2: enables a T9-series system to use an existing T2/T4/T8-series subsystem without
any modification to the existing T2/T4/T8-series software.

Mode 3: enables a T9-series system to use an optimum T2/T4/T8-series subsystem and
enables a T2/T4/T8-series transputer to emulate a T9-series transputer.

1.2.1 Mode pins

The IMS C100 has two mode pins (Mode0-1) which must be set at power-on. Table 1.1 details the mode
pin settings. The mode of operation determines which type of conversion is to be performed between the
data links, which system interface is regarded as master, and whether OSLinkO0 has special initial behav-
ior, see table 1.2. In modes 2 and 3 OSLink0 is used to transmit the pre-boot protocol of the T2/T4/T8-se-
ries transputer until the transputer is booted (refer to section 1.6.2 for further information).

The OS-Link protocol synchronizes the communications of each byte of data, and hence the term byte-
stream protocol has been adopted. DS-Links use a high level packet protocol and hence the term
packetized protocol has been adopted. Each IMS T9000 transputer DS-Link may be set to operate in
packetized mode or in byte-stream mode (see section 1.3.2). The IMS T9000 DS-Links operating in byte-
stream mode, in conjunction with an IMS G100, convert the DS-Links to the byte-stream protocol.

Mode of Mode pins
operation Mode1 Mode0

0 Low Low

1 Low High

2 High Low

3 High High

Table 1.1 Mode0-1 pins

Note that the behavior of the IMS C100 is undefined if the mode pins are changed after reset.

Mode | Master Subsystem DS-Link mode | Control system OSLinko
master (pre-boot)
0 T2/T4/T8-series | Single T9 + ROM | Byte-stream Reset, Analyse, Error | Not special
1 T2/T4/T8-series | T9 network Packetized Control link 0 Not special
2 T9-series T2/T4/T8 network | Byte-stream Control link 0 Special
3 T9-series T2/T4/T8 network | Packetized Control link O Special

Table 1.2 Mode settings

1 IMS C100 system protocol converter preliminary data 249

1.2.2 Mode 0: Enables a single T9-series transputer to be used in a T2/T4/T8-series
network

The purpose of this mode is to allow a single IMS T9000 transputer to operate as a fast T2/T4/T8-series
transputer.

To convert a T9-series transputer to a T2/T4/T8-series interface, connect the four data DS-Links and the
control link CLink0 to the data DS-Links and CLinkO of the IMS C100, as shown in figure 1.2, and set
the IMS C100 to mode 0. The combination of the IMS C100 and the IMS T9000 transputer is controlled
like a T2/T4/T8-series transputer by Reset, Analyse and Error signals.

CLinkQ < ————=CLink0
0OS-Link DS-Link

O8S-Link C100 DS-Link T9000

-

OS-Link DS-Link

-

OS-Link DS-Link

PowerOnReset Reset
Reset .| TReset ResetOut Reset
Analyse ——» Analyseln

EventOut

ErrorOut signal
ROM

-« ——> signifies packetized protocol
<« » signifies byte-stream protocol

this is not a design example it is an illustration only

Figure 1.2 Mode 0 — converting an IMS T9000 transputer for use in a T2/T4/T8-series network

The StartFromROM pin on the IMS T9000 transputer must be set high so that the IMS T9000 transputer
boots from ROM. Following power-on-reset, the IMS T9000 transputer runs with a workspace pointer
(Wptr) and an instruction pointer (Iptr) from two fixed locations near the top of memory (i.e. in the ROM).
The ROM software configures the IMS T9000, and sets the IMS T9000 data links into byte-stream mode
and starts them.

The IMS T9000 data links interact with the IMS C100 DS-Links operating in byte-stream conversion mode
to generate the T2/T4/T8-series transputer protocol on the OS-Links of the IMS C100. The ROM software,
as supplied to customers, also emulates the pre-boot protocol of T2/T4/T8-series transputers, and emu-
lates the Error pin behavior of a T2/T4/T8-series transputer by performing an output on an event output
channel whenever a T2/T4/T8-series transputer would assert its Error pin. The IMS C100 sends an initial
message to program the label and return header of the IMS T9000 transputer’s control link.

Analyse is used as a debugging aid on T2/T4/T8-series transputers. Reset can behave in two ways de-
pending on the status of the Analyse signal, as described below.

The TReset pin indicates transputer reset of the connected T2/T4/T8-series transputer. Asserting the
TReset pin of the IMS C100 with the Analyseln pin low, resets the IMS C100. The signal is reproduced

250 Communications support devices

on ResetOut which causes the IMS T9000 to reset. When TReset is taken low this restarts the ROM code
which repeats the above pre-boot sequence.

If the Analyseln pin of the IMS C100 is asserted, the IMS C100 sends a Stop message from control link
CLink0. The IMS T9000 returns a StopHandshake. When the TReset pin of the IMS C100 is asserted,
the IMS C100 sends a Reset message. When both TReset and Analyseln are deasserted, the IMS C100
sends a Reboot message. This restarts the ROM code. If this code executes a testpranal instruction it
can take special action to assist the debugger before it repeats the above pre-boot sequence.

The TReset and Analyseln signals are used in this mode only and are ignored in modes 1, 2 and 3.
The Reset pin is provided in this case for systems which separate power-on-reset from transputer reset.
When the Reset pin is asserted it always causes a reset of both the IMS C100 and the attached IMS T9000
(by being reproduced on ResetOut).

Note that, in this mode, the link speeds of the IMS C100 are set by the Iinkvspeed pins, and cannot be
changed by software as the system does not include a control link network.

1 IMS C100 system protocol converter preliminary data 251

1.2.3 Mode 1: Enables a T2/T4/T8-series system to use a T9-series subsystem

The purpose of this mode is to allow a T9-series subsystem to be connected to, and controlled from, a
T2/T4/T8-series network. Communication is in the packetized protocol, and software must be run on the
T2/T4/T8-series system to interface the packetized protocol, and to control the T9-series subsystem.

To enable a T2/T4/T8-series system to use a T9-series subsystem, set the IMS C100 to mode 1, and con-
nect one or more OS-Links from the T2/T4/T8-series system to the OS data links of the IMS C100. Since
T9-series systems are controlled entirely via links this enables T9-series subsystems to be configured,
booted, reset and analyzed from a T2/T4/T8-series system. An example network is shown in figure 1.3.
The RAE signals to the T2/T4/T8-series network are shown by the dotted line. The IMS C004 program-
mable link switch has 32 links, of which only six are shown in this example.

Note that, by ‘looping back’ through the control links of the IMS C100, the T2/T4/T8-series system obtains
full control of the device. Note, however, that the IMS C100 must be labelled, and CLink1 started, before
any of the devices in the T9-series subsystem can be accessed/controlled.

If an error occurs on the connection between the DS data link and control link CLink0, both links will reset.
The DS data link will be restarted, and CLink0 will respond by starting automatically, thereby restoring
control of the device.

T2/T4/T8-series
control input port
/_/R

Reset
Analyse l
Err?r

T2/T4/T8

Poeoasabenas

~——™0SLink2 DSLink2~———> network

<——>0SLink1 DSLink1f~———> T9-series
DS-Links
OSLink3 DSLink3f« —— >

|
|
|
\
|
i
]
v T2/T4/T T2/T4/T8 T2/T4/T8
o |
V| A
o \ i i
Vo I s a
v | | C100 |
v : L~ CLink1 CLink0<7I}
4
' L — — —~oSLinko DSLinko~ —' '~ CLink0
v
o |
[]
[]
[]
L]
[]

«— ——> signifies packetized protocol
«—— signifies byte-stream protocol

this is not a design example it is an illustration only

Figure 1.3 Mode 1 — T2/T4/T8-series system using T9-series subsystems

252 Communications support devices

1.2.4 Mode 2: Enables a T9-series system to use an existing T2/T4/T8-series subsystem

The purpose of this mode is to allow T9-series systems to use an existing T2/T4/T8-series subsystem,
without having to change either the hardware or the software of the T2/T4/T8-series subsystem. For ex-
ample, a SCSI TRAM purchased as a functional subsystem from a third party supplier (including both
hardware and the associated software drivers) can be used unmodified as a subsystem to a T9-series
system. Thus this mode protects users existing investment in transputer-based equipment.

Figure 1.4 shows how a T9-series system can use an existing T2/T4/T8-series subsystem. Each IMS
C104 packet routing switch has 32 data links, of which only seven are shown in this example. Note that
the data DS-Links of the IMS C100 must be connected directly to IMS T9000 data links set into byte-
stream mode, and cannot be connected to an IMS C104 packet routing switch.

The T2/T4/T8-series subsystem is controlled via CLinkO of the IMS C100. After power-on, commands
sent along CLinkO0 are converted to the appropriate T2/T4/T8-series byte sequences which are sent along
OSLinko of the IMS C100. This allows the memory of transputers in the T2/T4/T8-series subsystem to
be peeked and poked, and for it to be booted.

Assertion of the AnalyseOut and ResetOut pins, which is achieved by sending appropriate messages
on CLinkO, results in the Reset and Analyse pins of the connected T2/T4/T8-series transputer being as-
serted, enabling it to be stopped and analyzed.

By setting the IMS C100 to mode 2, and connecting a link from a T9-series system to control link CLink0
of the IMS C100, a T2/T4/T8-series subsystem can be reset, analyzed and monitored for errors. If one
or more links, of an IMS T9000 set into byte-stream mode, are connected to the DS data links of the IMS
C100, the subsystem can also be configured and booted.

Alternatively, provided the initial bootstrap of the T2/T4/T8-series device (which comes either from a ROM
or via the booting mechanism described above) is capable of inputting further code in packetized form,
setting the IMS C100 to mode 3 avoids the necessity of dedicating any specific IMS T9000 links to the
control of the subsystem, see section 1.2.5. Note that in this case a CPoke is required to set the booted
flag so that link O ceases to be connected to the control unit.

1 IMS C100 system protocol converter preliminary data

253

DSLink3 OSLink3

ResetOut
AnalyseOut
Error

<«— — - signifies packetized protocol
<«—— signifies byte-stream protocol

this is not a design example it is an illustration only

o 4 L L A —
CLink0\—'— CLink1 e cioo —
<> T9000 |« — — — —— == T9000 ~—— —
I ==
I -7 ~o b == N
// ~ |
— ~
— " —_—— —— o ”~ | —_——————— — —
N - RN T \
\ \ I .
} «—={ T9000 1 T9000 I —
| N = o0 =
| N B
R NI —
AN
\
\
C100 3
DSLink0 OSLinkQe—>
<«— DSLink1 OSLinkije—> 0S-Links
<—DSLink2 OSLink2=—
i

T2/T4/T8-series

network

— Reset
—— Analyse
t«—— Error

T2/T4/T8-
series
network

T2/T4/T8-
series
network

Figure 1.4 Mode 2 — T9-series system using existing T2/T4/T8-series subsystems

Figure 1.4 illustrates several possibilities in a system, which in practice may not be realistic. Three connec-

tion types are shown in this diagram.

CLinko of the IMS C100 connected to a data link of the IMS T9000. The IMS T9000 has full

control of the IMS C100.

CLink0 of the IMS C100 connected to the IMS C104. The IMS T9000 has full control of the
IMS C100, but data link to control link is not dedicated and is routed via an IMS C104.

CLink0 of the IMS C100 connected to the control link of the IMS T9000. The IMS C100 is

controlled from the controlling processor.

254 Communications support devices

1.25 Mode 3: Enables a T9-series system to use a T2/T4/T8-series subsystem

The purpose of this mode is to allow T9-series systems to be built which use T2/T4/T8-series subsystems,
enabling systems to use the optimum mix of transputers with regard to cost and performance.

Communication is in the packetized protocol. Thus the data DS-Links of the IMS C100 can be connected
directly to an IMS C104 packet routing switch, as in figure 1.5.

- — — — — — ——— — — 7
R N S S
CLink0 Clinkt ~ >1< ' |
~— > T9000 |~—— —— — ———{ T9000 *‘}”
- ~_ |
- | ~_)
N - N ' T T T T o /7‘7
| NG % Y }
|
{ <= T9000 \«—— —— ———— =/ T9000 *—}—»
| /’ N J
\ i / AN ¢ ;
/
L lfifi/7 ffffffff o
} % C100 N
‘ (<—»CLink1 CLink0 « -
\
L —— > DsLinko OSLinko~—=
: «:ﬁ DSLink1 OSLinki=—> | ¢ .\
L =~ —™DSLink2 OSLink2<—>
—~— ——>DSLink3 OSLink3+— T2/T4/T8-series
network
ResetOut — Reset
AnalyseOut— Analyse
Error <—— Error
«— —> signifies packetized protocol
-«—— signifies byte-stream protocol
this is not a design example it is an illustration only

Figure 1.5 Mode 3 — T9-series system using optimum T2/T4/T8-series subsystems

The T2/T4/T8-series subsystem is controlled via CLink0 of the IMS C100. Messages received on CLink0
of the IMS C100 cause individual links to be reset, and the ResetOut and AnalyseOut pins to be toggled.
Assertion of the AnalyseOut and ResetOut pins results in the Reset and Analyse pins of the connected
T2/T4/T8-series transputer being asserted, enabling it to be stopped and analyzed. An error from within
the IMS C100 and a signal on the Error pin both cause an Error message to be sent from CLinkO.

The IMS C100 operating in mode 3 can be used to enable a T2/T4/T8-series transputer to emulate a
T9-series transputer, as shown in figure 1.6. This is achieved by connecting the ResetOut, AnalyseOut,

1 IMS C100 system protocol converter preliminary data 255

and Error pins of the IMS C100 to the Reset, Analyse, and Error pins of the T2/T4/T8-series transputer
and setting the IMS C100 into mode 3. This combination of the IMS C100 and the T2/T4/T8-series trans-
puter has a control link 0 (CLink0), and a control link 1 (CLink1) for daisy-chaining. Figure 1.6 shows a
T2/T4/T8-series transputer being converted to an IMS T9000 interface, with the T2/T4/T8-series transput-
er being booted from a link. In this mode, software must be run on the T2/T4/T8-series transputer to con-
vert the OS-Links to the packetized protocol.

-~ —{ CLink1 CLink0~ — —— —— -
«_ DS-Link | | OS-Link
«_ DS-Link _,| C100 . _OS-link _,
T2/T4/T8
- DS-Link . OS-Link
«_ DsiLink F’QS;LLHK’*
ResetOut Reset
Reset AnalyseOut ‘ Analyse
Error Error

-«— —> signifies packetized protocol
<— signifies byte-stream protocol

this is not a design example it is an illustration only

Figure 1.6 Mode 3 — converting a T2/T4/T8-series transputer for use in a T9-series network

Note that to emulate a T9-series device operating in StartFromROM and standalone mode, the
T2/T4/T8-series device can have control over the DS data links by looping back one of them through
CLink0, and setting the IMS C100 to mode 1, see figure 1.3.

256 Communications support devices

1.3 Link protocols

This section describes the different link protocols used on T2/T4/T8-series and T9-series components.
The two types of link protocol conversion are described in the following section.

1.3.1 T2/T4/T8-series oversampled links

T2/T4/T8-series transputer links consist of two wires, one in each direction, and use an asynchronous
bit-serial protocol. Link inputs are sampled five times in each bit period, and hence the links are referred
to as oversampled (OS) links.

Messages are transmitted as a sequence of single byte communications, each of which must be acknowl-
edged. The acknowledge packets are used both to signal reception of the data bytes and to maintain flow
control.

Alink provides a pair of channels, one input and one output channel. Every byte of data sent on an output
channel is acknowledged on the input channel of the same link, thus each signal line carries both data
and control information.

Each data byte is transmitted as a high start bit followed by another high bit followed by eight data bits
followed by a low stop bit, as shown in figure 1.7. The least significant bit of data is transmitted first. After
transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies that the receiving link is able to receive another byte.

The receiving transputer can send an acknowledge as soon as the data has been identified (provided there
is sufficient buffer space for another data byte, and that an inputting process is ready to receive the data
byte) so that communications can be continuous.

The link protocol synchronizes the communications of each byte of data, and hence the term byte-stream
protocol has been adopted. As the protocol supports the transmission of an arbitrary sequence of bytes
transputers of different word lengths can be connected together.

Acknowledge l

Figure 1.7 OS-Link data and acknowledge formats

The T2/T4/T8-series transputer family includes link adaptor devices, the IMS C011 and IMS C012, which
enable OS-Links to interface with non-transputer devices.

1 IMS C100 system protocol converter preliminary data 257

1.3.2 T9-series data/strobe links

T9-series transputer links consist of four wires, two in each direction, one for data and one to carry a strobe
signal. These links are therefore referred to as data/strobe (DS) links.

Communication between processes on one IMS T9000 transputer takes place over software channels.
Communication between processes on different processors takes place over virtual channels. Virtual
channels are multiplexed onto each physical link by a communications processor within the IMS T9000.
The data links support a physical link protocol to support virtual channels and dynamic message routing,
and to provide a high data bandwidth.

Each message is split into a sequence of packets, each of which has the structure shown in figure 1.8.

direction of travel

Data packet
packet header packet body terminator
Acknowledge end of packet

packet header token

Figure 1.8 Structure of a packet on DS-Links

Packets from different messages may be interleaved over each physical link. Interleaving packets from
different messages allows any number of processes to communicate simultaneously via each physical
link. Communication channels can be established between any two processes regardless of where they
are physically located, or whether the channels are routed through a network. Thus, programs can be inde-
pendent of network topology.

In order that packets which are parts of different messages can be distinguished by the transputer which
receives them, each packet contains a one or two byte header which identifies a virtual input channel of
the receiving transputer. The packet header is also used to route the packet through a network. Bytes
following the header are treated as the data section of the packet until a packet termination token is re-
ceived. A packet termination token is either an end of packet (EOP) token or an end of message (EOM)
token. The maximum length of data in each packet which the IMS T9000 can transmit is 32 bytes. All but
the last packet of a message contains the maximum amount of data; the last contains the maximum
amount of data or less.

The communications processor within the IMS T9000 enforces a high-level protocol on each virtual chan-
nel. To maintain synchronized communication, and to ensure that no data is lost, each packet of data sent
along a virtual channel must be acknowledged before the next is sent. The last packet must be acknowl-
edged before the outputting process is rescheduled. Data packets on a virtual channel are acknowledged
by the communications processor by sending acknowledge packets on another virtual channel back to
the processor which sent them. Acknowledge packets are packets containing no data and which are al-
ways terminated by an EOP token. The acknowledge packets perform packet-level flow-control and pro-
cess synchronization.

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual
channel in each direction. If a message is being communicated in one direction the virtual channel in the
opposite direction is used to return acknowledge packets to the sender. The associated pair of virtual
channels is referred to as a virtual link. A virtual link can transfer messages in both directions at the same
time with data packets and acknowledge packets being interleaved on both of the virtual channels. Be-
cause virtual channels are always paired in this way it is not necessary to include source information in
the packets. Thus packet headers need only represent their destinations.

258 Communications support devices

Each DS pair carries tokens and an encoded clock. The tokens can be data bytes or control tokens. Figure
1.9 shows the format of data and control tokens on the data and strobe wires. Data tokens are 10 bits long
and contain a parity bit, a flag which is set to 0 to indicate a data token, and 8 bits of data. Controf tokens
are 4 bits long and contain a parity bit, a flag which is set to 1 to indicate a control token, and 2 bits to
indicate the type of control token.

E Data token + Control token ,
: + Parity bit ;
' Parity bit . ,
! + | Control flag '
' Data flag ! !
' : Token type!
' Data ' e.g. FCT
' T I —
, 0 ©0 1 1 1 o 1 0 ' 0 O '
: ' '
Data : :
' ' '
' }4— Bits covered by parity bit in control:token—Pi '
' ' '
! ' '
: '
Strobe ! !
' 1] L]

Figure 1.9 DS-Link data and strobe formats

The DS-Link protocol ensures that only one of the two wires of the data strobe pair has an edge in each
bit time. The levels on the data wire give the data bits transmitted. The strobe signal changes whenever
the data signal does not. These two signals encode a clock together with the data bits, permitting asynch-
ronous detection of the data at the receiving end.

The data and control tokens are of different lengths, for this reason the parity bit in any token covers the
parity of the data or control bits in the previous token, and the data/control flag in the same token, as shown
infigure 1.9. This allows single bit errors in the token type flag to be detected. Odd parity checking is used.
Thus the parity bit is set/unset to ensure that the bits covered, inclusive of the parity bit (see figure 1.9)
always contain an odd number of 1’s. To ensure the immediate detection of errors null tokens are sent
in the absence of other tokens. The coding of the tokens is shown in table 1.3.

Token type Abbreviation | Coding
Data token - PODDDDDDDD
Flow control token FCT P100
End of packet EOP P101
End of message EOM P110
Escape token ESC P111
Null token NUL ESC P100
P = parity bit
D = data bit

Table 1.3 Token codings

1 IMS C100 system protocol converter preliminary data 259

The DS-link protocol separates the functions of flow control and process synchronization. Token-level flow
control is performed in each link module, and the additional flow control tokens used are not visible to the
higher-level packet protocol. The token-level flow control mechanism prevents a sender from overrunning
the input buffer of a receiving link.

Each receiving link input contains a buffer for at least 8 tokens (more buffering than this is in fact provided).
Whenever the link input has sufficient buffering available to consume a further 8 tokens (consisting of data
and EOP or EOM tokens) a FCT is transmitted on the associated link output, and this FCT gives the sender
permission to transmit a further 8 tokens. Once the sender has transmitted a further 8 tokens it waits until
it receives another FCT before transmitting any more tokens. The provision of more than 8 tokens of buff-
ering on each link input ensures that in practice the next FCT is receivedbefore the previous block of 8
tokens has been fully transmitted, so that the token-level flow control does not restrict the maximum band-
width of the link.

DS-Links use a high level packet protocol and hence the term packetized protocol has been adopted.
Byte-stream mode

Each IMS T9000 data DS-Link (Link0-3) can be set to operate either in virtual channel mode or in byte-
stream mode. Byte-stream mode is provided to allow IMS T9000 DS-Links to communicate, via an IMS
C100, with OS-Links of a T2/T4/T8-series subsystem carrying the byte-stream protocol.

Byte-stream mode can be set independently for each IMS T9000 data link by setting the ByteMode bit
in the associated VCP link mode configuration register (VCPLink0-3Mode). Refer to the 79000
Transputer Datasheet — Communications chapter 11 for further information on setting an IMS T9000 data
link to byte-stream mode. Setting the IMS T9000 links independently of each other, enables each IMS
T9000 transputer to be connected to several different networks.

A DS data link operating in byte-stream mode is able to send and receive data. Data is transferred along
the link in the form of packets each with a single byte header. Each packet is terminated with either an
EOP or EOM token. The packets which can be sent and received on a DS-Link operating in byte-stream
mode are given in section 1.4.1. Software on the IMS T9000 sends and receives messages normally via
a pair of byte-stream channels.

For IMS T9000 links operating in byte-stream mode the packet headers are fixed and the byte-stream
channels cannot be deactivated, stopped or put into resource mode. For compatibility with the T8xx trans-
puter, the Wdesecriptors of processes actually communicating on byte-stream channels are stored in the
8 words at the bottom of memory.

An IMS T9000 link set to byte-stream mode must be connected to an IMS C100 DS data link as it will not
operate correctly if directly connected to another IMS T9000 link in byte-stream mode.

260 Communications support devices

1.4 Link protocol conversion
This section describes the conversion between the two link protocols that the IMS C100 supports.

The IMS C100 is able to convert between the OS and DS-Link protocols in one of two ways depending
on whether the higher message/packet level of the DS-Link protocol is added to the OS-Link or removed
from the DS-Link.

Byte-stream conversion

The DS-Link of the connected T9-series transputer must be set to byte-stream mode. A pair of
channels is then supported from the T9-series transputer, through the IMS C100, to a
T2/T4/T8-series transputer. Software on the T2/T4/T8-series transputer sees the channels as
being identical to that through a normal OS-Link. No modification to the T2/T4/T8-series trans-
puter software is needed.

Packetized conversion

Aprocess must be run on the connected T2/T4/T8-series transputer to impose a software packet
protocol onto the OS-Link. This is converted by the IMS C100 to the hardware supported packet
protocol on the DS-Link.

The IMS C100 data DS and OS-Links are paired, and all pairs perform one or other type of conversion,
depending on the mode. In modes 1 and 3, all four link pairs convert the packetized protocol; in modes
0 and 2, all four convert the byte-stream protocol. The two types of conversion are described below for
one pair of links.

1.4.1 Byte-stream conversion — modes 0 and 2

The OS-Link of the IMS C100 is identical to an OS-Link on a T2/T4/T8-series component. No modification
to software running on a connected T2/T4/T8-series transputer is needed.

The DS-Link of the connected T9-series transputer must be set in byte-stream mode and connected to
the DS-Link of the IMS C100, see figure 1.10. The IMS C100 cannot be directly connected to an IMS C104
when this type of conversion is being used. Software on the T9-series transputer will send and receive
messages normally, via a pair of channels.

T9000 C100 T2/T4/T8

Byte-stream mode Normal operation
DS Link DS Link OS Link OS Link

Packets transferred, Bytes transferred
see tables 1.4 and 1.5

Figure 1.10 Byte-stream conversion

A special protocol is used between the IMS C100 and the T9-series transputer. This protocol is invisible
to the user, and is described here for completeness. Data is transferred along the DS-Link in the form of
packets each with a single byte header. Note that the DS-Link on the IMS T9000 must be set to expect
single byte headers. Each packet is terminated with either an EOP or EOM token. The packets sent to/
from a DS-Link in byte-stream mode are given in tables 1.4 and 1.5.

1 IMS C100 system protocol converter preliminary data 261

The IMS C100 interprets packets from the T9-series transputer as indicated in table 1.4. Note that the
DS-Links of an IMS T9000 transputer which have been set into byte-stream mode generate this protocol
automatically. The packet protocol ensures that communication between an attached IMS T9000 and the
IMS C100 is never blocked, regardless of what data is or is not supplied and accepted along the OS-Link.

When a message is sent from an IMS T9000 to the IMS C100 on a DS-Link, the EOM token signals when
the message is complete. However, when a message is sent from a T2/T4/T8 to the IMS C100 on an OS-
Link there is no indication of when the complete message has been received. Therefore the T9000 must
tell the C100 the length of the message it expects to receive from the T2/T4/T8. The IMS T9000 does this
by sending an ‘input count’ packet which contains a count of the data bytes to be transferred from the OS-
Link to the DS-Link by the IMS C100.

Header |Data Terminator Interpretation Notes
0 32 bytes EOP Part of message
o] 1to 32 bytes | EOM End of message
0 none EOP Acknowledgement
1 1 to 4 bytes EOM Input count 1
Notes

1 The ‘input count’ packet contains the count of the data bytes the IMS T9000 expects to receive
from the T2/T4/T8 transputer, via the IMS C100.

Table 1.4 Packets from IMS T9000 to IMS C100 — modes 0 and 2

The IMS C100 sends packets along the DS-Link, as shown in table 1.5. Note that DS-Links of an IMS
T9000 transputer which have been set into byte-stream mode accept this protocol automatically.

When an unsolicited byte arrives from the T2/T4/T8 the IMS C100 informs the IMS T9000 by sending a
zero length message.

Header |Data Terminator Interpretation Notes
0 32 bytes EOP Part of message
0 1to 32 bytes |EOM End of message
0 none EOP Acknowledgement
0 none EOM Unsolicited byte 2
Notes

1 The acknowledgement packet is sent when the IMS C100 is ready to receive more data.

2 If a byte is received from the OS-Link whilst the output count is zero, the count is effectively re-
duced to —1 and an unsolicited packet is sent.

Table 1.5 Packets from IMS C100 to IMS T9000 — modes 0 and 2
Bytes are transferred normally on the OS-Link between the IMS C100 and the T2/T4/T8.

The IMS C100 can respond to both data bytes and acknowledges on the OS-Links immediately by buffer-
ing data from the IMS T9000 and holding a count of the input iength, thus maintaining full bandwidth.

Messages from the T9000 to the T2/T4/T8

The IMS C100 is always ready to input data from the IMS T9000 on the DS-Link. Data following the header
is placed in a FIFO. The contents of the FIFO are output to the T2/T4/T8 on the OS-Link immediately,
subject to the receipt of acknowledges. If the packet is terminated with an EOP, the IMS C100 sends an -

262 Communications support devices

acknowledge packet on the DS-Link as soon as it has enough buffer capacity for another whole packet.
If the packet is terminated with an EOM, the IMS C100 sends an acknowledge packet on the DS-Link as
soon as the last byte of the packet has been sent and acknowledged on the OS-Link. Since an acknowl-
edge packet is only sent when there is enough room in the buffer for a full-size data packet, a packet input
can never be blocked, regardless of whether the OS-Link is able to transmit data or not.

Messages from the T2/T4/T8 to the T9000

A packet received from the DS-Link with a header of 1 is taken as the count of bytes to be transferred from
the OS-Link to the DS-Link by the IMS C100. Thus the IMS C100 knows when a message arriving on the
OS-Link from the T2/T4/T8 is complete.

If this count does not exceed the maximum amount of data permitted in a packet (32 bytes), the IMS C100
inputs that number of bytes from the OS-Link, and when there are no outstanding acknowledges, sends
them on the DS-Link as a packet with header 0, terminated with an EOM. The count is then reduced to
zero.

If the count exceeds the maximum amount of data permitted in a packet, the IMS C100 inputs the maxi-
mum allowed number of bytes, decrements the count by that amount, and when there are no outstanding
acknowledges, sends the bytes on the DS-Link as a packet with header 0, terminated with an EOP. This
process is repeated until the count is reduced to zero.

Each time such a packet is sent an acknowledge is outstanding until an acknowledge packet is received
on the DS-Link from the IMS T9000.

If a byte is received from the OS-Link whilst the input count is zero, an unsolicited packet is sent. This is
to enable the alternative mechanism of the transputer to operate correctly on byte-stream mode
channels.

1.4.2 Packetized conversion — modes 1 and 3

This conversion type allows software on a connected T2/T4/T8-series transputer to use virtual channels
to communicate with processes in the connected T9-series system. The IMS C100 can be directly con-
nected to an IMS C104 when this type of conversion is being used.

With packetized conversion the DS-Links of the IMS C100 are operationally identical to the DS-Links of
T9-series transputers.

Software must be run on the connected T2/T4/T8-series transputer to:

1 Packetize the messages output from the T2/T4/T8-series transputer, according to the protocol
described below.

2 Interpret the packetized messages arriving at the T2/T4/T8-series transputer.

The IMS G100 converts packets between the software supported protocol on the OS-Link and the hard-
ware supported packetized protocol on the DS-Link.

The length of packets in T9-series DS-Links is indicated by terminator codes EOP or EOM. In order for
the IMS C100 to determine the length of the packet on OS-Links, the length must be given explicitly as
an unsigned 7 bit value. This is contained in the ‘count byte’ at the start of the packet.

< direction of travel

count byte N bytes

Figure 1.11 Structure of a software supported packet on OS-Links

1 IMS C100 system protocol converter preliminary data 263

The first byte of a (software supported) packet on an OS-Link is defined to be a count byte as shown in
figure 1.12.

Count

Packet
type bit

Figure 1.12 Structure of a count byte in an OS-Link packet.

If the packet type bit in the count byte is 0 then the packet is equivalent to a DS-Link packet terminated
by an EOP token. If the packet type bit is 1 then the packet is equivalent to a DS-Link packet terminated
by an EOM token.

The packet level of the DS-Link protocol is represented in the OS-Link protocol by transformations, as
shown in tables 1.6 and 1.7. The transformations are given for different representations of a packet con-
taining N bytes, including the header, see figure 1.13. Note that these transformations are independent
of details of the structure of the packet, such as the header length.

< direction of travel

packet length (N bytes)

header packet body EOP or EOM

Figure 1.13 Structure of a packet on DS-Links
Messages from the T2/T4/T8 to the T9000

Received on OSLink of C100 N Count byte | Transmitted on DSLink of C100
< direction of travel bit 7 | bits 0-6 | < direction of travel

[Count byte] [N bytes] 1to127 | O N [N bytes] EOP

[Count byte] [N bytes] 1to 127 1 N [N bytes] EOM

Table 1.6 Packets from T2/T4/T8 via the IMS C100 to T9000 — modes 1 and 3

For each packet, the IMS C100 first inputs a byte along the OS-Link. The IMS C100 masks the top bit
of the byte to give the count of the number of bytes to follow. A count of zero is an error, which is signalled
on control link O; see table 1.8, page 278. Otherwise, the IMS C100 inputs that number of bytes into a 37
byte FIFO. If the top bit of the count byte was zero, it places an EOP token in the FIFO; if it was one, an
EOM is inserted instead. The cycle then repeats.

As soon as the last byte is received, or the FIFO becomes full, the IMS C100 starts transmitting the con-
tents of the FIFO from the DS-Link. It stops transmitting when it sends an EOP or EOM and the next packet
has not been completely received. Note that, since the process synchronization is performed at a higher
level, every byte received from the OS-Link can be acknowledged immediately provided there is room in
the FIFO for another byte. In this way the maximum data rate can be attained on the OS-Link.

Messages from the T9000 to the T2/T4/T8

To improve the efficiency of software running on the T2/T4/T8-series transputer, packets of less than 7
bytes received on the DS-Link have extra bytes added. The extra bytes are all zero.

264 Communications support devices

Received on DSLink of C100 | N Transmitted on OSLink of C100 Count byte | Note
< direction of travel < direction of travel bit7 | bits0-6

[N bytes] EOP < 7 | [Count byte] [N bytes] [(7—N) zero bytes] | 0 N 1,2
[N bytes] EOP = 7 | [Count byte] [N bytes] 0 N

[N bytes] EOM < 7 | [Count byte] [N bytes] [(7-N) zero bytes] | 1 N 2

[N bytes] EOM = 7 | [Count byte] [N bytes] 1 N

Table 1.7 Packets from T9000 via the IMS C100 to T2/T4/T8 — modes 1 and 3
Notes

1 A packet received on the DS-Link containing less than 32 bytes of data and ending in an EOP
is an acknowledge packet.

2 Packets received on the DS-Link, from the connected T9-series component, which are less than
7 bytes have zero bytes added. This improves the efficiency of software running on T2/T4/T8-se-
ries transputers.

Data received on the DS-Link cannot immediately be output on the OS-Link, since the packet length
(which must be sent first) is not known until the EOP or EOM has been received. Thus there is a 34-byte
FIFO buffer to hold the bytes and a 6-bit counter to count them. When the EOP/EOM has been received,
the count byte is sent, followed by the contents of the buffer; the counter is then reset to zero ready for
the next packet. Buffering and counting of the next packet begins immediately. If the packet is less than
7 bytes in length it is padded out to 7 bytes (making eight bytes in all including the length byte) with extra
trailing bytes which must be discarded by the inputting software. This is done to enable short bytes to be
received with a single 8-byte input, which improves performance overall.

The size of the FIFO buffer allows a full-size packet to have 2 bytes of header. !If the packet exceeds this
size, this is an error, which causes an error message to be sent from control link O (see table 1.8,
page 278).

Note that, if packets are not received continuously, the buffering in the chip can be used to match different
data rates on the two types of link. Data can be received from the DS-Link at a high rate and re-transmitted
more slowly from the OS-Link. If packets are sent to the DS-Link at a higher average rate than they can
be re-transmitted from the OS-Link, the FIFO will become full, after which the flow-control mechanism of
the DS-Links will allow further data to be received only as fast as it can be sent from the OS-Link.

1 IMS C100 system protocol converter preliminary data 265

15 Control protocols

This section describes the different control protocols used on T2/T4/T8-series and T9-series components.
The two types of control protocol conversion that the IMS G100 supports are described in the following
section.

1.5.1 T2/T4/T8-type control

T2/T4/T8-series transputers are controlled by means of Reset, Analyse and Error pins (RAE) on each
device, and are inspected and booted by means of a special protocol across the transputer links
(T2/T4/T8-type control).

The falling edge of Reset initializes the transputer, triggers the memory configuration sequence and starts
the bootstrap routine.

The processor and the OS-Links start after reset. The transputer obeys a bootstrap program which can
either be in off-chip ROM or can be received from one of the links.

A software error, such as arithmetic overflow, array bounds violation or divide by zero, causes an error
flag to be set in the transputer processor. The flag is directly connected to the Error pin. Both the flag and
the pin can be ignored, or the transputer stopped. Stopping the transputer on an error means that the error
cannot cause further corruption.

As well as containing the error in this way it is possible to determine the state of the transputer and its
memory at the time the error occurred.

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling
point. From Analyse being asserted, the processor will halt within three time slice periods plus the time
taken for any high priority process to complete. Reset may then be asserted. When Reset comes low
again the transputer will be in its reset state, but the registers contain information on the state of the ma-
chine when it was halted by the assertion of Analyse, permitting analysis of the halted machine.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links will be inactive within a few microseconds of the transputer halting.

1.5.2 T9-type control

T9-series transputers are controlled by a pair of control links on each device (T9-type control). The control
links on all T9-series transputer family products allow a separate control network to be used to assist in
configuring, booting, error handling, resetting and analysing processors and other components connected
in a system, even in the presence of errors on the data communications links in the network. Many of these
functions can also be performed directly by software running on an IMS T9000 transputer.

Each IMS T9000 transputer has two bidirectional control links, CLink0 and CLink1, which use the same
electrical and packet level protocols as the DS data links. CLinkO will be connected via a control link net-
work to one of the data links of a controlling IMS T9000 transputer, or to a different host via a link adaptor.
All communications with the controlling processor are via CLink0. CLink1 is provided to allow T9-series
product family components to be connected in a daisy-chain. This allows a simple physical connectivity
to be used for the controlling network, as shown in figure 1.14.

The controlling network provides each device with a virtual link connected to the control process. When
the network is initialized the first communication with each device programs the label and return addresses
to establish the virtual link between the control process and that device. The label address determines
whether a packet arriving on CLink0 is for that device (i.e. when the header matches the label), and if not,
the packet is forwarded along CLink1 until it reaches its destination. The message header (label address)
and return address are both two bytes.

266 Communications support devices

T9000 —
} Controlling T9000 transputer

— T9000 T9000 — —— T9000

Figure 1.14 A daisy-chained control link network

Ahigh level protocol is defined for the controlling network to allow the control process to issue commands
to, and receive responses from, devices in the network. Commands are sent as normal packets but with
the first byte after the header containing a command code, which may be followed by additional data.

Control link protocols

The control link implements one end of a virtual link, along which the specific message protocol is en-
forced. There are two layers of protocol, as follows:

¢ Message level handshakes
Each message from the controlling process is handshaken before another message is sent (the
exceptions to this are Reset and RecoverError messages, which can be sent even if no hand-
shake for the previously transmitted command has been received). Similarly, an Error message
from the controlling process must be handshaken before another Error message can be sent.

* Packet level acknowledges
Each data packet sent on a DS-Link is acknowledged before the next is sent. The only exception
to this is the RecoverError command. A RecoverError command can be sent even if no acknowl-
edge for the previously sent packet has been received. This enables the control process to han-
dle error conditions in the network.

1 IMS C100 system protocol converter preliminary data 267

1.6 Control protocol conversion

To enable T2/T4/T8-series subsystems to be easily incorporated into T9-series transputer systems (and
vice versa) the IMS C100 converts between the two control systems described above. The subsystem
to be connected can be controlled either through Reset, Analyse and Error signals, or through control
link (CLinkO) of the IMS C100.

RAE master

The TReset and Analyseln pins act as master of the IMS C100 and errors are reported by the
EventOut pin (acting as an error pin) of the connected IMS T9000 transputer.

The IMS T9000 transputer is booted from ROM. The ROM code sets the IMS T9000 DS-Links
in byte-stream mode and emulates the boot time behaviour of the T2/T4/T8-series transputer.
That is, it allows code to be booted down the data links of the IMS T9000 transputer in the same
way as for T2/T4/T8-series transputers.

CLinkO master

The CLink0 acts as master of the IMS C100. Commands received on CLink0 are converted
either to signals on the Reset and Analyse pins, or into T2/T4/T8-series Boot, Peek and Poke
messages transmitted along OSLinkO0. Signals on the Error pin are converted to Error mes-
sages transmitted along CLinkO.

The mode determines which conversion is to be carried out. The IMS C100 has two control links, one for
issuing and receiving commands (CLink0) and one for daisy-chaining (CLink1). In mode 0 CLinkO0 of the
IMS C100 generates commands. In modes 1, 2 and 3 it is receptive to commands.

The two types of conversion are described in more detail below.

268 Communications support devices

1.6.1 RAE master control (mode 0)

In mode 0, T2/T4/T8-type control is the master control and the IMS C100 translates Reset and Analyse
pin signals from the T2/T4/T8-series transputer to control link commands of T9-series transputers.

In this mode the IMS C100 cannot receive commands from an IMS T9000 transputer, but can issue com-
mands via CLinkO. In effect the IMS C100 acts like the control process in a network of IMS T9000 transput-
ers, see figure 1.15. The commands generated are the same as those received by an IMS T9000.

Controlling processor
CLink0 CLinkO CLink1 —for

daisy-chaining

IMS C100

. IMS T9000
issues commands

Figure 1.15 RAE master control

Figure 1.16 illustrates mode 0 in which the IMS C100 converts a T2/T4/T8-series interface to a T9-series
interface by translating the Reset and Analyse pin signals from the T2/T4/T8-series transputer into com-
mands sent via CLink0 to the IMS T9000 transputer.

Note that in this mode CLinkO0 of the IMS C100 is connected to CLinkO0 of the IMS T9000 transputer. The
standard connection of control links is to connect CLinkO0 to CLink1.

CLink0 CLink0
0s-Link DS-Link
0S-Link C100 DS-Link
-~ T9000
0OS-Link DS-Link

Power-on-Reset —> Reset

Reset — >/ TReset ResetOut Reset
Analyse ———— Analyseln

EventOut

ErrorOut signal : m

0S-Link DS-Link !
=]]

this is not a design example it is an illustration only

Figure 1.16 RAE master control — mode 0

1 IMS C100 system protocol converter preliminary data 269

Control commands sent by the IMS C100 in RAE master control mode

The following section details the command messages which can be sent from the IMS C100 to a con-
nected IMS T9000 and describes the effect of the commands on the IMS T9000.

Each command package is acknowledged by an acknowledge packet which is a packet containing no data
and terminated by an EOP token. The exception to this is the RecoverError command which can be sent
even if no acknowledge for the previously sent packet has been received. In addition the higher level con-
trol protocol requires that all command messages are acknowledged by a response message before the
control process can send another command message to the same device, so appropriate responses must
be generated by the IMS C100 in this mode of operation. However, the exception to this is the Reset and
command message which may be sent before the handshake for the previous command has been re-
ceived.

The response message is a handshake code corresponding to the command message. Each message
is preceded by the return header and followed by an EOM token. Command response codes are the same
as the command codes except with the top bit inverted. Some of the handshake messages include a status
byte which indicates whether the received command was valid as defined below.

« Status byte has value 0 if command is valid.
« Status byte has value 1 if command is invalid or has failed for some reason.

Figures 1.17 and 1.18 show the command packets sent by the IMS C100 and the handshake packets
received by the IMS C100.

- direction of packet

Isb _msb
Start | |#12|Return hdr,

Reset l | #11 |L(e7<el-

Reboot | [#20

[] 2byterabel of Ms Too00

- End of message indicator

Figure 1.17 Control link command messages sent by the IMS C100 in mode 0
Start
Programs the T9000’s CLinkO by allocating a label and return header.

The header of the first Start command after power-up is taken as the ‘label’ for the device and all subse-
quent messages with the same header are interpreted by that device. Messages with a different header
are forwarded (if possible) via CLink1.

The Start command programs the return header of the IMS T9000. The return header is 2 bytes long, with
the least significant byte (Isb) being the first byte transmitted following the command code.

Reset

The Reset command message causes some or all of the subsystems of the IMS T9000 to be reset. The
level of reset is encoded in the ‘level’ byte of the command message. There are three different levels of

270 Communications support devices

reset to which the IMS T9000 responds. Reset 1 is equivalent to a hard reset except that the control sys-
tem is not affected; reset 2 resets all subsystems of the IMS T9000 except the control system, and leaves
the configuration and the PMI activity unchanged; reset 3 simply halts the processor. Refer to the 79000
Datasheet for more information on IMS T9000 reset levels.

Reset3 is the only reset level sent from an IMS C100.

Note that a Reset command may cause a handshake for a previously transmitted command to be: termi-
nated prematurely (with an EOM token); compieted with a failure status; or suppressed entirely.

A Reset command with an invalid level is handshaken with a failure status.
Stop

The Stop command message stops the processor ‘cleanly’ so that register values are preserved for de-
bugging. It acts like the Analyse pin on the T2/T4/T8-series transputer.

Reboot

The ReBoot command causes the processor to reboot from ROM. It starts executing, with a workspace
pointer (Wptr) (which must be word-aligned) and instruction pointer (Iptr) read from memory locations
at the top of the address space.

The IMS T9000 reads a Wptr and an Iptr from two fixed locations near the top of memory:
Boot from ROM Iptr address is #7FFFFFF8
Boot from ROM Wptr address is #7FFFFFFC

Handshake and Error messages received by the IMS C100 from the IMS T9000

direction of packet

StartHandshake
ResetHandshake
RebootHandshake
StopHandshake

Error
- 2 byte header address of IMS C100

- End of message indicator

Figure 1.18 Handshake messages sent by the IMS T9000 to the IMS C100 in mode 0
Behavior of the control system in RAE master mode

After power-on reset a Start command is sent from the IMS C100 to CLinkO of the attached IMS T9000
transputer. The IMS T9000 returns a StartHandshake. This forms the virtual link between the controlling
process (IMS C100) and the node (IMS T9000). The attached IMS T9000 boots from ROM.

1 IMS C100 system protocol converter preliminary data 271

The IMS C100 sends Reset, Stop and Reboot commands via CLinkO in response to reset and analyse
pins being toggled in given sequences, as described below.

Note that the IMS C100 does not interpret the ‘pre-boat protocol’ of T2/T4/T8-series transputers. This is
done by software, loaded from the boot ROM, running on the attached IMS T9000.

Reset

The TReset pin indicates transputer reset of the connected T2/T4/T8-series transputer. If the TReset pin
is asserted with the Analyseln pin low, the IMS C100 is reset. The signal is reproduced on ResetOut
which causes the IMS T9000 to reset.

The Reset pin is provided in this case for systems which separate power-on-reset from transputer reset.
When the Reset pin is asserted it resets both the IMS C100 and the attached IMS T9000 (by being repro-
duced on ResetOut).

TReset asserted (with Analyseln low) and/or Reset asserted is seen by both the IMS C100 and the at-
tached IMS T9000 as a power-on reset.

Reboot

The Reboot command causes the attached IMS T9000 to boot from ROM using a Wptr and Iptr from a
fixed location in ROM. The ROM code, configures the IMS T9000, sets the links into byte-stream mode,
starts them, and then emulates the T2/T4/T8-series pre-boot protocol.

Analyse

In response to the Analyseln pin being asserted the IMS C100 will send a Stop command from CLinkO
to the IMS T9000. The Stop command causes the processor to be stopped whilst preserving register
values. The IMS T9000 returns a StopHandshake. When the TReset pin of the IMS C100 is asserted,
the IMS C100 sends a Reset message (resetlevel 3 - to stop the CPU). When both TReset and Analyseln
are deasserted, the IMS C100 sends a Reboot message. This restarts the ROM code. If this code
executes a testpranal instruction it can take special action to assist the debugger before it repeats the
above-mentioned pre-boot sequence.

The TReset and Analyseln signals are used in this mode only and are ignored in CLinkO master control
modes (modes 1, 2 and 3).

Errors

Software, supplied to customers, running on the IMS T9000 emulates the pre-boot protocol of
T2/T4/T8-series transputers. It also emulates the Error pin behavior of a T2/T4/T8-series transputer by
performing an output on an event output channel whenever a T2/T4/T8-series transputer would assert
its Error pin.

If an error occurs on the IMS T9000, this is signalled by the EventOut pin. It also causes an Error message
to be sent from CLinkO0 of the IMS T9000, which is received by CLink0 of the IMS C100 and ignored.

In this mode there is nowhere for the IMS C100 to send Error messages.
If an error occurs on the control link, the link is reset, then restarted and a RecoverError command sent.

If an error occurs on one of the DS data links, the link is reset, any incomplete packets received from the
IMS T9000 are discarded and the data protocol converter and OS-Link are reset. If the error occurred
during a packet transmission, data in one direction will stop, as either the IMS C100 or the IMS T9000
will be waiting to receive a packet from the other. If no packet was being transmitted, data transfer can
continue. If transfer is halted, software on the IMS T9000 may eventually execute a resetch (reset chan-
nel) instruction, which causes a link error to be seen by the IMS C100, resulting in the reset of the link
conversion unit and the OS-Link. Communication may then be re-started.

272 Communications support devices

1.6.2 CLink0 master control (modes 1, 2 and 3)

In modes 1, 2 and 3, T9-type control is the master control. In these modes CLink0 and CLink1 act as
a daisy chain (see figure 1.19) with CLink0 saving the header of the first packet it receives, and only input-
ting subsequent packets with the same header. Packets with a different header are relayed out of CLink1.
All packets received on CLink1 are relayed out of CLinkO. There is a fair arbiter to deal with the case that
the IMS C100 needs to send a packet at the same time as a packet arrives on CLink1. Note this is identical
to the daisy-chaining behavior of the IMS T9000 (as described in the Control System Chapter of The
T9000 Datasheet).

i ——— +-{ CLinko CLink1|——
L _|CLink1 CLinko| _ _
i : T9-series
I . C100 . system
Modet || T2/T4/T8- | Og.|inkg !
; series !
' system 7
[DS-Links
—-{ CLink0 CLink1— —— 1{CLink0 CLink1———*
' Mode 2 or 3 : 0S-Links
odesor : T9-series DS-Links G100 .
: system T2/T4/Te-
| : series
‘. ResetOut ! system
: AnalyseOut :
: Error ,
this is not a design example it is an illustration only

Figure 1.19 CLinkO master control —modes 1, 2 and 3

All packets received on CLink0 with the same header as the first packet received are input by the IMS
C100 and decoded as either acknowledge packets (which allow further messages to be sent by the IMS
C100), or as messages. Messages are further subdivided into commands and handshakes. A handshake
indicates that a previously sent message has been received, and so another can be sent.

1 IMS C100 system protocol converter preliminary data 273

Control commands sent by the controlling processor (IMS T9000) to the IMS C100

The commands recognized by the IMS C100in modes 1, 2 and 3 include those accepted by an IMS T9000
transputer. However, execution of the commands is adapted to T2/T4/T8-series behavior.

The following section details the command messages which can be sent from the T9-series control pro-
cess to the IMS C100.

Each command packet is acknowledged by an acknowledge packet which is a packet containing no data
and terminated by an EOP token. The exception to this is the RecoverError command which can be sent
even if no acknowledge for the previously sent packet has been received. In addition the higher level con-
trol protocol requires that all command messages are acknowledged by a response message before the
control process can send another command message to the same device, so appropriate responses must
be generated by the IMS C100 in this mode of operation. However, the exceptions to this are the Reset
and RecoverError command messages which may be sent before the handshake for the previous com-
mand has been received.

The response message can contain the result of a Peek or Identify command, or it may be simply a hand-
shake code corresponding to the command message. Each such message is preceded by the return
header and followed by an EOM token. Command response codes are the same as the command codes
except with the top bit inverted. Some of the handshake messages include a status byte which indicates
whether the received command was valid as defined below.

¢ Status byte has value 0 if command is valid.
« Status byte has value 1 if command is invalid or has failed for some reason.

Commands sent which cannot be converted to T2/T4/T8-series actions, or commands which are illegal
in certain states, are handshaken with status set to 1.

Figures 1.20 and 8.7 which show the command packets received by the IMS C100 and the handshake
packets returned to the controlling process respectively.

Start

This command programs or re-programs the return header of the IMS C100. The return header is 2 bytes
long, with byte 0 being the first byte transmitted following the command code. Note that if this command
is used to re-program the return header, the acknowledge for the command message packet will be sent
with the old header, whilst the handshake will be sent with the new header.

The Start command must be the first command received. If an error occurs before the first Start command
is received, the StartHandshake will be returned before the Error message is sent.

Reset
This command resets the IMS C100 and consequently the connected T2/T4/T8-series transputer.

The Reset command message includes a ‘level’ parameter. The level of reset is encoded in the ‘level’ byte
of the command message. There are two different levels of reset to which the IMS C100 responds. Levels
2 and 3 set the ResetOut pin high. A ResetHandshake with a success status indicator (0) is sent on
completion. Any other value of the level parameter causes the status of the ResetHandshake to be a
failure (1).

Note that a Reset command must be followed by a ‘CPoke-end-Reset’ to de-assert ResetOut. A CPoke-
end-Reset is a CPoke to the IMS C100 Command register with bit 5 set (see table 1.16).

See section 1.8 for more information on reset levels.

Note that a Reset command may cause a handshake for a previously transmitted command to be: termi-
nated prematurely (with an EOM token); completed with a failure status; or suppressed entirely.

274 Communications support devices

Note that Reset level 1 is not supported directly by the IMS C100. It can be achieved by performing a Re-
set2, followed by CPoke commands to set the configuration of the DS-Links to their default values and
force the data and strobe outputs low.

Identify

The Identify command message causes the IMS C100 to respond with a handshake containing an
identifier unique to the device type. This can be used to check the contents of a network. The lower 16
bits of the identifier are the same as the contents of the DevicelD register (see section 1.9.3); the upper
16 bits are zero.

Note, the /dentify command code is identical for all IMS T9000 family devices.
Stop

The Stop command message is used to cause the attached transputer to come into a quiescent state
whilst preserving information for debugging.

This command sets the AnalyseOut pin high (resulting in the Analyse pin on the connected T2/T4/T8-se-
ries transputer being asserted) and generates a SftopHandshake message. To stop a T2/T4/T8-series
transputer the Analyse and Reset pins must be asserted and deasserted in the correct order (see page
280). In order to achieve this a Reset3 command must be sent after the Stop command to assert the
Reset pin. CPoke commands to the IMS C100 Command register must be used to de-assert the pins.

Note that a Sfop command must be followed by a ‘CPoke-end-Analyse’ to de-assert AnalyseOut. A
CPoke-end-Analyse is a CPoke to the IMS C100 Command register with bit 6 set (see table 1.16).

RecoverError

This command is used in error recovery on the control links (see section 1.8.5). It restores the protocol
after a link error in the control link system. Note that if there is an unhandshaken error, the RecoverError
handshake will be returned before the error message is sent.

CPeek

The CPeek command includes a 2 byte address which points to a register in the configuration address
space. The handshake message returns the value stored at the given address. If the address is invalid
the handshake message returns an invalid status.

CPoke

The CPoke command includes a 2 byte address and 4 bytes of data. It is used to set the value of a configu-
ration register. It writes the data to the configuration space register at the given address. If the address
contained in the command message was invalid the status byte of the handshake message indicates fail-
ure.

Note, some registers do not have a value, but writing to them causes some action to occur.
Peek16 and Peek32

The Peek16 command determines the value of a memory location of the attached 16 bit (T2) transputer.
It includes a 2 byte address which points to the memory location. The address location must be word-
aligned. The handshake message returns the value of the location, unless the status byte indicates that
the command failed. If the status byte of the handshake message indicates failure, this means that a reset
or recover was received before the command completed.

The Peek32 command determines the value of a memory location of the attached 32 bit (T4/T8) transput-
er. Itincludes a 4 byte address which points to the memory location. The address location must be word-
aligned. The handshake message returns the value of the location, unless the status byte indicates that
the command failed.

1 IMS C100 system protocol converter preliminary data 275

Poke16 and Poke32

The Poke16 command writes data to a memory location of an attached 16 bit transputer. The 2 byte ad-
dress of the location (which must be word-aligned) and the value to be written (2 bytes of data) are included
in the command message. If the status byte of the handshake message indicates failure, this means that
a reset or recover was received before the command completed.

The Poke32 command writes data to a memory location of an attached 32 bit transputer. The 4 byte ad-
dress of the location (which must be word-aligned) and the value to be written (4 bytes of data) are included
in the command message. If the status byte of the handshake message indicates failure, this means that
a reset or recover was received before the command completed.

Boot16 and Boot32

The Boot command starts a ‘booting’ sequence. The booting sequence makes the loading of code via the
control link more efficient than performing a series of pokes. The Boot command message contains the
length in bytes (the length value must be a multiple of 4) of the boot code to be loaded, and the address
(which must be word-aligned) to where in memory the code is to be loaded from.

When the IMS C100 is attached to a T2/T4/T8-series transputer, the address is discarded and the length
is restricted to be less than 256 bytes.

BootData

The BootData command loads code as part of a booting sequence. Each BootData command message
contains 16 bytes of code. A handshake is generated after transferring a complete packet. The boot length
is decremented each transfer and on the final packet only the outstanding number of bytes from the 16
are forwarded. The remaining padding is input and ignored before the handshake is generated.

Run16 and Run32

The Run16 and Run32 commands are not applicable to a T2/T4/T8-series transputer and are ignored and
handshaken with a failure indication.

Reboot

The Reboot command causes a reboot from ROM.

276 Communications support devices

__direction of packet

-

Isb msb

Resst |

Identify | ‘
stop |
RecoverError
Isb msb
CPeek | #32 Address |
Isb msb Isb msb
CPoke -EeﬂAddress | Data
_ Isb msb
peektc N
Isb msb

Peeksz [+7+] Address I

Isb msblsb msb

Poke16 [N #64| Address | Data

sb msb Isb msb

I
Poke32 _ #6A | Address ' Data -
e

Isb msblisb msb
#5A! Wptr | Iptr

Run16

‘ Isb msb Isb msb
| #54 | Whptr | Iptr -

Isb msblsb msb

Boot16 [NMMMEHN #44| Length |Address [}

Run32 |

Isb msb Isb msb
Boots> [EERE #4A| Length [address [
Isb msb
BootData - #ZEI Data (16 bytesR< -

Reboot - #20

B 20yt tavel of IMs G100

- End of message indicator

Figure 1.20 Control link command messages received by IMS C100 in modes 1, 2 and 3

IMS C100 system protocol converter preliminary data

277

direction of packet

i
-

StartHandshake - #92

ResetHandshake

IdentifyResult

StopHandshake

RecoverErrorHandshake

CPeekHandshake

CPokeHandshake

Peek16Handshake

Peek32Handshake

Poke16Handshake

Poke32Handshake

Run16Handshake

Run32Handshake

Boot16Handshake

Boot32Handshake

BootDataHandshake

RebootHandshake

|

| #1 ‘Statu.

Isb msb

80] wgentty [

|

| #80 #tatus-

b msb

|

Is
[#B2] Data et

|

| #E6 |Status-

Isb msb

| #F2 I Data lStatus-

b msb
Data |Status-

Is
|#Fa]

I#E4 |Status-

[reAfrandi]

koAb

DA et

i#C4 |Statu.

|#CA |Status-

acsau i}

[#a0 st

E 2 byte header address of controlling processes

- End of message indicator

Figure 1.21 Handshake messages sent by IMS C100 to the controlling process in modes 1, 2 and 3

278 Communications support devices

Errors

The IMS C100 can send an Error message to the controlling process to indicate that an error has occurred.
The Error message contains an error code which determines the type of error, as given in table 1.8. All
the error codes must be handshaken by the control processor with the ErrorHandshake command.

Errors are reported by sending an Error message with the corresponding code or in the case of an error
on CLinkO0, by causing a disconnection. Software at the control processor can then take appropriate
action.

direction of packet

-

Error | [#01]cos]ji]

ErrorHandshake

2 byte label of IMS C100

E 2 byte header address of controlling process

- End of message indicator

Figure 1.22 Error message

Error code | Cause of error Priority
#C2 Parity or disconnect error on CLink1 Highest
#C1 Protocol error on CLInkO e.g. bad command length, unexpected acknowledge
#CO Unrecognized command code on CLink0
#01 Signal on Error pin
#80 Parity or disconnect error on DSLink0
#81 Parity or disconnect error on DSLink1
#82 Parity or disconnect error on DSLink2
#83 Parity or disconnect error on DSLink3

#10 Overlong packet on OSLinkO0
#11 Overlong packet on OSLink1
#12 Overlong packet on OSLink2
#13 Overlong packet on OSLink3

#20 Invalid count (i.e. count = 0) on OSLink0
#21 Invalid count (i.e. count = 0) on OSLink1
#22 Invalid count (i.e. count = 0) on OSLink2
#23 Invalid count (i.e. count = 0) on OSLink3 Lowest

Table 1.8 Error codes

1 IMS C100 system protocol converter preliminary data 279

OS-Link 0 special function — modes 2 and 3

In modes 2 and 3, the control links are the system master, and the default assumption is that at least
OSLink0 is connected to an unbooted T2/T4/T8-series transputer. In this case OSLinkO0 is used to
transmit the pre-boot protocol of the T2/T4/T8-series transputer until the transputer is booted. Commands
to peek, poke and boot the T2/T4/T8-series transputer, arriving down CLinkO, are converted to
T2/T4/T8-series protocol and sent down OSLinkO.

The default assumption of OSLink0 being connected to an unbooted T2/T4/T8-series transputer can be
controlled by the booted flag, which when set indicates that the connected transputer has booted. The
booted flag can be set by means of a CPoke command. The booted flag is set automatically by the boot-
ing sequence (Boot16 or Boot32 command followed by BootData commands) or by the Reboot command.
The booted flag is reset by the Reset command.

Commands which correspond to the protocol of an unbooted T2/T4/T8 transputer

There are four control link commands which correspond to the special protocol of an unbooted
T2/T4/T8-series transputer. These cause messages to be generated from OSLink0 in modes 2 and 3,
for which the behavior of OSLinkO0 is defined to be special. The assumed length (N) of addresses and
data can be either 16 or 32 bits depending on whether a command is being sent to a 16 bit (T2) or 32 bit
(T4/T8) transputer.

Peek

On receipt of a PeekN command, and the associated peek address, the IMS C100 sends from OSLink0
the following sequence of bytes, where the address is a 2 or 4 byte array depending on the word length
of the command:

1(BYTE);address|0];...address[N]

When the last byte has been sent and acknowledged the IMS C100 awaits an associated response. A
PeekNHandshake is returned with 2 or 4 bytes of data and a status byte of 0.

If the communication does not complete (for example if there is no transputer connected), the peeking
process will not receive a PeekNHandshake and can time-out, and if required, reset the IMS C100 with
a Reset command.

PeekN commands are only permitted if the booting and booted flags are not set (i.e. 0) and the ResetOut
and AnalyseOut pins are low.

Poke

On receipt of a PokeN command, and the associated poke address and data, the IMS C100 sends from
OSLink0 the following sequence of bytes. Where the address and data are each 2 or 4 byte arrays, de-
pending on the word length of the command.

0(BYTE);address[0];...address[N];data[0];...data[N]

The command is acknowledged immediately, and if and when the last byte of the above communication
is acknowledged, a PokeNHandshake is returned with a status of 0.

If the communication does not complete (for example because there is no transputer connected after all),
the poking process will not receive a PokeNHandshake and can time-out, and reset the IMS C100.

PokeN commands are only permitted if the booting and booted flags are not set and the ResetOut and
AnalyseOut pins are low.

Boot

On receipt of a BootN command, and the associated boot address and length, the IMS C100 sends the
first byte of the length from OSLink0 and discards the address.

280 Communications support devices

The BootN command is acknowledged immediately, and if and when the length byte is acknowledged by
a connected transputer, a BootNHandshake response is sent with a status of 0.

The value of the length byte is kept by the IMS C100 as a count, and that number of bytes are then received
by CLinkO0, as a sequence of BootData messages. The bytes are sent out on the OS-Link. Each arriving
BootData message is acknowledged immediately, but not handshaken until all its data bytes have been
sent and acknowledged on the OS-Link. Once all bytes have been sent and acknowledged a BootData-
Handshake is sent with a status byte of 0. If more bytes are received than were allowed for in the count,
the extra bytes are discarded. If a BootData command is received when the count is reduced to zero, all
its data is discarded and a BootDataHandshake with a failure status indicator is returned.

The boot count must be a multiple of 4 bytes and the last BootData command padded out to 16 bytes with
0, 4, 8 or 12 zero bytes.

BootN commands are only permitted if both the booting and booted flags are not set.

After a BootN command has been received, the booting flag is set, and any further PeekN, PokeN or
BootN commands are invalid. Once the number of bytes as allowed for in the count of the BootN command
have been received, the booting flag is unset, and the booted flag is set; BootData commands are then
also invalid. All such invalid commands are acknowledged and handshaken immediately, but with a status
byte of 1 indicating failure. No other action is taken. The booting and booted flags are reset by any Reset
command.

Resetting and Analyzing
Reset

On receipt of a Reset command on CLinkO, the IMS C100 asserts its ResetOut pin, resets the booting
and booted flags, and may also reset its internal buffers and OS-Links (see section 1.8.5 for details on
the effects of the different levels of reset). The ResetOut pin is deasserted by a CPoke command to bit
5 in the IMS C100 Command register (see table 1.16).

Analyse pin

On receipt of a Sfop command on CLinkO0, the IMS C100 asserts its AnalyseOut pin. It acknowledges
the Stop command and returns a StopHandshake message. The controlling software dealing with the
T9-series device waits for a certain time and then sends a Reset message. When the IMS C100 receives
this message, it asserts the ResetOut pin. It deasserts the AnalyseOut and ResetOut pins by CPoke
commands to the corresponding bits in the IMS C100 Command register (see table 1.16). The minimum
timings for asserting and deasserting these pins are given in section 1.13.1.

AnalyseOut

! f

Stop CPoke

ResetOut _/—\—/1
f f f !

Reset CPoke Reset CPoke

Figure 1.23 Resetting and analyzing in modes 1, 2 and 3

Note that ResetOut and AnalyseOut must be de-asserted using CPokes to the Command register (see
table 1.16) before continued operation.

1 IMS C100 system protocol converter preliminary data . 281

1.7 Links

1.7.1 Data links

The IMS C100 has eight data links. OSLink0-3 are oversampled links and DSLink0-3 are data/strobe
links. Each OS-Link is paired with a DS-Link, for data protocol conversion. All pairs of links perform one
or other type of conversion, depending on mode.

Each pair of links is joined by a conversion unit. OSLinkO0 can be diverted into the control conversion unit
by a switch which is controlled by the booted flag. Refer to section 1.6.2 for description of OSLinkO0 special
function in modes 2 and 3.

The OS and DS-Links are TTL compatible.

Links are not synchronized with Clockln and are insensitive to their phases. Thus links from independent-
ly clocked systems may communicate, providing only that the clocks are nominally identical and within
specification. .

Data link speed pins

There are four pins to set the operating speed of the links. OSLinkOHalfSpeed and OSLink123Half-
Speed pins set the operating speed of the OS-Links and DSLinkOHalfSpeed and DSLink123HalfSpeed
pins set the speed of the DS-Links. The OSLinkOHalfSpeed pin enables the speed of OSLink0 to be set
independently of OS-Links 1, 2, 3 and the DSLinkOHalfSpeed pin enables the default speed of DSLink0
to be set independently of DS-Links 1, 2, 3.

OSLink0-3 support a communication speed of 10 Mbits/s. In addition they can be used at 20 Mbits/s which
is determined by the OSLinkOHalfSpeed and OSLink123HalfSpeed pins. The DSLinkOHalfSpeed and
DSLink123HalfSpeed pins can be used to set the speed of the DS-Links to 25 Mbits/s or 50 Mbits/s, (see
table 1.9).

Note that if these pins are changed after power-on the IMS C100 is not guaranteed to function correctly
until it has been reset.

OSLinkO runs at 20 Mbits/s
OSLinkO runs at 10 Mbits/s

OSLink1-3 runs at 20 Mbits/s
OSLink1-3 runs at 10 Mbits/s

OSLinkOHalfSpeed 0
1
0
1
DSLinkOHalfSpeed 0 DSLinkO runs at 50 Mbits/s
1
0
1

OSLink123HalfSpeed

DSLinkO runs at 25 Mbits/s

DSLink1-3 runs at 50 Mbits/s
DSLink1-3 runs at 25 Mbits/s

DSLink123HalfSpeed

Table 1.9 LinkHalfSpeed pins
DS-Link speeds in mode 0

The DS data links of the IMS C100 in mode 0 can be set to run at 25 Mbits/s or 50 Mbits/s depending on
the setting of the DSLinkOHalfSpeed and DSLink123HalfSpeed pins.

DS-Link speeds in modes 1,2 and 3

The DS-Links of the IMS C100 in modes 1, 2 and 3 can support a range of communication speeds which
can be programmed by writing to registers in the IMS C100 configuration space using the CPoke com-
mand via CLink0.

Only the transmission speed of a DS-Link is programmed as reception is asynchronous. This means that
DS-Links running at different speeds can be connected, provided that each device is capable of receiving
at the speed of the connected transmitter.

282 - Communications support devices

The transmission speed of all of the DS-Links (data and control links) on the IMS C100 are related to the
speed of the 10 MHz base clock. This 10 MHz clock is multiplied by a programmable value to provide the
root clock for all the DS-Links. The multiplication factor is programmed by writing to the SpeedMulitiply
bit in the DSLInkPLL register in System Services, see section 1.9.3. This root clock is then optionally di-
vided (by programming the SpeedDivide bits in the associated DSLinkMode register) by 1, 2, 4 or 8 inde-
pendently for each DS-Link, giving a range of speeds. This arrangement allows each link to be run at one
of four transmission speeds, as shown in table 13.3.

SpeedMultiply SpeedDivide1:0 BaseSpeed

0:0 0:1 1:0 1:1
/1 /2 /4 /8

8 80 40 20 10.0 10

10 100 50 25 12.5 10

12 Reserved 60 30 15.0 10

14 Reserved 70 35 17.5 10

16 Reserved 80 40 20.0 10

18 Reserved 90 45 225 10

20 Reserved 100 50 25.0 10

Table 1.10 DS-Link transmission speed in Mbits/sec

Note also that each DS-Link can be programmed to use a base rate clock of 10 MHz. At reset all DS-Links
are configured to run at the BaseSpeed of 10 Mbits/sec. The SpeedSelect bit in the associated DSLink-
Mode register when set to 1 sets the respective DS-Link to the speed selected by the SpeedMultiply and
SpeedDivide bits, as opposed to the default base speed of 10 Mbits/s.

Errors on DS-Links

DS-Link inputs can detect parity and disconnection conditions as errors. A single bit odd parity system
detects single bit errors at the link token level. The protocol to transmit NUL tokens in the absence of other
tokens enables disconnection of a DS-Link to be detected. A disconnection error indicates one of two
things:

¢ the DS-Link has been physically disconnected;
¢ an error has occurred at the other end of the DS-Link, which has then stopped transmitting.

The LinkError bit in the DSLink0-3Status registers flags that a parity and/or disconnection error has
occurred on the DSLink0-3. The bit fields ParityError and DiscError indicate when parity and disconnect
errors occur respectively.

When a DS-Link detects a parity error on its input it halts its output. This is detected as a disconnect error
at the other end of the DS-Link, causing this to halt its output also. Detection of an error causes the DS-Link
to be reset. Thus, the disconnect behavior ensures that both ends are reset. Each end can then be re-
started.

Note, when one end of a DS-Link is started up before the other end of a DS-Link, a disconnect error does
not occur as no tokens have been received and once the other end of the DS-Link is started communica-
tion can commence. A disconnect error is only flagged once a token has been received on a DS-Link and
transmission is subsequently interrupted.

The DS-Links are designed to be highly reliable within a single subsystem and can be operated in one
of two environments, ‘reliable’ or ‘unreliable’ determined by the LocalizeError bit (set in DSLink0-3Mode
register) in each DS-Link. The LocalizeError bit is set on a per link basis, therefore it is possible to have
some DS-Links in a system marked as reliable and others as unreliable. The consequence of a DS-Link
error depends on which environment the DS-Link is in.

1 IMS C100 system protocol converter preliminary data 283

LocalizeError | Link response to error | C100 contro! system | External
bit device
Reliable links 0 Halt, signal error Report error on CLink0 | Reset
Unreliable links 1 Halt, auto restart, no error - -
reported

Table 1.11 Effect of reliable and unreliable links
Reliable links

In the majority of applications, the communications system should be regarded as being totally reliable.
In this environment errors are considered to be very rare, but are treated as being catastrophic if they do
occur. This environment is the default on power-on reset, with all DS-Links having their LocalizeError
bit set to 0. If an error occurs it will be detected and reported via a message sent along CLink0. Normal
practice will then be to reset the subsystem in which the error has occurred and to restart the application.

Unreliable links

For some applications, forinstance when a disconnect or parity error may be expected during normal oper-
ation, an even higher level of reliability is required. This level of fault tolerance is supported by localizing
errors to the DS-Link on which they occur. This is achieved by setting the LocalizeError bit in the
DSLink0-3Mode register to 1. In this mode the link is considered ‘unreliable’.

When in unreliable mode, processes must communicate using defensive software which can detect errors
atthe message level. These processes are responsible for establishing and maintaining a higher level flow
control, using time-out to detect that a message has not completed. If an error occurs, packets in transit
at the time of the error will be discarded or truncated, and the DS-Link will be reset without the error being
reported via the control link. Code to implement error recovery must be run on each virtual channel. This
application software is provided for the user in libraries contained in INMOS toolset products.

A DS-Link error in unreliable mode results solely in packets in transit at the time of the error being dis-
carded or truncated.

284 Communications support devices

Link connections
0S-Link connections

08-Links are not synchronized with ClockIn and are insensitive to its phases. Thus OS-Links from inde-
pendently clocked systems may communicate.

0OS-Links are TTL compatible and intended to be used in electrically quiet environments, between devices
on a single printed circuit board or between two boards via a backplane. Direct connection may be made
between devices separated by a distance of less than 300 millimeters. For longer distances a matched
100 ohm transmission line should be used (with series matching resistors RM of 56 ohms on the incoming
link connected to the T2/T4/T8-series transputer), see figure 1.25. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Note that IMS C100 OS-Links have a 100 ohm driver as for DS-Links.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable
within the skew tolerance of the OS-Link, although the absolute value of the delay is immaterial.

T2/T4/T8-series

IMS C100 ‘ transputer
OSLinkOut OSLinkin
OSLinkin OSLinkOut

Figure 1.24 OS-Links directly connected

T2/T4/T8-series
IMS C100 transputer

oSLinkout————) ———— OSLinkin

Zo=100 ohms

ostinkn—¢()) — 1 OSLinkOut

Z0=100 ohms RM=56 ohms

Figure 1.25 0O8S-Links connected by transmission line

T2/T4/T8-series

IMS C100 transputer
OSLinkOut———— >— OSLinkin
buffers
OSLinkin <] OSLinkOut

Figure 1.26 OS-Links connected by buffers

1 IMS C100 system protocol converter preliminary data 285

DS-Link connections

DS-Links are not synchronized with Clockln and are insensitive to its phases. Thus, DS-Links from inde-
pendently clocked systems may communicate.

DS-Links are TTL compatible and intended to be used in electrically quiet environments, between devices
on a single printed circuit board or between two boards via a backplane. Direct connection may be made
between devices separated by a distance of less than 300 millimeters. For longer distances a matched
100 ohm transmission line should be used, see figure 13.5.

The inputs and outputs have been designed to have minimum skew at the 1.5 V TTL threshold.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable
within the skew tolerance of the DS-Link.

IMS C100 Z0=100 ohms T9-series transputer

DSLinkOutDatal————)) ————— DSLinkinData
DSLinkOutStrobe————) »—————{DSLinkinStrobe

DSLinkinDataf————((>————— DSLinkOutData
DSLinkinstrobel———((35— DSLinkOutStrobe

Figure 1.27 DS-Links connected by transmission line

IMS C100 T9-series transputer
DSLinkOutData = DSLinkinData
DSLinkOutStrobe > DSLinkinStrobe
buffers
DSLinkinData < DSLinkOutData
DSLinkinStrobe <l DSLinkOutStrobe

Figure 1.28 DS-Links connected by buffers

286 Communications support devices

1.7.2 Control links

The IMS C100 has two bidirectional controf links; CLink0 and CLink1. They use the same electrical and
packet level protocols as the data DS-Links (refer to section 1.3.2).

All communications with the controlling processor are via CLink0. CLink1 provides a daisy-chain link,
allowing a simple physical connectivity to be used for controlling networks.

The behavior of CLinkO depends on the mode as detailed in section 1.6.
Control link speeds

After power-on the control links run at a default speed of 10 Mbits/s; this can be changed by setting the
SpeedMultiply bit field in the DSLinkPLL register and the SpeedDivide bit field in the CLink0-1Mode
register.

1.7.3 Starting and resetting links

The OS and DS data links on the IMS C100 start automatically in all modes following the reset signal going
low. When the IMS C100 is set to mode 0 control link 0 also starts automatically following the reset signal
going low. When the IMS C100 is set to modes 1, 2 or 3 control link 0 starts automatically following receipt
of a token.

Following reset in all modes the OS-Links run at the speed determined by the OSLinkOHalfSpeed and
OSLink123HalfSpeed pins. Following reset, in mode 0 the DS-Links run at the speed determined by the
DSLinkOHalfSpeed and DSLink123HalfSpeed pins, in modes 1, 2 and 3 the DS-Links run at the base
speed of 10 Mbits/s.

There are two basic mechanisms for resetting the data links. An error on the DS-Link (caused for example
by resetting the DS-Link of an attached IMS T9000) causes the OS-Link of the pair and the internal state
of the data conversion unit to be reset. The other mechanism is via the configuration bus. The configura-
tion bus can be used to reset any individual DS-Link (via the ResetLink bit in the DSLink0-3Command
register) or any link pair (via the Command register).

1 IMS C100 system protocol converter preliminary data 287

1.8 Levels of reset

The IMS C100 can be reset to a given ievel using the Reset command or Reset pin. The Reset command
is accompanied by a ‘level’ parameter. The IMS C100 directly supports levels 2 and 3 of the Reset com-
mand. The different levels of reset are described below.

Note that any level of reset may abort the command which was executing when the Reset command was
applied. An illegal level of Reset will also result in a handshake with a failure status being returned.

1.8.1 Level 0 — hardware reset

In all modes the IMS C100 is reset by asserting the Reset pin high. The ResetOut pin follows the Reset
pin. In mode 0 the IMS C100 is also reset by a similar transition on TReset, providing Analyseln is low.

After a hardware reset has been deasserted each IMS C100 is in the following state. All the links are in
Wait state: with the data OS-Links operating at their default speed set by the LinkHalfSpeed pins; the
data DS-Links of the IMS C100 in mode 0 operating at the speed set by the DSLinkHalfSpeed pins; the
data DS-Links ofthe IMS C100 in modes 1, 2 and 3 operating at the base speed of 10 MHz; and the control
links operating at their default speed of 10 MHz. The label and return headers for the control links are unde-
fined. All registers contain their default values. All buffers are cleared; all latched error signals are cleared;
and the AnalyseOut pin is low.

1.8.2 Level 1 - labelled control network

Reset to level 1 is not directly supported by the IMS C100. However, a reset to level 1 can be achieved
by sending a Reset2, followed by CPoke commands to set the configuration of the DS data links to their
default values and force their data and strobe outputs low.

This level of reset leaves the label and return headers unaltered and all connected control links remain
operational. All the data links are in the Wait state. All registers are reset to their default values. All buffers
are cleared.

The ResetOut pin is set high and must be de-asserted by a CPoke to the IMS C100 Command register
with bit 5 set, see table 1.16.

1.8.3 Level 2 - configured network

The network can be reset to level 2 by sending a Reset2 command message to each IMS C100.

At this level of reset the label and return headers are unaltered and register contents are unaffected. All
buffers are cleared. The data links are reset and returned to the Wait state. The booted and booting flags
are reset.

The ResetOut pin is set high and must be de-asserted by a CPoke to the IMS C100 Command register
with bit 5 set, see table 1.16.

1.84 Level3

The ResetOut pin is set high and must be de-asserted by a CPoke to the IMS C100 Command register
with bit 5 set, see table 1.16. The booted and booting flags are reset.

1.8.5 Effects of different levels of reset

The effect of different levels of reset on various aspects of the IMS C100 state is summarized in the follow-
ing table.

The handshake state indicates whether the IMS C100 expects a handshake message; the acknowledge
state indicates whether it expects to receive an acknowledge packet; and the error state is the latched
error signals which would otherwise cause Error messages to be sent. When the handshake/acknowledge
state is cleared any outstanding handshakes/acknowledges will be ignored.

288 Communications support devices

The corresponding effects of the RecoverError message are also shown. The RecoverError command
resets the acknowledge state so that acknowledges are neither expected nor pending, and causes the
re-transmission of any unhandshaken error message.

State Reset level Recover Error
2 3

OS-Links 0-3 Reset no effect no effect
DS-Links 0-3 Reset no effect no effect
Control links 0-1 Reset no effect no effect
Handshake state Cleared Cleared Cleared
Acknowledge state | no effect no effect Cleared

Error state Cleared no effect no effect
AnalyseOut pin De-asserted | no effect no effect
ResetOut pin Asserted Asserted no effect

Table 1.12 Effect of the different levels of reset

1.9 Configuration

1.9.1 Configuration space

The IMS C100 can be controlled via the configuration address space. The registers in this address space
are accessed by CPeek and CPoke command messages received along CLinkO.

1.9.2 Configuration register addresses

Table 1.13 gives the addresses of the configuration registers. The Read/Write column indicates whether
the register is read-only (R), write-only (W), or read-write (R/W). All registers are 32 bits long, and 32 bits
are always read or written. The column labelled Bit size indicates the number of valid bits in the register.
The lowest bits in the register are significant. This is shown in the Significant bits column. When writing
to a register, any non-significant bits must always be zero. When reading from a register, any non-signifi-
cant bits are undefined. For registers listed as containing 0 bits, any write to the corresponding address
causes some action to occur.

1 IMS C100 system protocol converter preliminary data

289

Address | Register Bit | Significant | Read/ | Reset value
size bits Write
#1001 DevicelD 16 0-15 R
#1002 DeviceRevision 16 0-15 R
#1003 Command 7 0-6 W see table 1.16
#1004 ErrorCode 8 0-7 R see table 1.8
#1005 DSLinkPLL 6 0-5 R/W 110
#1006 Status 8 0-7 R see table 1.19
#8001 DSLinkOMode 5 0-4 R/W
#8002 DSLinkOCommand 4 0-3 w
#8003 DSLinkOStatus 6 0-5 R see Reset section 1.8
#8101 DSLink1Mode 5 0-4 R/W
#8102 DSLink1Command 4 0-3 w
#8103 DSLink1Status 6 0-5 R see Reset section 1.8
#8201 DSLink2Mode 5 0-4 R/W
#8202 DSLink2ZCommand 4 0-3 w
#8203 DSLink2Status 6 0-5 R see Reset section 1.8
#8301 DSLink3Mode 5 0-4 R/W
#8302 DSLink3Command 4 0-3 w
#8303 DSLink3Status 6 0-5 R see Reset section 1.8
#FDO1 CLinkOMode 5 0-4 R/W
#FD02 CLink0OCommand 4 0-3 w
#FDO03 CLinkOStatus 6 0-5 R see Reset section 1.8
#FEO1 CLink1Mode 5 0-4 R/W
#FEO02 CLink1Command 4 0-3 w
#FEO3 CLink1Status 6 0-5 R Depends on mode
#8004, DSLinkOWriteLockt, 1 0 R/W
#8104, DSLink1WriteLockT,
#8204, DSLink2WriteLockt,
#8304, DSLink3WriteLockT,
#FDO04, |CLinkOWriteLockt,
#FEO4, |CLink1WriteLockt
#FF01%, | DSLink0-3Mode, 5 0-4 R/W
#FF02%, | DSLink0-3Command, 4 0-3 w
#FF041 | DSLink0-3WriteLock 1 0 R/W

1t This register is not used on the IMS C100.

T The subsystem set of all four data DS-Links has a unique address #FF. This address can

be used when writing (poking) to the associated register for each of the four DS-Links.

Table 1.13 Configuration register addresses

290 Communications support devices

1.9.3 Configuration registers

This section describes the functionality of the IMS C100 to be controlled by the configuration registers and
the associated bit fields.

The configuration bus can be used to reset any individual DS-Link (via the DSLink0-3Command register)
or any link pair (via the Command register) in packetized conversion mode, modes 1 and 3.

Note: All undefined and INMOS reserved bits must be written with 0 unless otherwise stated.
System services configuration registers

The DevicelD register contains a 16 bit device identification code unique to the device. The value of the
device identification code for the IMS C100 is in the range 320 to 335. The device identification code can
also be read using the /dentify command. This register is read only.

DevicelD #1001 Read only
Bit Bit field Function

15:0 |DevicelD Device identification code.

31:16 Undefined

Table 1.14 Bit fields in the DevicelD register
The DeviceRevision register contains the revision of the device. It is a 16 bit read-only register.

DeviceRevision #1002 Read only
Bit Bit field Function

15:0 |DeviceRev Device revision.

31:16 Undefined

Table 1.15 Bit fields in the DeviceRevision register

Abit setin the Command register effects the indicated function. The IMS C100 Command register, which
is write-only, has the structure shown in table 1.16 below.

Command #1003 Write only
Bit Function Bit description

0 LinkO pair reset Set to 1 to cause reset of OSLink0, DSLink0 and conversion unit

1 Link1 pair reset Set to 1 to cause reset of OSLink1, DSLink1 and conversion unit
2 Link2 pair reset Set to 1 to cause reset of OSLink2, DSLink2 and conversion unit

3 Link3 pair reset Set to 1 to cause reset of OSLink3, DSLink3 and conversion unit
5 End Reset Set to 1 to de-assert the ResetOut pin

6 End Analyse Set to 1 to de-assert the AnalyseOut pin

4, Undefined

31:7

Table 1.16 Bit fields in the Command register
The ErrorCode register is an 8 bit register used for debugging after a crash. This register is read only.

ErrorCode #1004 Read only

Bit Bit field Function

7:0 ErrorCode Contains an error code which can be used for debugging after a
crash. Refer to table 1.8, page 278 for the error code definitions.

31:8 Undefined

Table 1.17 Bit fields in the ErrorCode register

1 IMS C100 system protocol converter preliminary data 291

The DSLinkPLL register contains the SpeedMultiply bit field and is used to program the DS-Link speeds.
This takes the 10 MHz clock and multiplies it by a programmable value to provide the root clock for all the
DS-Links. Refer to section 1.7.1 for further details.

DSLinkPLL #1005 Read/Write
Bit Bit field Function

5:0 SpeedMultiply Sets DS-Link master clock to required value (see table 13.3).

31:6 Undefined

Table 1.18 Bit fields in the DSLinkPLL register

A bit set in the Status register indicates the current status (high or low) of a pin or flag. The status register
is read only. .

Status #1006 Read only

Bit Status of pin/flag Bit description

0 Mode0 Set if the Mode0 pin has been asserted.

1 Modet1 Set if the Mode1 pin has been asserted.

2 OSLinkOHalfSpeed Set if the OSLinkOHalfSpeed pin has been asserted.

3 OSLink123HalfSpeed | Set if the OSLink123HalfSpeed pin has been asserted.

4 DSLinkOHalfSpeed Set if the DSLinkOHalfSpeed pin has been asserted.

5 DSLink123HalfSpeed | Set if the DSLink123HalfSpeed pin has been asserted.

7 Booting Set by the Boot16, Boot32 commands. This flag is reset by the Reset
command or by the last BootData command.

8 Booted Set by the last BootData command or the ReBoot command. This flag
is reset by the Reset or Stop commands.

6, Undefined

31:9

Table 1.19 Bit fields in the Status register
Data DS-Link configuration registers

Each DS-Link has three registers, the DSLinkMode register, DSLinkCommand register and DSLink-
Status register.

In addition the configuration space contains the DSLinkPLL register which contains the SpeedMultiply
bit, see table 1.18.

The DSLink0-3Mode registers power up into a default state and may be reprogrammed before or after
the link has been started.

DSLinkMode #8001, #8101, #8201, #8301 Read/Write

Bit Bit field Function

1.0 SpeedDivide Sets transmit speed of the DS-Link (see table 1.10).
00=/1,01=/2,10=/4,11=/8

2 SpeedSelect Sets the DS-Link to transmit at the speed determined by the Speed-
Divide bits as opposed to the base speed of 10 Mbits/s.

3 LocalizeError When set errors are no longer reported to the control link. Packets in
transit at the time of an error will be discarded or truncated.

4 1 (RESERVED) This bit should be written as 1.

31:5 Undefined

Table 1.20 Bit fields in the DSLink0-3Mode registers

292 Communications support devices

The DSLink0-3Command registers are write only and contain four bits which when set cause a specific
action to be taken by the DS-Link.

DSLinkCommand #8002, #8102, #8202, #8302 Write only
Bit Bit field Function
0 ResetLink Resets the link engine of the DS-Link. The token state is reset, the

flow control credit is set to zero, the buffers are marked as empty, and
the parity state is reset.

1 StartLink When a transition from O to 1 occurs the DS-Link will be initialized and
commence operation.
ResetOutput Sets both outputs of the DS-Link low.
3 WrongParity The DS-Link output will generate incorrect parity. This may be used
to force a parity error on a transputer at the other end of the DS-Link.
31:4 e Undefined

Table 1.21 Bit fields in the DSLink0-3Command registers

The DSLink0-3Status registers are read only and contain six bits which contain information about the
state of the DS-Link.

DSLinkStatus #8003, #8103, #8203, #8303 Read only
Bit Bit field Function
0 LinkError Flags that an error has occurred on the DS-Link.
1 LinkStarted Flags that the output DS-Link has been started and no errors have
been detected.
2 ResetOutputCom- Flags that ResetOutput has completed on the DS-Link.
plete
3 ParityError Flags that a parity error has occurred on the DS-Link.
DiscError Flags that a disconnect error has occurred on the DS-Link.
5 TokenReceived Flags that a token has been seen on the DS-Link since ResetLink.
31:6 Undefined

Table 1.22 Bit fields in the DSLink0-3Status registers
All data links

The subsystem set of all four data DS-Links has a unique address #FF. This address referring to the set
of DS-Links should be used when writing (poking) to the associated register for each of the four DS-Links.
For example, to simultaneously write to all four DS-Link command registers (DSLink0-3Command),
address #FF02 should be used.

Control link configuration registers

The link module hardware in each control link is identical to that in each data DS-Link. An equivalent set
of configuration bit fields is provided for each control link, as for the data DS-Links.

Write lock registers
This register is not used on the IMS C100.

CPUWriteLock #8004,#8104,#8204,#8304,#8FD4,#8FE4, Read/Write
Bit Bit field Function
0 WriteLock Not used on the IMS C100.

Table 1.23 Bit fields in the CPUWriteLock register

1 IMS C100 system protocol converter preliminary data 293

1.10

Electrical specifications

Inputs and outputs are TTL compatible.

1.10.1 Absolute maximum ratings
Symbol Parameter Min Max Units | Notes
vDD DC supply voltage 0 7.0 \% 1,2,3,4,
5

Vi, Vo Voltage on input and output pins -0.5 VDD+0.5

li Input current

tosc Output short circuit time (one pin)

Ts Storage temperature —65

Table 1.24 Absolute maximum ratin

Notes

1 All voltages are with respect tc GND.

2 Power is supplied to the device via the VDD and GNI s. Several of each are provided to mini-
mize inductance within the package. All supply pins mustibe connected. The supply must be de-
coupled close to the chip by at least one 100 nF inductance (e.g. ceramic) capacitor between
VDD and GND. Four layer boards are recom ; if two layer boards are used, extra care
should be taken in decoupling.

3 Input voltages must not exceed sp on with respect to VDD and GND, even during power-
up and power-down ramping, fchup can occur. CMOS devices can be permanently
damaged by excessive period tehup.

4 Thisis a stress rating onlyﬁa nal operation of the device at these or any other conditions
beyond those indicated. i operating sections of this specification is not implied. Stresses
greater than those listed may cause permanent damage to the device. Exposure to absolute
maximum ratlng conditio r extended periods may affect reliability.

5 This device contam itry to protect the inputs against damage caused by high static voltages

However, it is advised that normal precautions be taken to avoid application
gher than the absolute maximum rated voltages to this high impedance circuit.
hould be tied to an appropriate logic level such as VDD or GND.

6 t current applies to any input or output pin and applies when the voltage on the pin is

en GND and VDD.
1.10.2 Operating conditions
Symbol Parameter ' Min Max Units | Notes
vDD DC supply voltage 4.75 5.25 \' 1
Vi, Vo Input or output voltage 0 VDD \Y 1,2
Table 1.25 Operating conditions
Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended.

294 Communications support devices

1.11 Recommended decoupling

1.11.1 Power decoupling

Power is supplied to the device via the VDD and GND pins. Several of each are provided to minimize induc-
tance within the package. All supply pins must be connected. The supply must be decoupled close to the
chip by at least one 0.1 uF ceramic capacitor between VDD and GND.

1.11.2 Phase locked loop decoupling

The internally derived power supply for internal clocks requires an external low leakage, low inductance
2 uF capacitor to be connected between CapPlus and CapMinus. A surface mounted ceramic capacitor
should be used. In order to keep stray inductances low, the total PCB track length should be less than
20 mm, thus the capacitor should be no more than 10 mm from the chip. The connections must not touch
power supplies or other noise sources.

VDD
E CapPlus P.C.B track
; 1
Phase-locked Decoupling
loops T capacitor 2 mF
I
Q CapMinus P.C.B track
GND

Figure 1.29 Recommended PLL decoupling

1.12 Clocks

1.121 Clock input

The high frequency internal clocks are derived from the clock frequency supplied by the user. The user
supplies the clock frequency for input to the PLL’s via the Clockin input. The nominal frequency of this
clock for all transputer family components is 5 MHz, regardless of device type, transputer word length or
processor cycle time.

A number of transputer devices may be connected to a common clock, or may have individual clocks
providing each one meets the specified stability criteria. In a multi-clock system the relative phasing of
Clockin clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is
unimportant provided the specified limits of Clockin pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockin must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

The timing requirements for Clockln are given in section 1.13.2 of the Timing Specifications section.

1 IMS C100 system protocol converter preliminary data 295

1.13 Timing specifications

1.13.1 Reset and Analyse timings

ResetOut and AnalyseOut timings

Symbol Parameter Min | Nom | Max | Units | Notes
tROHROL ResetOut pulse width high 8 Clockin

tAOHROH AnalyseOut setup before ResetOut 3 ms

tROLAOL AnalyseOut hold after ResetOut end 1 Clockin

Table 1.26 ResetOut and AnalyseOut timings

AnalyseOut

ResetOut
tROHROL

Figure 1 30+ ut and AnalyseOut timing

Symbol Min | Nom | Max | Units | Notes
tTRHTRL Clocklin

tAIHTRH ms

tTRLAIL n»l:iold after TReset end 1 Clockin

Table 1.27 TReset and Analysein timings

Analyseln
JtAIHTHH

TReset

tTRHTRL {TRHTRL

Figure 1.31 TReset and Analyseln timing

296

Communications support devices

1.13.2 Clockin timings

Symbol Parameter Min | Nom | Max | Units | Notes
tDCLDCH Clockln pulse width low 40 ns

tDCHDCL Clockln pulse width high 40 ns

tbcLbeL Clockln period 200 ns 1,2
tber Clockln rise time 10 ns

oot Clockin fall time 8 ns

Table 1.28 Clockln timings
Notes

Measured between corresponding points on consecutive falling edgeé

This value allows the use of 200 ppm crystal oscillators for two de
a link. ;

s connected together by

Clock transitions must be monotonic within the range ViH toV|L (rgfék to Electrical specifications
section 1.10). |

Figure 1.32 Clockln timing

1 IMS C100 system protocol converter preliminary data

297

1.13.3 DS-Link timings

Table 1.29 DS-Link timings

Symbol Parameter Min Nom Max Units
tLoDsr DSLinkOut rise time 4

tLopst DSLinkOut fall time 4

tLIDSr DSLinkIn rise time 4

tLIDSf DSLinkin fall time 4

fLIHL Input edge resolution 2 ns
tDsbs Bit period 10 100 ns
AtDSO Data / strobe output skew

Cuz DSLinkIn capacitance 7

DSLinkOutData 90%
DSLinkOutStrobe

«— tLODSf

DSLinkInData } 0% —TT & T N

DSLinkIinStrobe

«— {LIDST

tDSDS]
DSLinkOutData .| -~ . X/ X/ 15V
DSLinkOutStr :
AtDSO
DSLinkinData DSLinkInStrobe >
DSLinkinStrobe L DSLinkinData
tLIHL—> tLIHL—

Figure 1.33 DS-Link timing

298 Communications support devices

1.13.4 OS-Link timings

Symbol Parameter Min Nom Max Units | Notes
tar OSLinkOut rise time 20 ns 1
tJaf OSLinkOut fall time 10 ns 1
tJDr OSLinkin rise time 20 ns 1
tJDf OSLinkln fall time 20 ns 1
tyaip Buffered edge delay 0 ns
AtiB Variation in tJaJD 20 Mbits/s 3 ns 2
10 Mbits/s 10 ns 2
5 Mbits/s 30 ns 2
CLiz OSLinkin capacitance @ f=1MHz 7 pF 1
CLL OSLinkOut load capacitance 50 pF

Table 1.30 OS-Link timings
Notes

Guaranteed, but not tested.

2 This is the variation in the total delay through buffé?s;ftransmission lines, differential receivers
etc., caused by such things as short term variation in supply voltages and differences in delays
for rising and falling edges.

OSLinkOut

OSLinkin . ‘1

OSLinkOut 15V ————— > —————————.

Latest tJQJp
Earliest tJQiD

OSLinkin 15V————————— X X—————

Figure 1.35 Buffered OS-Link timing

1 IMS C100 system protocol converter preliminary data

1.14 Pin designations

The following tables outline the function of each of the pins. Pinout details are given in section 1.15.

Signal names are prefixed by not if they are active low, otherwise they are active high.

Supplies
Pin In/Out | Signal description

vDD Power supply
GND Ground

Table 1.31 IMS C100 supplies

Clocks
Pin In/Out | Signal description
CapPlus, CapMinus External capacitor for internal clock power supply
Clockin in 5 MHz input clock

Table 1.32 IMS C100 clocks

Links
Pin In/Out | Signal description
OSLinkin0-3 in OS-Link input data channels
OSLinkOut0-3 out OS-Link output data channels
DSLinkinData0-3 in DS-Link input data channels
DSLinkinStrobe0-3 in DS-Link input strobes
DSLinkOutData0-3 out DS-Link output data channels
DSLinkOutStrobe0-3 out DS-Link output strobes
CLinkinData0-1 in Control link input data channels
CLinkinStrobe0-1 in Control link input strobes
CLinkOutData0-1 out Control link output data channels
CLinkOutStrobe0-1 out Control link output strobes
OSLinkOHalfSpeed in OS-Link 0 speed selection
OSLink123HalfSpeed in 0O8S-Link 1, 2, 3 speed selection
DSLinkOHalfSpeed in DS-Link 0 speed selection
DSLink123HalfSpeed in DS-Link 1, 2, 3 speed selection

Table 1.33

IMS C100 links

300 Communications support devices

Control unit

Pin In/Out | Signal description

Reset in System reset

ResetOut out ‘Asserts the Reset pin on any connected T9-series or
T2/T4/T8-series device.

TReset in Mode 0 T2/T4/T8-series transputer reset.
In modes 1-3 this pin must be tied to GND

Error in Modes 1-3 error indicator — message sent from CLinkO.
In mode 0 this pin must be tied to GND

Analyseln in Mode 0 error analysis
In modes 1-3 this pin must be tied to GND

AnalyseOut out Mode 1-3 error analysis — a Stop message received on
CLinkO0 causes this pin to be set high.
In mode 0 it is low.

Mode0-1 in Mode of operation

Table 1.34 IMS G100 control unit

JTAG support

The IMS C100 supports the IEEE 1149.1 test standard which has been agreed by the Joint Test Action
Group (JTAG). There are five pins which support the JTAG standard.

Pin In/Out | Signal description
TDI in Test data input
TDO out Test data output
TMS in Test mode select
TCK in Test clock
notTRST in Test logic reset

Table 1.35 IMS C100 JTAG support pins

Miscellaneous

Pin In/Out Signal description
HoldToGND Must be connected to GND
DoNotWire Must not be wired

Table 1.36 IMS C100 miscellaneous pins

1 IMS C100 system protocol converter preliminary data 301

1.15 Package specifications

The IMS C100 is available in a 100 pin ceramic quad flatpack (CQFP) package and a 100 pin plastic quad
flatpack (PQFP) package. It is intended for cavity up assembly and the dimensions detailed below apply
to cavity up installation.

1.15.1 IMS C100 100 pin cavity-up CQFP package pinout
prppp) 5
=== = 52 =
55858 S-B, 28 2
ZZZZZoo 8 85T5onCux_o
S8E888BEEEESEXBES 2R
OND ——4 95 90 85 80 T—=1T"3 GND
VDD T D\ T VDD
CLinkinData0 —1— f \ T DoNotWire
CLinkInStrobe0 CI—] 1 DoNotWire
GND T—||5 —T— DoNotWire
CLinkOutData0 —1—] 75| |=—T— DoNotWire
CLinkOutStrobe0 —I—] —T— GND
ClinkInDatal C—T— —1— VDD
CLinkInStrobel ——T— 1 DSLinkOutData3
v =—||10 [——1— DSLinkOutStrobe3
CLinkOutData?] . 70||=—1—= GND
CLinkOQutStrobe! —I— IMS €100 11 DSLinkinData3
GND T 7 : f —T— DSLinkInStrobe3
0SLinkin3 ———| ! O% %'”ﬂcfranz('c T DSLinkOutData2
0SLinkout3 =—|5 quad-tiaipac T DSLinkOutStrobe?
0SLinkin2 —1—— cavity up 65||——= vbD
OSLinkOut2 —T— fop view 1 DSLinkinData2
VDD T DSLinkinStrobe2
GND T DSLinkOutDatat
HoldToGND TT—| |20 DSLinkOutStrobel
Clockln —T— 60 GND
Mode0] DSLinkinDatat
CapPlus 1 DSLinkInStrobel
CapMinus % DSLinkOutData0
Model T 25 DSLinkOutStrobe0
HoldToGND. BT 55 VDD
HoldToGND E—1—] DSLinkinData0
GND 1T DSLinkInStrobe0
VDD] \\ J GND
GND —1T— 30 35 40 45 50 VDD
L3222 LLE383282223832
T XSO 828023835 82>0
A5 5E 35 ¢¢ og €9
83 84 23 2z 33 :2
N X N x
x5 =5
= A8
(@] o

Figure 1.36 IMS C100 100 pin cavity-up CQFP package pinout

302

Communications support devices

1.15.2 100 pin CQFP package dimensions

CONTROL DIMENSIONS mm

ALTERNATIVE DIMENSIONS INCH

MIN

NOM

MAX

MIN

NOM

MAX

3.400

0.134

Al 0.250

0.010

3.073

0.121

B 0.220

0.380

0.009

0.15

C 0.130

0.230

0.005

0.008

D 23.650

24.150

0.931

0.851

D1 |} 19.800

20.000

20.200

0.780

0.787

0.795

D3 -

[18.850REF

E 17.650

18.150

0.695

0.742REF

0.715

E1] 13.840

14.000

14.150

0.545

0.551

0.5657

12.350REF

0.486REF

0.650BSC

0.026BSC

0.004

0.100
7

—|x|o|o
o

0.800

0.950

olo
MR
(=2

0.031

7
0.037

D1
D3

70| |=—==>

65||—r=

80||[——=

5

30 3 40 45 50 f—1=

Notes;

1. Maximum lead displacement from
centre line = £0.125mm

notional

A

Figure 1.37

100 pin CQFP package dimensions

1 IMS C100 system protocol converter preliminary data

303

1.15.3 IMS C100 100 pin cavity-up PQFP package pinout
pepop =1
S5555 3 . 89 5
2222200 88855500 0x_o
S88E88GSEEESEEEES 22RRR
oND 7 1 95 0 85 0 GND
VDD T O VDD
ClinkinData0 —1T— DolNotWire
CLinkInStrobe0 —1— DoNotWire
GND = |5 DoNotWire
CLinkOutData0 —1T— 75 BoNotWire
CLinkOutStrobe0 —1— GND
CLinkinDatat vDD
CLinkInStrobel E DSLinkOutData3
VDb T |10 DSLinkOutStrobe3
ClLinkOutDatal t—I— 70 GND
CLinkOutStrobel C—I—— IMS C100 DSLinkinData3
GND —— ; f DSLinkInStrobe3
OSLinkin3 =] 100 dplfnl flGSL'C DSLinkOutData2
0SLinkOut3 ———] |5 quad Tlatpac DSLinkOutStrobe2
0SLinkin2 —T—] cavity up 65 VDD
OSlinkOut2 —1I— Top view DSLinkinData2
VDD T DSLinkInStrobe2
GND 1 DSLinkOutDatal
HoldToGND E=T——1 |20 DSLinkOutStrobel
Clockin —I—] 60 GND
Mode0 —T— DSLinkinDatat
CapPlus T—I—] DSLinkInStrobet
CapMinus —T— DSLinkOutData0
Model T=T— |25 DSLinkOutStrobe0
HoldToGND CT—T—] 55 vDD
HoldToGND CT—T— DSLinkinData0
GND —r— DSLinkinStrobe0
VDD GND
GND 0 35 40 45— 50 VDD
EE82E2LL838282228882
EC0-E3OEET RG>3R LE>0
AE e 22 £2 g 29
°d #g 22 32 F is
S N
=35 x5
o [}

Figure 1.38

IMS C100 100 pin cavity-up PQFP package pinout

304

Communications support devices

1.15.4 100 pin PQFP package dimensions

CONTROL DIMENSIONS mm

ALTERNATIVE DIMENSIONS INCH

MIN

NOM

MAX

MIN

NOM

MAX

3.400

0.134

Al 0.100

0.360

0.004

0.014

A2 | 2450

2.800

3.050

0.096

0.120

B 0.220

0.380

0.009

0.15

C 0.130

0.230

0.005

0.009

D || 22.950

24.150

0.904

0.951

D1] 19.900

20.000

20.100

0.783

0.787

0.791

18.850REF

0.742REF

E 16.950

18.150

0.667

0.715

E1] 13.900

14.000

14.100

0.547

0.551

0.555

[12.350REF

0.486REF

0.026BSC

0.650BSC

0.100
7

0.004
7

0.800

0.950

0.031

0.037

0.580REF

0.023REF

0.830REF

0.033REF

E1

J|~-—ZD

D1
D3

E3

Notes;

| THEITTAe L

ikl

E

1. Maximum lead displacement from
= £0.125mm.

notional

centre line

~C

O'MIN

Figure 1.39

100 pin PQFP package dimensions

Chapter 2 IMS C104 packet routing switch product preview 305

MOos:

IMS C104
packet routing
switch

Product preview

FEATURES

32 way programmable packet router
100 Mbits/s serial bi-directional links
640 Mbytes/s bandwidth
Concurrent processing of packets
High rate of packet processing

— up to 200 M packets/s
Less than 1 p second packet latency
Non-blocking crossbar
Separate control system
Wormhole interval routing algorithm
Cascadable to any depth
No loss of signal integrity
Partitioning
Grouped adaptive routing

CLink 0

System Command |
services processor ||

1

- Link 0

ClLink 1

32x32
Crossbar
switch : .

- Link 31

This is preliminary information on a product under development and product details may change.

‘ SGS-THOMSON
Y/, MICROELECTRONICS

February 1993

INMOS is a member of the SGS-THOMSON Microelectronics Group 42 1470 02

306 Communications support devices

2.1 IMS C104 introduction

The IMS C104 is a complete, low latency, packet routing switch on a single chip. It connects 32 high band-
width serial communication links to each other via a 32 by 32 way non-blocking crossbar switch, enabling
messages to be routed from any of its links to any other link. The links operate concurrently and the trans-
fer of a packet between one pair of links does not affect the data rate for another packet passing between
a second pair of links. Each link can operate at up to 100 Mbits/s, providing a bidirectional bandwidth of
20 Mbytes/s, with the IMS C104 supporting a rate of packet processing of up to 200 Mpackets/s.

The IMS C104 allows communication between IMS T9000 transputers that are not directly connected.
A single IMS C104 can be used to connect up to 32 IMS T9000 transputers. The IMS C104 can also be
connected to other IMS C104s to make larger and more complex switching networks, linking any number
of IMS T9000 transputers, link adaptors, and any other devices that use the link protocol. Another member
of the IMS T9000 product family, the IMS C101 flexible link adaptor, will allow links to be interfaced to pe-
ripheral buses and devices.

The IMS C104 enables networks to be built which effectively emulate a direct connection between each
of the devices in the system. In the absence of any contention for a link output, the packet latency will be
less than 1p second.

A message on a IMS C104 communication system is transmitted as a sequence of packets. To ensure
that packets which are parts of different messages can be routed, each packet contains a header. The
IMS C104 uses the header of each packet arriving to determine the link to be used to output the packet.
Anything after the header is treated as the packet body until the packet terminator is received. This en-
ables the IMS C104 to transmit packets of arbitrary length.

In most packet switching networks complete packets are stored internally, decoded, and then routed to
the destination node. This causes relatively long delays due to high latency at each node. To overcome
this limitation, the IMS C104 uses wormhole routing, in which the routing decision is taken as soon as the
routing information, which is contained in the packet header, has been input. Therefore the packet header
can be received, and the routing decision taken, before the whole packet has been transmitted by the
source. A packet may be passing through several nodes at any one time. Thus, latency is minimized and
transmission can be continuous.

The term wormhole routing comes from the analogy of a worm crawling through soil, creating a hole that
closes again behind its tail. Wormhole routing is invisible as far as the senders and receivers of packets
are concerned, its only effect is to minimize the latency in message transmission.

The routing algorithm which makes the routing decision is called interval labeling, which is complete, dead-
lock free, inexpensive and fast. Each destination in a network is labeled with a number, and this number
is used as the destination address in a packet header. Each link in a routing switch is labeled with an inter-
val of possible header values, and only packets whose header value falls within that interval are output
via that link.

The IMS C104 contains a hardware mechanism to allow independently programmed networks to be con-
nected together. It also has additional circuitry to reduce the impact of message congestion on worst-case
latency and bandwidth, in heavily loaded networks.

The IMS C104 is controlled and programmed via a control link. The IMS C104 has two separate control
links, one for receiving commands and one to provide daisy chaining. The control links enable networks
of IMS T9009 transputers and IMS C104s to be controlled and monitored for errors. The control links can
be connected into a daisy chain or tree, with a controlling processor, such as an IMS T9000, at the root.

A set of tools is available to support the configuration of IMS T9000 systems. The tools provide support
in the configuration and initialization of networks consisting of IMS T9000 processors and IMS C104 rout-
ing switches. Refer to The T9000 Development Tools Preliminary Datasheets (document number
72-TRN-249-00) for further details.

Chapter 3 IMS C101 parallel DS-Link adaptor product preview 307

0 IMS C101
parallel DS-Link

adaptor

ﬁ[ﬁ]mOS® Product preview

FEATURES

Standard DS-Link protocol

Converts between parallel bus and DS-Links

Optional FIFO interfaces

Interfaces to packet routing networks

Performs DS-Link packetization

Variable packet length capability

Packetization function can be disabled to provide Tx data
simple point to point connection :y FIFO $

Provides point-to-point bi-directional handshaken | — _ _N\
FIFO function Tx data>

Supports T9000 virtual links and virtual routing |~V

64 byte Tx and Rx FIFOs optimize packet
processing performance Signals

Programmable parallel bus interface (8, 16 or -—
32 bit)

Optional bus parity checking

100 Mbits/s unidirectional bandwidth

Interrupt capability

Independent clock systems N

100 pin quad flat pack package Rx data

Single +5V =+ 5% power supply <:: FIFO <):

APPLICATIONS
Connecting microprocessors/peripherals to

T9000 transputers
Connecting microprocessors/peripherals to <):(>
C1xx communications family devices
High speed link between microprocessors
Inter-family microprocessor interfacing
Allow ATM, Fibrechannel and other networking
nodes to take advantage of INMOS’ virtual
routing technology

Combine

K

i} Tx frame |_y|
buffer —V

DS-Link

Rx frame
buffer <):

il

Interface adaptor

AN
I
X
E
| &
Separate

System services

This is preliminary information on a product under development and product details may change.

Lyy SGS-THOMSON
Y/, MICHOELECTRONICS February 1993

INMOS is a member of the SGS-THOMSON Microelectronics Group 42 1593 00

308 Communications support devices

immos’ Appendix A 309

IMS T9000 special
values

310

A1 IMS T9000 special values

A number of values are used by the IMS T9000 transputer to indicate the state of a process and other
special conditions. These are shown in table A1.1.

Name Value Meaning
Deviceld Depends on A value used to identify the type and revision of transputer. Each
transputer type. | product is allocated a unique group of numbers. The value of the
device id for the IMS T9000 is in the range 300 to 319. The device
id is returned by the /ddevid instruction.

NotProcess.p #80000000 Used, wherever a process descriptor is expected, to indicate that
there is no process.

NoneSelected.o | #FFFFFFFF Stored in the pw.Temp slot of a process’ workspace while no
branch of an alternative has been selected during the waiting and
disabling phases.

Disabling.p #80000003 Stored in the pw.State location while an aiternative is being dis-
abled.

Enabling.p #80000001 Stored in the pw.State location while an alternative is being en-
abled.

Ready.p #80000003 Stored in the pw.State location during the enabling phase of an al-
ternative, to indicate that a guard is ready.

Waiting.p #80000002 Stored in the pw.State location by altwt (alt wait) and faltwt (timer
alt wait) to indicate that the alternative is waiting.

LengthError.p #FFFFFFFF Stored in the pw.Length slot of a process’ workspace to indicate
that the number of bytes received by a vin (variable input) instruc-
tion was more than the maximum specified.

NullHeader #FFFFFFFF Used where a null virtual channel header is needed.

NullOffset #FFFFFFFF Used where a null virtual channel header offset is needed.

Deactivated.p #80000001 Stored in a channel word to indicate that the channel is deactivated.

ResChan.p #80000002 Stored in a channel word to indicate that it is in resource channel
mode.)

Stopping.p #80000003 Stored in a channel word to indicate that the channel is stopping.

TimeNotSet.p | #80000002 Stored in pw.TLink location during enabling of a timer alternative
after a time to wait for has been encountered.

TimeSet.p #80000001 Stored in pw.TLink location when a timer alternative has been en-
abled.

Table A1.1 Constants used within the IMS T9000

immos’ Appendix B

1) IMS T9000 qmck
reference guide

312

B1 IMS T9000 quick reference guide

This section is intended to provide a quick reference guide to all the key data required to run the device.
The following is a listing of all the information contained in this section.

IMS T9000 electrical specifications

IMS T9000 timings

IMS T9000 processor speed select table
IMS T9000 link speed select table

IMS T9000 package details

B1 IMS T9000 quick reference guide 313

B1.1 Electrical specifications
B1.1.1 Absolute maximum ratings
Symbol Parameter Min Max Units | Notes
VDD DC supply voltage 0 7.0 \ 1,2,3,4,
5
Vi, Vo Voltage on input and output pins -0.5 VDD+0.5 V 1,3,4,5
li Input current +25 mA 6
tosc Output short circuit time (one pin) 1 s 4
Ts Storage temperature —65 150 4
Table B1.2 Absolute maximum ratings

Notes -

1 All voltages are with respect to GND. ’

2 Power is supplied to the device via the VDD and GND plns Several of each are provided to mini-
mize inductance within the package. All supply pins must be connected. The supply must be de-
coupled close to the chip by at least one 100 nF lowsitiductance (e.g. ceramic) capacitor between
VDD and GND. Four layer boards are recommeﬂded Ftwo layer boards are used, extra care
should be taken in decoupling. b

3 Input voltages must not exceed specific ith respect to VDD and GND, even during power-
up and power-down ramping, otherwise Up can occur. CMOS devices can be permanently
damaged by excessive periods of latchup

4 Thisis a stress rating only and fi ‘c’n nal operation of the device at these or any other conditions
beyond those indicated in the gper, ting sections of this specification is not implied. Stresses
greater than those listed cause permanent damage to the device. Exposure to absolute
maximum rating condit extended periods may affect reliability.

5 This device contains circuitry to protect the inputs against damage caused by high static voltages
or electrical fields. However, it is advised that normal precautions be taken to avoid application

i higher than the absolute maximum rated voltages to this high impedance circuit.
,U«Wid be tied to an appropriate logic level such as VDD or GND.
6 t applies to any input or output pin and applies when the voltage on the pin is
ND and VDD.
B1.1.2 Operating conditions
Symbol Parameter Min Max Units | Notes
VDD DC supply voltage 4.75 5.25 \' 1
Vi, Vo Input or output voltage 0 VDD \% 1,2
CL Load capacitance on any pin pF 3
Table B1.3 Operating conditions

Notes

1 All voltages are with respect to GND.

2
3

Excursions beyond the supplies are permitted but not recommended.

Maximum capacitance per address/ strobe/ data pin given in table B1.4.

314

B1.1.3 Power rating

Symbol Parameter Max Units
Cpina Capacitance per address pin 250 pF
Cpins Capacitance per strobe pin 60 pF
CpinD Capacitance per data pin 60 pF
npa * Cpina | Total address bus capacitance 2500 pF
nps * Cpins | Total strobe pins capacitance 500 pF
npp * Cpinp | Total data bus capacitance 5000 pF

Table B1.4 Capacitance specifications

T9000-50
T9000-40
Power
PINT
W

T T T T T T B T T T T 1
44 46 48 50 52 54 586
VDD Volts

Figure B1.1, lnfernal power dissipation vs VDD

3.4
' Power
PINT 3.0+
2.8
2.6
2.4

2.24

2 T T T T T
30 35 40 45 50 55 60

Processor frequency MHz

Figure B1.2 Typical peak internal power dissipation with processor speed

B1 IMS T9000 quick reference guide

315

B1.2 Timing specifications

The following timings are based on simulations of the 50 MHz version of the IMS T9000 chip, and may
change when full characterization is completed. The simulations were run under a loading of 75 pF unless
otherwise stated.

B1.2.1 Clockin timings

Symbol Parameter Min | Nom | Max | Units | Notes

tDCLDCH Clockin pulse width low 40 ns

tbcHDCL Clockin pulse width high 40 ns

tbcLDCL Clockin period 200 ns 1,2

tDor Clockin rise time ‘ns- 3

tDct Clockin fall time " ns 3
Table B1.5 Clockln timings

Notes

Measured between corresponding points on consecutive falling edges.

2 This value allows the use of 200 ppm crystal oscillators for two devices connected together by

a link.

3 Clock transitions must be monotonic with

section B1.1).

in the range VIH to VIL (refer to Electrical specifications

tDCLDCH i tDCHDCL

tDCLDCL

Figure B1.3 Clockln timing

316

B1.2.2 ProcClockOut timings

The simulations were run under a range of output loads from 10 pF to 70 pF (capacitive only).

Symbol Parameter Min Nom Max Units |Notes

tPcLPCL ProcClockOut period 20 ns

tPCHPCL ProcClockOut pulse width high 9.0 10 11.4 ns

tPCLPCH ProcClockOut pulse width low 8.6 10 11.0 ns

tPCstab ProcClockOut stability % 1
Table B1.6 ProcClockOut timings

Notes

1 Stability is the variation of cycle periods between two consecutive o sles,

sponding points on the cycles.

measured at corre-

tPCLPCH '

tPCLPOL:

B1 IMS T9000 quick reference guide 317

B1.2.3

Programmable memory interface timings

The IMS T9000 PMI has three types of pins; address, data and strobe pins. The falling and rising edges
of the strobe pins are programmable through the configuration registers. The following specification is giv-
en either as an absolute timing value or as a skew (AtsPeC) from the nominal programmed value (tn). The
relationship between the parameter (tSPEC) as specified on the timing diagrams, the skew and the pro-
grammed value is as follows: tSPEC = tn + AtSPEC.

Symbol | No. | Parameter Min Max Units | Notes

Atavsy |1 Address setup to strobe valid -6 +2 ns |12

Atsvay |2 Address hold after strobe valid —2 +6 ns |13

Atsvsv |3 Strobe valid to strobe valid -4 +4 ns |1,4

AtsLSH |4 Strobe low to strobe high —4 t4 .| ns |15

AtsHsL |9 Strobe high to strobe low -4 4 | nms |15

tRDS 5 Read data valid after notMem- 5((N*4)_é1)_13" ns |9
CAS low

tRoH |6 |Read data hold after notMem- | 5(N#4)—e2)—10| ns |10
CAS high .

AtwDs |7 Write data setup before related —4 o +4 ns |6,8
strobe low ; ~

AtwDH | 8 Write data hold after related g —4 ’ ns |7,8
strobe high e .

tsvwv 10 | Wait setup time : 5((m=*4)-e1)-8 ns |11,12

tsvwi 11 Wait hold time | B{tm*4)-e1)+7 ns |11,12

Table B1.7 PMI AC specifications
Notes

1

2

8
9

The timings are based on the fblf@wing loading conditions: address pin loaded with 75 pF and
strobe pins loaded with 75 pF.

The nominal value is given by:the programmed position of the falling edge (RASEdgeTime or
E1Time) of the RAS, CAS.or'PS strobe.

The nominal value is given by the programmed length of the sub-cycle (RASTime or CASTime)
minus the pregrammed position of the falling strobe edge (RASEdgeTime or E1Time).

The nomki:nal“v'alue is given by the absolute difference between any pair of falling edges
(RASEdgeTime or E1Time) or any pair of rising edges (E2Time) or any falling to rising pair of
strobes.”

The nominal strobe pulse width is given by the difference between the programmed falling
(RASEdgeTime or E1Time) and the programmed rising edge (E2Time) of a RAS, CAS or PS
strobe. This is applicable to a positive or negative pulse.

The nominal value is given by the programmed E1Time for notMemCASO0-3 or not-
MemWrB0-3.

The nominal value is given by the programmed CASTime minus the programmed position of
the rising edge of notMemCASO0-3 or notMemWrB0-3. Output data may be held indefinitely if
there are no subsequent external cycles.

Timings are for all four byte write strobes notMemWrB0-3.

Where, N is the number of CASTime cycles and el is the programmed falling edge position
(E1Time).

10 Where, N is the number of CASTime cycles and e2 is the programmed rising edge position

11

(E2Time).
A wait state will be inserted between cycle m and cycle m+1 in an n cycle access if the specified
relationship is met.

12 In an n cycle access a wait cycle cannot be added after cycle n. Also, a wait cycle cannot be

added before cycle 1.

318

Read cycle

! RASTime ‘

CASTime

column N

notMemRASO0-3

MemAddr2-31 J(rowM X

@ tSvVAvV

i
<—L (@ tsLsH ——
-

notMemCASO0-3

«—— (3)tsvev—>

—— (3 tsvey ——

I @tSLSH

notMemP$S0-3

MemData0-63

~—— (3 1tsvsv

~— ®RDs—> (B tRDH
—ﬂ

tAVSY | :
@ I ‘ , (@ tsvsv ‘
e (3) tsvsv—> (@ tsvsv ‘
> e
tavsv
—>‘ [1
| @tsvwi‘_
\
| tsvAv
‘ (9 tsLsH

Figure B1.5 Read cycle timing

B1 IMS T9000 quick reference guide 319

Write cycle

! RASTime ‘ CASTime ‘
! | |
MemAddr2-31 j(row M)‘< column N 1(

4 @ toay | ’

notMemRAS0-3 1 ‘
’ 1 (@ tsLsH ‘
tAvsv . -
@ ‘ (3 tsvsv ‘
\ «— (3) tsvsv—> N *@ tsvsv ’
ED tavsv|
| | @ow——"™
notMemCAS0-3 ’ ! |
©) tquv
’ ‘ — (DtsLsH
| < @tsvsv—> —— (3) tsvsv ——>| ‘
{ \ <— (@) tsLsH ;
. 3) tsvsv J
| ‘ G @ tgvav
notMemPS0-3 ’ ‘
‘ - (@ tsvsv |
| @ twos tWD}-I
. | —
notMemWrB0-3 ! ‘ '
| PN G
‘ ‘ 5 @tsLs @ tsvay. .
- (7)twD:
| ’ twDH ‘
- (1) tavsv !
|
MemData0-63 [‘ 2 data out —

Figure B1.6 Write cycle timing

320

Consecutive cycies

Cycle 2

Cycle 1

| |

| F(ASTlme‘ CASTime RASTime| CASTime |

Jﬁ ‘ .

MemAddr2- 31:%(row M X column N)krow IVTX column N X:
|

‘ , ! Il

notMemRASO0-3 | } . j '
[(9 tsHsL ‘

]] |
notMemCAS0-3 | l ! ‘ |
! (9 tsHsL- |

] | |

|

o | |
notMemPS0-3 ; ' \—/"— L@ - H\I

i

Figure B1.7 Cycle to cycle timing

B1 IMS T9000 quick reference

guide

321

Memory wait

| Cycle 1 ‘

|

‘ Cyclem ‘ Tw lecIe m+1‘CycIe m+21

| | |

|

| Cycle n I

|
| |
notMemRASO—34'_

notMemCASO—G‘

| |

MemAddr2-31 ‘

| \
| |
| |

|

|
|
MemWait m I %

10 ts

Figure B1.8 Memory wait timing

B1.2.4 Link timings

Symbol Parameter Min Nom Max Units
tLoDsr LinkOut rise time 4

tLoDSf LinkOut fall time 4

tLiDsr Linkin rise time 4

tLIDSf LinkIn fall time 4

tLHL Input edge resolution 2 ns
tDSDS Bit period 10 100 ns
AtDSO Data / strobe output skew 1 ns
CLiz Linkln capacitance 7 pF

Table B1.8 DS link timings

LinkQutData
LinkOutStrobe

«— tLODSH

LinkinData
LinkinStrobe

I , tDsSDS |
LinkOutData ___W ________________ 15V
LinkOutStrobe A‘ L '
AtDSO AtDSO
LinkinData LinkinStrobe
LinkIlnStrobe LinkinData
LHL tLIHL—>

Figure B1.9 DS link timing

B1 IMS T9000 quick reference guide 323
B1.3 Processor speed select
ProcSpeed ProcSpeed ProcSpeed Processor Processor Phase lock
Select2 Select1 Select0 clock speed cycle time loop factor
MHz ns (PLLx)
0 0 0 30 33.3 6.0
0 0 1 35 28.6 7.0
0 1 0 40 25.0 8.0
0 1 1 45 222 9.0
1 0 0 50 20.0 10.0
1 0 1 INMOS reserved
1 1 0 INMOS reserved
1 1 1 INMOS reserved
Table B1.9 Processor speed selection
B1.4 Link speed select
SpeedMultiply SpeedDivide1:0 BaseSpeed
0:0 0:1 1:0 1:1
/1 /2 /4 /8
8 80 40 20 10.0 10
10 100 50 25 12.5 10
12 Reserved 60 30 15.0 10
14 Reserved 70 35 17.5 10
16 Reserved 80 40 20.0 10
18 Reserved 90 45 225 10
20 Reserved 100 50 25.0 10

Table B1.10 Link transmission speed in Mbits/sec

324

B1.5 Package details

The dimensions and thermal characteristics detailed below apply to cavity down installation.

B1.5.1 208 pin CLCC package pinout

rB3

GND
notMemRA! 20
notQﬁmEé IMS T9000
ngiueﬁgg 208 pin ceramic
notMen! i 5
O thonp o5 leaded .Chlp carrier
CL(CHPRSIQDQEG cavity down
nStrobel .
ClnkOutDot top view
CLinkOutStrobel
CLinkOutS{robe:
CLinkOutDato.
CLinkInStrobe
CLinkInData.
ClockIn
ProcSpeedSelect?
GND =
CapPlus
CapMinus
VID
GND =
ProcSpeedSelect:
ProcSpeedSelect!
ProcClockDu
GNJ==1| 55 60 65 70 75 80 85 90 95
e P e ECELEE RS L RS L LSy oy
2Rean Sdadaass 3533388885335 S5EHESESE
000055 EEEEELEE EEEEEEEEEEELE T S0Jo S
2y LOUSUUTY UTaLoUSYNEIY EESLEEOEE
EXFs>>>>>3> S3¥355%35
558 552
3 3

= GND.

== MemDatab2
== MemDatab3
== notMemRf

== notMemBootCE
== Startf romROM
ese’

=1 R,

S
=== DoNotWire

== DoNotWire
== GND

=== HoldToGND
== HoldToVID

=k ventutl
F=Eventinl

EventDut2
E 2

— ventin.

== LinkDutStrobel
= VD]

= GND

Figure B1.10 208 pin CLCC package pinout

B1 IMS T9000 quick reference guide 325
B1.5.2 208 pin CLCC package dimensions
M CONTROL DIMENSIONS mm ALTERNATIVE DIMENSIONS INCH
MIN NOM MAX MIN NOM MAX
A - bl 3.500 bl - 0.138
Al 0.25 - - 0.010 = bl
A2 2.33 263 293 0.092 0.104 0.115
A3 = - 1.000 - - 0.039
B 0.180 = 0.280 0.007 - 0.011
c I 0400 - 0.200 0.004 - 0.008 Al A2
D 30.300 30600 30.900 1193 1.205 1.217 _.I A3
D1 | 27.700 28.000 28.300 1.091 1102 1114
D2 24.75 = 25.25 0.974 - 0.994
D3 - S5.500REF - = 1.004REF -
D4 2515 ol 26,25 0,990 bl 1.033 Jae)
E 30.300 30.600 30,900 1193 1.205 1.217
El] 27.700 28.000 28.300 1091 1.102 1114 i
E2 24.75 ol 25.25 0.974 - 0.994
E3 - 25.500REF - - 1.004REF - {
E4 25.15 - 26.25 0.990 = 1.033
e - 0.500BSC - - 0.020BSC ot
G - - 0.100 - - 0.004
K 0° = 7° 0° ~ 7" C =
L 0.300 0.500 0.700 0.012 0.020 0.028 —
ZD - 1.250REF - - 0.049REF -
ZE - 1.250REF = 0.049REF - i
"— O'MIN
Ef K
e E3 —~{ |z
~N I Y
i feR000RRRRAEAAAARA0RRRRAAAAAA0NAARRAREEARGAEAA00ND
- p— 205 200 195 190 185 180 175 170 165 160 | == -
Fg NS5, = 1~ 1
=k =
= 1po| =
= o =
= hs| ==
s =5
= 1ho| 55
= 19 = ®
o= 185 ==
= = <~ o~
= B = W 1ol 2 o $ _L §
= [= [=] a
= 25| =
= ps =
= 1pof =
= =
= s 5
e =
= ol B2
ol =
S 55 60 65 70 75 80 85 90 95 100 1% = [_
L LR L L ERRREE AL
E
Notes; @—-—‘ ,
G (Seating Plane Coplanarit
1. Maximum lead displacement from (9 P y)
notional centre line = £0.Imm,
Figure B1.11 208 pin CLCC package dimensions
B1.5.3 208 pin CLCC package thermal characteristics
The junction to case thermal resistance (8,¢) of the package is given below.
Symbol Parameter Min Nom Max |Units
04c Junction to case thermal resistance 1 °C/W

Table B1.11 Thermal resistance

326

Index for Parts 1 and 2

A CapPlus, 221
CASStrobe0-3, 169
accesses "
cacheable, 140 CASTime, 155
non-cacheable, 140 central processing unit, 65
page-mode, 155 configuration registers, 75
address bus, 150, 153 channel addresses, 196
Address0-3, 164 channels, 187
. byte-stream, 195
ajw, 79 events, 205
Areg, 65 external, 187
. internal, 187
autonomous operation, 107 resetting, 193
stopping, 194
B virtual, 189
ChanWriteLock, 202
bank switching, 159 CLink0-1, 110
BaseSpeed, 213 clock input, timings, 223
block move, 72 clock stability, 221
Boot, 116 Clockin, 221

boot sequence, 177 clocking system, 221

BootData, 116 configuration, 124

BootDataHandshake, 116 configuration bus, 225

BootHandshake, 116

booting
from link, 124

configuration bus masters, 225

configuration register addresses
cache, 230

central processing unit, 227
from ROM, 178 control link, 231

from ROM then link, 125 data/strobe link, 230

bootspace, 177 programmable memory interface, 227
timing, 178 scheduler, 230
system services, 229
Breg, 65 virtual channel processor, 229
BusReleaseTime, 155

configuration registers

byte-stream mode, 195 addresses, 225
cache, 146
control link, 110
C CPU, 75
data/strobe links, 215
cache programmable memory interface, 164
instruction and data, 129 system services, 113
workspace, 66 virtual channel processor, 199
cache instructions, 144 configuration space, 225
performance, 145 constants. See special values
CacheMode, 140, 167 control commands, 115
call, 79 control link, errors, 122

CapMinus, 221 control links, 110

328

Index for Parts 1 and 2

control system, 105
error codes, 121
errors, 121
tiers of handshaking, 106

CPeek, 116

CPeekHandshake, 116

CPoke, 116

CPokeHandshake, 116

CPU. See central processing unit
CPU write locking, 226

Creg, 65

crossbar switch, 134

cycle, 149

D

data bus, 150, 153

data/strobe links, 209
configuration registers, 215
errors, 213

de-activated channel, 193

debugging
P-processes, 83
systems, 123

DevicelD, 113
DeviceRevision, 113

direct memory access, 151, 163
disg, 194

DMA. See direct memory access
DoAllocate, 147
DoPMIConfigured, 168, 178
DoRamSize, 146

DRAM cycles, 155

DSLinkPLL, 114, 215

E

electrical specifications, 239
absolute maximum ratings, 239
operating conditions, 239

EmiBadAddress, 75
enbg, 194
endp, 68

error code, virtual channel processor, 200

Error message, 119
codes, 121

ErrorAddress, 168, 178
ErrorCode, 114, 121
ErrorHandshake, 119

errors
control link, 122
control system, 121
data/strobe links, 213
in stand alone mode, 122
programmable memory interface, 176
virtual channel processor, 204

event channel addresses, 206
Eventin0-3, 205
EventOut0-3, 205

events, 205

external bus cycles, 152

external cycles
DRAM, 155
non-DRAM, 158

ExternalRCBase, 197, 198

F

fdca, 145
fdel, 145

floating point
formats, 77
instructions, 78
registers, 77
rounding modes, 78

floating point unit, 77
floating-point status register, 77
forced air flow cooling, 236
FormatControl0-3, 165
FPAreg, 65, 77

FPBreg, 65, 77

FPCreg, 65, 77

FPstatusReg. See floating point status regis-
ter

FPU. See floating point unit

G

gajw, 79

Index for Parts 1 and 2

329

goprot, 79
grant, 194

H

HdrAreaBase, 197, 200
heat sinks, 236

ica, 145

icl, 145

Identify, 115

IdentifyHandshake, 115

in, 187

Initiallptr, 75

initialization
instruction and data cache, 147
links, 217

programmable memory interface, 177
virtual channel processor, 203

InitialWptr, 75

instruction
characteristics, 88
format, 85

instruction and data cache, 129
address bits, 131
arbitration, 138
cache memory, 132
configuration registers, 146
initialization, 147
line structure, 132
operation, 136
structure, 130

instruction pointer, 65
IptrReg. See instruction pointer

J

jo, 71

L

L-processes, 69
workspace, 69

Ident, 188
Idconf, 225
Iddevid, 88
Idtimer, 71

link
connections, 218
errors
reliable links, 214
unreliable links, 214
format, 209
initialization, 217
protocol, 209
reset, 217
speeds, 212
timings, 219

link disconnection, 213
link queues, 190
Link0-3Command, 215
Link0-3Mode, 215

links, 209
control, 110
data/strobe, 209
TTL compatibility, 218

LocalizeError
links, 213, 215
virtual channel processor, 202, 204

main cache. See instruction and data cache
Mask0-3, 164, 165
MemAddr2-31, 150
MembData0-63, 150
MemGranted, 151

memory management, 79
registers, 83

MemRegqin, 151
MemReqOut, 151
MemStart, 198
MemWait, 151, 171
message, 189
MininvalidChannel, 198
mkre, 194

ModeStatus, 113

move, 72

330

Index for Parts 1 and 2

N

nfix, 88

non-DRAM cycles, 158
notMemBootCE, 152, 178, 180
notMemCASO0-3, 151
notMemPS0-3, 151
notMemRASO0-3, 150
notMemRf, 152
notMemStrobe, 152
notMemWrB0-3, 150

(o)

out, 187

P

P-processes, 79
debugging, 83
region addresses, 80
region descriptor, 82

package dimensions, 208 pin CLCC, 234,
328

package pinout, 233, 327
package specifications, 233
package thermal characteristics, 234, 328

packets, 189
structure, 189

page-mode accesses, 155
parity errors, 213

Peek, 116
PeekHandshake, 116

performance, 101
cache instructions, 145
floating point operations, 78, 103
integer operations, 101
predefines, 104

pfix, 88
phase, 149
phase lock loop factor, 222

phase locked loops, 221
decoupling, 221

pin descriptions, 63

pipeline, 72
groupings, 73
operation, 73
stages, 72, 85

PMI. See programmable memory interface
PMIWriteLock, 175

Poke, 116

PokeHandshake, 116

PortSize, 167

power rating, 240

PrechargeTime, 155

primary instructions, 90

ProcClockOut, 222

processes, 67
active, 67
inactive, 67
L-processes, 69
P-processes, 79
priority, 68

processor clock output, timings, 224
processor speed, 222
ProcSpeedSelect0-2, 222

programmable memory interface, 149
configuration registers, 164
errors, 176
initialization, 177

ProgStrobe0-3, 169
protection, 79
PstateReg, 83

R

RamAddress, 147
RamLineNumber, 147
RamSize, 146
RASBIts0-3, 165
RASStrobe0-3, 169
RASTime, 155
Reason, 75

Reboot, 116
RebootHandshake, 116
RecoverError, 116, 122
RecoverErrorHandshake, 116
refill cycles, 141, 162
refill engine, 135

Index for Parts 1 and 2

331

refresh, 152, 174
RefreshControl, 174

region descriptor, 82
registers, 83

RegionReg0-3, 83
regions, 80
RemapBootBank, 175
replace pointer, 135
Reset, 126

Reset, 115

reset, 126
level 0, 126
level 1, 115, 126
level 2, 115, 127
level 3, 115, 127
links, 217
virtual channel processor, 203

resetch, 193, 217
ResetHandshake, 115
resetting, channels, 193
resource data structure, 194
resources, 194

Run, 116

RunHandshake, 116

S

secondary instructions, 91

semaphores, 72
data structure, 72

server process, 194
setchmode, 217
ShiftAmount, 165
signal, 72

special values, 311

speed selection
link, 212
processor, 222

SpeedDivide, 212
SpeedMultiply, 114, 212
stability clock, 221

stack
floating point, 65, 77
integer, 65

stack extension, 79

stand alone mode, 107
errors, 122

Start, 115
StartFromROM, 124, 178
StartHandshake, 115
startp, 68

status register, 70

StatusReg, 70
See also status register

stconf, 225

Stop, 71, 115, 123
stopch, 194
StopHandshake, 115
stopping, channels, 194

strobes
CAS, 151
programmable, 151
RAS, 150
registers, 169
write, 150

syscall, 79
SysServWriteLock, 114
system services, 113

T

thermal management, 235
forced air flow cooling, 236
heat sinks, 236

ThReg. See trapflhandler register

timers, 71
timer registers, 71
TimingControl0-3, 171
timings
bootspace, 178
clock input, 223
cycle to cycle, 185
data/strobe link, 219
memory wait, 186
processor clock output, 224
read cycle, 183
write cycle, 184

tin, 71

trap handler, 69
data structure, 70

trap-handler register, 69

332

Index for Parts 1 and 2

\'J

variable-length communication, 188
VCP. See virtual channel processor
VCPCommand, 199
VCPLink0-3HdrOffset, 200
VCPLink0-3MaxHeader, 202
VCPLink0-3MinHeader, 202
VCPLink0-3Mode, 202
VCPStatus, 199

vin, 188

virtual channel processor, 189
error code, 200
errors, 204
initialization, 203
operation, 193
protocol, 189

reset, 203
virtual channels, 189
virtual link control block, 191
virtual links, 189
vout, 188

w

wait, 72
WdescStubReg, 83

workspace cache, 66
operation, 66

workspace pointer, 65
Wptr. See workspace pointer
write-back cycles, 143
WriteStrobe0-3, 169

SALES OFFICES

EUROPE

DENMARK

2730 HERLEV

Herlev Tory, 4

Tel. (45-44) 94.85.33
Telex: 35411

Telefax: (45-44) 948694

FINLAND

LOHJA SF-08150
Katakatu, 26

Tel. (358-12) 155.11
Telefax. (358-12) 155.66

FRANCE

94253 GENTILLY Cedex
7 - avenue Gallieni - BP. 93
Tel.: (33-1) 47.40.75.75
Telex: 632570 STMHQ
Telefax: (33-1) 47.40.79.10

67000 STRASBOURG
20, Place des Halles
Tel. (33-88) 75.50.66
Telefax: (33-88) 22.29.32

GERMANY

8011 GRASBRUNN
Bretonischer Ring 4
Postfach 1122

Tel.: (49-89) 460060
Telefax: (49-89) 4605454
Teletex: 897107=STDISTR

1000 BERLIN 37

Clay Allee 323

Tel.: (49-30) 8017087-89
Telefax: (49-30) 8015552

6000 FRANKFURT
Gutleutstrasse 322

Tel. (49-69) 237492-3
Telefax: (49-69) 231957
Teletex: 6997689=STVBF

3000 HANNOVER 51
Rotenburger Strasse 28A
Tel. (49-511) 615960-3
Teletex: 5118418 CSFBEH
Telefax: (49-511) 6151243

8500 NURNBERG 20
Erlenstegenstrasse, 72
Tel.: (49-911) 59893-0
Telefax: (49-911) 5980701

7000 STUTTGART 31
Mittlerer Pfad 2-4

Tel. (49-711) 13968-0
Telefax: (49-711) 8661427

ITALY

20090 ASSAGO (M)

V.le Milanofiori - Strada 4 - Palazzo A/4/A
Tel. (39-2) 89213.1 (10 linee)

Telex: 330131 - 330141 SGSAGR
Telefax: (39-2) 8250449

40033 CASALECCHIO DI RENO (BO)
ViaR. Fucini, 12

Tel. (39-51) 593029

Telex: 512442

Telefax: (39-51) 591305

00161 ROMA

Via A. Torlonia, 15

Tel. (39-6) 8443341
Telex: 620653 SGSATE |
Telefax: (39-6) 8444474

NETHERLANDS

5652 AR EINDHOVEN
Meerenakkerweg 1
Tel.: (31-40) 550015
Telex: 51186

Telefax: (31-40) 528835

SPAIN

08021 BARCELONA

Calle Platon, 6 4™ Floor, 5" Door
Tel. (34-3) 4143300-4143361
Telefax: (34-3) 2021461

28027 MADRID

Calle Albacete, 5

Tel. (34-1) 4051615
Telex: 46033 TCCEE
Telefax: (34-1) 4031134

SWEDEN

S$-16421 KISTA
Borgarfjordsgatan, 13 - Box 1094
Tel.: (46-8) 7939220

Telex: 12078 THSWS

Telefax: (46-8) 7504950

SWITZERLAND

1218 GRAND-SACONNEX (GENEVA)
Chemin Francois-Lehmann, 18/A

Tel. (41-22) 7986462

Telex: 415493 STM CH

Telefax: (41-22) 7984869

UNITED KINGDOM and EIRE

MARLOW, BUCKS
Planar House, Parkway
Globe Park

Tel.: (44-628) 890800
Telex: 847458

Telefax: (44-628) 890391

SALES OFFICES

AMERICAS

BRAZIL

05413 SAO PAULO

R. Henrique Schaumann 286-CJ33
Tel. (55-11) 883-5455

Telex: (391)11-37988 “UMBR BR"
Telefax : (55-11) 282-2367

CANADA

NEPEAN ONTARIO
301 Moodie Drive
Suite 307

Tel. 613/829-9944

U.S.A.

NORTH & SOUTH AMERICAN
MARKETING HEADQUARTERS
1000 East Bell Road

Phoenix, AZ 85022

(1-602) 867-6100

SALES COVERAGE BY STATE

ALABAMA
Huntsville - (205) 533-5995

ARIZONA
Phoenix - (602) 867-6217

CALIFORNIA
Santa Ana - (714) 957-6018
San Jose - (408) 452-8585

COLORADO
Boulder (303) 449-9000

ILLINOIS
Schaumburg - (708) 517-1890

INDIANA
Kokomo - (317) 455-3500

MASSACHUSETTS
Lincoln - (617) 259-0300

MICHIGAN
Livonia - (313) 953-1700

NEW JERSEY
Voorhees - (609) 772-6222

NEW YORK
Poughkeepsie - (914) 454-8813

NORTH CAROLINA
Raleigh - (919) 787-6555

TEXAS
Carrollton - (214) 466-8844

FOR RF AND MICROWAVE
POWER TRANSISTORS CON-

TACT
THE FOLLOWING REGIONAL
OFFICE INTHE U.S.A.

PENNSYLVANIA
Montgomeryville - (215) 361-6400

ASIA / PACIFIC JAPAN

AUSTRALIA TOKYO 108

Nisseki - Takanawa Bld. 4F
NSW 2220 HURTSVILLE 2-18-10 Takanawa
Suite 3, Level 7, Otis House Minato-Ku
43 Bridge Street Tel. (81-3) 3280-4121
Tel. (61-2) 5803811 Telefax: (81-3) 3280-4131
Teletax: (61-2) 5806440

HONG KONG

WANCHAI

22nd Floor - Hopewell centre
183 Queen's Road East

Tel. (852) 8615788

Telex: 60955 ESGIES HX
Telefax: (852) 8656589

INDIA

NEW DELHI 110001
LiasonOffice

62, Upper Ground Floor
World Trade Centre
Barakhamba Lane

Tel. (91-11) 3715191
Telex: 031-66816 STMI IN
Telefax: (91-11) 3715192

MALAYSIA

PETALING JAYA, 47400
11C, Jalan SS21/60
Damansara Utama

Tel.: (03) 717 3976
Telefax: (03) 719 9512

PULAU PINANG 10400

4th Floor - Suite 4-03

Bangunan FOP-123D Jalan Anson
Tel. (04) 379735

Telefax (04) 379816

KOREA

SEOQUL 121

8th floor Shinwon Building
823-14, Yuksam-Dong
Kang-Nam-Gu

Tel. (82-2) 553-0399
Telex: SGSKOR K29998
Telefax: (82-2) 552-1051

SINGAPORE

SINGAPORE 2056

28 Ang Mo Kio - Industrial Park 2
Tel. (65) 4821411

Telex: RS 55201 ESGIES
Telefax: (65) 4820240

TAIWAN

TAIPEI

12th Floor

325, Section 1 Tun Hua South Road
Tel. (886-2) 755-4111

Telex: 10310 ESGIE TW

Telefax: (886-2) 755-4008

	Contents
	Preface
	Notation and nomenclature
	Significance
	Signal naming conventions
	Timing diagram conventions
	Font conventions
	References
	Transputer product numbers

	Part 1: IMS T9000Product Family Overview
	1 Introducing the IMS T9000
	1.1 Performance
	1.2 Multiprocessing
	1.3 Communications support devices
	1.4 Software
	1.5 Applications

	2 The IMS T9000 transputer
	2.1 Overview
	2.1.1 Processor
	2.1.2 Hierarchical memory system
	2.1.3 Communications system
	2.1.4 Multiple internal buses
	2.1.5 Control system
	2.1.6 Clocks

	2.2 The transputer architecture
	2.3 Support for concurrent processes
	2.4 Pipelined, superscalar implementation
	2.4.1 The pipeline

	2.5 Hierarchical memory system
	2.5.1 Main cache
	Cache operation
	Use as on-chip RAM

	2.5.2 Workspace cache

	3 Simplicity of system design
	3.1 Single 5 MHz clock input
	3.2 Programmable memory interface
	3.3 Control links and configuration
	3.4 Loading and bootstrapping
	3.5 Examples

	4 Protection and error handling
	4.1 Error handling
	4.2 Protected mode
	4.2.1 Protected mode processes
	4.2.2 Executing illegal instructions
	4.2.3 Memory management

	5 Support for multiprocessing
	Fast interrupt response and process switch
	5.1 The transputer model of concurrency
	5.1.1 Processes and channels
	5.1.2 Program structure
	Example

	5.1.3 Multiprocessor programs

	5.2 Other models of concurrency
	5.2.1 Shared memory

	5.3 Hardware scheduler
	5.4 Interrupts, events and timers
	5.5 Shared resources

	6 Communication links
	6.1 Using links between transputers
	6.2 Advantages of using links
	6.2.1 Efficiency
	6.2.2 Simplicity
	6.2.3 Hardware independence

	6.3 IMS T9000 links
	6.3.1 Virtual channels
	Virtual links
	Sending packets
	Receiving packets
	The virtual channel processor
	Implementation

	6.3.2 Levels of link protocol
	Packet level protocol
	Token level protocol
	Bit level protocol

	7 Network communications
	7.1 Message routing
	Advantages for the programmer
	Routers
	Separating routers and processors
	Parallel networks

	7.2 The IMS C104
	Wormhole routing
	Minimizing routing delays
	Control links
	7.2.1 Using IMS T9000s with IMS C104s
	Header deletion
	Routing control channels

	7.3 Routing algorithms
	7.3.1 Labeling networks
	7.3.2 Avoiding deadlock

	8 Other communications devices
	8.1 Mixing transputer types: the IMS C100
	8.2 Interfacing to peripherals and host systems

	9 Software and systems
	9.1 Development software
	9.1.1 Configuration tools
	Hardware description
	Software description
	Mapping software to hardware
	Configuration languages
	Types of networks

	9.1.2 Initializing and loading a network
	Levels of initialization
	Booting a system from link
	Booting a system from ROM

	9.1.3 Host servers
	9.1.4 Debugging

	9.2 IMS T9000 systems products

	Part 2: IMS T9000 transputer preliminary data
	1 IMS T9000 introduction
	2 Pin designations
	Supplies
	Phase locked loops
	Programmable memory interface
	Control system
	Communication links
	Events
	Miscellaneous

	3 Central processing unit
	3.1 Registers
	3.2 Workspace cache
	Cache operation

	3.3 Processes and concurrency
	3.4 Priority
	3.5 L-processes: local error handling and debugging
	3.6 Timers
	3.7 Block move
	3.8 Semaphores
	3.9 Pipeline
	3.9.1 Grouping of instructions

	3.10 CPU configuration registers
	Reason
	EmiBadAddress
	Initiallptr and InitialWptr

	4 Floating point unit
	4.1 Floating point registers
	4.1.1 Floating-point stack
	4.1.2 Floating-point status register

	4.2 Floating point instructions

	5 Memory management
	5.1 Protection, stack extension, and logical to physical address translation
	5.1.1 Protection
	5.1.2 Stack extension
	5.1.3 Logical to physical address translation

	5.2 Regions
	5.2.1 Region descriptors
	5.2.2 Non-overlapping regions

	5.3 P-process machine registers
	5.4 Debugging

	6 Instruction set
	6.1 Efficiency of encoding
	6.2 Interaction of the processor pipeline and the instruction set
	6.3 Instruction characteristics
	6.4 Instruction set tables
	6.4.1 Primary instructions
	6.4.2 Secondary instructions
	Sequential instructions
	Communication instructions
	Process scheduling instructions
	Initialization and configuration instructions
	Cache operation instructions
	Floating point instructions

	7 Performance
	7.1 Integer operations
	7.2 Floating point operations
	7.3 Predefines

	8 Control system
	8.1 Overview
	8.1.1 Tiers of handshaking
	8.1.2 Autonomous operation

	8.2 Control system interconnections
	8.3 Control system functional description
	8.3.1 Control links
	8.3.2 Packet handler
	8.3.3 Control unit
	Command handler
	Autonomous control

	8.3.4 System services
	DevicelD
	DeviceRevision
	ModeStatus
	ErrorCode
	DSLinkPLL
	SysServWriteLock

	8.4 Control commands
	Start
	Reset
	Identify
	Stop
	RecoverError
	CPeek
	CPoke
	Peek
	Poke
	Boot
	BootData
	Run
	Reboot
	Error message
	8.4.1 IMS T9000 gross state and validity of commands

	8.5 Errors
	8.5.1 Recording of Errors
	8.5.2 Stand alone mode errors
	8.5.3 Errors on control links
	8.5.4 Post-mortem debugging of IMS T9000 systems
	State delivered to the boot program

	8.6 Configuration
	8.6.1 Booting from link
	8.6.2 Boot from ROM then link

	8.7 Reset levels
	8.7.1 Level 0 - hardware reset
	8.7.2 Level 1 - labelled control network
	8.7.3 Level 2 - configured network
	8.7.4 Level 3 - booted network
	8.7.5 Loading code
	8.7.6 Levels of reset effect

	9 Instruction and data cache
	9.1 Cache overview
	9.1.1 Cache organization

	9.2 Cache functional description
	9.2.1 Port crossbar switch and arbiter
	9.2.2 Refill engine
	9.2.3 Replace pointer

	9.3 Cache operation
	9.3.1 Cache request
	9.3.2 Arbitration
	Queueing to ensure fairness

	9.3.3 Cacheable and non-cacheable accesses
	Non-cacheable accesses
	Cacheable accesses

	9.3.4 Cache refill cycles
	Cache refills from 8/16 bit ports
	Write-back cycles
	DMA and cache-refill cycles

	9.4 Cache instructions
	9.4.1 Flushing data from the cache
	Flush dirty cache address (fdca)
	Flush dirty cache line (fdcl)

	9.4.2 Invalidate cache block
	Invalidate cache address (ica)
	Invalidate cache line (icl)

	9.4.3 Cache instruction performance

	9.5 Cache configuration registers
	9.5.1 RamSize and DoRamSize registers
	9.5.2 RamLineNumber, RamAddress and DoAllocate registers

	9.6 Initialization of the cache
	9.6.1 Reset state
	9.6.2 Starting the cache

	10 Programmable memory interface
	10.1 Pin functions
	10.1.1 MemData0-63
	10.1.2 MemAddr2-31
	10.1.3 notMemWrB0-3
	10.1.4 notMemRAS0-3
	10.1.5 notMemCAS0-3
	10.1.6 notMemPS0-3
	10.1.7 MemWait
	10.1.8 MemReqIn, MemGranted
	10.1.9 MemReqOut
	10.1.10 notMemBootCE
	10.1.11 notMemRf
	10.1.12 notMemStrobe

	10.2 External bus cycles
	10.2.1 External DRAM cycles
	10.2.2 External non-DRAM cycles
	10.2.3 Bank switching
	10.2.4 Cache refill cycles
	Cache refills from 8/16 bit ports
	Write-back cycles
	Wait states and cache-refill cycles

	10.2.5 External DMA

	10.3 PMI configuration registers
	10.3.1 Bank address registers
	Address registers
	Mask registers
	RAS bits registers
	Format control registers
	DoPMIConfigured register
	Error address register

	10.3.2 Strobe timing registers
	Strobe registers
	Timing control registers
	Refresh control register
	Remap boot bank register

	10.3.3 PMI write lock register

	10.4 PMI errors
	10.4.1 Errors detected by the PMI
	PMI errors signalled by the CPU
	PMI errors signalled by the PMI

	10.5 Initialization of the PMI
	10.5.1 Bootspace allocation
	10.5.2 The boot sequence
	10.5.3 Bootspace timing

	10.6 Booting from ROM
	10.6.1 Booting from EPROM
	10.6.2 Booting from Flash EPROM
	10.6.3 Re-mapping the boot bank

	10.7 PMI AC timing characteristics
	Read cycle
	Write cycle
	Consecutive cycles
	Memory wait

	11 Communications
	11.1 Overview
	11.1.1 Channels
	Internal channels
	External channels

	11.1.2 Channel addresses
	11.1.3 Communication instructions
	11.1.4 Efficient variable-length communications

	11.2 Virtual channel processor
	11.2.1 VCP protocol
	11.2.2 Virtual links
	11.2.3 VCP link queues
	11.2.4 Virtual link control blocks
	vl.HeaderCtrl word
	vl.DataQueueLink and vl.AckQueueLink words

	11.3 Operation of the VCP
	11.3.1 Channel states
	Resetting channels
	Stopping channels

	11.4 Resources
	11.5 Byte-stream mode
	11.6 Memory and channel address spaces
	11.6.1 Channel address space
	11.6.2 Memory allocation for virtual links
	Memory start value register
	Minimum invalid virtual channel register
	External resource channel base register

	11.7 VCP configuration registers
	11.7.1 VCP command register
	11.7.2 VCP status register
	11.7.3 Header area base register
	11.7.4 Header offset registers
	11.7.5 Packet header limit registers
	11.7.6 VCP link mode registers
	11.7.7 ChanWriteLock

	11.8 Initialization of the VCP
	11.8.1 VCP state on start up
	11.8.2 VCP state following reset

	11.9 Errors
	Null buffer pointers

	12 Events
	Input event channel
	Output event channel
	Use of event channels with interrupts
	12.1 Event channel addresses
	12.2 Event channel state

	13 Data/Strobe links
	13.1 Link format and protocol
	13.2 Link functional description
	13.3 Low-level flow control
	13.4 Link speed select
	13.5 Errors on DS-Links
	13.5.1 Reliable links
	Handling of errors on reliable links

	13.5.2 Unreliable links

	13.6 Link configuration registers
	13.7 Initialization
	13.7.1 Link state on start up
	13.7.2 Link state following reset

	13.8 Link connections
	13.9 DS-Link timings

	14 Clocking phase locked loops
	14.1 Clock input
	14.2 PLL decoupling
	14.3 Processor speed selection
	14.4 Processor clock output
	14.5 ClockIn timings
	14.6 ProcClockOut timings

	15 Configuration register reference guide
	15.1 Configuration bus
	15.2 Subsystem addresses
	15.2.1 Shared registers

	15.3 CPU write locking
	15.4 Subsystem registers
	15.4.1 CPU configuration registers
	15.4.2 PMI configuration registers
	PMI bank address configuration registers
	PMI strobe timing configuration registers

	15.4.3 VCP configuration registers
	15.4.4 System services configuration registers
	15.4.5 Cache configuration registers
	15.4.6 Scheduler configuration registers
	15.4.7 Link configuration registers
	15.4.8 Control link configuration registers

	16 Package specifications
	16.1 208 pin CLCC package pinout
	16.2 208 pin CLCC package dimensions
	16.3 208 pin CLCC package thermal characteristics

	17 Thermal management
	17.1 Forced air flow cooling
	17.2 Heat sinks
	17.3 Other thermal management techniques

	18 Electrical specifications
	18.1 Absolute maximum ratings
	18.2 Operating conditions
	18.3 Power rating

	Part 3: Communications support devices
	1 IMS C100 system protocol converter preliminary data
	1.1 IMS C100 introduction
	1.2 IMS C100 modes of operation
	1.2.1 Mode pins
	1.2.2 Mode 0: Enables a single T9-series transputer to be used in a T2/T4/T8-series network
	1.2.3 Mode 1: Enables a T2/T4/T8-series system to use a T9-series subsystem
	1.2.4 Mode 2: Enables a T9-series system to use an existing T2/T4/T8-series subsystem
	1.2.5 Mode 3: Enables a T9-series system to use a T2/T4/T8-series subsystem

	1.3 Link protocols
	1.3.1 T2/T4/T8-series oversampled links
	1.3.2 T9-series data/strobe links
	Byte-stream mode

	1.4 Link protocol conversion
	1.4.1 Byte-stream conversion - modes 0 and 2
	Messages from the T9000 to the T2/T4/T8
	Messages from the T2/T4/T8 to the T9000

	1.4.2 Packetized conversion - modes 1 and 3
	Messages from the T2/T4/T8 to the T9000
	Messages from the T9000 to the T2/T4/T8

	1.5 Control protocols
	1.5.1 T2/T4/T8-type control
	1.5.2 T9-type control
	Control link protocols

	1.6 Control protocol conversion
	1.6.1 RAE master control (mode 0)
	Control commands sent by the IMS C100 in RAE master control mode
	Handshake and Error messages received by the IMS C100 from the IMS T9000
	Behavior of the control system in RAE master mode
	Errors

	1.6.2 CLink0 master control (modes 1, 2 and 3)
	Control commands sent by the controlling processor (IMS T9000) to the IMS C100
	Errors
	OS-Link 0 special function - modes 2 and 3
	Commands which correspond to the protocol of an unbooted T2/T4/T8 transputer
	Resetting and Analyzing

	1.7 Links
	1.7.1 Data links
	Data link speed pins
	DS-Link speeds in mode 0
	DS-Link speeds in modes 1, 2 and 3
	Errors on DS-Links
	Link connections

	1.7.2 Control links
	Control link speeds

	1.7.3 Starting and resetting links

	1.8 Levels of reset
	1.8.1 Level 0 - hardware reset
	1.8.2 Level 1 - labelled control network
	1.8.3 Level 2 - configured network
	1.8.4 Level 3
	1.8.5 Effects of different levels of reset

	1.9 Configuration
	1.9.1 Configuration space
	1.9.2 Configuration register addresses
	1.9.3 Configuration registers
	System services configuration registers
	Data DS-Link configuration registers
	All data links
	Control link configuration registers
	Write lock registers

	1.10 Electrical specifications
	1.10.1 Absolute maximum ratings
	1.10.2 Operating conditions

	1.11 Recommended decoupling
	1.11.1 Power decoupling
	1.11.2 Phase locked loop decoupling

	1.12 Clocks
	1.12.1 Clock input

	1.13 Timing specifications
	1.13.1 Reset and Analyse timings
	ResetOut and AnalyseOut timings
	TReset and AnalyseIn timings

	1.13.2 ClockIn timings
	1.13.3 DS-Link timings
	1.13.4 OS-Link timings

	1.14 Pin designations
	Supplies
	Clocks
	Links
	Control unit
	JTAG support
	Miscellaneous

	1.15 Package specifications
	1.15.1 IMS C100 100 pin cavity-up CQFP package pinout
	1.15.2 100 pin CQFP package dimensions
	1.15.3 IMS C100 100 pin cavity-up PQFP package pinout
	1.15.4 100 pin PQFP package dimensions

	2 IMS C104 packet routing switch product preview
	2.1 IMS C104 introduction

	3 IMS C101 parallel DS-Link adaptor product preview
	Appendices
	A IMS T9000 special values
	A1 IMS T9000 special values

	B IMS T9000 quick reference guide
	B1 IMS T9000 quick reference guide
	B1.1 Electrical specifications
	B1.1.1 Absolute maximum ratings
	B1.1.2 Operating conditions
	B1.1.3 Power rating

	B1.2 Timing specifications
	B1.2.1 ClockIn timings
	B1.2.2 ProcClockOut timings
	B1.2.3 Programmable memory interface timings
	Read cycle
	Write cycle
	Consecutive cycles
	Memory wait

	B1.2.4 Link timings

	B1.3 Processor speed select
	B1.4 Link speed select
	B1.5 Package details
	B1.5.1 208 pin CLCC package pinout
	B1.5.2 208 pin CLCC package dimensions
	B1.5.3 208 pin CLCC package thermal characteristics

	Index

