
:;;;;:;::::;:;:;;:

:::m~~ :~:~:~:

;::m:~ ::mm:

:;~i ::~:

:;:i :~ir

;:~m~:, :~:!:~:::

::~:~m; ~m~:::

;:;:;:;:::;:;:;:c

[JJi)mOS

TRANSPUTER
DEVELOPMENT AND
iq SYSTEMS
DATABOOK

First Edition 1989

INMOS Databook Series

Transputer Databook
Military Micro-products Databook
Transputer Development and iq Systems Databook
Memory Databook
Graphics Databook
Digital Signal Processing Databook
Transputer Applications Notebook: Architecture and Software
Transputer Applications Notebook: Systems and Performance

Copyright @INMOS Limited 1989

INMOS reserves the right to make changes in specifications at any time and without notice.
The information furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights
of third parties resulting from its use. No licence is granted under any patents, trademarks
or other rights of INMOS.

_ , rtrnmoS, IMS and occam are trademarks of INMOS Limited.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TRN 219 00

Printed at Redwood Burn Ltd, Trowbridge

Contents overview

1 Systems products overview

BOARDS

2 TRAnsputer Modules (TRAMs)

Transputer plus memory:

IMS T222 16-bit transputer:

64 Kbytes, Size 1, 8416

IMS T414, T425 and T800 32-bit transputers:

32 Kbytes, Size 1, 8401

1 Mbyte, Size 1, 8411

2 Mbytes, Size 2, 8404

4 Mbytes, Size 4, 8417

8 Mbytes, Size 8, 8405

lMS T801 32-bit transputer:

160 Kbytes, Size 2, 8410

Application specific TRAMs:

Differential link buffer TRAM Size 2, 8415

Flash ROM TRAM, Size 2,8418

Ethernet TRAM, Size 8, 8407

IEEE 488 GPI8 TRAM, Size 4, 8421

SCSI TRAM, Size 2,8422

Frame store TRAM, Size 8, 8408

Display TRAM, Size 8, 8409

Integrated graphics TRAM, Size 6, 8419

Vector processor TRAM, Size 4, 8420

3 Standard interface boards

IBM PC, 10 slots for TRAMs, B008

VM Ebus master, T800, 2Mbytes, 2 slots for TRAMs, 8011

VMEbus slave, 8 slots for TRAMs, 8014

VMEbus full master, slave, T801, 4Mbytes, 8016

NEC 9800 series, 5 slots for TRAMs, 8015

Double extended eurocard, 16 slots for TRAMs, 8012

4 Evaluation boards

Disk board, M212, 20 Mbyte hard disk, floppy, 8005

Signal processing board, 4x A100, IBM PC bus, 8009

iii

1

5

7

8

14

20

26

33

40

47

53

54

56

65

66

67

75

84

94

97

98

102

105

108

110

118

131

132

134

iv

DEVELOPMENT SYSTEMS
5 Software development tools

occam 2 toolset product overview

Parallel C compiler product overview

Parallel Fortran compiler product overview

Pascal compiler product overview

ADA compilers product overview

IMS 0700 Transputer Development System

6 Board support software

IMS S708 and IMS S514 product overview

Ethernet support software product overview

7 Transputer development kits

Transputer introduction kit

Transputer performance evaluation kit

Custom development kits

IMS 8211 INMOS transputer evaluation module (ITEM)

APPLICATIONS

8 Dual-in-line transputer modules (TRAMs)

9 Module motherboard architecture

10 Some issues in scientific language application porting and farming using

transputers

11 Using the D705B occam toolset with non-occam applications

APPENDICES

A Quality and Reliability

B Cables for Board Products

139

141

142

152

158

164

165

168

175

176

179

183

184

184

184

186

189

191

209

233

299

367

371

Contents

Preface

Systems products overview
1.1 Introduction
1.2 Innovation and Quality
1.3 TRAMS (TRAnsputer Modules)

1.3.1 Standard Interface
1.3.2 Upgradeability
1.3.3 Flexibility
1.3.4 Evaluation

1.4 Quality and Reliability

v

xviii

2
2
3
3
3
3
4
4

1 Boards 5

2 TRAnsputer Modules (TRAMs)
2.1 IMS 8416 TRAM engineering data

2.1.1 Introduction
2.1.2 Pin descriptions
2.1.3 Standard TRAM signals

notError (pin 11)
LinkSpeedA and LinkSpeed8 (pins 6 and 7)
Link signals

2.1.4 Memory configuration
2.1.5 Mechanical details
2.1.6 Installation
2.1.7 Specification
2.1.8 Ordering Information

2.2 IMS 8401 TRAM engineering data
2.2.1 Introduction
2.2.2 Pin descriptions
2.2.3 Standard TRAM signals

notError (pin 11)
LinkSpeedA and LinkSpeed8 (pins 6 and 7)
Link signals

2.2.4 Memory configuration
Location of external memory

2.2.5 Mechanical details
2.2.6 Installation
2.2.7 Specification
2.2.8 Ordering Information

2.3 IMS 8411 TRAM engineering data
2.3.1 Description
2.3.2 Pin descriptions
2.3.3 Standard TRAM signals

notError (pin 11)
LinkSpeedA and LinkSpeed8 (pins 6 and 7)
Link signals

2.3.4 Memory configuration
2.3.5 Mechanical details

7
8
9
9
9
9
9

10
10
11
12
13
13
14
15
15
16
16
16
16
16
16
17
18
19
19
20
21
21
21
21
22
22
22
23

vi

2.3.6 Installation 24
2.3.7 Specification 25
2.3.8 Ordering Information 25

2.4 IMS 8404 TRAM engineering data 26
2.4.1 Introduction 27
2.4.2 Pin descriptions 27
2.4.3 Standard TRAM signals 28

notError (pin 11) 28
LinkSpeedA and LinkSpeed8 (pins 6 and 7) 28
Link signals 28

2.4.4 Subsystem signals 28
2.4.5 Memory configuration 28

Location of external memory 29
Subsystem reg ister locations 29

2.4.6 Mechanical details 30
2.4.7 Installation 31
2.4.8 Specification 32
2.4.9 Ordering Information 32

2.5 IMS 8417 TRAM engineering data 33
2.5.1 Introduction 34
2.5.2 Pin descriptions 34
2.5.3 Standard TRAM sig nals 35

notError (pin 11) 35
LinkSpeedA and LinkSpeed8 (pins 6 and 7) 35
Link signals 35

2.5.4 SUbsystem signals 35
2.5.5 Memory configuration 36

Location of external memory 36
Subsystem reg ister locations 36

2.5.6 Mechanical details 37
2.5.7 Installation 38
2.5.8 Specification 39
2.5.9 Ordering Information 39

2.6 IMS 8405 TRAM engineering data 40
2.6.1 Introduction 41
2.6.2 Pin descriptions 41
2.6.3 Standard TRAM signals 41

notError (pin 11) 41
LinkSpeedA and LinkSpeed8 (pins 6 and 7) 42
Link signals 42

2.6.4 Subsystem signals 42
2.6.5 Memory configuration 42

Location of external memory 42
Subsystem register locations 42
Memory parity 43

2.6.6 Installation 44
2.6.7 Mechanical details 44
2.6.8 Specification 46
2.6.9 Ordering Information 46

2.7 IMS 8410 TRAM engineering data 47
2.7.1 Description 48
2.7.2 Pin descriptions 48
2.7.3 Standard TRAM signals 49

vii

notError (pin 11) 49
LinkSpeedA and LinkSpeed8 (pins 6 and 7) 49
Link signals 49

2.7.4 Memory configuration 49
2.7.5 Mechanical details 50
2.7.6 Installation 51
2.7.7 Specification 52
2.7.8 Ordering Information 52

2.8 IMS 8415 TRAM product overview 53
2.9 IMS 8418 flash-ROM TRAM product overview 54

2.9.1 Specification 55
2.9.2 Ordering Information 55

2.10 IMS 8407 TRAM engineering data 56
2.10.1 Transputer Modules (TRAMs) 57
2.10.2 Pin descriptions 57
2.10.3 Ethernet Capabilities 58

Connecting to Ethernet (108ASE5) 58
Connecting to Cheapernet (108ASE2) 60

2.10.4 Memory Map 61
2.10.5 Using the IMS 8407 61
2.10.6 Mechanical details 62
2.10.7 Installation 62
2.10.8 Specification 64
2.10.9 Ordering Information 64

2.11 IMS 8421 GPI8 TRAM product overview 65
2.12 IMS 8422 SCSI TRAM product overview 66
2.13 IMS 8408 TRAM engineering data 67

2.13.1 Introduction 68
2.13.2 Pin descriptions 68
2.13.3 Pixel Port signals 69

Electrical Specification 71
2.13.4 Memory Map 71
2.13.5 Pixel Port control registers 71
2.13.6 Mechanical details 72
2.13.7 Installation 72
2.13.8 Specification 74
2.13.9 Ordering Information 74

2.14 IMS 8409 TRAM engineering data 75
2.14.1 Introduction 76
2.14.2 Pin descriptions 76
2.14.3 Pixel 8us connectors 77
2.14.4 The Pixel channels 78

8 bits/pixel mode 79
18 bits/pixel mode 79
The colour look-up tables 79
Video Outputs 79

2.14.5 Memory Map 79
Pixel Channel Mode select 79
The video timing generator 80
The Colour look-up tables 80

2.14.6 Mechanical details 81
2.14.7 Installation 81
2.14.8 Specification 83

viii

2.15

2.16

2.14.9 Ordering Information
IMS B419 TRAM engineering data
2.15.1 Introduction
2.15.2 Screen sizes
2.15.3 Pin descriptions
2.15.4 Memory Map

SubSystem reg isters
2.15.5 IMS G300 clock selection
2.15.6 Jumper selection
2.15.7 Video and sync outputs
2.15.8 Mechanical details
2.15.9 Installation
2.15.10 Specification
2.15.11 Ordering Information
IMS B420 VECTRAM product overview
2.16.1 Specification
2.16.2 Ordering Information

83
84
85
85
86
88
88
89
90
90
91
91
93
93
94
95
95

3 Standard interface boards
3.1 IMS B008 IBM PC Module Motherboard product overview

3.1.1 Product Overview
3.1.2 TRAM Slots
3.1.3 System Services
3.1.4 Link Configuration
3.1.5 IBM PC Bus Interface

Interrupts
DMA

3.1.6 Link Speeds
3.1.7 Technical Summary
3.1.8 Ordering Information

3.2 IMS B011 Tranputer VMEbus Master Card product overview
3.2.1 Processor
3.2.2 Booting
3.2.3 Interrupts
3.2.4 Memory
3.2.5 VMEbus Interface
3.2.6 RS232 ports
3.2.7 TRAM slots
3.2.8 Ordering Information

3.3 IMS B014 VMEbus Module Motherboard product overview
3.3.1 VMEbus Interface
3.3.2 Interrupts
3.3.3 IMS C004 Control
3.3.4 System Services Organisation
3.3.5 Technical Summary
3.3.6 Ordering Information

3.4 IMS B016 VMEbus master/slave Motherboard product overview
3.4.1 General description
3.4.2 Ordering Information

3.5 IMS B015 Module Motherboard product overview
3.5.1 Link connections
3.5.2 Link speed selection
3.5.3 System Services

97
98
99
99
99
99
99

100
100
100
101
101
102
103
103
103
103
103
104
104
104
105
106
106
106
107
107
107
108
109
109
110
111
111
112

3.5.4
3.5.5
3.5.6
3.5.7
3.5.8

Up, Down, and Subsystem
PC interface
10 Address
Reset, Analyse and Error registers
Interface link
Interrupts

ix

112
113
113
113
113
114

3.6

3.5.9 External power supplies
3.5.10 External Connections
3.5.11 Specification
3.5.12 Ordering Information
IMS B012 Double Eurocard Motherboard engineering data
3.6.1 Introduction
3.6.2 Hardware Description

Link Connections
P1 Links
Switch Configuration Transputer
Reset, Analyse and Error
Link Termination
Error Lights
User Power Connector
Uncommitted Pins

3.6.3 Ordering Information

115
116
117
117
118
119
119
119
122
124
124
126
127
128
128
129

4 Evaluation boards
4.1 IMS B005 Double Extended Eurocard product overview

4.1.1 Ordering Information
4.2 IMS B009 DSP System Evaluation Board product overview

4.2.1 The IMS B009 Evaluation Board
4.2.2 Board Description
4.2.3 Programming
4.2.4 Product summary
4.2.5 Technical summary
4.2.6 Ordering details

131
132
133
134
135
136
137
137
138
138

2 Development systems 139

5 Software development tools
5.1 occam 2 toolset product overview

5.1.1 Product overview
occam 2 development system
Support for mixed language developments
System building and program consistency
Source level debugging tools
Support for teams of developers

5.1.2 occam 2 toolset product description
Documentation
Software tools
Software libraries
Programming examples

5.1.3 D700D transputer development system support
5.1.4 occam 2 toolset product components summary

Documentation
Software tools

141
142
143
143
144
144
144
145
145
145
146
147
148
148
149
149
149

x

Software libraries 149
5.1.5 D705 IBM PC version 150

Operating requirements 150
Distribution media 150

5.1.6 D605 VAX VMS version 150
Operating requirements 150
Distribution media 150

5.1.7 D505 SUN 3 version 150
Operating requirements 150
Distribution media 151

5.1.8 Associated products 151
5.1.9 Licencing information 151
5.1.10 Error reporting and field support 151

5.2 Parallel C compiler product overview 152
5.2.1 Product overview 153

Support for parallelism 153
Using C with the occam2 toolset 153

5.2.2 3L Parallel C description 153
Documentation 153
Software tools 154
Software libraries 155

5.2.3 3L C components summary 155
Documentation 155
Software tools 155
Software libraries 155

5.2.4 D711 IBM PC version 156
Operating requirements 156
Distribution media 156

5.2.5 D611 VAX VMS version 156
Operating requirements 156
Distribution media 156

5.2.6 D511 SUN 3 version 156
Operating requirements 156
Distribution media 157

5.2.7 Associated products 157
5.2.8 Licencing information 157
5.2.9 Error reporting and field support 157

5.3 Parallel FORTRAN compiler product overview 158
5.3.1 Product overview 159

Support for parallelism 159
Using FORTRAN with the occam 2 toolset 159

5.3.2 3L Parallel FORTRAN description 159
Documentation 159
Software tools 160
Software libraries 161

5.3.3 3L FORTRAN components summary 161
Documentation 161
Software tools 161
Software libraries 162

5.3.4 D713 IBM PC version 162
Operating requirements 162
Distribution media 162

5.3.5 D613 VAX VMS version 162

5.4
5.5

5.6

Operating requirements
Distribution media

5.3.6 0513 SUN 3 version
Operating requirements
Distribution media

5.3.7 Associated products
5.3.8 Licencing information
5.3.9 Error reporting and field support
Pascal Compiler product overview
Ada Compilers product overview
5.5.1 Ada Compilers for the Transputer
5.5.2 Features
5.5.3 Recommended Configuration

Recommended Configuration for PC mothered compiler
Recommended Configuration for VAX hosted compiler

IMS 0700 Transputer Development System
5.6.1 Product overview

The user interface
occam 2 compiler
Loading programs into transputer networks
Debugging

5.6.2 Product description
Documentation
Software components

5.6.3 Product components
Documentation
Integrated software components
Software libraries

xi

162
162
163

163
163
163
164
165
166
166
167
167
167
168
169
169
169
170
170
170
170
171
172
172
172
173

5.6.4
5.6.5
5.6.6
5.6.7
5.6.8

D705B occam 2 toolset support
Operating requirements
Distribution media
Licensing information
Error reporting and field support

173
173
173
173
174

6 Board support software
6.1 . IMS S708 and IMS S514 product overview

6.1.1 Product overview
Supp~rt for other hosts

6.1.2 Product components summary
Documentation
Software tools

6.1.3 IMS S708
Operating requirements
Distribution media

6.1.4 IMS 5514
Operating requirements
Distribution media

6.2 Ethernet Support Software product overview
6.2.1 Product overview
6.2.2 Product description
6.2.3 Software components
6.2.4 Hardware requirements
6.2.5 Compatibility considerations

175
176
177
177
177
177
177
178
178
178
178
178
178
179
180
180
180
180
180

xii

6.2.6
6.2.7
6.2.8
6.2.9

Performance
User Documentation
Distribution media
Relat~d products

180
181
181
181

7 Transputer development kits
7.1 Transputer Introduction Kit
7.2 Transputer Performance Evaluation Kit
7.3 Custom Development Kits
7.4 IMS B211 INMOS Transputer Evaluation Module (ITEM)

7.4.1 Introduction
7.4.2 Applications
7.4.3 Rear Connector Panel
7.4.4 FCC Compliance
7.4.5 Ordering Information

183
184
184
184
186
187
187
187
187
187

3 Applications 189

8 Dual inline transputer modules (TRAMs)
8.1 Background
8.2 Introduction
8.3 Functional description

8.3.1 Pinout of size1 module
8.3.2 Pinout of larger sized modules
8.3.3 TRAMs with more than one transputer
8.3.4 Extra pins
8.3.5 Subsystem signals driven from a TRAM
8.3.6 Memory parity
8.3.7 Memory map

8.4 Electrical description
8.4.1 Link outputs
8.4.2 Link inputs
8.4.3 notError output
8.4.4 Reset and analyse inputs
8.4.5 Clock input
8.4.6 notError input to subsystem
8.4.7 GND, VCC

8.5 Mechanical description
8.5.1 Width and length
8.5.2 Vertical dimensions
8.5.3 Direction of cooling

8.6 TRAM pins and sockets
8.6.1 Stackable socket pin
8.6.2 Through-board sockets
8.6.3 Subsystem pins and sockets
8.6.4 Motherboard sockets

8.7 Mechanical retention of TRAMs
8.8 Profile drawings

191
192
193
194
194
194
196
196
196
198
198
199
199
199
199
199
200
200
200
200
200
201
203
203
203
203
204
204
204
205

xiii

9 Module motherboard architecture 209
9.1 Introduction 210
9.2 Module motherboard architecture 210

9.2.1 Design goals 210
9.2.2 Architecture 210

9.3 Link configuration 211
9.3.1 Pipeline 211
9.3.2 IMS C004 link configuration 212
9.3.3 T212 pipeline and C004 control 212
9.3.4 Software link configuration 212

9.4 System control 214
9.4.1 Reset, analyse and error 214
9.4.2 Up, down and subsystem 214
9.4.3 Source of control 216
9.4.4 Clock 221

9.5 Interface to a separate host 221
9.5.1 Link interface 221
9.5.2 System control interface 222
9.5.3 Interrupts 223

9.6 Mechanical considerations 223
9.6.1 Dimensions 223

Width and length 223
Vertical dimensions 224

9.6.2 Motherboard sockets 225
9.6.3 Mechanical retention of TRAMs 225
9.6.4 Module orientation 226

9.7 Edge connectors 226

10 Some issues in scientific language application porting and farming using
transputers 233
10.1 Introduction 234

10.1.1 Background 234
10.1.2 Document notes 234

10.2 Preliminary information 234
10.2.1 Transputers 235
10.2.2 Processes 235
10.2.3 The transputer / host development relationship 236
10.2.4 Why port to a transputer? 236
10.2.5 Different categories of application porting 237

Transputer software development tools 238
10.3 Altering the application as little as possible 238

10.3.1 The scenario 238
10.3.2 Suitable applications 240

Requirements 240
Good candidates 240

10.3.3 Identifying the best transputer for your application 240
10.3.4 Some potential porting difficulties 241
10.3.5 An implementation overview 241
10.3.6 Porting example : SPICE 242

About SPICE 242
Performance 242

10.3.7 Porting example: TEX 243

xiv

About T(;X 243
Performance 243

10.3.8 Further work 'w 244
10.4 Parallelizing the application 244

10.4.1 Types of parallelism 244
10.4.2 Why parallelize ? 245
10.4.3 Definitions 245
10.4.4 The stages in modularizing 246
10.4.5 Modules 246

Module properties 247
Modules provided by the INMOS tools 247
Instancing modules 248
Module structure 249
Module communication requirements 249
Module communication protocol 249

10.4.6 Guidelines on dividing an application into modules 250
10.5 Implementing modules 252

10.5.1 The technique 252
Overview 252
Benefits 253

10.5.2 Example of module implementation 254
10.5.3 Implementation notes 257
10.5.4 Some coding examples 261
10.5.5 Software methods of increasing performance 265

Good ideas 265
Bad ideas 267

10.5.6 Further work 269
10.6 Using transputers with other processors 269

10.6.1 Suitable applications 271
10.6.2 Software support for mixed processor systems 272

Accommodating architectural differences 272
Using services provided by another processor 272

10.6.3 Hardware support for mixed processor systems 273
10.6.4 Communication mechanisms 274

Communication by explicit polling 274
Communication by explicit DMA 277
Communication by device drivers 277
Increasing data exchange bandwidth by software means 279

10.6.5 Implementation strategy 280
10.6.6 Testing strategy 281
10.6.7 Further work 281
10.6.8 Mixed processor example 282

10.7 Farming an application 283
10.7.1 Suitable applications 285
10.7.2 General farm discussion 285

The software components 285
The farm protocol 285

10.7.3 Interfacing to the farm 286
Interfacing to another transputer process 286
Interfacing to a process on a non-transputer processor 286

10.7.4 Performance issues 287
Linearity 287
Priority 287

10.8
10.9
10.10

Protocol
Overheads
Buffering
Load balancing
General farming principles

10.7.5 Farming part of an application
Scenario
Implementation

10.7.6 Farming an entire application
Scenario
Implementation
Alternative implementation

10.7.7 Farming a heterogeneous processor application
Scenario
Implementation
Alternative implementation

10.7.8 Part port farm example: Second Sight
About Second Sight
Performance

10.7.9 Further work
Flood-filling a transputer network
Extraordinary use of transputer links
Overcoming i/o bottlenecks
Comparison between farms and application pipelining
Farms of farms
Dynamic link switching

Planning the structure of a new application
Summary and Conclusions
References

xv

287
288
288
288
288
289
289
290
290
290
290
291
291
291
291
292
293
293
293
293
293
294
294
295
295
295
295
296
297

11 Using the D705B occam toolset with non-OCCam applications 299
11.1 Introduction 300

11.1.1 Article notes 300
11.2 Background information 300

11.2.1 Transputers 300
11.2.2 The transputer / host development relationship 300
11.2.3 Connecting transputers together 301
11.2.4 The other occam toolsets 302

11.3 The INMOS scientific-language compilers 302
11.3.1 The compilers 302

Features 303
11.3.2 Using the scientific-language compilers in the simplest case 303

Building a simple C program 304
Building a simple Pascal program 304
Building a simple FORTRAN program 304

11.3.3 . Loading the tools 304
11.3.4 Re-running the tools without reloading them 304
11.3.5 Running transputer bootable files as MS-DOS commands 305
11.3.6 The run-time libraries 305
11.3.7 Transputer memory allocation 306

The occam memory allocation map 306
The scientific-language memory allocation map 307

11.3.8 Implementation details 307

xvi

The run-time stack 307
The run-time heap 308
Selecting the run-time stack 308
Placement of the code 309
The static data area 309
The scientific-language process communications interface 309

11.3.9 Scientific-language channel i/o support 310
C support 31 0
Pascal support 312
FORTRAN support 313
Parallel C support 314
Parallel FORTRAN support 314

11.3.10 Additional support from Parallel C and Parallel FORTRAN 315
11.3.11 Transputer assembler inserts 316

Usage of assember 316
Local workspace allocation 316
Review of how the transputer implements procedure calls 317
The C assembler restrictions and capabilities 318

11.3.12 Mixing occam and non-OCCam compilation units within the
same process 319
Parameter type compatabilities 319
Hidden parameters 319
Array parameters 319
Vectorspace 320
occam parameter supersets 320
Calling an occam FUNCTION 320

11.4 The INMOS 07058 occam-2 toolset 321
11.4.1 Software development using the 07058 321
11.4.2 File naming convention 322
11.4.3 Processor types 323
11.4.4 Error modes 324
11.4.5 The makefile generator 325
11.4.6 The occam compiler 325
11.4.7 The syntax checker 326
11.4.8 The librarian 326
11.4.9 The linker 327
11.4.·10 8inary lister 327
11.4.11 The bootstrap tool 327
11.4.12 The configurer 327
11.4.13 The debugger 328
11.4.14 The simulator 328
11.4.15 Supplementary tools 328

11.5 Handling non-OCCam processes 328
11.5.1 Equivalent occam process technology 328

The Type 1 interface 329
The Type 2 interface 329
The Type 3 interface 330

11.5.2 07058 Processor classes 331
11.5.3 EOP Startup and shutdown overheads 331
11.5.4 Practical considerations for writing harnesses 332

Memory allocation by the standard scientific-language harness 332
Writing harnesses to allocate scientific-language workspace
memory 333
Placing all EOP stacks below the code 335

xvii

Establishing EOP workspace requirements 335
Terminating the host file server 337
Re-running the application without reloading 337
Process priorities 338

11.6 07058 debugging guidelines 339
11.6.1 Problems with conventional debugging techniques 339
11.6.2 Error mode considerations 340
11.6.3 Run-time debugging aids. 340
11.6.4 Debugging processes that are not connected to the host server 341

Overview of technique 341
Implementation detail 341
What to do if you don't have a debugger 345

11.7 Using the 07058 Occam-2 toolset 345
11.7.1 About makefiles 345
11.7.2 Two communicating EOPs on one transputer 345

Operations overview 346
The root EOP 346
The remote EOP 348
The occam bits 349
Running the program 351
Rebuilding 352
Re-implementation of the EOPs 352

11.7.3 Two communicating EOPs on two transputers 354
11.7.4 Using the debugger with the twin EOP twin transputer system 356
11.7.5 Placing the EOPs in a library 356
11.7.6 Sharing code amongst EOPs in a system 357

The EOPs 357
The shared occam code 357
Linker symbol optimization 358
Calculating where specific modules are placed 359
Using on-chip RAM effectively 360

11.7.7 Hints and tips 361
Library usage guidelines 361
General usage guidelines 362

11.8 Some useful checklists 363
11.8.1 Setting things up for the 07058 363
11.8.2 What to do if a multiple EOP system won't run

(on one transputer) 363
11.8.3 What to do if a multiple EOP system won't run

(on many transputers) 364
11.8.4 A summary of performance maximization techniques 365

11.9 Summary and Conclusions 366
11.10 References 366

A Quality and Reliability 367

A Quality and Reliability 368

B Cables for Board Products 371

8 Cables for board products 372

xviii

Preface

Development tools and system products are important and developing areas of application for INMOS devices.
The Development and Systems Databook has been published to provide detailed information on the INMOS
product range.

The databook comprises an overview, engineering data and applications information for the current range of
development tools and systems products.

INMOS provide a wide range of development tools including compilers, toolsets and development kits. A
diverse range of software is also available. INMOS systems products provide powerful development platforms
for system designers interested in high density, high performance, design simplicity and cost efectiveness.

In addition to development tools and systems products, the INMOS product range also includes transputer
products, graphics devices, Digital Signal Processing (DSP) devices and fast SRAMS. For further information
concerning INMOS products please contact your local sales outlet.

rmmos Chapter 1

et Systems
Products

•overview

2

1.1 Introduction

INMOS is a recognised leader in the development and design of high-performance integrated circuits and is
a pioneer in the field of parallel processing. The company manufactures components designed to satisfy the
most demanding of current processing applications and also provide an upgrade path for future applications.
Current designs and development will meet the requirements of systems in the next decade. Computing
requirements essentially include high-performance, flexibility and simplicity of use. These characteristics are
central to the design of all INMOS products.

INMOS has a consistent record of innovation over a wide product range and, together with its parent company
SGS-THOMSON Microelectronics, supplies components to system manufacturing companies in the United
States, Europe, Japan and the Far East. INMOS products include a range of transputer products in addition
to a highly successful range of high-performance graphics devices, an innovative and successful range of
high-performance digital signal processing (DSP) devices and a broad range of fast static RAMs, an area in
which it has achieved a greater than 10% market share.

The corporate headquarters, product design team and worldwide sales and marketing management are based
at Bristol, UK.

INMOS is constantly upgrading, improving and developing its product range and is committed to maintaining
a global position of innovation and leadership.

The Transputer Development and iq Systems Databook has been published to assist in the choice of trans
puter development support products available for SUN, VAX and PC users and to give detailed information
on the range of INMOS system products specifically designed for integration into end-us~r systems. The
latter being part of INMOS's iq systems business which is dedicated to supplying and servicing the systems
builder with innovative and high quality modular products.

Design engineers will find it convenient to use this book in conjunction with The Transputer Databook, one
of a series of databooks which specifically detail the INMOS product group areas.

The INMOS transputer family of microprocessors is the industry standard in the field of multi-processing.
The family consists of a range of powerful VLSI devices which all adhere to the same basic architecture
incorporating a processor, memory and communication links for direct connection to other transputers.

Multiprocessor systems can be constructed from a collection of transputers operating concurrently and com
municating through links. Unlike all other microprocessor implementations currently commercially available,
additional bus arbitration logic is not required.

1.2 Innovation and Quality

INMOS provides a wide range of tools to support development on the transputer. These have been designed
to enable users to easily evaluate transputers and develop systems smoothly within the shortest possible
timescales. Development tools include C, FORTRAN and PASCAL compilers and development packages
based on the occam compiler. A wide range of software is also available from third parties, details of which
are included in The Transputer White Pages Directory, available from INMOS. INMOS provides technical field
support, software training courses and a comprehensive software support service.

INMOS has further exploited the power of the transputer architecture and technology by providing a range of
modular hardware products for integration into end-user systems and for use as development platforms for
general transputer projects. These TRAMs (TRAnsputer Modules) are part of a total INMOS strategy to fully
support the systems builder in terms of innovation and quality for INMOS products and service.

Technical expertise in design and manufacturing of transputer silicon and associated software provides an
excellent basis for a professional system product range. INMOS has been a successful supplier of silicon
products to the electronics industry for many years and fully recognises the importance of service and quality
in the high technolology business sectors. In a demanding and competitive marketplace INMOS is fully aware
of the critical importance to the system builder of reliable products and effective supplier support.

Systems products overview 3

The experience, expertise and innovation of INMOS combined with the full support and resources of its parent
multinational company, SGS-THOMSON Microelectronics, results in a stable yet efficient business foundation.

1.3 TRAMS (TRAnsputer Modules)

The INMOS TRAM concept was introduced during 1987 to exploit some of the major benefits of the transputer
and parallel processing.

TRAMS are small, cost effective sub-assemblies of transputers and other circuitry (often RAM) with a very
simple but efficient 16 signal interface standard profiled in modular sizes. The interface accommodates 4
serial INMOS links for interprocessor communication, power supply and system signals.

With this standard, TRAMs may be mounted onto a variety of motherboards which provide specific host inter
face hardware. Each motherboard can connect to a nurrl~er of TRAMs and provides facilities for configuring
a network of TRAMs to the user specified topology under software control. A software package is prOVided
for motherboards which allows this task to be undertaken with the minimum of effort.

The TRAM architecture offers many advantages over conventional system configurations. The following
features are included:

• An industry standard yet simple multiprocessor interface
• Upgradeability at incremental cost
• Maximum flexibility of cost/performance with minimal real-estate

1.3.1 Standard Interface

The electrical interface to every TRAM product consists of 16 signal pins meeting a standard electrical and
mechanical format. All TRAMs are based upon a single module profile with a defined pin layout. This single
format is known as Size 1. Larger TRAMs are simply multiple sizes of this format with the same pin spacing.
This published format will be maintained for future TRAMs yet to be developed by INMOS and has already
been adopted by many third party developers to extend the range of TRAM options and hosts.

1.3.2 Upgradeability

Upgradeability has been a major attraction for customers both for development and end product applications.
TRAMs are becoming known as a futureproof solution. Investment made today using TRAMs, with respect
to software and hardware engineeering, can be regarded as an investment for future designs. Due to the
transputers unique ability to distribute application software by booting networks via the links, TRAMs permit'
exploitation of current hardware technology, but at the same time liberate software development from hardware
constraints of cost, real-time performance and compute power. For example, a system designed today by
the system integrator may be very efficiently enhanced at some time in the future as a result of a change in
his end market demand. This can be achieved in two ways:

• By replacing existing TRAMs with faster transputer silicon TRAMs as they become available (eg, T800-25
to T800-30)
• By adding additional TRAMs to the existing hardware

In either case the system cost is incremental and it is possible to operate with the same original application
software by simply reconfiguring and booting the new network. Using traditional sequential multiprocessor
solutions the second approach would inevitably result in a complete system hardware and software re-design,
significant expansion in board area and a drawn out time to market.

1.3.3 Flexibility

Many system designers exploit the modularity of TRAMs to provide a range of products meeting varieties of
performance/cost demand mix. For example, due to the modularity of the hardware and software, a customer
may develop a low budget product and a high performance product from the same range of components.

4

In addition, the same design can be used across the INMOS range of motherboards or specific customer
designed motherboards which conform to the TRAM specification. This results in a single design being able
to exploit a wide range of host environments and markets.

Unlike other architectural implementations, the preceding flexibility can be achieved utilising just one applica
tion software package. A further advantage of this approach is the commonality of TRAM components within
each end product type. This offers the system builder significant savings by minimising inventory holding.

1.3.4 Evaluation

Customers investing in the TRAM architecture for transputer evaluation purposes have the opportunity to
immediately investigate the performance and characteristics of new transputer silicon as it becomes available.
INMOS is committed to provide a standard TRAM interface for each new member of the transputer family.

1.4 Quality and Reliability

All INMOS systems products are manufactured and tested to strict quality standards. Every product undergoes
extensive soak testing at temperature before final test. This procedure includes the completion of test logs
which are documented and retained for reference.

More detailed information describing Quality and Reliability is included later in this publication.

nnmos Part 1

Boards
5

6 Boards

DTImos Chapter 2

- TRAnsputer
Modules
(TRAMS)

7

Engineering Data

DUilmos
FEATURES

• IMS T222 Transputer

• 64 Kbytes of no-wait-state SRAM
(100 ns memory cycle time)

• Communicates via 4 INMOS serial links
(Selectable between 10 or 20 Mbits/s)

• Package has only 16 active pins.

• Conforms to the TRAM specification

IMS 8416 TRAM
16-bit transputer

64 Kbytes

Size 1

GENERAL DESCRIPTION

The lMS 8416 utilises the full memory space of the
IMS T222 transputer. It is manufactured fully from
surface mount silicon components. The IMS T222's
PLCC package brings low cost benefits to TRAM
users.

Reset
Analyse
NotError

LinkO
Link1
Link2
Link3

Terminated
links

T222

8

64 Kbytes
SRAM

2 TRAnsputer Modules (TRAMs)

2.1 IMS B416 TRAM engineering data

2.1.1 Introduction

9

The IMS 8416 is one of a range of INMOS TRAnsputer Modules (TRAMs) incorporating a transputer and
64 Kbytes of static RAM. In effect, these TRAMs are board level transputers with a simple, standardised
interface. They integrate processor, memory and peripheral functions allowing powerful, flexible, transputer
based systems to be produced with the minimum of design effort.

Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification
of TRAMs can be found in technical notes Module Motherboard Architecture and Dual-In-Line Transputer
Modules (TRAMs) which are included in Part 3 of this databook.

If the user intends to design a custom motherboard, then the Transputer Databook will also be required. This
is available as a separate publication from INMOS (72 TRN 203 01).

2.1.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5MHz clock signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,B in Transputer link speed selection 6,7

Table 2.1 IMS 8416 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.3.

2.1.3 Standard TRAM signals

A TRAM can be regarded as a transputer with extra RAM attached, but with only 16 signals brought out to the
TRAM pins. The majority of the TRAM pins function in exactly the same way as the corresponding transputer
signals, which are detailed in the Transputer Databook. However, a few of these signals are slightly different
from the transputer specification as follows:

notError (pin 11)

This is an open collector signal. It is driven low when there is an error; otherwise it is pulled high by a resistor
on the motherboard. This enables the notError outputs on several TRAMs to be wire-ORed together. (The
TRAM specification recommends that no more than 10 notError outputs are connected together).

LinkSpeedA and LinkSpeedB (pins 6 and 7)

LinkspeedA and LinkspeedB set the speed of transputer link 0 and links 1-3 respectively. When the
appropriate input is low, the link(s) operate at 10 Mbits/s and when high the links operate at 20 Mbits/s.

10 Boards

IMS T222

Internal RAM

Link signals

Whilst the links obey a protocol identical to that described in the Transputer Databook, there are some
differences in the electrical characteristics.

LinklnO-3 The link inputs have pull-down resistors to ensure that they are disabled when they are not con
nected. Diodes are also included for protection against electrostatic discharge.

LinkOutO-3 The link outputs have resistors connected in series for matching to a 100 ohm transmission line.

2.1.4 Memory configuration

The IMS 8416 has internal RAM occupying the first 4 Kbytes of address space. The next 60 Kbytes is
occupied by the external static RAM present on the board. The total of 64 Kbytes represents the maximum
addressable memory space of the IMS T222 transputer.

Table 2.2 details the start and end addresses of this external memory and Fig 2.1 shows a graphical repre
sentation of the memory map (the "#" sign indicates a hexadecimal number).

Hardware byte address
From: #9000
To: #7FFE

Table 2.2 Location of external memory on the IMS 8416

HARDWARE BYTE
ADDRESSES

#7FFE

64 Kbytes

External RAM

(2 cycle)

#8rFF

#8000
'-------'

Figure 2.1 Memory map

2 TRAnsputer Modules (TRAMs) 11

2.1.5 Mechanical details

Figure 2.2 indicates the vertical dimensions of both a single IMS 8416 TRAM and an IMS 8416 TRAM stacked
on top of another TRAM, and Figure 2.3 shows the outline drawing the of the IMS 8416.

a

1B.2mm max

TRAM PCS

lii~iiii~jll g~ = O.2mm min

TRAM PCS

Motherboard PCS

b

Figure 2.2 IMS 8416 height specification, (a) Single TRAM; (b) Two stacked TRAMs

0.600
0.724

0.175

DATUM

0.100

0.224

I···· 0.180 I···· 3.400

: :., : ::: 0~.\5000 : .~ ~ ~ ~ • 3.450

-: 1".... DATUM (pin 1) : :: •••• 3.480

~T-----------------------""'·I

~t6- link20ut . ~ link3in' 0 ~ ; ~
I 6 link2in link30ut 0 ::
IOVCC GNOO::
o link10ut linkOin 0 ·1

o link1in Size1 linkOoutO 0.320

o linkSpeedA notError 0
o linkSpeedB Reset 0
o Clockln(5MHz) Analyse 0

0.7750.875 L-- ~

Figure 2.3 IMS 8416 outline drawing (all dimensions in inches)

12 Boards

2.1.6 Installation

Since the IMS 8416 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8416 is supplied with spacer pin strips attached to the TRAM pins on the underside of the board.
These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit. Secondly,
they can be used to space the TRAMs off the motherboard. If there are no components mounted on the
motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

Plug the IMS 8416 carefully into the motherboard. Where the IMS 8416 is being used with an INMOS
motherboard, the silk screened triangle marking pin 1 on the IMS 8416 (see Figure 2.3) should be aligned
with the silk screened triangle that appears in the corner of the appropriate TRAM slot.

Should it be necessary to unplug the IMS 8416, it is advised that it is gently levered out while keeping it as
flat as possible. As soon as the IMS 8416 is removed, the spacer pin strips should be refitted to the TRAM
to protect the pins.

2 TRAnsputer Modules (TRAMs)

2.1.7 Specification

TRAM feature IMS 8416·10 Unit Notes
Transputer type IMS T222-20
Number of transputers 1
Number of INMOS serial links 4
Amount of SRAM 64 Kbytes
SRAM "wait states" 0
Amount of DRAM None
DRAM "wait states" N/A
Memory cycle time 100 ns
Subsystem controller No
Peripheral circuitry None
Parity No
Size (TRAM size) 1
Length 3.66 inch
Pitch between pins 3.30 inch
Width 1.05 inch
Component height above PC8 4.7 mm
Component height below PC8 3.7 mm 1
Weight - g
Storage temperature 0-70 degC
Operating temperature 10-40 degC 2
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption - W 3

Table 2.3 IMS 8416 specification

Notes:

1 This dimension includes the thickness of the PCS.

2 The figure quoted refers to the ambient air temperature.

13

3 The power consumption is the worst case value obtained when a sample of IMS 8416 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

2.1.8 Ordering Information

Description

IMS 8416 TRAM with IMS T222-20

Order No.

IMS 8416-10

Table 2.4 Ordering information

Engineering Data

UITTImos
FEATURES

• Choice of Transputer
(IMS T414, IMS T425 or IMS T800)

• Choice of Processor Speed
(20 or 25 MHz)

• 32 Kbytes of no-wait-state SRAM

• Communicates via 4 INMOS serial links
(Selectable between 10 or 20 Mbits/s)

• Package has only 16 active pins.

• Designed to a published specification
(INMOS Technical Note 29).

IMS 8401 TRAM
32-bit transputer

32 Kbytes

Size 1

GENERAL DESCRIPTION

A low cost, high performance, 16 pin transputer,
ideal for applications where 4 Kbytes of on-chip
RAM is not quite enough. The 32 Kbytes of off chip
RAM is ideal for systolic processing, signal process
ing, feature extraction etc. ThelMS 8008, fitted with
ten IMS 8401-5s, offers 50 MWhetstones/s in a sin
gle slot of an IBM PC, XT, AT, PS2 model 30, or
clone. In the INMOS ITEM, 160 IMS 8401-8s offer
2 GIPS (2000 MIPS) and 5 Mbytes.

Reset
Analyse
NotError

LinkO
Link 1
Link2
Link3

Terminated
links

T800,
T425

or
T414

32 Kbytes
SRAM

14

2 TRAnsputer Modules (TRAMs)

2.2 IMS B401 TRAM engineering data

2.2.1 Introduction

15

The IMS 8401 is one of a range of INMOS TRAnsputer Modules (TRAMs) incorporating a transputer and
32 Kbytes of static RAM. In effect, these TRAMs are board level transputers with a simple, standardised
interface. They integrate processor, memory and peripheral functions allowing powerful, flexible, transputer
based systems to be produced with the minimum of design effort.

Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification
of TRAMs can be found in technical notes Module Motherboard Architecture and Dual-In-Line Transputer
Modules (TRAMs) which are included in Part 3 of this databook.

If the user intends to design a custom motherboard, then The Transputer Databook will also be required.
This is available as a separate publication from INMOS (72 TRN 203 01).

2.2.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5MHz clock signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,B in Transputer link speed selection 6,7

Table 2.1 IMS 8401 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.3.

16 Boards

2.2.3 Standard TRAM signals

A TRAM can be regarded as a transputer with extra RAM attached, but with only 16 signals brought out to the
TRAM pins. The majority of the TRAM pins function in exactly the same way as the corresponding transputer
signals, which are detailed in The Transputer Databook. However, a few of these signals are slightly different
from the transputer specification as follows:

notError (pin 11)

This is an open collector signal. It is driven low when there is an error; otherwise it is pulled high by a resistor
on the motherboard. This enables the notError outputs on several TRAMs to be wire-ORed together. (The
TRAM specification recommends that no more than 10 notError outputs are connected together).

LinkSpeedA and LinkSpeedB (pins 6 and 7)

LinkspeedA and LinkspeedB set the speed of transputer link 0 and 'links 1-3 respectively. When the
appropriate input is low the link(s) operate at 10 Mbits/s and when high the link(s) operate at 20 Mbits/s.

Link signals

Whilst the links obey a protocol identical to that described in The Transputer Databook, there are some
differences in the electrical characteristics.

LinklnO-3 The link inputs have pull-down resistors to ensure that they are disabled when they are not con
nected. Diodes are also included for protection against electrostatic discharge.

LinkOutO-3 The link outputs have resistors connected in series for matching to a 100 ohm transmission line.

2.2.4 Memory configuration

The IMS 8401 with aiMS T414 has internal RAM occupying the first 2 Kbytes of address space, whereas
internal RAM occupies the first 4 Kbytes on the IMS 8401 with an IMS 425 or IMS T800. The two memory
maps shown in Figure 2.1 reflect this fact.

Location of external memory

The IMS 8401 has 32 Kbytes of external memory. Tables 2.2 and 2.3 show the start addresses of this
memory for both the IMS T414 and the IMS T4251T800 versions of the IMS 8401 (the "#" sign indicates a
hexadecimal number).

Hardware byte address
From: #80000800
To: #800087FF

Table 2.2 Location of external memory on the IMS 8401 with IMS T414

Hardware byte address
From: #80001000
To: #80008FFF

Table 2.3 Location of external memory on the IMS 8401 with IMS T425 or IMS T800

2 TRAnsputer Modules (TRAMs)

HARDWARE BYTE
ADDRESSES

#7FFFFFFC
Repeated

External RAM

HARDWARE BYTE
ADDRESSES

#7FFFFFFC
Repeated

External RAM

17

#80008FFF

#800087FF
32 Kbytes

32 Kbytes External RAM

External RAM (3 cycle)

(3 cycle) #80001000
#80000800

T414 T425/T800

#80000000 Internal RAM #80000000
Internal RAM

Figure 2.1 Memory maps

2.2.5 Mechanical details

Figure 2.2 indicates the vertical dimensions of both a single IMS 8401 TRAM and an IMS 8401 TRAM stacked
on top of another TRAM, and Figure 2.3 shows the outline drawing the of the IMS 8401 .

18

a

Boards

18.2mm max

TRAM PCS

l'lilliiiiiillli'ii g~ = O.2mm min

TRAM PCS

Motherboard PCS

b

Figure 2.2 IMS 8401 height specification, (a) Single TRAM; (b) Two stacked TRAMs

0.175

DATUM·

0.100

0.224

/····0.180 ,····3.400

:::::: ~ 0~.\5000 :.- - - _. 3.450

: ,"'" DATUM (pin 1) : ~ f 3.480

~1~. ~:~~~~nut •• ·L~~~~~~~·g.~ i
,0 VCC GND 0 ::
o Linklout LinkOin 0 "
o Linklin Size1 LinkOout 0 0.320

o LinkSpeedA notError 0
o LinkSpeedB Reset 0 0.600

o Clockln(5M Hz) Analyse 0 0.724
0.7750.875 1- ---'

Figure 2.3 IMS 8401 outline drawing (all dimensions in inches)

2.2.6 Installation

Since the IMS 8401 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8401 is supplied with spacer pin strips attached to the TRAM pins on the underside of the board.
These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit. Secondly,
they can be used to space the TRAMs off the motherboard. If there are no components mounted on the
motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

Plug the IMS 8401 carefully into the motherboard. Where the IMS 8401 is being used with an INMOS
motherboard, the silk screened triangle marking pin 1 on the IMS 8401 (see Figure 2.3) should be aligned
with the silk screened triangle that appears in the corner of the appropriate TRAM slot. If it is envisaged that
the assembly is likely to be subjected to any vibrations, it is recommended that the TRAM is secured to the
motherboard using nylon M3 nuts and bolts. The bolts should be inserted through the fixing holes on the
motherboard, and through the castelations on two edges of the TRAM. A number of these nuts and bolts are
supplied with each of the INMOS motherboards.

Should it be necessary to unplug the IMS 8401, it is advised that, having removed any retaining nuts and
bolts, it is gently levered out while keeping it as flat as possible. As soon as the IMS 8401 is removed, the
spacer pin strips should be refitted to the TRAM to protect the pins.

2 TRAnsputer Modules (TRAMs)

2.2.7 Specification

19

TRAM feature IMS 8401·2 IMS 8401·3 IMS 8401·8 IMS 8401·5 Unit Notes
Transputer type T414-20 T800-20 T425-25 T800-25
Number of transputers 1 1 1 1
Number of INMOS serial links 4 4 4 4
Amount of SRAM 32 32 32 32 Kbytes
SRAM ''wait states" 0 0 0 0
SRAM cycle time 150 150 120 120 ns
Amount of DRAM None None None None
DRAM "wait states" N/A N/A N/A N/A
DRAM cycle time N/A N/A N/A N/A
Subsystem controller No No No No
Peripheral circuitry None None None None
Parity No No No No
Size (TRAM size) 1 1 1 1
Length 3.66 3.66 3.66 3.66 inch
Pitch between pins 3.30 3.30 3.30 3.30 inch
Width 1.05 1.05 1.05 1.05 inch
Component height above PC8 4.7 4.7 4.7 4.7 mm
Component height below PC8 3.7 3.7 3.7 3.7 mm 1
Weight 21 21 21 21 g
Storage temperature 0-70 0-70 0-70 0-70 degC
Operating temperature 10-40 10-40 10-40 10-40 degC 2
Power supply voltage (VCC) 4.75-5.25 4.75-5.25 4.75-5.25 4.75-5.25 Volt
Power consumption 1.2 1.2 1.5 1.5 W 3

Table 2.4 IMS 8401 specification

Notes:

1 This dimension includes the thickness of the PC8.

2 The figure quoted refers to the ambient air temperature.

3 The power consumption is the worst case value obtained when a sample of IMS 8401 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

2.2.8 Ordering Information

Description Order Number
IMS 8401 TRAM with IMS T414-20 IMS 8401-2
IMS 8401 TRAM with IMS T800-20 IMS 8401-3
IMS 8401 TRAM with IMS T425-25 IMS 8401-8
IMS 8401 TRAM with IMS T800-25 IMS 8401-5

Table 2.5 Ordering information

Engineering Data

IMS 8411 TRAM
32-bit transputer

1 Mbytes

Size 1

®

.,.,.,.,.~ ,;,.,.,.,.

::~tm It~

Jmm: :tt~:

m ~~:

m 1~~

:;~mI mmr
~t1 1tf~

.-.;.;.;.; ;.;.;.,.,.
c

U[Ji)mOS

FEATURES GENERAL DESCRIPTION

• Choice of IMS T425 or IMS T800 Trans
puter

• 1 Mbyte of zero wait-state DRAM
(150 ns memory cycle time)

• Size 1 TRAM

• Communicates via 4 INMOS serial links

• Package has only 16 active pins.

• Conforms to the TRAM specification

The IMS B411 TRAM is the ideal module for appli
cations where space is at a premium. With a full
Mbyte of DRAM on a size 1 TRAM, 8 transputers
and 8 Mbytes of memory can be installed in a single
IBM PC (*) slot (using the IMS B008 motherboard)
or in a single 6U VMEbus slot (using the IMS B014
motherboard). The choice of an IMS T800 or T425
transputer gives the user the flexibility to tailor a
system to his exact requirements in terms of cost
and performance.

(*) For IBM PC read: original PC, XT, AT, PS/2
Model 30 and most clones.

Reset
Analyse
NotError

LinkO
Link1
Link2
Link3

T800
or

T425

1 Mbyte
DRAM

Terminated
links

20

2 TRAnsputer Modules (TRAMs)

2.3 IMS 8411 TRAM engineering data

2.3.1 Description

21

The IMS 8411 is an INMOS TRAnsputer Module (TRAM) incorporating either an IMS T800 or IMS T425
transputer and 1 Mbyte of dymamic RAM.

TRAMs are board level transputers with a simple, standardised interface. They integrate processor, memory
and peripheral functions allowing powerful, flexible, transputer based systems to be produced with the min
imum of design effort. TRAMs may be plugged into motherboards, which provide the necessary electrical
signals, mechanical support and usually, an interface to a host machine. Various motherboards are now
available from INMOS and from third-party vendors for most of the common computing platforms.

Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification
of TRAMs can be found in technical notes Module Motherboard Architecture and Dual-In-Line Transputer
Modules (TRAMs) which are included in Part 3 of this databook.

If the user intends to design a custom motherboard, then The Transputer Databook will also be required.
This is available as a separate publication from INMOS (72 TRN 203 01).

2.3.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5MHz clock signal 8
Reset -in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,8 in Transputer link speed selection 6,7

Table 2.1 IMS 8411 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.3.

2.3.3 Standard TRAM signals

A TRAM can be regarded as a transputer with extra RAM attached, but with only 16 signals brought out to the
TRAM pins. The majority of the TRAM pins function in exactly the same way as the corresponding transputer
signals, which are detailed in The Transputer Databook. However, a few of these signals are slightly different
from the transputer specification as follows:

notError (pin 11)

This is an open collector signal. It is driven low when there is an error; otherwise it is pulled high by a resistor
on the motherboard. This enables the notError outputs on several TRAMs to be wire-ORed together. The
TRAM specification recommends that no more than 10 notError outputs are connected together).

22 Boards

LinkSpeedA and LinkSpeedB (pins 6 and 7)

LinkspeedA and LinkspeedB set the speed of transputer link 0 and links 1-3 respectively. When the
appropriate input is low the Iink(s) operate at 10 Mbits/s and when high the Iink(s) operate at 20 Mbits/s.

Link signals

Whilst the links obey a protocol identical to that described in the Transputer Databook, there are some
differences in the electrical characteristics.

LinklnO-3 The link inputs have pull-down resistors to ensure that they are disabled when they are not con
nected. Diodes are also included for protection against electrostatic discharge.

LinkOutO-3 The link outputs have resistors connected in series for matching to a 100 ohm transmission line.

2.3.4 Memory configuration

The internal RAM of the IMS T800 or IMS T425 occupies the first 4 Kbytes of address space. The next
1 Mbyte is occupied by the external dynamic RAM present on the TRAM. The external RAM is repeated in
1 Mbyte blocks throughout the higher address space.

Table 2.2 details the start and end addresses of the external memory and Fig 2.1 shows a graphical repre
sentation of the memory map (the "#" sign indicates a hexadecimal number).

Hardware byte address
From: #80001000
To: #80100FFF

Table 2.2 Location of external memory on the IMS 8411

2 TRAnsputer Modules (TRAMs)

HARDWARE BYTE
ADDRESSES

#7FFFFFFC
Repeated

External RAM

#80100FFF

1 Mbyte

External RAM

(3 cycle)

#80001000~ ___

23

#80000000
Internal °l\M

Figure 2.1 Memory map

2.3.5 Mechanical details

Figure 2.2 indicates the vertica~ dimensions of a single IMS 8411 TRAM, and Figure 2.3 shows the outline
drawing the of the IMS 8411.

Motherboard pes

Figure 2.2 IMS 8411 height specification

24

.·····0.1S0 .·····3.400

: :: ~ ~ ~: O~ .\5000 ~ :. -. -. -. -. 3~:5S00
'. .- - - - - DATUM (Pin 1) • ':

0.175~: ::

DATUM' ..1'0 Link20ut ••• Link3in O· J,
0.100 • 0 Link2in Link30ut 0 ::

·OVCC GNOO::
0.224 0 Link10ut LinkOin 0 I. 0.320

o Link1in Size1 LinkOout 0
o LinkSpeedA notError 0
o LinkSpeedB Reset 0 0.600
o Clockln(5MHz) Analyse 0 0.724

0.775

0.S75 '-----------------------'

Figure 2.3 IMS 8411 outline drawing (all dimensions in inches)

2.3.6 Installation

Boards

Since the IMS 8411 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8411 is supplied with spacer pin strips attached to the TRAM pins on the underside of the board.
These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit. Secondly,
they can be used to space the TRAMs off the motherboard. If there are no components mounted on the
motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

Plug the IMS 8411 carefully into the motherboard. Where the IMS 8411 is being used with an INMOS
motherboard, the silk screened triangle marking pin 1 on the IMS 8411 (see Figure 2.3) should be aligned
with the silk screened triangle that appears in the corner of the appropriate TRAM slot. If it is envisaged that
the assembly is likely to be subjected to any vibrations, it is recommended that the TRAM is secured to the
motherboard using nylon M3 nuts and bolts. The bolts should be inserted through the fixing holes on the
motherboard, and through the castlations on two edges of the TRAM. A number of these nuts and bolts are
supplied with each of the INMOS motherboards.

Should it be necessary to unplug the IMS 8411, it is advised that, having removed any retaining nuts and
bolts, it is gently levered out while keeping it as flat as possible. As soon as the IMS 8411 is removed, the
spacer pin strips should be refitted to the TRAM to protect the pins.

2 TRAnsputer Modules (TRAMs)

2.3.7 Specification

TRAM feature IMS 8411·3 IMS 8411·7 Unit Notes
Transputer type T800-20 T425-20
Number of transputers 1 1
Number of INMOS serial links 4 4
Amount of SRAM None None
SRAM "wait states" N/A N/A
Amount of DRAM 1 1 Mbyte
DRAM "wait states" 0 0
Memory cycle time 150 150 ns
Subsystem controller No No
Peripheral circuitry None None
Parity No No
Size (TRAM size) 1 1
Length 3.66 3.66 inch
Pitch between pins 3.30 3.30 inch
Width 1.05 1.05 inch
Component height above PC8 9.2 9.2 mm
Component height below PC8 3.7 3.7 mm 1
Weight 50 50 g
Storage temperature 0-70 0-70 degC
Operating temperature 10-40 10-40 degC 2
Power supply voltage (VCC) 4.75-5.25 4.75-5.25 Volt
Power consumption 4 4 W 3

Table 2.3 IMS 8411 specification

Notes:

1 This dimension includes the thickness of the PC8.

2 The figure quoted refers to the ambient air temperature.

25

3 The power consumption is the worst case value obtained when a sample of IMS 8411 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

2.3.8 Ordering Information

Description Order Number
IMS 8411 TRAM with IMS T800-20 IMS 8411-3
IMS 8411 TRAM with IMS T425-20 IMS 8411-7

Table 2.4 Ordering information

Engineering Data

IMS 8404 TRAM
32-bit transputer

2 Mbytes

Size 2

®

.,.,.~.~. ~ y,~,~,~,

t~@~ mmt:
:{f: tt~~:

~~ !~~:

~~ !w

::r~m @mr
tmw ~t~f!

....~.:.:.: ,:.:.:.~.'cmrumos
FEATURES GENERAL DESCRIPTION

• IMS T800 Transputer

• 32 Kbytes of zero wait-state SRAM

• 2 Mbytes of single wait-state DRAM

• Subsystem controller circuitry

• Communicates via 4 INMOS serial links
(Selectable between 10 or 20 Mbits/s)

• Package has only 16 active pins

• Designed to a published specification

The IMS 8404 is a very compact compute mod
ule providing a full 2 Mbytes of memory and still
providing maximum performance capability. This is
acheived by extending the principle of fast on chip
RAM to include 32 Kbytes of static RAM which cy
cles as fast as possible. So any technique which
puts most frequently accessed memory locations
near the bottom of memory wi 11 speed up the pro
cessing. This TRAM is the most popular board for
running INMOS' TDS or Toolset packages.

The IMS 8404 packs 11 cm2 of silicon onto a board
the size 'of a credit card. Four IMS 8404s fit onto
the IMS 8008 in a single slot of the IBM PC. Fifty
IMS 8404s fit into an ITEM, to give 100 Mbytes,
625 MIPS, 250 MWh,etstones, with space to spare
for other modules.

Reset
Analyse
NotError

LinkO
Link1
Link2
Link3

T800

2 Mbytes
DRAM

32 Kbytes

SRAM

Terminated
links

Subsystem

PAL

.--~ SSReset
I---t.~ SSAnalyse
~-- notSSError

26

2 TRAnsputer Modules (TRAMs)

2.4 IMS 8404 TRAM engineering data

2.4.1 Introduction

27

The IMS 8404 is one of a range of INMOS TRAnsputer Modules (TRAMs) incorporating aiMS T800 trans
puter, 32 Kbytes of static RAM and 2 Mbytes of dynamic RAM. In effect, these TRAMs are board level
transputers with a simple, standardized interface. They integrate processor, memory and peripheral func
tions allowing powerful, flexible, transputer based systems to be produced with the minimum of design effort.

Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification
of TRAMs can be found in technical notes Module Motherboard Architecture and Dual-In-Line Transputer
Modules (TRAMs) which are included in Part 3 of this databook.

If the user intends to design a custom motherboard, then The Transputer Databook will also be required.
This is available as a separate publication from INMOS (72 TRN 203 01).

2.4.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5MHz clock signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,8 in Transputer link speed selection 6,7

Subsystem Services
SubSystemReset out Subsystem reset 1b
SubSystemAnalyse out Subsystem error analysis 1c
notSubSystemError in Subsystem error indicator 1a

Table 2.1 IMS 8404 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.3.

28 Boards

2.4.3 Standard TRAM signals

A TRAM can be regarded as a transputer with extra RAM attached, but with only 16 signals brought out to the
TRAM pins. The majority of the TRAM pins function in exactly the same way as the corresponding transputer
signals, which are detailed in The Transputer Databook. However, a few of these signals are slightly different
from the transputer specification as follows:

notError (pin 11)

This is an open collector signal. It is driven low when there is an error; otherwise it is pulled high by a resistor
on the motherboard. This enables the notError outputs on several TRAMs to be wire-ORed together. (The
TRAM specification recommends that no more than 10 notError outputs are connected together).

LinkSpeedA and LinkSpeedB (pins 6 and 7)

LinkSpeedA and LinkSpeedB set the speed of transputer link 0 and links 1-3 respectively. When the
appropriate input is low, the Iink(s) operate at 10 Mbits/s, and when high the Iink(s) operate at 20 Mbits/s.

Link signals

Whilst the links obey a protocol identical to that described in the Transputer Databook, there are some
differences in the electrical characteristics.

LinklnO-3 The link inputs have pull-down resistors to ensure that they are disabled when they are not con
nected. Diodes are also included for protection against electrostatic discharge.

LinkOutO-3 The link outputs have resistors connected in series for matching to a 100 ohm transmission line.

2.4.4 Subsystem signals

The IMS 8404 has a subsystem port in addition to the usual TRAM signals. This enables the TRAM to reset
or analyse a subsystem of other TRAMs and/or motherboards. The polarity of these signals is the same as
that of the Reset, Analyse and notError standard TRAM signals. Therefore, the IMS 8404 subsystem can
drive other TRAMs on the same motherboard with no intermediate logic. However, SubSystemReset and
SubSystemAnalyse must go through inverting buffers if they are to drive a subsystem off the motherboard.

These subsystem signals are accessed by writing or reading to control registers in the transputer memory
space. See Section 2.4.5.

2.4.5 Memory configuration

The IMS 8404 is able to access 2 Mbytes of memory. This is comprised of 4 Kbytes of internal transputer
memory, 28 Kbytes of external SRAM and 2016 Kbytes of external DRAM. There are, in fact, 32 Kbytes of
SRAM components and 2 Mbytes of DRAM components on the board, but the address spaces of each type
of memory are superimposed. Therefore, the total memory available is limited to 2 Mbytes. This is sufficient
to enable the Transputer Development System (TDS) to be run on a single IMS 8404 TRAM.

2 TRAnsputer Modules (TRAMs)

Location of external memory

29

Tables 2.2 and 2.3 show the start addresses of the different types of external memory on the IMS 8404 (the
"#" sign indicates a hexadecimal number). The internal RAM on the IMS T800 occupies the first 4 Kbytes of
address space.

Hardware byte address
From: #80001000
To: #80007FFF

Table 2.2 Location of external SRAM on the IMS 8404

Hardware byte address
From: #80008000
To: #801FFFFF

Table 2.3 Location of external DRAM on the IMS 8404

Since the internal memory on the IMS T800 is 1 cycle, the external SRAM is 3 cycle and the DRAM is 4 (or 5)
cycle, a memory speed hierachy is established. This architecture allows programmers to structure their code
for optimum performance, and will become of even greater significance when the next faster version of the
transputer becomes available.

Subsystem register locations

The subsystem register add resses start at hardware address #00000000 in all TRAMs that utilize a 32-bit
processor, allowing software compatibility between TRAMs. These registers are located as shown in Table 2.4.

Register Hardware byte address
SubSystemReset (write only) #00000000
SubSystemAnalyse (write only) #00000004
notSubSystemError (read only) #00000000

Table 2.4 Subsystem address locations

Setting bit 0 in either the reset or the analyse registers asserts the corresponding signal. Similarly, clearing
bit 0 deasserts the signal. When an error occurs in the subsystem, bit 0 of the error location becomes set.

8yte locations #00000008 and #OOOOOOOC are unused. The subsystem registers are repeated at every
sixteenth byte location in the positive address space. See Figure 2.1.

30 Boards
HARDWARE BYTE

ADDRESSES

#7FFFFFFC
Repeated
Subsystem
Registers

#00000004
and

#00000000

#801FFFFF

2016 Kbytes
External

DRAM
(4 or 5 cycle)

#80007FFF 28 Kbytes
External

SRAM
#80001000~(__3__c__yc__le__) -i

Internal RAM
#80000000 '------_......

Figure 2.1 Memory map

2.4.6 Mechanical details

Figure 2.2 indicates the vertical dimensions of a single IMS 8404 and Figure 2.3 shows the outline drawing
the of the IMS 8404.

Components to 4.1 mm i:~:

::::::~ ~.~~.~.~~.!.~.t ~E.~ !.~.~~.~~.~.~.~ t
Motherboard pcs

Figure 2.2 IMS 8404 height specification

2 TRAnsputer Modules (TRAMs)

,~~~~. 0.180 .~~~~·3.400

1 ~ •••• 0 150 : l' ~ ~ ~ ~ 3.450

'~:~~~~ ~.100 : ~~ •••• 3.480
• ~.... DATUM (pin 1) • "

0.175 ~. ~!
DATUM ~1.8··0· a . lInk20ut I notSubSystemError························· Link3in 0 . ~~.
0.100 0 b Link2in I SubSystemReset Link30ut 0 ~~

0.224 • g?in~1 ou~CC I SubSystemAnalyse Lin~~i~ g ~!
o Link1in Size2 LinkOout 0 0.320

o LinkSpeedA notError 0
o LinkSpeedB Reset 0 0.600

o Clockln(5MHz) Analyse 0 0.724
0.775

0.875 0.925
1.1125

1.076 o NC NC 0
1.200 o NC NC 0

o NC NC 0
o NC NC 0

1.480 o NC NC 0
o GND VCC 0 1.576

o NC NC 0 1.700

o NC NC 0

1.975

Figure 2.3 IMS' 8404 outline drawing (All dimensions in inches)

2.4.7 Installation

31

Since the IMS 8404 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8404 is supplied with spacer pin strips attached to the TRAM pins on the underside of the board.
These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit. Secondly,
they can be used to space the TRAMs off the motherboard. If there are no components mounted on the
motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

If the subsystem signals are required, plug a 3-way header strip into the solder-side sockets on the IMS 8404.

Plug the IMS 8404 into the motherboard. Where the IMS 8404 is being used with an INMOS motherboard,
the silk screened triangle marking pin 1 on the IMS 8404 (see Figure 2.3) should be aligned with the silk
screened triangle that appears in the corner of the appropriate TRAM slot.

Should it be necessary to unplug the IMS 8404, it is advised that it is gently levered out while keeping it as
flat as possible. As soon as the IMS 8404 is removed, the spacer pin strips should be refitted to the TRAM
to protect the pins.

32 80ards

2.4.8 Specification

This specification applies to part numbers IMS 8404-5x, IMS 8404-3y and IMS 8404-4z, where x denotes
Rev. A and after, y denotes Rev. E and after, and z denotes Rev. C and after.

TRAM feature IMS 8404-5 IMS 8404-3 IMS 8404-4 Unit Notes
Transputer type IMS T800-25 IMS T800-20 IMS T800-17
Number of transputers 1 1 1
Number of INMOS serial links 4 4 4
Amount of SRAM 32 32 32 Kbyte
SRAM "wait states" 0 0 0
Amount of DRAM 2 2 2 Mbyte
DRAM ''wait states" 1(2) 1 1 6
Memory cycle time 120/160(200) 150/200 171/229 ns 1,6
Subsystem controller Yes Yes Yes
Peripheral circuitry None None None
Parity No No No
Size (TRAM size) 2 2 2
Length 3.66 3.66 3.66 inch
Pitch between pins 3.30 3.30 3.30 inch
Width 2.15 2.15 2.15 inch
Component height above PC8 9.2 9.2 9.2 mm 2
Component height below PC8 3.7 3.7 3.7 mm 3
Weight 68 68 68 g
Storage temperature 0-70 0-70 0-70 degC
Operating temperature 10-40 10-40 10-40 degC 4
Power supply voltage (VCC) 4.75-5.25 4.75-5.25 4.75-5.25 Volt
Power consumption 6 5 5 W 5

Table 2.5 IMS 8404 specification

Notes:

1 The two figures quoted refer to (i) SRAM cycle time, and (ii) DRAM cycle time.

2 Since the IMS B404 makes use of 1 Mbit ZIP RAMs, this dimension is larger than is normally stated for TRAMs.

3 This dimension includes the thickness of the PCB.

4 The figure quoted refers to the ambient air temperature.

5 The power consumption is the worst case value obtained when a sample of IMS B404 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

6 The B404-5 incorporates some wait-state logic that generates an extra memory cycle wait-state whenever the same bank of
DRAM is accessed consecutively. The figures in parentheses refer to these instances.

2.4.9 Ordering Information

Description Order Number

IMS 8404 TRAM with IMS T800-25 IMS 8404-5
IMS 8404 TRAM with IMS T800-20 IMS 8404-3
IMS 8404 TRAM with IMS T800-17 IMS 8404-4

Table 2.6 Ordering information

Engineering Data

t:I

DUilmOS

FEATURES

• IMS T800 25 MHz Transputer

• 64 Kbytes of zero wait-state SRAM

• 4 Mbytes of single wait-state DRAM

• Subsystem controller circuitry

• Communicates via 4 INMOS serial links
(Selectable between 10 or 20 Mbits/s)

• Package has only 16 active pins

• Designed to a published specification

IMS 8417 TRAM
32-bit transputer
4 Mbytes

Size 4

GENERAL DESCRIPTION

The IMS 8417 uses the IMS T800 25MHz trans
puter (the highest speed T800). The 4 Mbytes of
DRAM is sufficient to run the Ada compiler from
Alsys. Also provided is 64 Kbytes of fast SRAM
(3 cycle), so any technique which puts most fre
quently accessed memory locations near the bot
tom of memory will speed up the processing.

Reset
Analyse
NotError

LinkO
Link 1
Link2
Link3

T800
25MHz

4 Mbytes
DRAM

64 Kbytes

SRAM

Terminated
links

33

Subsystem
PAL

~~~ SSReset
I-~.~ SSAnalyse
~-- notSSError



34

2.5 IMS B417 TRAM engineering data

2.5.1 Introduction

1 Boards

The IMS 8417 is one of a range of INMOS TRAnsputer Modules (TRAMs) incorporating aiMS T800 trans
puter, 64 Kbytes of static RAM and 4 Mbytes of dynamic RAM. In effect, these TRAMs are board level
transputers with a simple, standardized interface. They integrate processor, memory and peripheral func
tions allowing powerful, flexible, transputer based systems to be produced with the minimum of design effort.

Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification
of TRAMs can be found in technical notes Module Motherboard Architecture and Dual-In-Line Transputer
Modules (TRAMs) which are included in Part 3 of this databook.

If the user intends to design a custom motherboard, then The Transputer Databook will also be required.
This is available as a separate publication from INMOS (72 TRN 203 01).

2.5.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5MHz clock signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,B in Transputer link speed selection 6,7

Subsystem Services
SubSystemReset out Subsystem reset 1b
SubSystemAnalyse out Subsystem error analysis 1c
notSubSystemError in Subsystem error indicator 1a

Table 2.1 IMS 8417 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.3.



2 TRAnsputer M'odules (TRAMs) 35

2.5.3 Standard TRAM signals

A TRAM can be regarded as a transputer with extra RAM attached, but with only 16 signals brought out to the
TRAM pins. The majority of the TRAM pins function in exactly the same way as the corresponding transputer
signals, which are detailed in The Transputer Databook. However, a few of these signals are slightly different
from the transputer specification as follows:

notError (pin 11)

This is an open collector signal. It is driven low when there is an error; otherwise it is pulled high by a resistor
on the motherboard. This enables the notError outputs on several TRAMs to be wire-ORed together. (The
TRAM specification recommends that no more than 10 notError outputs are connected together).

LinkSpeedA and LinkSpeedB (pins 6 and 7)

LinkSpeedA and LinkSpeedB set the speed of transputer link 0 and links 1-3 respectively. When the
appropriate input is low, the Iink(s) operate at 10 Mbits/s, and when high the Iink(s) operate at 20 Mbits/s.

Link signals

Whilst the links obey a protocol identical to that described in The Transpuler Databook, ·there are some
differences in the electrical characteristics.

LinklnO-3 The link inputs have pull-down resistors to ensure that they are disabled when they are not con
nected. Diodes are also included for protection against electrostatic discharge.

LinkOutO-3 The link outputs have resistors connected in series for matching to a 100 ohm transmission line.

2.5.4 SUbsystem signals

The IMS 8417 has a subsystem port in addition ·to the usual TRAM signals. This enables the TRAM to reset
or analyse a subsystem of other TRAMs and/or'motherboards. The polarity of these signals is the same as
that of the Reset, Analyse and notError standard TRAM signals. Therefore, the IMS 8417 subsystem can
drive other TRAMs on the same motherboard with no intermediate logic. However, SubSystemReset ahd
SubSystemAnalyse must go through inverting buffers if they are to drive a subsystem off the motherboard.

These subsystem signals are accessed by writing or reading to control registers in the transputer memory
space. See Section 2.5.5.



36 Boards

2.5.5 Memory configuration

The IMS 8417 is able to access 4 Mbytes of memory. This is comprised of 4 Kbytes of internal transputer
memory, 60 Kbytes of external SRAM and 4032 Kbytes of external DRAM. There are, in fact, 64 Kbytes of
SRAM components and 4 Mbytes of DRAM components on the board, but the address spaces of each type
of memory are superimposed. Therefore, the total memory available is limited to 4 Mbytes.

Location of external memory

Tables 2.2 and 2.3 show the start addresses of the different types of external memory on the IMS 8417 (the
"#" sign indicates a hexadecimal number). The internal RAM on the IMS T800 occupies the first 4 Kbytes of
address space.

Hardware byte address
From: #80001000
To: #8000FFFF

Table 2.2 Location of external SRAM on the IMS 8417

Hardware byte address
From: #80010000
To: #803FFFFF

Table 2.3 Location of external DRAM on the IMS 8417

Since the internal memory on the IMS T800 is 1 cycle, the external SRAM is 3 cycle and the DRAM is 4 cycle,
a memory speed hierachy is established. This architecture allows programmers to structure their code for
optimum performance.

Subsystem register locations

The subsystem register addresses start at hardware address #00000000 in all TRAMs that utilize a 32-bit
processor, allowing software compatibility between TRAMs. These registers are located as shown in Table 2.4.

Register Hardware byte address
SubSystemReset (write only) #00000000
SubSystemAnalyse (write only) #00000004
notSubSystemError (read only) #00000000

Table 2.4 Subsystem address locations

Setting bit 0 in either the reset or the analyse registers asserts the corresponding signal. Similarly, clearing
bit 0 deasserts the signal. When an error occurs in the subsystem, bit 0 of the error location becomes set.

8yte locations #00000008 and #OOOOOOOC are unused. The subsystem registers are repeated at every
sixteenth byte location in the positive address space. See Figure 2.1.



2 TRAnsputer Modules (TRAMs)

HARDWARE BYTE
ADDRESSES

#7FFFFFFC
Repeated
Subsystem
Registers

37

#00000004
and

#00000000

#803FFFFF

4032 Kbytes
External
DRAM

( 4 cycle)

#8000FFFF 60 Kbytes
External
SRAM

#80001000 (3 cycle)

Internal RAM
#80000000~ ~

Figure 2.1 Memory map

2.5.6 Mechanical details

Figure 2.2 indicates the vertical dimensions of a single IMS 8417 and Figure 2.3 shows the outline drawing
of the IMS 8417.

TRAM pcs
Components to 4.1mm ~:~:

... including PCS thickness (
:.:.: :.:.

Motherboard PCS

Figure 2.2 IMS 8417 height specification



38 Boards

0.925
1.025

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0 1.576
NC 0 1.700

NC 0

1.975

NC 0
NC 0

GND 0
NC 0 2.520
NC 0
NC 0
NC 0 2.800
NC 0 2.924

3.125
3.225

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0 3.776

NC 0 3.900

NC 0

.----·3.400
:, .3.450

--- -- --- --- -- --- ----- ---Li~~i~~.8 :11. - - - - 3.480

LinkOin 0
LinkOout 0 0.320

notError 0
Reset 0 . 0.600

Analyse 0 0.724

Size4

.- -- -. 0.180
·,·····0.150
·;r----0.100

: ,..... DATUM (pin 1)

0.775

0.875

1.076

1.200

1.480

2.025

2.300

2.424

0.175

DATUM ?6-e-.a ·Link2out I notSubSystemError
0.100 60 b Link2in I SubSystemReset

. 0 0 c VCC I SubSystemAnalyse
0.224 0 Link10ut

o Link1in .
o LinkSpeedA
o LinkSpeedB
o Clockln(5MHz)

2.975

3.075

3.276

3.400

3.680

4.195

Figure 2.3 IMS 8417 outline drawing (All dimensions in inches)

2.5.7 Installation

Since the IMS 8417 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8417 is supplied with spacer pin strips attached to the TRAM pins on the underside of the board.
These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit. Secondly,
they can be used to space the TRAMs off the motherboard. If there are no components mounted on the
motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

If the subsystem signals are required, plug a 3-way header strip into the solder-side sockets (aside pins 1-3)
on the IMS 8417.

Plug the IMS8417 into the motherboard. Where the IMS 8417 is being used with an INMOS motherboard,
the silk screened triangle marking pin 1 on the IMS 8417 (see Figure 2.3) should be aligned with the silk
screened triangle that appears in the corner of the appropriate TRAM slot.

Should it be necessary to unplug the IMS 8417, it is advised that it is gently levered out while keeping it as
flat as possible. As soon as the IMS 8417 is removed, the spacer pin strips should be refitted to the TRAM
to protect the pins.



2 TRAnsputer Modules (TRAMs)

2.5.8 Specification

TRAM feature IMS 8417·5 Unit Notes
Transputer type IMS T800-25
Number of transputers 1
Number of INMOS serial links 4
Amount of SRAM 64 Kbyte
SRAM "wait states" 0
SRAM cycle time 120 ns
Amount of DRAM 4 Mbyte
DRAM "wait states" 1
DRAM cycle time 160 ns
Subsystem controller Yes
Peripheral circuitry None
Parity No
Size (TRAM size) 4
Length 3.66 inch
Pitch between pins 3.30 inch
Width 4.35 inch
Component height above PC8 9.2 mm
Component height below PC8 3.7 mm 1
Weight - g
Storage temperature 0-70 degC
Operating temperature 10-40 degC 2
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption - W 3

Table 2.5 IMS 8417 specification

Notes:

1 This dimension includes the thickness of the PCB.

2 The figure quoted refers to the ambient air temperature.

39

3 The power consumption is the worst case value obtained when a sample of IMS B417 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

2.5.9 Ordering Information

Description

IMS 8417 TRAM with IMS T800-25

Order Number

IMS 8417-5

Table 2.6 Ordering information



Engineering Data

U[fi)mos

FEATURES

• IMS T800 Transputer

• 8 Megabytes of DRAM

• User selectable byte parity checking

• Subsystem controller circuitry

• Stackability allows other TRAMs to
be "piggy-backed"

• Package has only 16 active pins

• Designed tQ a published specification

IMS 8405 TRAM
32-bit transputer

8 Mbytes

Size 8

GENERAL DESCRIPTION

The IMS 8405 puts 8 Mbytes, with parity, onto
a module that fits comfortably on aiMS 8008 in
the IBM PC, considerably more volume efficient
than a 20 Mbyte Winchester disk. Although the
IMS 8405 is marginally slower than the IMS 8403
and IMS 8404, its large amount of external RAM
makes it an ideal board for running existing large
programs, such as CAD, AI, simulation, etc.

Reset
Analyse
NotError

LinkO
Link1
Link2
Link3

Terminated
links

T800

40

Subsystem
PAL

8 Mbytes
DRAM

I----------I~ SSRes et
I-----I.~ SSAnalyse
~-- notSSError



2 TRAnsputer Modules (TRAMs)

2.6 IMS B405 TRAM engineering data

2.6.1 Introduction

41

The IMS 8405 is one of a range of INMOS TRAnsputer Modules (TRAMs) incorporating a transputer and
8 Mbytes of dynamic RAM. In effect, these TRAMs are board level transputers with a simple, standardised
interface. They integrate processor, memory and peripheral functions allowing powerful, flexible, transputer
based systems to be produced with the minimum of design effort.

Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification
of TRAMs can be found in technical notes Module Motherboard Architecture and Dual-In-Line Transputer
Modules (TRAMs) which are included in Part 3 of this databook.

If TRAMs are to be designed into a system using a custom motherboard, then The Transputer Databook will
also be required. This is available as a separate publication from INMOS.

2.6.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5MHz clock signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,B in Transputer link speed selection 6,7

Subsystem Services
SubSystemReset . out Subsystem reset 1b
SubSystemAnalyse out Subsysten error analysis 1c
notSubSystemError in Subsystem error indicator 1a

Table 2.1 IMS 8405 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.3.

2.6.3 Standard TRAM signals

A TRAM can be regarded as a transputer with extra RAM attached, but with only 16 signals brought out to the
TRAM pins. The majority of the TRAM pins function in exactly the same way as the corresponding transputer
signals, which are detailed in The Transputer Databook. However, a few of these signals are slightly different
from the transputer specification as follows:

notError (pin 11)

This is an open collector signal. It is driven low when there is an error; otherwise it is pulled high by a resistor
on the motherboard. This enables the notError outputs on several TRAMs to be wire-ORed together. (The
Dual-In-Line Transputer Modules (TRAMs) document recommends that no more than 10 notError outputs
are connected together).



42 1 Boards

LinkSpeedA and LinkSpeedB (pins 6 and 7)

LinkSpeedA and LinkSpeedB set the speed of transputer link 0 and links 1-3 respectively. When the
appropriate input is low, the link(s) operate at 10 Mbits/s, and when high the Iink(s) operate at 20 Mbits/s.

Link signals

Whilst the links obey a protocol identical to that described in The Transputer Databook, there are some
differences in the electrical characteristics.

LinklnO-3 The link inputs have pull-down resistors to ensure that they are disabled when they are not con
nected. Diodes are also included for protection against electrostatic discharge.

LinkOutO-3 The link outputs have resistors connected in series for matching to a 100 ohm transmission line.

2.6.4 Subsystem signals

The IMS 8405 has a subsystem port in addition to the usual TRAM signals. This enables the TRAM to reset
or analyse a subsystem of other TRAMs and/or motherboards. The polarity of these signals is the same as
that of the Reset, Analyse and notError standard TRAM signals. Therefore, the IMS 8405 subsystem can
drive other TRAMs on the same motherboard with no intermediate logic. However, SubSystemReset and
SubSystemAnalyse must go through inverting buffers if they are to drive a subsystem off the motherboard.

These subsystem signals are accessed by writing or reading to control registers in the transputer memory
space. See Section 2.6.5.

2.6.5 Memory configuration

The IMS 8405 has internal RAM occupying the first 4 Kbytes of address space, followed by 8 Mbytes of
external RAM.

Location of external memory

Table 2.2 shows the location of the external memory on the IMS 8405 TRAM (the "#" sign indicates a
hexadecimal number).

Hardware byte address
From: #80001000
To: #80800000

Table 2.2 Location of external memory on the IMS 8405

Subsystem register locations

The subsystem register addresses start at hardware address #00000000 in all TRAMs with 32-bit processors,
allowing software compatibility between TRAMs. These registers are located as shown in Table 2.3.

Register Hardware byte address
SubSystemReset (write only) #00000000
SubSystemAnalyse (write only) #00000004
notSubSystemError (read only) #00000000

Table 2.3 Subsystem address locations

Setting bit 0 in either the reset or the analyse registers asserts the corresponding signal. Similarly, clearing
bit 0 deasserts the signal. When an error occurs in the subsystem, bit 0 of the error location becomes set.



2 TRAnsputer Modules (TRAMs)

HARDWARE BYTE
ADDRESSES

#7FFFFFFC .------,
Repeated
Parity &

Subsystem
Registers

#00000008

#00000000 I----~

Repeated
RAM

#80800000 t----~

8 Mbytes

External RAM

( 6 cycle)

#80000FFF t-------4
Internal RAM

#80000000

Figure 2.1 Memory map

43

Memory parity

The IMS B405 includes parity logic for external RAM. This may be enabled/disabled by the user. The aim
behind the inclusion of this circuitry on the IMS B405 is to ensure that there is no way that corrupt data can
reach any other transputer in the system.

If a parity error occurs, the wait signal is held active so that no more memory cycles are completed. Although
all data is lost if a parity error occurs, this is much preferable to corrupt data being further processed by the
system.

Parity is enabled or disabled by writing to a parity control register (see Table 2.4). If parity is enabled and an
error occurs, it is indicated by notError being asserted. The information regarding the cause of the error can
then be established by interrogating the parity status register.

Reset disables parity checking and deasserts MemWait. Analyse causes MemWait to be deasserted, while
the contents of the parity control register are preserved.

Register Hardware byte address
Parity control register (write only) #00000008
Parity status register (read only) #00000008

Table 2.4 Parity register locations

Setting bit 0 of the parity control register enables parity error detection. Similarly, clearing bit 0 diables parity
error detection. When a parity error occurs bit 0 in the parity status register becomes set. Bits 1 & 2 then
indicate the BYTE in which the error has occured (bit 1 is LSB), and bit 3 indicates the BANK in which the
error has occured.



44 Boa~s

2.6.6 Installation

Since the IMS 8405 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8405 is supplied with spacer pin strips attached to the TRAM pins on the underside of the board.
These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit. Secondly,
they can be used to space the TRAMs off the motherboard. If there are no component~ mounted on the
motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

If the subsystem signals are required, plug a 3-way header strip into the solder-side sockets on the IMS 8405.

Plug the IMS 8405 into the motherboard. Where the IMS 8405 is being used with an INMOS motherboard,
the silk screened triangle marking pin 1 on the IMS 8405 (see Figure 2.3) should be aligned with the silk
screened triangle that appears in the corner of the appropriate TRAM slot.

Should it be necessary to unplug the IMS 8405, it is advised that it is gently levered out while keeping it as
flat as possible. As soon as the IMS 8405 is removed, the spacer pin strips should be refitted to the TRAM
to protect the pins.

2.6.7 Mechanical details

Figure 2.2 indicates the vertical dimensions of both a single IMS 8405 and two IMS 8405 TRAMs stacked
on top of each other, and Figure 2.3 shows the outline drawing the of the IMS 8405.

b

18.2mm max

Motherboard pes

a

Figure 2.2 IMS 8405 height specification, (a) Single TRAM; (b) Two stacked TRAMs



2 TRAnsputer Modules (TRAMs) 45

0.320

0.600
0.724

0.925
1.025

8.176
8.300

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0
NC 0
NC 0

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0 1.576

NC 0 1.700

NC 0
1.975

NC 0
NC 0

GND 0
NC 0 2.520
NC 0
NC 0
NC 0 2.800

NC 0 2.924

3.125
3.225

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0 3.776

NC 0 3.900

NC 0

Link3in 0
L1nk30ut 0

GND 0
LinkOin 0 4.720

LinkOout 0
notError 0

Reset 0 5.000
Analyse 0 5.124

5.325
5.425

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0 5.976

NC 0 6.100

NC 0

6.375

NC 0
NC 0

GND 0
NC 0 6.920
NC 0
NC 0
NC 0 7.200

NC 0 7.324

7.525
7.625

1.076 0 NC
1.200 0 NC

ONC
ONC

1.480 0 NCo GND
o NC
ONC

, •••• 0.180 •••• 3.400
~ •• • •• 0.150 . ~ _ ~ ~ 3.450

·~--==:~..10~ATUM (pin 1) :: •••• 3.480

0.175 r:.--;.:---------------------------.::
DATUtolL ~ -o~NC~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~NC ~O ~
0.100 to NC NC 0 .:
0.224 . g~~C G~g g ~:

o NC NC 0
o NC NC 0

g~g SizeS module ~g g
0.775 with subsystem
0.875

2.025

o NC
2.300 ONC
2.424 o VCCo NC

ONC
ONC
ONC

2.975
o NC

3.075

3.276 o NC
3.400 o NC

o NC
o NC

3.680 o NC
o GND
o NC
o NC

4.225

100 a Link20ut I notSubSystemError
4.500 00 b Unk2in I SubSystemReset

4.624 00 c VCC I SubSystem Analyseo Link10ut
o Link1in
o LinkSpeedA
o LinkSpeedB
o Clockln(5MHz)

5.175

5.275

5.476 ONC
5.600 ONC

ONC
ONC

5.880 ONCo GND
ONC
ONC

6.425

o NC
6.700 o NC

6.824 o VCC
ONC
o NC
o NC
o NC

7.375
o NC

7.475

7.676

7.800

8.080

o NC
ONCo NC
o NC
o NC
o GND
o NCo NC

8.575

Figure 2.3 IMS 8405 outline drawing (All dimensions in inches)



46 Boards

2.6.8 Specification

TRAM feature Unit Notes
Transputer type T800-20
Number of transputers 1
Number of INMOS serial links 4
Amount of SRAM None
SRAM "wait states" N/A
Amount of DRAM 8 Mbyte
DRAM "wait states" 2 1
Memory cycle time 300 ns 1
Subsystem controller Yes
Peripheral circuitry None
Parity Yes
Size (TRAM size) 8
Length 3.66 inch
Pitch between pins 3.30 inch
Width 8.75 inch
Component height above PC8 4.7 mm
Component height below PC8 3.7 mm 2
Weight 280 g
Storage temperature 0-70 degC
Operating temperature 10-40 degC 3
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption 12 W 4

Table 2.5 IMS 8405 specification

Notes:

1 Parity enabled.

2 This dimension includes the thickness of the PCB.

3 The figure quoted refers to the ambient air temperature.

4 The power consumption is the worst case value obtained when a sample of IMS B405 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

2.6.9 Ordering Information

Description
,IMS 8405 TRAM with IMS T800-20

Order Number
IMS 8405-3

Table 2.6 Ordering information



Engineering Data

IMS 8410 TRAM
32-bit transputer

160 Kbytes

Size 2

®

.:.:.:.:;: ~:;:.:.:.:'

:;~;mm immm:

:~~mm: m~m~~

;~; i1~;

;~i i~~i

::;~~mm im~m;::

i~mm~ m~1~~i;!

"';';';', ;';.;.,ucmrumos
FEATURES GENERAL DESCRIPTION

• IMS T801 Transputer with demulti
plexed address and data busses

• 160 Kbytes of no-wait-state SRAM
(100 ns memory cycle time)

• Size 2 TRAM

• Communicates via 4 INMOS serial links

• Stackability allows other TRAMs to
be "piggy-backed"

• Package has only 16 active pins.

• Conforms to the TRAM specification

The de-multiplexed address and data busses of
the IMS T801 transputer allow very high perfor
mance systems to be constructed. The IMS 8410
TRAM achieves 2-cycle memory accesses with very
fast SRAMs, and yet still manages to squeeze
160 Kbytes onto a size 2 TRAM.

The IMS 8410 TRAM allows users to benchmark
the performance of the IMS T801 transputer. The
standard TRAM interface means that the processor
can simply be plugged into existing development
systems. However, this module is as equally at
home in very high performance system products,
as it is in the evaluation environment.

Reset----------i~

Analyse ----------i~

NotError -4---ex:

LinkO

Link1

Link2

Link3

IMS T801

Address

Data

160 Kbytes
2-cycle
SRAM

Terminated
links

47



48

2.7 IMS B410 TRAM engineering data

1 Boards

2.7.1 Description

The IMS 8410 is an INMOS TRAnsputer Module (TRAM) incorporating the IMS T801 transputer and 160 Kbytes
of static RAM. The demultiplexed address and data busses of the IMS T801 allow maximum use to be made
of some very fast static RAM, and the IMS 8410 achieves 2-cycle, 100ns external memory cycles.

TRAMs are board level transputers with a simple, standardised interface. They integrate processor, memory
and peripheral functions allowing powerful, flexible, transputer based systems to be produced with the min
imum of design effort. TRAMs may be plugged into motherboards, which provide the necessary electrical
signals, mechanical support and usually, an interface to a host machine. Various motherboards are now
available from INMOS and from third-party vendors for most of the common computing platforms.

Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification
of TRAMs can be found in technical notes Module Motherboard Architecture and Dual-In-Line Transputer
Modules (TRAMs) which are included in Part 3 of this databook.

If the user intends to design a custom motherboard, then The Transputer Databook will also be required.
This is available as a separate publication from INMOS (72 TRN 203 01).

2.7.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5MHz clock -signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,B in Transputer link speed selection 6,7

Table 2.1 IMS 8410 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.3.



2 TRAnsputer Modules (TRAMs) 49

2.7.3 Standard TRAM signals

A TRAM can be regarded as a transputer with extra RAM attached, but with only 16 signals brought out to the
TRAM pins. The majority·of the TRAM pins function in exactly the same way as the corresponding transputer
signals, which are detailed in The Transputer Databook. However, a few of these signals are slightly different
from the transputer specification as follows:

notError (pin 11)

This is an open collector signal. It is driven low when there is an error; otherwise it is pulled high by a resistor
on the motherboard. This enables the notError outputs on several TRAMs to be wire-ORed together. The
TRAM specification recommends that no more than 10 notError outputs are connected together).

LinkSpeedA and LinkSpeedB (pins 6 and 7)

LinkspeedA and LinkspeedB set the speed of transputer link 0 and links 1-3 respectively. When the
appropriate input is low the link(s) operate at 10 Mbits/s and when high the Iink(s) operate at 20 Mbits/s.

Link signals

Whilst the links obey a protocol identical to that described in The Transputer Databook, there are some
differences in the electrical characteristics.

LinklnO-3 The link inputs have pull-down resistors to ensure that they are disabled when they are not con
nected. Diodes are also included for protection against electrostatic discharge.

LinkOutO-3 The link outputs have resistors connected in series for matching to a 100 ohm transmission line.

2.7.4 Memory configuration

The internal RAM of the IMS T801 occupies the first 4 Kbytes of address space. The next 156 Kbytes is
occupied by the external static RAM present on the TRAM. There is then a gap of 96 Kbytes. A pattern of
160 K of external RAM followed by a gap is repeated in 256 Kbyte blocks throughout the higher address
space.

Table 2.2 details the start and end addresses of the external memory and Fig 2.1 shows a graphical repre
sentation of the memory map (the "#" sign indicates a hexadecimal number).

Hardware byte address
From: #80001000
To: #80027FFF

Table 2.2 Location of external memory on the IMS 8410



50

2.7.5 Mechanical details

HARDWARE BYTE
ADDRESSES

#7FFFFFFC
Repeated

External RAM

and Gap

#80040000

GAP

#80027FFF

156 Kbytes

External RAM

( 2 cycle)

#80001000

#80000000
Internal RAM

Figure 2.1 Memory map

Boards

Figure 2.2 indicates the vertical dimensions of both a single IMS 8410 TRAM and an IMS 8410 TRAM stacked
on top of another TRAM, and Figure 2.3 shows the outline drawing the of the IMS 8410.

a

Motherboard pes

b

18.2mm max

Figure 2.2 IMS 8410 height specification, (a) Single TRAM; (b) Two stacked TRAMs



2 TRAnsputer Modules (TRAMs)

~:~·~·~·~.OD~~~O :'.~~~~3.:.04050
':;~~~r 0.100 : '.~~~~' 3.480

I ,~ ~ ~ ~ - DATUM (pin 1) I :-

:~::~~~1~'Link2out ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - Link3in-O ~j
0.1 DD I 0 Link2in link30ut 0 ::

0.224 g~~n~1out Lin~~i~ g ::
o Link1in Size2 LinkOout 0 0.320

o LinkSpeedA notError 0
o LinkSpeedB Reset 0 0.600

o Clockln(5MHz) Analyse 0 0.724
0.775

0.875
0.925

1.076
1.025o NC NC 0

1.200 o NC NC 0
o NC NC 0
o NC NC 0

1.480 o NC NC 0
o GND VCC 0 1.576
ONC NC 0 1.700

o NC NC 0

1.975

Figure 2.3 IMS 8410 outline drawing (all dimensions in inches)

2.7.6 Installation

51

Since the IMS 8410 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8410 is supplied with spacer pin strips attached to the TRAM pins on the underside of the board.
These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit. Secondly,
they can be used to space the TRAMs off the motherboard. If there are no components mounted on the
motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

Plug the IMS 8410 carefully into the motherboard. Where the IMS 8410 is being used with an INMOS
motherboard, the silk screened triangle marking pin 1 on the IMS 8410 (see Figure 2.3) should be aligned
with the silk screened triangle that appears in the corner of the appropriate TRAM slot. If it is envisaged that
the assembly is likely to be subjected to any vibrations, it is recommended that the TRAM is secured to the
motherboard using nylon M3 nuts and bolts. The bolts should be inserted through the fixing holes on the
motherboard, and through the castlations on two edges of the TRAM. A number of these nut$ and bolts are
supplied with each of the INMOS motherboards.

Should it be necessary to unplug the IMS 8410, it is advised that, having removed any retaining nuts and
bolts, it is gently levered out while keeping it as flat as possible. As soon as the IMS 8410 is removed, the
spacer pin strips should be refitted to the TRAM to protect the pins.



52

2.7.7 Specification

TRAM feature IMS B410·11 Unit Notes
Transputer type T801-20
Number of transputers 1
Number of INMOS serial links 4
Amount of SRAM 160 Kbytes
SRAM "wait states" 0
Amount of DRAM None
DRAM "wait states" N/A
Memory cycle time 100 ns
Subsystem controller No
Peripheral circuitry None
Parity No
Size (TRAM size) 2
Length 3.66 inch
Pitch between pins 3.30 inch
Width 2.15 inch
Component height above PC8 4.7 mm
Component height below PC8 3.7 mm 1
Weight 50 g
Storage temperature 0-70 degC
Operating temperature 10-40 degC 2
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption 3 W 3

Table 2.3 IMS 8410 specification

Notes:

1 This dimension includes the thickness of the PCB.

2 The figure quoted refers to the ambient air temperature.

1 Boards

3 The power consumption is the worst case value obtained when a sample of IMS B410 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

2.7.8 Ordering Information

Description
IMS 8410 TRAM with IMS T801-20

Order Number
IMS 8410-11

Table 2.4 Ordering information



Product Overview

1:1mrumos
FEATURES

• 8uffers all TRAM signals to RS422
compatible differential drive

• Handles 4 links reset and subsystem
services signals

• Capable of 20 Mbits/s link operation

• Links go quiet when disconnected

• Designed for 100 ohm twisted pair ca
ble

• ± 7V common-mode noise rejection

• Size 2 TRAM

Ordering Information

IMS 8415
Differential link

buffer TRAM

Size 2

GENERAL DESCRIPTION

The IMS 8415 differential interface buffer TRAM
allows connections between transputer systems
which are not in the same electrical environment.
No common ground connection is required, reduc
ing earthing problems. With cable lengths up to
10m, 20 Mbit/s link speed is possible. Longer ca
bles up to 100m support lower link speeds.

Order NumberDescription
IMS 8415 Differential link TRAM IMS 8415-1

Table 1: Ordering information

53



Product Overview

c

U[Ji)mos
FEATURES

• 256 Kbytes non-volatile memory
(Flash ROM)

• 10 000 program/erase cycles

• ideal for booting embedded
transputer systems

• in-system reprogrammability

• ROM contents user-programmed
through INMOS link

• size 2 TRAM

• sub-system port for resetting
transputer networks

• can be used as non-volatile
backup memory

IMS 8418
Flash ROM TRAM

'Size 2

GENERAL DESCRIPTION

The IMS 8418 is a TRAM designed primarily for
configuring and boot-strapping transputer networks
in embedded systems. It contains 256 Kbytes of
non-volatile memory: implemented with flash ROM
devices (the flash ROM is an EPROM-Iike device
with bulk electrical erasability, rather than UV
erase). After reset, the IMS 8418 outputs a
program stored in the ROM from one of its INMOS
serial links. An on-board programming voltage
generator, and programming software, allows the
ROM contents to be programmed without
removing the ROM devices from the board and
without removing the IMS 8418 from an
assembled system. Programming is through a
simple protocol on one of the INMOS serial links.
Safegaurds are provided against accidental
erasure/programming. The ROM devices can be
reprogrammed at least 10 000 times. The
IMS 8418 can also be used as a non-volatile
backup memory in any microprocessor system: all
that is required is an INMOS link adaptor to
interface the IMS 8418 to the microprocessor.

IMS T222
transputer

INMOS
serial system
Iin ks services

64k byte
flash
ROM

64k byte
flash
ROM

54

64k byte
flash
ROM

64k byte
flash
ROM



2 TRAnsputer Modules (TRAMs)

2.9 IMS 8418 flash-ROM TRAM product overview

2.9.1 Specification

TRAM feature Unit Notes
Flash ROM 256 kbytes 1
TRAM size 2
Length 3.66 inch
Width 2.15 inch
Pitch between pins 3.30 inch
CO,mponent height above PC8 9.0 mm
Component height below PC8 3.5 mm 2
Weight 60 g
Storage temperature 0-70 oC
Operating temperature 10-40 oC
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption T8A W

Table 2.1 IMS 8418 specification

Notes:

55

1 A full 256k bytes are available to the user: the on-board programming software used on the IMS B418 is stored in a separate
device.

2 This dimension includes the thickness of the peB.

2.9.2 Ordering Information

Description
IMS 8418 flash-ROM TRAM

Order Number
IMS 8418-10

Table 2.2 Ordering information



Engineering Data

IMS 8407
Ethernet TRAM

Size 8

o[ft)mos
FEATURES

• Connects transputer systems to
IEEE802.3 Local Area Networks
(Ethernet or Cheapernet)

• IMS T222, 16-bit Transputer

• 64 kbytes SRAM, 150ns access cycle

• Uses Am7990 (LANCE)
Ethernet Controller

• Communicates via 4 INMOS serial links
(Selectable between 10 or 20 Mbits/s)

• Designed to a published specification
(INMOS Technical Note 29)

INMOS links Reset Analyse notError

GENERAL DESCRIPTION

The IMS B407 is an INMOS link to Ethernet I
Cheapernet interface. It allows transputer systems
to be connected to other computers and computer
networks via IEEE802.3 Local Area Networks
(LANs). The IMS B407 can be connected to
Ethernet systems (IEEE802.3 10BASE5 or
Type A); or to Cheapernet systems (IEEE802.3
10BASE2 or Type B). The IMS 8407 consists of
an IMS T222 16 bit transputer with 64 kbytes of
SRAM. The Ethernet I Cheapernet interface is
implemented with the Am 7990 (LANCE),
Am 7992 and Am 7996. The Cheapernet interface
is isolated to 500V dc. An Attachment Unit
Interface (AUI) is provided for connection to
Ethernet Media Access Units.

IMST222

Am7992
SIA

Am7996
transceiver

cheapernet
connection

56

Am7990
LANCE

AUI
'---------+-- connection

(ethernet)

IMSB407



2 TRAnsputer Modules (TRAMs) 57

2.10 IMS B407 TRAM engineering data

2.10.1 Transputer Modules (TRAMs)

The IMS 8407 is one of a range of INMOS TRAnsputer Modules (TRAMs). TRAMs are subassemblies of
transputers, memory and peripheral devices. They interface to each other via INMOS links, have a standard
pinout, and come in a range of standard sizes. 1 TRAMs allow powerful, flexible, transputer based systems
to be produced with the minimum of design effort. The standard TRAM interface signals are described below.

2.10.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5MHz clock signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,B in Transputer link speed selection 6,7

Table 2.1 IMS 8407 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.8.

LinkOutO-3 Transputer link output signals. These outputs are intended to drive into transmission lines with
a characteristic impedance of 1000. They can be connected directly to the Linkln pins of other
transputers or TRAMs.

LinklnO-3 Transputer link input signals. These are the link inputs of the transputer on the IMS 8407. Each
input has a 10kO resistor to GND to establish the idle state, and a diode to VCC as protection against
ESD. They can be connected directly to the LinkOut pins of other transputers or TRAMs.

LinkSpeedA, LinkSpeedB These select the speeds of LinkO and Link1,2,3 respectively. Table 2.2 shows
the possible combinations.

LinkSpeedA LinkSpeedB LinkO Link1,2,3
0 0 10 Mbits/s 10 Mbits/s
0 1 10 Mbits/s 20 Mbits/s
1 0 20 Mbits/s 10 Mbits/s
1 1 20 Mbits/s 20 Mbits/s

Table 2.2 Link speed selection

Clockln A 5MHz input clock for the transputer. The transputer synthesises its own high frequency clocks.
Clockln should have a stability over time and temperature of 200ppm. Clockln edges should be
monotonic within the range 0.8V to 2.0V with a rise/fall time of less than 8ns.

1Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification of TRAMs can be found in
technical notes Dual-In-Line Transputer Modules (TRAMs) and Module Motherboard Architecture which are included in Part 3 of this
databook. The Transputer Databook may also be of use. This is available as a separate publication from INMOS.



58 Boards

Reset Resets the transputer, and other circuitry. Reset should be asserted for a minimum of 1DOms. After
Reset is deasserted a further 100ms should elapse before communication is attempted on any link.
After this time, the transputer on this TRAM is ready to accept a boot packet on any of its links.

Analyse _

I+- 100ms min~ 10_0_m_s_m_in_4
Resel~ I ---t-----

Boot link [[[[[[------
Figure 2.1 Reset timing

Analyse is used, in conjunction with Reset, to stop the transputer. It allows internal state to be examined so.
that the cause of an error may be determined. Reset and Analyse are used as shown in figure 2.2.
A processor in analyse mode can be interrogated on any of its links.

Analyse~
100ms100ms I 100ms

Reset __0+-__.....

~
Ana~se ~nk~ ~[[[[[[

Figure 2.2 Analyse timing

notError An open collector output which is pulled low when the transputer asserts its Error pin. notError
should be pulled high by a 10kO resistor to VCC. Up to 10 notError signals can be wired together.
The combined error signal will be low when any of the contributing signals is low.

2.10.3 Ethernet Capabilities

The IMS B407 enables transputer based systems to connect to IEEE802.3 Local Area Networks (LANs). It
enables transputer systems to communicate with other computers and with other transputer systems where
a standard INMOS link connection would be unsuitable.

ethernet LAN

transputer
system

host
computer

Figure 2.3 Typical Application

The IMS B407 can connect either to IEEE802.3 10BASE5 networks (Ethernet) or to IEEE802.3 10BASE2
networks (Cheapernet). The two types are network are logically identical, though the physical implementations
are different.

Connecting to Ethernet (10BASES)

In an ethernet (1 OBASE5) system, nodes are connected to the ethernet coax by means of an media access unit
(MAU) and an attachment unit interface (AUI) cable. The MAU is a specially designed housing incorporating



2 TRAnsputer Modules (TRAMs) 59

a transceiver device. The MAU is clamped to the ethernet coax: it penetrates the coax making contact with
the signal conductor without interrupting traffic on the LAN. The node is connected to the MAU transceiver
by means of an AUI cable. Ethernet supports a maximum cable length (without repeaters) of 500 metres.

When connecting the IMS 8407 to an ethernet system, the on board transceiver is not used. Instead, the AUI
connector on the IMS 8407 is used to connect to a separate MAU. Figure 2.4 shows how the IMS 8407 should
be connected to an ethernet system. It is intended that the 15-way D-type connector should be mounted in
a suitable bulkhead or frontpanel on the equipment into which the IMS 8407 is installed.

ethernet / cheapernet
select jumpers to right.

AUI

15 way D-type "'-
connector --........

AU I adaptor cable

~~ Du~AUI
I

coax

power connector

Figure 2.4 Connecting the IMS 8407 to an Ethernet system

AUI connection

To reduce the overall height of the IMS 8407, a 16-way male header is used instead of the standard 15-way
D-type: the pinout of this connector is defined in table 2.3. A short length of adaptor cable is supplied for
connection to a standard AUI cable. AUI cables should have a shielded, twisted pair for each signal or power
pair: each pair should have a characteristic impedance of 78±50.

The RX±, TX± and COLL± signals on the AUI connector are transformer isolated. RX± and COLL± are
terminated with 80.40.

Name Function Pin No.
COll+ collision pair 11
COll- 12

TX+ transmit pair 3
TX- 4
RX+ receive pair 7
RX- 8

+12V power pair 13
av 14

GND shield 1,2,5,6,9,10,15,16

Table 2.3 AUI connector pinout

Jumper settings for Ethernet (1 aBASES)

When using an offboard transceiver, all jumpers should be set to the right when viewing the board with the
IMS T222 at the right hand end.



60

AUI Power

Boards

The ethernet specification requires that the AUI cable must supply +12V at 0.5A to the MAU. Since there is no
+12V supply on the IMS 8407, this must come from an external power source. A +12V power source capable
of supplying 0.5A should be connected to the 4 way power connector on the IMS 8407. The IMS 8407 routes
power from this connector to the AUI connector. The pinout of the power connector is shown in table 2.4.

Name Function Pin No.
+12V In AUI power pair 1

QV In 2
GND IMS 8407 Power 3
+5V 4

Table 2.4 Power connector pinout

Pins 1 and 2 connect directly to the AUI connector power pair pins. Note that pins 3 and 4 are the IMS 8407
power supply. These are nominally output pins which can be used to power a +5V to +12V DC-DC converter:
the current drawn should not exceed 800mA. However, they can also be used to supply power to the IMS 8407
if the IMS 8407 is not plugged into a motherboard.

Connecting to Cheapernet (1QBASE2)

In a cheapernet (108ASE2) system RG58A1U or RG58C/U coaxial cable is used; this being cheaper than
the ethernet coax. Node connections are usually made with standard 8NC T connectors. Thus, it is usually
necessary to interrupt the LAN traffic and break the cable to connect a new node. The transceiver is also
normally incorporated into the node so that a separate MAU and AUI cable are not required. Cheapernet
supports a maximum cable length (without repeaters) of 185 metres.

ethernet / cheapernet
select jumpers to left.

5MB connectors

Dc=Jo
I·····.....
:.:.:.

Figure 2.5 Connecting the IMS 8407 to a Cheapernet system

When connecting the IMS 8407 to a cheapernet system, the on board transceiver is used. The IMS 8407 is
connected to the LAN by means of two miniature coaxial connectors (SM8 type). These miniature connectors
are used to reduce the overall height of the IMS 8407. Since they will not mate with the 8NC connectors
used in ethernet systems, two short lengths of adaptor cable are supplied. It is intended that the BNC ends
of the adaptor cable are taken to insulating, through-bulkhead adaptors mounted on a suitable bulkhead or
frontpanel of the equipment into which the IMS 8407 is fitted. It is very important that the shields of the coaxial
connectors are insulated from other conductors, including ground. Figure 2.5 shows how the IMS 8407 should
be connected to a cheapernet system.

The transceiver device used on the IMS 8407 is the Am7996. It is fully isolated from the rest of the board by
isolation transformers and is powered by an isolating DC-DC converter. Isolation is to 500V dc.



2 TRAnsputer Modules (TRAMs) 61

Jumper settings for Cheapernet (10BASE2)

When using the onboard transceiver, all jumpers should be set to the left when viewing the board with the
IMS T222 at the right hand end.

2.10.4 Memory Map

The IMS T222 on the IMS 8407 has access to 64 kbytes of memory. This is comprised of 4 kbytes of internal
transputer memory and 60 kbytes of external SRAM. It also has memory mapped access to the two Am 7990
(LANCE) control registers. These occupy the top four byte locations in the memory map.

Hardware byte address
IMS T222 on chip RAM #8000 - #8FFF
External Static RAM #9000 - #7FF8
Am7990 (LANCE) RDP #7FFC
Am7990 (LANCE) RAP #7FFE

Table 2.5 Memory map of the IMS 8407

Table 2.5 shows the address map of the IMS 8407 (the "#" sign indicates a hexadecimal number). Addresses
range from #8000 through #0000 to #7FFF. The internal RAM on the IMS T222 occupies the first 4 Kbytes
of address space. The Am 7990 (LANCE) occupies the top four bytes of memory. The internal RAM on the
IMS T222 has a 50 nsec access cycle and the external SRAM has a 150 nsec access cycle. The LANCE
has DMA to the external SRAM, DMA cycles are 600ns.

2.10.5 Using the IMS B407

The Ethernet interface on the IMS B407 is implemented with the Am 7990 (LANCE). The LANCE avoids
loading the IMS T222 with frequent I/O operations by having direct memory access (DMA). The LANCE
transmits Ethernet packets directly from a set of transmit buffers, and receives packets directly into a set
of receive buffers. The programmer can place the transmit and receive buffers in any convenient areas of
memory.

buffer #4

buffer #1

buffer #3

buffer #2

descriptor #1

descriptor ring

buffers

Figure 2.6 Data buffers and descriptors

Each buffer has an associated descriptor. The descriptors arbitrate buffer ownership between IMS T222 and
LANCE and provide comprehensive error and status reporting for each packet received or transmitted. Each
descriptor points to a single buffer. The descriptors are organised as two rings: a transmit ring and a receive
ring. Descriptors in the transmit ring point to transmit buffers, descriptors in the receive ring point to receive
buffers. Buffers and descriptors are used strictly in the order they appear in the ring. The descriptors can be
placed in any convenient area of memory.

The LANCE is able to interrupt the IMS T222. Interrupts are generated for: reception of a packet, transmission
of a packet, receive errors, and transmit errors.



62 Boards

In a typical application, software running on the IMS T222 would accept packets to be transmitted on one or
more of its links and would output received packets on one or more of its links.

To transmit a packet, the IMS T222 simply has to place the packet in an empty transmit buffer and set up the
descriptor for that buffer to indicate that it should be transmitted. The LANCE will transmit the buffer contents
when it has transmitted all packets ahead of it in the descriptor ring. It then updates the descriptor contents
to inform the IMS T222 of the packet status. It may also interrupt the IMS T222.

When the LANCE receives a packet from the Ethernet (or Cheapernet) it places the packet in the next
available empty receive buffer. It then updates the descriptor for that receive buffer to indicate that it contains
a received packet. It may also interrupt the IMS T222. When the IMS T222 has removed the received packet
from the buffer it marks the descriptor as empty again.

Operation of the IMS 8407 is the same regardless of whether it is connected to an Ethernet system or a
Cheapernet system: the same software can be used with both types of network.

The LANCE has comprehensive test features including internal and external loopback tests, collision detection
logic test, and CRC logic test.

2.10.6 Mechanical details

Figure 2.7 gives the vertical dimensions of an IMS 8407 and Figure 2.8 is an outline drawing of the IMS 8407.
When the IMS 8407 is mounted as shown in figure 2.7, the motherboard can be placed in a 0.8 inch pitch
card cage without fouling adjacent boards.

Motherboard pes
gap = O.6mm min

Figure 2.7 IMS 8407 height specification

2.10.7 Installation

Since the IMS 8407 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8407 may be supplied with spacer pin strips attached to the TRAM pins on the underside of the
board. These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit.
Secondly, they can be used to space the TRAMs off the motherboard. If there are no components mounted
on the motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

Plug the IMS 8407 into the motherboard. Where the IMS 8407 is being used with an INMOS motherboard,
the yellow triangle marking pin 1 on the IMS 8407 (see Figure 2.8) should be aligned with the silk screened
triangle that appears in the corner of the appropriate TRAM slot.

Should it be necessary to unplug the IMS 8407, it is advised that it is gently levered out while keeping it as
flat as possible. As soon as the IMS 8407 is removed, the spacer pin strips should be refitted to the TRAM
to protect the pins.



2 TRAnsputer Modules (TRAMs) 63

0.175

DATUM 
0.100

0.224

0.775
0.875

1.076
1.200

1.480

2.025

2.300

2.424

2.975
3.075

3.276

3.400

3.680

4.225

4.500

4.624

5.175
5.275

5.476
5.600

5.880

6.425

6.700

6.824

7.375

7.475

7.676
7.800

8.080

8.575

DATUM (pin 1)

Link2out--------- --- -------Link3in 0
Link2in Link30ut 0

o VCC GND 0o Link10ut LinkOin 0
o Link1in LinkOout 0o LinkSpeedA not Error 0
o LinkSpeedB Size8 module Re.et 0
o Clockln(5MHz) without subsystem Analyse 0

NC 0
NC 0
NC 0
NC 0
NC 0

vcc 0
NC 0
NC 0

NC 0
NC 0

GND 0
NC 0 2.520
NC 0
NC 0
NC 0 2.800
NC 0 2.924

3.125
3.225

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0 3.776

NC 0 3.900

NC 0

NC 0
NC 0

GND 0
NC 0 4.720
NC 0
NC 0
NC 0 5.000
NC 0 5.124

5.325

NC 0
5.425

NC 0
NC 0
NC 0
NC 0

VCC 0 5.976
NC 0 6.100
NC 0

6.375

NC 0
NC 0

GND 0
NC 0 6.920
NC 0
NC 0
NC 0 7.200
NC 0 7.324

7.525

NC 0
7.625

NC 0
NC 0
NC 0
NC 0

VCC 0 8.176
NC 0 8.300
NC 0

Figure 2.8 IMS 8407 outline drawing (All dimensions in inches)



64 Boa~s

2.10.8 Specification

TRAM feature Unit Notes
Transputer type IMS T222-20
Number of transputers 1
Number of INMOS serial links 4
Amount of SRAM 64 kbyte
Memory "wait states" 1
Memory cycle time 150 ns
Subsystem controller No
Peripheral circuitry IEEE802.3 Interface
Memory Parity No
Size (TRAM size) 8
Length 3.66 inch
Pitch between pins 3.30 inch
Width 8.75 inch
Component height above PC8 9.2 mm 1
Component height below PC8 3.7 mm 2
Weight 160 g
Storage temperature 0-70 degC
Operating temperature 10-40 degC 3
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption 12 W 4

Table 2.6 IMS 8407 specification

Notes:

1 This dimension is larger than is normally stated for TRAMs because of the requirement to connect to Ethernet.

2 Thjs dimension includes the thickness of the PCS.

3 The figure quoted refers to the ambient air temperature.

4 The power consumption is the worst case value obtained when a sample of IMS 8407 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

2.10.9 Ordering Information

Description
IMS 8407 TRAM with IMS T222-20

Order Number
IMS 8407-1

Table 2.7 Ordering information



Product Overview

IMS 8421
IEEE 488 GPIB TRAM

Size 4

FEATURES GENERAL DESCRIPTION

• IMS T222 transputer

• 48 Kbytes of two-cycle RAM

• Full electrical compliance with IEEE
488 specification

• Size 4 TRAM

• Switchable GPIB bus address

The GPIB TRAM allows IEEE-488 test and instru
mentation systems to be directly connected to net
works of transputers. The parallel interface permits
high speed communication of control and measure
ment information, and the power of the transputer
can provide sophisticated data analysis facilities.
The user can define the characteristics of the GPIB
interface in terms of address, etc., for maximum
flexibility in system configuration.

• On-board non-volatile storage for con
figuration data

• Communicates via 4 INMOS links

• Designed to a pUblished specification
( INMOS Technical Note 29).

IEEE-488 BUS

configuration
switches

8K
EEROM

48K
SRAM

Reset--~

Analyse
NotError

LinkO IMS T222 ••111•••I11III11••••_
Link1
Link2
Link3

Ordering Information

Description
IMS B421 GPIB TRAM with T222-20

Order Number
IMS B421-1

Table 1: Ordering information

65



Product Overview

IMS 8422
SCSI TRAM

Size 2
cmromos
FEATURES

• IMS T222-20 transputer

• 64 Kbytes of two-cycle memory

• SCSI bus interface (single ended
drivers)

• Sustained SCSI transfer rates up to
1.5 M8ytes/s

• Target or Initiator modes

• On-board, user removable SCSI bus
terminators

• Subsystem port

• Size 2 TRAM

• Designed to a published specification
( INMOS Technical Note 29 ).

68Kbytes
SRAM

GENERAL DESCRIPTION

The SCSI TRAM acts as an interface between an
INMOS link and the SCSI bus as defined in the
ANSI X3.131-1986 standard. It allows transputer
systems to connect to winchester disks, optical
disks, and other peripherals via the SCSI bus. The
SCSI TRAM consists of an IMS T222 16 bit trans
puter with 64 Kbytes of SRAM for program and data
buffers. An intelligent interface device is used to
implement the connection to the SCSI bus which
allows common sequences to proceed without in
tervention from the IMS T222. Target and initiator
modes are supported. On board removable SCSI
bus terminators are provided. A standard subsytem
port is implemented on the TRAM.

I---~ SSReset
Subsystem I---~ SSAnalyse

~-- notSSError

Reset--~

Analyse--~

NotError ------- .....--.

LinkO
Link1
Link2
Link3

Ordering Information

IMS T222 •••••••••••
SCSI

interface SCSI8US

IMS 8422 SCSI TRAM with T222-20
Description Order Number

IMS 8422-1

Table 1: Ordering information

66



Engineering Data

IMS 8408
Frame store TRAM

Size 8
c[][ft)mos
FEATURES

• IMS T800 Transputer

• 1 Mbytes single wait-state work space
DRAM

• 1.25 Mbytes single wait-state dual port
DRAM

• Dual Port supports continuous data
rates up to 100 Mbytes/s

• Communicates via 4 INMOS serial links
(Selectable between 10 or 20 Mbits/s)

• Designed to a published specification
(INMOS Technical Note 29)

GENERAL DESCRIPTION

The IMS 8408 implements the drawing and image
storage parts of a medium to high performance
graphics system. It incorporates a powerful 32-bit
microprocessor with on-chip FPU, 1 Mbyte of
workspace RAM and 1.25 Mbyte of display RAM
accessable to the processor and dual ported to
the Pixel Port. The pixel port is capable of
sustaining continuous data transmission at up to
100 Mbytes/sec, independently of the processor,
and under control of an autonomous address
generator. The IMS 8408 supports both interlaced
and non-interlaced displays of arbitrary resolution
up to 1024 x 768 pixels. At lower resolutions
multiple frame buffers are supported; e.g.
4 frame buffers of 640 x 480 pixels.

Processor
Bus _ ..aI Address

Generator

Timing
Pixel
Bus

Reset

Analyse --------

linkO

link1

link2
link3

Terminated
links

IMST800

Pixel
Address

Pixel
....aI 1.25 MByte Dual Port RAM Port ---

Pixel Data

1 MByte Workspace

67



68 Boa~s

2.13 IMS 8408 TRAM engineering data

2.13.1 Introduction

The IMS 8408 is one of a range of INMOS TRAnsputer Modules (TRAMs). In effect, TRAMs are board level
transputers with a simple, standardised interface. They integrate processor, memory and peripheral functions
allowing powerful, flexible, transputer based systems to be produced with the minimum of design effort. 1

The IMS 8408 is designed to be used with the IMS 8409 display driver TRAM. When connected to an
IMS 8409 via the INMOS Pixel 8us (and a suitable video monitor) a complete drawing and display system is
formed. System performance is increased simply by adding more IMS 8408s.

The IMS 8408 performs the drawing function in such a system. The graphics processor is an IMS T80D;
a fast 32 bit processor with on-chip FPU. Image data is drawn into 1.25 Mbyte of dual port RAM; a further
1 Mbyte of RAM is provided for program/data storage. Image data is output through the pixel bus pixel port
under the control of the dual port address generator. The address generator is programmable and responds
to system timing signals from the pixel bus.

2.13.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5MHz clock signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,B in Transputer link speed selection 6,7

Table 2.1 IMS 8408 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.4.

LinkOutO-3 Transputer link output signals. These outputs are intended to drive into transmission lines with
a characteristic impedance of 1000. They can be connected directfy to the Linkln pins of other
transputers or TRAMs.

LinklnO-3 Transputer link input signals. These are the link inputs of the transputer. Each input has a 10KO
resistor to GND to establish the idle state, and a diode to VCC as protection against ESD. They can
be connected directly to the LinkOut pins of other transputers or TRAMs.

LinkSpeedA, LinkSpeedB These select the speeds of LinkO and Link1,2,3 respectively. Table 2.2 shows
the possible combinations.

1Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification of TRAMs can be.found in
technical notes Dual-In-Line Transputer Modules (TRAMs) and Module Motherboard Architecture which are included in Part 3 of this
databook. The Transputer Databook may also be required. This is available as a separate publication from INMOS (72 TRN 203 01).



2 TRAnspuler Modules (TRAMs)

LinkSpeedA LinkSpeedB LinkO Link1,2,3
0 0 10 Mbits/s 10 Mbits/s
0 1 10 Mbitsls 20 Mbits/s
1 0 20 Mbitsls 10 Mbits/s
1 1 20 Mbits/s 20 Mbits/s

Table 2.2 Link speed selection

69

Clockln A 5MHz input clock for the transputer. The transputer synthesises its own high frequency clocks.
Clockln should have a stability over time and temperature of 200ppm. Clockln edges should be
mon<nor lie withifl the rSflge O.8V to 2.0V with a rise/fall time of less than 8ns.

Reset Resets the transputer, and other circuitry. Reset should be asserted for a minimum of 100ms. After
Reset is deasserted a further 100ms should elapse before communication is attempted on any link.
After this time, the transputer on this TRAM is ready to accept a boot packet on any of its links.

Analyse _

~ lOOms min ---...j+-l00ms min~

Reset -----l I....-------r-
Boot link rTTTTTTT________Uillill

Figure 2.1 Reset timing

Analyse is used, in conjunction with Reset, to stop the transputer. It allows internal state to be examined so
that the cause of an error may be determined. Reset and Analyse are used as shown in figure 2.2.
A processor in analyse mode can be interrogated on any of its links.

Analyse~
100ms

Reset ---..f-+---'"

An~yse "nk~~ ~UIIIIII

Figure 2.2 Analyse timing

notError An open collector output which is pulled low when the transputer asserts its Error pin. notError
should be pulled high by a 10KO resistor to VCC. Up to 10 notError signals can be wired togeth~r.

The combined error signal will be low when any of the contributing signals is low.

2.13.3 Pixel Port signals

The IMS 8408 has a pixel data port in addition to the usual TRAM signals. This enables the TRAM to connect
via the INMOS pixel bus to an IMS 8409 display TRAM; and possibly several other IMS 8408s. The pinout
is defined in Table 2.3. The pixel bus uses 60-way IDC connectors and flat ribbon cable.



70

Pin No. In/Out Pin Pin In/Out Pin No.
1 GNO 00 out 2
3 out 01 GNO 4
5 out 02 03 out 6
7 GNO 04 out 8
9 out 05 GNO 10
11 out 06 07 out 12
13 GNO 08 out 14
15 out 09 GNO 16
17 out 010 011 out 18
19 GNO 012 out 20
21 out 013 GNO 22
23 out 014 015 out 24
25 GNO 016 out 26
27 out 017 GNO 28
29 out 018 019 out 30
31 GNO 020 out 32
33 out 021 GNO 34
35 out 022 023 out 36
37 GNO 024 out 38
39 out 025 GNO 40
41 out 026 027 out 42
43 GNO 028 out 44
45 out 029 GNO 46
47 out 030 031 out 48
49 GNO notSEQclk in 52
51 GNO notRAMclk in 50
53 GNO notFieldSync in 54
55 GNO notEarlyBlank in 56
57 GNO notEvenField in 58
59 GNO SysReady in/out 60

Table 2.3 Pixel Bus pin designations

Boards

DO • 31 Pixel data is output on a 32 bit bus. Transitions occur on the falling edge of notSEQclk. The data
bus is open collector and carries inverted data. This allows data from different serial port modules
to be ORed on the Pixel Bus.

notSEQclk A continuous input clock used as the timing reference by the dual port address generator. It has
a maximum frequency of 25MHz. Oata and control strobes transitions are synchronised to the falling
edge of notSEQclk.

notRAMclk Used to clock pixel data from the dual port RAM onto the pixel bus. It is the same frequency
and phase as notSEQclk but is gated so that it does not run during blanking. Thus, no data is lost
during blanking. In the off state it is high.

notEarlyBlank A time-advanced version of the display blanking signal. Used by the dual port address
generator as an early warning of when pixel data will be required and of when it should be turned
off.

notFieldSync Resets the dual port address generator at the start of each field. Low during field flyback
(vertical blanking).

notEvenField Used by the dual port address generator to ensure that the pixel data for the correct display
field is output when generating an interlaced display. A low on this signal indicates the even field of
the odd/even field pair making up an interlaced frame.



2 TRAnsputer Modules (TRAMs) 71

SysReady This acts as a synchronisation mechanism for multiple modules. The IMS 8408 has a writeable
READY bit which drives an open collector output onto this wire; it also monitors its state. Only when
all IMS 8408s in a system have written 1 (ready) to their READY bits will SYSREADY be 1. This
can be used to EVENT (interrupt) the IMS T800.

Electrical Specification

The open collector drivers used for the data bus are capable of sinking 64mA and must be pulled up by an
external resistor network. This network is part of the pixel data input structure on the IMS 8409.

The clock and control inputs have 4K70 pull up resistors to establish an idle condition on each input when
the bus is disconnected.

2.13.4 Memory Map

There are 2304 Kbytes of memory. This is comprised of 4 Kbytes of internal transputer memory and
2300 Kbytes of external DRAM. The upper 1280 Kbytes is dual ported to the pixel port. The lower 1024 Kbytes
would normally be used for program storage and the dual ported area as a drawing area (frame buffer). Ta
ble 2.4 shows how the memory is mapped into the address space of the IMS T800 (the "#" sign indicates a
hexadecimal number).

Byte address Cycle Time
IMS T800 on chip RAM #80000000 - #80000FFF SOns
External Workspace RAM #80001000 - #800FFFFF 200ns
Dual port RAM #80100000 - #8023FFFF 200ns

Table 2.4 Memory map of the IMS 8408

2.13.5 Pixel Port control reg isters

There are a small number of control registers associated with the pixel port and its address generator. These
registers are located as shown in Table 2.5.

Register Byte address
Display Start (write only) #00000000
Ready (read,write) #00040000
SysReady (read only) #00080000
Interlace Enable (read,write) #OOOCOOOO
Event Mode (read,write) #00100000
Output Enable (read,write) #00140000

Table 2.5 Control register locations

Display Start This registers holds the address of the pixel at the top left hand corner of the displayed image.
It can be used to implement flipping between multiple drawing buffers. 8uffers must start on 64 kbyte
boundaries.

Interlace Enable Selects an interlaced or non-interlaced display. Writing 1 causes the address generator to
produce interlace addressing; writing 0 causes it to produce non-interlaced addressing.

Event Mode Selects the EVENT (interrupt) source to be either FieldSync or SysReady.

Output Enable Enables and disables the pixel port output buffers. Writing 1 enables the data output buffers;
writing O. disables them.

Ready Writing 0 drives SysReady low; writing 1 allows it to be pulled high.



72 Boards

SysReady is a read only location which reflects the condition of the SysReady wire. 8it 0 is read as 0 if
SysReady is low; 1 if SysReady is high.

2.13.6 Mechanical details

Figure 2.3 indicates the vertical dimensions of a single IMS 8408 and Figure 2.4 shows the outline drawing
the of the IMS 8408. Note that the component height includes the height taken up by a cable plugged into
the pixel port connector. This means that the IMS 8408 on a motherboard occupies more than one'card slot
in a 0.8in pitch card cage.

Figure 2.3 IMS 8408 height specification

2.13.7 Installation

Since the IMS 8408 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8408 may be supplied with spacer pin strips attached. to the TRAM pins on the underside of the
board. These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit.
Secondly, they can be used to space the TRAMs off the motherboard. If there are no components mounted
on the motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

Plug the IMS 8408 into the motherboard. Where the IMS 8408 is being used with an INMOS motherboard,
the copper triangle marking pin 1 on the IMS 8408 (see Figure 2.4) should be aligned with the silk screened
triangle that appears in the corner of the appropriate TRAM slot.

Should it be necessary to unplug the IMS 8408, it is advised that it is gently levered out while keeping it as
flat as possible. As soon as the IMS 8408 is removed, the spacer pin strips should be refitted to the TRAM
to protect the pins.



2 TRAnsputer Modules (TRAMs) 73

0.320

0.600
0.724

0.925
1.025

----3.400

.---- - 0.180 •••• 3.450

j-
: .:-~..:.._::_:_~_..1_0g_AT_U_M_(p_in_1_) --, :••:.::.- - - -·3.480

0.175·· :

DATUM :1a· Link20ut ••••••••••••••••••••••••••••••••••••••••••••. Link3in· 0 :....":.:
0.100 :. 0 Link2in Link30ut 0
o 224 :. 0 VCC GN 0 0
. : 0 Link10ut L1nkOin 0

0.150,j 0 Link1 in LinkOout 0
o L1nkSpeedA notError 0
o LinkSpeedB Size8 Reset 0o Clockln(5M Hz) Analyse 0

ONC NC 0
o NC NC 0
o NC NC 0
o NC NC 0

1.480 ONC NC 0
o GND VCC 0 1.576

o NC NC 0 1.700

ONC NC 0
1.975

2.025

2.300
NC 0
NC 0

2.424 GND 0
NC 0 2.520
NC 0
NC 0
NC 0 2.800

NC 0 2.924
2.975

3.075 3.125
3.225

3.276 NC 0
3.400 NC 0

NC 0
NC 0

3.680 NC 0
VCC 0 3.776

NC 0 3.900

NC 0

4.225

NC 0
4.500 NC 0
4.624 GND 0

NC 0 4.720
NC 0
NC 0
NC 0 5.000
NC 0 5.124

5.175

5.275 5.325
5.425

5.476 NC 0
5.600 NC 0

NC 0
NC 0

5.880 NC 0
VCC 0 5.976

NC 0 6.100

NC 0
6.375

6.425

NC 0
6.700 NC 0
6.824

GND 0
NC 0 6.920
NC 0
NC 0
NC 0 7.200

NC 0 7.324
7.375

7.475 7.525
7.625

7.676 NC 0
7.800 NC 0

NC 0
NC 0

8.080 NC 0
VCC 0 8.176

NC 0 8.300

NC 0
8.575

Figure 2.4 IMS 8408 outline drawing (All dimensions in inches)



74 Boa~s

2.13.8 Specification

TRAM feature Unit Notes
Transputer type IMS T800-20
Number of transputers 1
Number of INMOS serial links 4
Amount of DRAM 2.25 Mbyte
DRAM "wait states" 1
Memory cycle time 200 ns
SUbsystem controller No
Peripheral circuitry Pixel Port
Parity No
Size (TRAM size) 8
Length 3.66 inch
Pitch between pins 3.30 inch
Width 8.75 inch
Component height above PC8 12.8 mm 1
Component height below PC8 3.0 mm 2
Weight 215 g
Storage temperature 0-70 degC
Operating temperature 10-40 degC 3
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption 18 W 4

Table 2.6 IMS 8408 specification

Notes:

1 This dimension is larger than is normally stated for TRAMs because of the requirement to connect to the pixel bus.

2 This dimension includes the thickness of the PCB.

3 The figure quoted refers to the ambient air temperature.

4 The power consumption is the worst case value obtained when a sample of IMS B408 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

2.13.9 Ordering Information

Description
IMS 8408 TRAM with IMS T800-20

Order Number
IMS 8408-1

Table 2.7 Ordering information



Engineering Data

IMS 8409
Display TRAM
Size 8

D

U[Ji)mOS
FEATURES GENERAL DESCRIPTION

• IMS T222, 16-bit Transputer

• Video timing generator

• Pixel rates up to 64 MHz

• 8 or 18 bit pixels

• 3 IMS G176 colour look-up tables

• Designed to a published specification
(/NMOS Technical Note 29)

The IMS 8409 implements the timing generation
and display driver parts of a medium to high
performance graphics system. It consists of three
pix~1 channels and a programmable video timing
generator (VTG), controlled by an IMS·T222. Each
pixel channel consists of a 4-1 byte multiplexer
and an IMS G176 colour look-up table (CLUT).
Input to each pixel channel is by a separate pixel
bus input and each channel generates a set of
RG8 outputs. The IMS 8409 supports both
interlaced and non-interlaced displays of arbitrary
resolution up to a maximum dot rate of 64MHz.

Reset
Analyse

composite
SYNC R G B R R

BLANK
clocks

data bus

Video
Timing
Generator

Pixel Bus
___.... Control

IinkO

Iink1
Iink2 ~--l:::::::JI--I'"

link3

Pixel Bus Pixel Bus Pixel Bus

75



76 Boa~s

2.14 IMS B409 TRAM engineering data

2.14.1 Introduction

The IMS 8409 is one of a range of INMOS TRAnsputer Modules (TRAMs). In effect, these TRAMs are board
level transputers with a simple, standardised interface. They integrate processor, memory and peripheral
functions allowing powerful, flexible, transputer based systems to be produced with the minimum of design
effort. 1

The IMS 8409 is designed to be used in conjunction with one or more IMS 8408 frame store. TRAMs. When
connected to an IMS 8408 via the INMOS Pixel 8us (and a suitable video monitor) a complete drawing and
display system is formed. System performance is increased simply by adding more IMS 8408s.

The IMS 8409 has three pixel channels. Each channel inputs a 32 bit wide pixel stream from an INMOS
Pixel 8us and processes it into a form suitable for display by a colour monitor. The IMS 8409 also generates
system timing and control signals and outputs them on each pixel bus.

2.14.2 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5 MHz clock signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,B in Transputer link speed selection 6,7

Table 2.1 IMS 8409 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig 2.4.

LinkOutO-3 Transputer link output signals. These outputs are intended to drive into transmission lines with
a characteristic impedance of 100n. They can be connected directly to the Linkln pins of other
transputers or TRAMs.

LinklnO-3 Transputer link input signals. These are the link inputs to the transputer. Each input has a 10kn
resistor to GND to establish the idle state, and a diode to VCC as protection against ESD. They can
be connected directly to the LinkOut pins of other transputers or TRAMs.

LinkSpeedA, LinkSpeedB These select the speeds of LinkO and Link1,2,3 respectively. Table 2.2 sho\vs
the possible combinations.

Clockln A 5 MHz input clock for the transputer. The transputer synthesises its own high frequency clocks.
Clockln should have a stability over time and temperature of 200ppm. Clockln edges should be
monotonic within the range 0.8V to 2.0V with a rise/fall time of less than 8ns.

1Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification of TRAMs can be found in
technical notes Dual-In-Line Transputer Modules (TRAMs) and Module Motherboard Architecture which are included in Part 3 of this
databook. The Transputer Databook may also be required. This is available as a separate publication from INMOS (72 TRN 203 01).



2 TRAnsputer Modules (TRAMs) 77

LinkSpeedA LinkSpeedB LinkO Link1,2,3
0 0 10 Mbits/s 10 Mbits/s
0 1 10 Mbits/s 20 Mbits/s
1 0 20 Mbits/s 10 Mbits/s
1 1 20 Mbits/s 20 Mbits/s

Table 2.2 Link speed selection

Reset Resets the transputer, and other circuitry. Reset should be asserted for a minimum of 100ms. After
Reset is deasserted a further 100ms should elapse before communication is attempted on any link.
After this time, the transputer on the IMS 8409 is ready to accept a boot packet on any of its links.

Analyse _

f4-- lOOms min -+-100ms min j
Reset --.J I--------r-

Boot link rrrrrrrr______lliWll

Figure 2.1 Reset timing

Analyse is used, in conjunction with Reset, to stop the transputer. It allows internal state to be examined so
that the cause of an error may be determined. Reset and Analyse are used as shown in figure 2.2.
A processor in analyse mode can be interrogated on any of its links.

Analyse~
100ms100ms

Reset __-+-__....

-.I
Analyse link ITIIJ].... ___

Figure 2.2 Analyse timing

notError An open collector output which is pulled low when the transputer asserts its Error pin. notError
should be pulled high by a 10kO resistor to VCC. Up to 10 notError signals can be wired together.
The combined error signal will be low when any of the contributing signals is low.

2.14.3 Pixel Bus connectors

The IMS 8409 has three pixel data ports in addition to the usual TRAM signals. This enables the IMS 8409
to connect via the INMOS pixel bus to one or more IMS 8408s. The Pixel 8us uses 50-way IDC connectors
and flat ribbon cable; the pinout of each port is defined in Table 2.3. The clock and control outputs are driven
by high current buffers capable of driving into 1000 loads.

DO • 31 Pixel input data is latched on the falling edge of notSEQclk. The data bus is open collector and
carries inverted data. This allows data from different serial port modules to be ORed on the Pixel
8us. Each data input is terminated with 3300 to VCC and 4700 to GNO.

notSEQclk A continuous output clock for use as the system timing reference; it has a maximum frequency
of 25 MHz. Data and control strobes transitions are synchronised to the falling edge of notSEQclk.

notRAMclk An output clock of the same frequency and phase as notSEQclk but gated so that it does not
run during display blanking. It is used to clock pixel data from the IMS 8408s onto the pixel bus so
that no data is lost during blanking. In the off state it is high.



78

Pin No. In/Out Pin Pin In/Out Pin No.
1 GNO 00 in 2
3 in 01 GNO 4
5 in 02 03 in 6
7 GNO 04 in 8
9 in 05 GNO 10
11 in 06 07 in 12
13 GNO 08 in 14
15 in 09 GNO 16
17 in 010 011 in 18
19 GNO 012 in 20
21 in 013 GNO 22
23 in 014 015 in 24
25 GNO 016 in 26
27 in 017 GNO 28
29 in 018 019 in 30
31 GNO 020 in 32
33 in 021 GNO 34
35 in 022 023 in 36
37 GNO 024 in 38
39 in 025 GNO 40
41 in 026 027 in 42
43 GNO 028 in 44
45 in 029 GNO 46
47 in 030 031 in 48
49 GNO notSEQclk out 52
51 GNO notRAMclk out 50
53 GNO notFieldSync out 54
55 GNO notEarly81ank out 56
57 GNO notEvenField out 58
59 GNO SysReady 60

Table 2.3 Pixel 8us pin designations

Boards

notEarlyBlank A time-advanced version of the display blanking signal. It provides early warning of when
pixel data will be required and of when it should be turned off.

notFieldSync Output low during field flyback (vertical blanking) to indicate the start of a new field.

notEvenField For use in systems producing interlaced displays; e.g. TV standard displays. A low on this
signal indicates that pixel data for the even field of the odd/even field pair making up an interlaced
frame should be placed on the pixel bus. Changes state on the falling edge of notFieldSync.

SysReady Used as a synchronisation mechanism by multiple IMS 8408 frame store modules. It is neither
driven nor monitored by the IMS 8409 but is common between the three pixel channel bus connectors
to support the synchronisation mechanism.

2.14.4 The Pixel channels

The IMS 8409 has three pixel channels: A, 8 and C. Each channel consists of a 4-1 byte multiplexer and an
IMS G176 colour look-up table (CLUT). Input to a channel is through a pixel bus connector, output is from a
set of RG8 video outputs. There are two operating modes.



2 TRAnsputer Modules (TRAMs) 79

8 bits/pixel mode

Each channel accepts 32 bit pixel data from a pixel bus connector at 1/4 the pixel rate. This is multiplexed
down to an 8 bit wide stream at pixel rate which is fed to the CLUT pixel data inputs. Thus, the pixel bus only
runs at 1/4 the pixel rate which may be up to 64 MHz. Each channel can provide a separate display with up
to 256 colours on each screen. It is not necessary to use all three channels. Since the three channels are
synchronised it is possible to use each channel to generate one of the RG8 primaries. Skew between any
two pixel channels on the same IMS 8409 is less than 5ns. Each channel would be connected by a separate
pixel bus to one or more IMS 8408s.

18 bits/pixel mode

In this mode the IMS 8409 provides a single display of up to 262144 colours. This mode allows a full colour
display to be produced by an IMS 8409 with a single IMS 8408. The pixel bus runs at the pixel rate which
is therefore limited to 25 MHz. Each pixel requires a 32 bit word to be supplied to the channel A pixel bus
input. The least significant byte is routed direct to the channel A CLUT, the second least significant byte" is
routed direct to the channel 8 CLUT, and the third least significant byte is routed direct to the channel C
CLUT. Each CLUT is used to generate one of the RG8 colour primaries. Thus, a single input word specifies
directly the red, green and blue components of a pixel. Skew between any two pixel channels on the same
IMS 8409 is less than 5ns.

The colour look-up tables

Each of these devices combines a 256 word, 18 bit wide RAM and three 6 bit DACs. 8 bit data applied to
the device's pixel inputs addresses a location in the RAM. 6 bits of the addressed data are applied to each
cf: the DACs which generate the red, green, and blue (RG8) outputs. Thus, the device can display up to 256
colours, selectable from a palette of 262144. The RAM contents are writeable and readable by the IMS T222.

Video Outputs

Each pixel channel has a set of RG8 outputs brought out on three SM8 connectors. The outputs are current
sources with 750 termination and will drive 1V pk-pk into a 750 load. The outputs are d.c. coupled: 0.3V is
blanking level and 1.0V (on load) is peak white.

Sync is not composited with the video signals but is available from a separate sync output (also an SM8
connector). The sync output will also drive into 750 and is d.c. coupled: 5V is the idle level, sync pulses are
OV.

2.14.5 Memory Map

The IMS 8409 is able to access 4 kbytes of internal transputer memory. This is sufficient memory to contain
the small amount of code and data required to set up the colour look-up tables and the VTG. The internal
memory on the IMS T222 has a 50ns access cycle time; Le. a single processor cycle. The IMS T222 has
a 64 kbyte address space with addresses ranging from #8000 to #7FFF where # indicates a hexadecimal
number.

Byte Address
IMS T222 internal RAM #8000-#8FFF

Table 2.4 IMS 8409 memory location

Pixel Channel Mode select

The pixel channel mode is set by writing to the Plxel Channel Mode Select register. Writing 1 selects
multiplexed (8 bits/pixel) mode: writing 0 selects non-multiplexed (18 bits/pixel) mode. The register location
is given in table 2.5. This register is write only.



80

Register
Channel Mode Select

Byte Address
#8000

Boards

Table 2.5 Channel Mode Select register location

The video timing generator

The video timing generator is an NEC D7220. It is mapped into the IMS T222's address space as shown
in Table 2.6. It is used only as a programmable timing generator and performs no drawing functions. Line
frequency, field frequency and resolution can be programmed (horizontal resolution must be a multiple of
64 pixels) and displays may be either interlaced or non-interlaced.

Register Byte address
Parameter FI FO (write only) #AOOO
Status Register (read only) #AOOO
Command FI FO (write only) #A002
FI FO read (read only) #A002

Table 2.6 NEC D7220 register locations

The Colour look-up tables

Ordinary accesses to the CLUT registers should be made at the addresses shown in table 2.7. These
registers are mapped as the lower 8 bits of a 16 bit word addressed at that location. They can be written
and read either as 16 bit words or as bytes addressed at the given locations. If written as 16 bit words, the
upper 8 bits are ignored; if read as 16 bit words, the upper 8 bits are read undefined.

Register Byte Address
Channel A Pixel Address (write mode) #0000
Channel A Colour Value #0400
Channel A Pixel Mask #0800
Channel A Pixel Address (read mode) #OCOO
Channel 8 Pixel Address (write mode) #1000
Channel 8 Colour Value -- #1400
Channel 8 Pixel Mask #1800
Channel 8 Pixel Address (read mode) #1 COO
Channel C Pixel Address (write mode) #2000
Channel C Colour Value #2400
Channel C Pixel Mask #2800
Channel C Pixel Address (read mode) #2COO

Table 2.7 IMS G176 registers

Each CLUT has a single Pixel Address register which is addressable at two locations. Writing a pixel address
to the first, places the CLUT in colour value write mode. Writing a pixel address to the second places the
CLUT in colour value read mode. Reading either location returns the same value.

810ck moves to and from the colour value registers should be made to the regions defined in table 2.8. In
this region, the colour value register appears as an 8 bit wide register at each byte address. Thus, byte
arrays of colour values can be block copied to and from these areas. Correct results for block writes are not
guaranteed for pixel clock speeds of less than 16 MHz. Correct results for block reads are not guaranteed
for pixel clock speeds of less than 28 MHz.



2 TRAnsputer Modules (TRAMs)

Register Byte Address
Channel A Colour Value #4400-#47FF
Channel 8 Colour Value #5400-#57FF
Channel C Colour Value #6400-#67FF

Table 2.8 IMS G176 block move areas

2.14.6 Mechanical details

81

Figure 2.3 indicates the vertical dimensions of a single IMS 8409 and Figure 2.4 shows the outline drawing
the of the IMS 8409. Note that the component height includes the height taken up by a cable plugged into
a pixel bus input. This means that the IMS 8409 on a motherboard occupies more than one card slot in a
0.8in. pitch card cage.

Figure 2.3 IMS 8409 height specification

2.14.7 Installation

Since the IMS 8409 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8409 may be supplied with spacer pin strips attached to the TRAM pins on the underside of the
board. These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit.
Secondly, they can be used to space the TRAMs off the motherboard. If there are no components mounted
on the motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

Plug the IMS 8409 into the motherboard. Where the IMS 8409 is being used with an INMOS motherboard,
the yellow triangle marking pin 1 on the IMS 8409 (see Figure 2.4) should be aligned with the silk screened
triangle that appears in the corner of the appropriate TRAM slot.

Should it be necessary to unplug the IMS 8409, it is advised that it is gently levered out while keeping it as
flat as possible. As soon as the IMS 8409 is removed, the spacer pin strips should be refitted to the TRAM
to protect the pins.



82 1 Boards
."" 0.180 "" 3.400
: I~ ~ ~ ~. 0.150 •••• 3.450

.:~ • : : : ~ ..1OgATUM (pin 1) :.~~~~.3.480

0.175~· :

·1·DATUM • O·N~· ••••••••••••••••••••••••••••••••••••••••••••••••••• ·Ne·o .~

0.100 • ONC NC 0 :
0.224 ·0 VCC GND 0

ONC NC 0 0.320
ONC NC 0
ONC NC 0
ONC Size8 NC 0 0.600

ONC NC 0 0.724
0.775

0.875 0.825
1.025

1.076 o Analyse Clockln(5M Hz) 0
1.200 o Reset LinkSpeedB 0

o notError LinkSpeedA 0o LinkOout Link1in 0
1.480 o LinkOin Link10ut 0

o GND VCC 0 1.576

o Link30ut Link2in 0 1.700

o Link3in Link20ut 0
1.875

2.025

ONC NC 0
2.300 ONC NC 0
2.424 o VCC GND 0

ONC NC 0 2.520
ONC NC 0
ONC NC 0
ONC NC 0 2.800

ONC NC 0 2.1124
2.1175

3.075 3.125
3.225

3.276 ONC NC 0
3.400 ONC NC 0o NC NC 0

ONC NC 0
3.680 ONC NC 0

o GND VCC 0 3.776

ONC NC 0 3.1100

ONC NC 0

4.225

ONC NC 0
4.500 ONC NC 0
4.624 o VCC GND 0

ONC Ne 0 4.720
ONC NC 0
ONC NC 0
ONC NC 0 5.000
ONC NC 0 5.124

5.175

5.275 5.325
5.425

5.476 ONC NC 0
5.600 ONC NC 0

ONC NC 0
ONC NC 0

5.880 ONC NC 0
o GND VCC 0 5.1176

ONC NC 0 6.100

ONC NC 0
6.375

6.425

o Ne NC 0
6.700 ONC NC 0
6.824 o VCC GND 0

ONC NC 0 6.1120
ONC NC 0
ONC NC 0
ONC NC 0 7.200

ONC NC 0 7.324
7.375

7.475 7.525

7.676
·7.625

ONC NC 0
7.800 ONC NC 0

ONC NC 0
o NC NC 0

8.080 ONC NC 0
o GND VCC 0 8.176

ONC NC 0 8.300

ONC NC 0
8.575

Figure 2.4 IMS 8409 outline drawing (All dimensions in inches)



2 TRAnsputer Modules (TRAMs)

2.14.8 Specification

TRAM feature Unit Notes
Transputer type IMS T222-20
Number of transputers 1
Number of INMOS serial links 4
RAM size 4 kbyte
Memory cycle time 50 ns
Subsystem controller No
Peripheral circuitry VTG

3 Display channels
Parity No
Size (TRAM size) 8
Length 3.66 inch
Pitch between pins 3.30 inch
Width 8.75 inch
Component height above PC8 12.8 mm 1
Component height below PC8 3.0 mm 2
Weight 185 g
Storage temperature 0-70 degC
Operating temperature 10-40 degC 3
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption 18 W 4

Table 2.9 IMS 8409 specification

Notes:

83

1 Since the IMS 8409 makes use of IDC connectors for the pixel bus, this dimension is larger than is normally stated for
TRAMs. -

2 This dimension includes the thickness of the PC8.

3 The figure quoted refers to the ambient air temperature.

4 The power consumption is the worst case value obtained when a sample of IMS 8409 TRAMs were tested (running a program
that utilised all four links and accessed memory simultaneously) at a supply voltage (VCC) of 5.25 V.

2.14.9 Ordering Information

Description
IMS 8409 TRAM with IMS T222-20

Order Number
IMS 8409-1

Table 2.10 Ordering information



Engineering Data

[][fi)mos
FEATURES

• IMS T800 32 bit Transputer
• IMS G300 Colour Video Controller
• 2 Mbytes of four cycle DRAM
• 2 Mbytes of four cycle VRAM
• Huge variety of software selectable

screen formats
• Pixel rates 70 to 110 MHz @ 8 bitlpixel
• Communicates via 4 INMOS serial links

(Selectable between 10 or 20 Mbits )
• Size 6 TRAM
• Designed to a published specification

(INMOS technical Note 29 )

IMS 8419
Integrated graphics TRAM

Size 6

GENERAL DESCRIPTION

The IMS B419 incorporates the IMS G300 Colour
Video Controller with the IMS T800 32 bit Float
ing Point Transputer to form a high performance
grap.hics system. Two Mbytes of four cycle DRAM
provides a general purpose store sufficient to run
applications such as the X-window system, it also
allo.ws Transputer Development System (TDS) to be
r~sldent .on board. Two Mbytes of Video RAM pro
vide arbltary screen resolutions up to a maximum
of 1280 x 1024 8 biVpixel with unrestricted screen
formats at resolutions below this.

External pixel
clock input

Links -4------::~ IMS T800

Transfer
control

IMS G300
Video

Controller

PixelBus
[31 :0]

Analogue
video

outputs

Serial port
clock

2 Mbytes DRAM 2 Mbytes Video RAM

84



2 TRAnsputer Modules (TRAMs)

2.15 IMS 8419 TRAM engineering data

2.15.1 Introduction

85

The IMS 8419 is one of a range of INMOS TRAnsputer Modules (TRAMs). In effect, TRAMs are board level
transputers with a simple, standardised interface. They integrate processor, memory and peripheral functions
allowing powerful, flexible, transputer based systems to be produced with the minimum of design effort. 1

The IMS 8419 G300 CVC Graphics TRAM implements a complete high performance graphics subsystem.
The frame store consists of 2 Mbytes of dual ported Video RAM which supports displays of arbitrary resolution
at 8 bit/pixel. The resolution of the system is only limited by the CVCs maximum dot rate and the access time
of the serial port on the VRAM. The IMS 8419 supports a dot rate up to 110 MHz, the speed of the eve. The
CVC is configured by the on board IMS T800 which is provided with 2 Mbytes of 200ns cycle DRAM. This
store is available for screen manipulation workspace and general program memory. The processor can be
used to implement graphic primitives directly or as an intelligent channel receiving data from an array via its
four bidirectional links at data rates of up to 10 Mbytes/sec. This makes the IMS 8419 useful for applications
as diverse as an add-on accelerator for a PC or a Macintosh, as part of an embedded system in industrial
control, or as a graphics output for a 3D graphical supercomputer.

2.15.2 Screen sizes

Screen sizes can be set by writing to a few registers in the G300 CVC, and be chosen to suit the application.
Suppose, for instance, an 8.5 x 11 sheet of paper (in landscape), represented by a screen with 100 pixels
per inch. This would need an 1100 x 850 display, a format not normally available from a hardware solution.
The G300 gives a line width in multiples of 4 pixels, which makes it simple to produce this screen. As well
as producing special screens such as 11 x 8.5, many of the standard screens can also be produced; indeed
the user can switch between screen formats, the display clock frequency, and even the source of the input
clock, all by simply changing the G300 registers and other registers on the board by software.

Some examples of screen sizes that are possible are given in Table 2.1. All the screens in the table are for
8 bits per pixel.

Screen Pixels Aspect Interlace
Size Ratio
CGA 320 x 240 1.333 no
EGA 640 x 350 1.829 no
VGA 640 x 480 1.333 no

Enh VGA 800 x 600 1.333 no
Ext VGA 1024 x 768 1.333 no
11 x 8.5 1100 x 850 1.294 no
11 x 8.5 1164 x 900 1.293 no

1024 x 1024 1.0 no
1280 x 1024 1.25 no

AS 1216 x 860 1.414 no
PAL 768 x 575 1.333 yes

NTSC 668 x 501 1.333 yes

Table 2.1 A selection of possible screen sizes

1Further details of the TRAM/motherboard philosophy and the full electrical and mechanical specification of TRAMs can be found in
technical notes Dual-In-Line Transputer Modules (TRAMs) and Module Motherboard Architecture which are included in Part 3 of this
databook. The Transputer Databook may also be required. This is available as a separate publication from INMOS (72 TRN 203 01).



86 Boa~s

2.15.3 Pin descriptions

Pin In/Out Function Pin No.

System Services
VCC,GND Power supply and return 3,14
Clockln in 5 MHz clock signal 8
Reset in Transputer reset 10
Analyse in Transputer error analysis 9
notError out Transputer error indicator (inverted) 11

Links
LinklnO-3 in INMOS serial link inputs to transputer 13,5,2,16
LinkOutO-3 out INMOS serial link outputs from transputer 12,4,1,15
LinkspeedA,B in Transputer link speed selection 6,7

Table 2.2 IMS 8419 Pin designations

Notes:

1 Signal names are prefixed by not if they are active low; otherwise they are active high.

2 Details of the physical pin locations can be found in Fig. 2.5.

LinkOutO-3 Transputer link output signals. These outputs are intended to drive into transmission lines with
a characteristic impedance of 1000. They can be connected directly to the Linkln pins of other
transputers or TRAMs.

LinklnO-3 Transputer link input signals. These are the link inputs of the transputer. Each input has a 10kO
resistor to GND to establish the idle state, and a diode to VCC as protection against ESD. They can
be connected directly to the LinkOut pins of other transputers or TRAMs.

LinkSpeedA, LinkSpeedB These select the speeds of LinkO and Link1,2,3 respectively. Table 2.3 shows
the possible combinations.

LinkSpeedA LinkSpeedB LinkO Link1,2,3
0 0 10 Mbits/s 10 Mbits/s
0 1 10 Mbits/s 20 Mbits/s
1 0 20 Mbits/s 10 Mbits/s
1 1 20 Mbits/s 20 Mbits/s

Table 2.3 Link speed selection

Clockln A 5 MHz input clock for the transputer and eve. The transputer synthesises its own high frequency
clocks. Clockln should have a stability over time and temperature of 200 ppm. Clockln edges
should be monotonic within the range 0.8V to 2.0V with a rise/fall time of less than 8 ns.



2 TRAnsputer Modules (TRAMs) 87

Reset

Reset Resets the transputer, and other circuitry. Reset should be asserted for a minimum of 100ms. After
Reset is deasserted a further 100 ms should elapse before communication is attempted on any link.
After this time, the transputer on this TRAM is ready to accept a boot packet on any of its links.

Analyse _

___I- 100ms min --,- 100ms min --I

Boot Iin_k .....J[[[[[[[[

Figure 2.1 Reset timing

Analyse is used, in conjunction with Reset, to stop the transputer. It allows internal state to be examined so
that the cause of an error may be determined. Reset and Analyse are used as shown in figure 2.2.
A processor in analyse mode can be interrogated on any of its links.

Analyse __---'

100ms I 100ms I 100ms I 100ms

Reset
~

Analyse link~~ ~~ ~[[[[[[[[

Figure 2.2 Analyse timing

notError An open collector output which is pulled low when the transputer asserts its Error pin. notError
should be pulled high by a 10kO resistor to VCC. Up to 10 notError signals can be wired together.
The combined error signal will be low when any of the contributing signals is low.



88

2.15.4 Memory Map

1 Boards

The memory space on the board may be divided up into two non-contiguous areas, bitmap and workspace,
so that operating systems which use automatic workspace sizing will not trespass on the screen space. A
series of PCS links are provided which enables the bitmap and workspace to become contiguous, enabling
any spare video RAM to be used as program space if required.

Figure 2.3 shows how the memory is mapped into the address space of the IMS T800
(the "#" sign indicates a hexadecimal number).

G300

Sub-system Reg

~~ 1~

VRAM

~~ ~~

DRAM

Internal RAM

Non-contiguous

# 5FFFFFFF

# 40000000
# 3FFFFFFF

# 00000000

# DFFFFFFF

# COOOOOOO

# 9FFFFFFF

# 80001000

# 80000000

G300

Sub-system Reg

~~ ~~

VRAM

DRAM

Internal RAM

Contiguous

# 5FFFFFFF

# 40000000
# 3FFFFFFF

# 00000000

# 803FFFFF

# 80200000
# 801 FFFFF

# 80001000

# 80000000

Figure 2.3 Non-contiguous and contiguous address maps

Information on the G300 CVCs registers and locations can be found in the
Graphics Databook , INMOS Limited.

SubSystem registers

The user may require the G300 Graphics TRAM to control a network of transputers and/or other TRAMs.
A set of control signals are provided which enables the master to control these slaves or subsystems. The
SubSystem port consists of three signals: SubSystemReset andSubSystemAnalyse, which enables the
master to reset and analyse its subsystem; and SubSystemnotError, which is used to monitor the error flag
in the subsystem.



2 TRAnsputer Modules (TRAMs) 89

To maintain software compatibility between TRAMs the SubSystem registers start at hardware address
#00000000. These registers are located as shown in table 2.4.

Register Hardware byte address

SubSystemReset (Wr only) #00000000

SubSystemAnalyse (Wr only) #00000004

SubSystemnotError (Rd only) #00000000

Table 2.4

The SubSystem port operates as follows:

Writing a '1' into bit 0 of #00000000 asserts SubSystemReset.
Writing a '0' into bit 0 of #00000000 deasserts SubSystemReset.

Writing a '1' into bit 0 of #00000004 asserts SubSystemAnalyse.
Writing a '0' into bit 0 of #00000004 deasserts SubSystemAnalyse.

A '1' read from bit 0 of #00000000 indicates that SubSystemnotError is TRUE.
A '0' read from bit 0 of #00000000 indicates that SubSystemnotError is FALSE.

A further two registers are included which enables users to reset the G300 CVC and to switch between the
system clock or the on board oscillator. The first of these registers enables users to reset the G300 CVC
without reseting the IMS T800, this is important when the application running must not be interupted. The
second register allows users to select a particular pixel dot rate, which may not be attainable using the 5 MHz
system clock and PII multiplication factors. Refer to the G300 clock selection section for further information
on input clocks and multiplication factors.

The auxiliary control registers operate as follows:

Writing a '1' into bit 0 of #OOOOOOFO asserts G300 CVC reset
Writing a '0' into bit 0 of #OOOOOOFO deasserts G300 CVC reset

Writing a '1' into bit 0 of #000000F4 selects the on board Osc for PLLClkln
Writing a '0' into bit 0 of #000000F4 selects 5 MHz for PLLClkln

On power up, or on a system reset the Clock selection register defaults to '0'



90 Boards

2.15.5 IMS G300 clock selection

Alternate clocking schemes are provided which offer a high degree of system flexibility. The primary clocking
system utilises the on chip phase-locked loop to multiply the input clock to the full video clc ck rate.

The second method involves disabling the PII and using a times one clock from the on board oscillator or
from an external source.

Table 2.5 shows the recommended input clocks and multiplication factors.

Video data rate (MHz) PIIClkln (MHz) Clock MuItiplication

30 6 5

40 6.66 6

50 7.142 7

60 7.5 8

70 7.777 9

80 8 10 /

90 8.181 11

100 8.333 12

110 8.461 13

120 8.571 14

Table 2.5

The figures shown in the above table are for maximum phase-locked loop stability. The IMS 8419 Graphics
TRAM uses the system clock (5 MHz) to drive the PII. To achieve a video data rate of 105 MHz a multiplication
factor of 21 is used, although these figures are not recommended for use in a' noisy environment they provide
an extremely stable picture.

If the required video data rate can not be achieved using the system clock and relevant mUltiplication factor .
the on board crystal oscillator may be used by writing a '1' into address #000000F4. If the oscillator is used
to drive the pixel clock input it must run at the video dot rate with the appropriate jumpers set.

2.15.6 Jumper selection

JP1 Enable PLL (Jumper removed)
JP2 On board Osc to PixClk in (JP3 removed)
JP3 External Pix Clock Enable (JP2 removed)
JP4 Contiguous memory VRAM start #80200000
JP5 Non-contiguous memory VRAM start #COOOOOOO

For further information on jumper positions and precautions, please refer to the IMS 8419-3 User manual.

2.15.7 Video and sync outputs

The G300 CVC timings comply with both the RS170a and EIA-343 video standard. The outputs are designed
to drive a doubly terminated 75R line, thus the effective load seen by the device is 37.5R. The RG8 analogue
outputs and synchronising signals are brought out to the edge of the board on five 5MB connectors as shown
below. If the display monitor accepts composite sync on one of its video inputs the sync outputs may be left
unconnected.



2 TRAnsputer Modules (TRAMs)

SM8 identification from top to bottom of the board.

91

1 Pixel clock in

2 Vertical Sync

3 Composite or Horizontal Sync

4 81ue

5 Green

6 Red

Input (note)

Output

Output

Output 75R

Output 75R

Output 75R

Note maximum Pixel clock input is up to 110 MHz, the speed of the G300 CVC.

2.15.8 Mechanical details

Figure 2.4 indicates the vertical dimensions of a single IMS 8419 and Figure 2.5 shows the outline drawing
of the IMS 8419.

Motherboard pes
gap = O.6mm min

Figure 2.4 IMS 8419 height specification

2.15.9 Installation

Since thelMS 8419 contains CMOS components, all normal precautions to prevent static damage should be
taken.

The IMS 8419 may be supplied with spacer pin strips attached to the TRAM pins on the underside of the
board. These spacers perform two functions. Firstly, they help to protect the TRAM pins during transit.
Secondly, they can be used to space the TRAMs off the motherboard. If there are no components mounted
on the motherboard TRAM slot, then the spacer strips should be removed before the TRAM is inserted.

If the subsystem signals are required, plug a 3-way header strip into the solder-side sockets on the IMS 8419.

Plug the IMS 8419 into the motherboard. Where the IMS 8419 is being used with an INMOS motherboard,
the yellow triangle marking pin 1 on the IMS 8419 (see Figure 2.5) should be aligned with the silk screened
triangle that appears in the corner of the appropriate TRAM slot.

Should it be necessary to unplug the IMS 8419, it is advised that it is gently !evered out while keeping it as
flat as possible. As soon as the IMS 8419 is removed, the spacer pin strips should be refitted to the TRAM
to protect the pins.



92 Boards

000
co It) 0

- DATUM

0.476
0.600

0.875

2.676
2.800

1.420

1.700
1.824

3.075

2.025

2.125

3.620

3.900
4.024

6.100

6.224

4.225
4.325

5.820

4.876
5.000

5.275

NC 0
NC 0

GND 0
NC 0
NC 0
NC 0
NC 0
NC 0

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0
NC 0
NC 0

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0
NC 0
NC 0

NC 0
NC 0

GND 0
NC 0
Ne 0
NC 0
NC 0
NC 0

Link3in 0
Link30ut 0

GND 0
LinkOin 0

LinkOout 0
not Error 0

Reset 0
Analyse 0

ONC
ONC
o VCC
ONC
ONC
ONC
ONC
ONC

ONC
ONC
OVCC

ONC
ONC
ONC
ONC
ONC

ONC
ONC
ONC
ONC
ONC
o GND
ONC
ONC

ONC
ONC
ONC
ONC
ONC
o GND
ONC
ONC

~
10 0 Link20ut ISubsystemnotError
o 0 Link2in I SubsystemReset
o 0 VCC I SubsystemAnalyse
o Link10ut
o Link1 in
o LinkSpeedA
o LinkSpeedB
o Clockln(5MHz)

)((DATUM (pin 1) :((

I11 • III
III I II1
1.1 1• I11

I1I11t-t --+;

11

~g---------------------~

ONC NC 0

g~g Size6 module ~g g
o GND with subsystem vcc 0
ONC NC 0
ONC NC 0

1.875

1.975

3.125

1.925

1.200

1.324

2.176
2.300

0.380

0.100

2.580

0.175

0.024

3.400

3.524

4.075

4.175

4.376

4.500

4.780

5.325

5.600

5.724

6.275

6.375

DATUM

Figure 2.5 IMS 8419 outline drawing (All dimensions in inches)



2 TRAnsputer Modules (TRAMs)

2.15.10 Specification

TRAM feature IMS 8419-3 Unit Notes
Transputer type IMS T800-20
Number of transputers 1
Number of INMOS serial links 4
Amount of DRAM 2 Mbyte
Amount of VRAM 2 Mbyte
DRAM/VRAM cycle time 200 ns
Subsystem controller Yes
Peripheral circuitry IMS G300-11
Parity No
Size (TRAM size) 6
Length 3.66 inch
Pitch between pins 3.30 inch
Width 6.55 inch
Component height above PC8 13.7 mm
Component height below PC8 3.7 mm 1
Weight 175 g
Storage temperature 0-70 degC
Operating temperature 10-40 degC 2
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption 9 W 3

Table 2.6 IMS 8419 specification

Notes:

1 This dimension includes the thickness of the pes.

2 The figure quoted refers to the ambient air temperature.

3 The figure quoted has not been characterised and is subject to change.

2.15.11 Ordering Information

93

Description
IMS 8419 TRAM with IMS G300-11

Order Number
IMS 8419-3

Table 2.7 Ordering information



Product Overview

IMS 8420
Vector processor TRAM

Size 4

[][Ji)mos
FEATURES GENERAL DESCRIPTION

• IMS T800-25 floating point transputer

• High performance vector/signal pro
cessing co-processor
- e.g. 1K complex FFT < 2ms

• Both processors support
IEEE 754-1985 floating point

• 4 INMOS serial communication links
allowing connection of multiple Vec
TRAMs

• 1 Mbyte DRAM for IMS T800

• 256 Kbyte, dual access SRAM for full
speed co-processor operation

• Size 4 TRAM

• Sub-system port

The IMS 8420 VecTRAM is a transputer module
combining the communications ability and scalar
floating point performance of the IMS T800 with a
high performance vector/signal processing
co-processor. The two processors can operate
concurrently, using separate dynamic and static
memory blocks. The vector/signal processor is
normally operated as a slave to the IMS T800
which can read and write to the SRAM, to set up
vector/DSP routines as well as to load data for
processing. The two processors can handshake
via interrupts, thus allowing the transputer to
initiate vector routines and the co-processor to
signal the termination of the requested task.

Examples of the coprocessor's capabilities are: 1K
complex FFT in 1.8 ms, 1Ox1 0 by 1Ox1 0 matrix
multiplication in approximately 135 j.ts and 64-tap
FIR in 6 j.ts.

Application areas include speech and image
processing, graphics and numerical processing,
radar, sonar and seismology.

IMS T800

INMOS~---.....

links Vector
Signal

Processor

256 kbyte
dual access

SRAM

1 Mbyte
DRAMsubsystem

port

system ----....-_-.....
services

94



2 TRAnsputer Modules (TRAMs)

2.16 IMS 8420 VECTRAM product overview

2.16.1 Specification

TRAM feature Unit Notes
IMS T800 transputer 1
ZR34325 vector processor 1
Fast dual-port RAM 256 Kbyte
DRAM 1 Mbyte
TRAM size 4
Length 3.66 inch
Width 4.35 inch
Pitch between pins 3.30 inch
Component height above PCB TBA mm
Component height below PCB TBA mm 1
Weight (approx.) 150 g
Storage temperature 0-70 oC
Operating temperature 10-40 oC
Power supply voltage (VCC) 4.75-5.25 Volt
Power consumption TBA W

Table 2.1 IMS B420 specification

Notes:

1 This dimension includes the thickness of the pes.

2.16.2 Ordering Information

95

Description
VECTRAM

Order Number
B420-1

Table 2.2 Ordering information



96 Boards



rtrmos Chapter 3

Standard
Interface
Boards

97



Product Overview

IMS B008
IBM PC Motherboard

®

..•.•.

::~~mm m;~;m~

:~~;mm ~m~m~:

m ~~:

~~! ~~~~

::;~mm ~m~~~;j

~@;i! :;;;m~w

.;~;:;:;:;: .:;:;:;:;~

1:1

UUTImOS
FEATURES GENERAL DESCRIPTION

• IBM PC-XT or PC-AT format board

• Ten transputer module (TRAM) slots

• IBM PC bus interface supports DMA
and interrupts

• IMS C004 programmable 32 way cross
bar switch allows link configuration

• Conforms to the Module Motherboard
Architecture (Technical Note 49)

The IMS B008 is a TRAM motherboard which
plugs into the IBM PC-XT or PC-AT and provides
an interface between the IBM PC and transputer
based systems. It has slots for up to ten TRAMs.
Links 1 and 2 from each of the TRAM slots are
hard wired on the IMS B008, such that the
TRAMs, when plugged in, form a pipeline of
processing elements. The remaining links can be
"softwired" using an INMOS IMS C004
programmable link switch, incorporated on the .
IMS B008. This arrangement allows a large vanety
of networks to be created under software control.

• 37 way D-type connector gives access
to links and system services allowing
larger systems to be built

IBM PC bus

Down (Reset etc.)
Subsystem
(Reset etc.)

Pipe Tail

Links

ConfigDown

2

Slot
9

5 MHz
clock

~ JP2

Reset, etc.
to TRAMs 1 to 9
and IMS T222

2

Slot Slot
1 2

2 1 2 1
I

PatchLink1 <=>--l-o- ---
I
I
I
I
I
I
I
I
I
I

PatchLinkO <=>--l-o- -----b--'-------t
L J

Up
(Reset etc.)

98



3 Standard interface boards

3.1 IMS B008 IBM PC Module Motherboard product overview

3.1.1 Product Overview

99

The IMS B008 is a full length PC-AT format card which which allows transputer systems to interface to the
IBM PC-XT or PC-AT bus. It supports up to ten TRAMS plugged into the slots on the board which are
configured into a pipeline. An IMS T222 controlling aiMS C004 enables transputer networks to be configured
under software control. A connector on the backpanel of the board gives access to links and system services
allowing connections to other IMS B008 boards, or to any board compatible with the link and system service
signals. The IBM PC bus interface supports DMA and interrupts.

3.1.2 TRAM Slots

The board provides ten TRAM slots which are configured into a pipeline using links 1 and 2 of each TRAM
as shown in the block diagram. Jumpers are provided to allow the IMS B008 to be set up either as a head
of a pipeline of motherboards or as a board in such a pipeline. Links 0 and 3 from each slot are connected
to the IMS C004.

3.1.3 System Services

On all INMOS board products the term "system services" refers to the collection of the reset, analyse, and
error signals. On the IMS B008 the system services for the TRAM in slot 0 can be connected to either the
UP system services from another board or the system services controlled by the PC bus interface. System
services for the other TRAMs can be connected to the same source as TRAM 0 or to the subsystem port of
TRAM O. As shown in the block diagram the Down and Subsystem services are brought out to the 37 way
D-type connector allowing this hierachy to be extended to multi board systems.

3.1.4 Link Configuration

An IMS T222 and aiMS C004 on the board allow the configuring of the TRAMs into different networks under
software control. The configuration information is passed to the IMS T222 either by TRAM 0 when the board
is at the head of a pipe of boards or from the link ConfigUp from another board. Link 2 from the IMS T222 is
taken out to the D-type connector. This allows the IMS T222 devices on all the motherboards in a system to
be connected into a pipe allowing configuration information to be passed to each board. The IMS C004 can
be hard reset by the IMST222.

3.1.5 IBM PC Bus Interface

The IMS B008 bus interface is implemented using aiMS C012 link adaptor mapped into the I/O address
space of the PC. Five further registers allow software on the PC to control Reset and Analyse signals to
the transputer system, read the Error signal from the transputer system, enable interrupts, start and set the
direction of a DMA transfer, and select the DMA and interrupt channels to be used. The IMS C012 registers
and the interface control registers occupy a 32 byte area in the address map, the base address of which can
be located at 150,200, or 300 ( HEX ). A memory map is given below.



100

Memory Map

Board address Register
boardbase + 00 IMS C012 Input data register
boardbase + 01 IMS C012 Output data register
boardbase + 02 IMS C012 Input status register
boardbase + 03 IMS C012 Output status register
boardbase + 10 Reset register
boardbase + 11 Analyse reg ister
boardbase + 10 Error location
boardbase + 12 DMA request register
boardbase + 13 Interrupt control register
boardbase + 14 DMA and IRQ Channel select register

1 Boards

Interrupts

Interrupts can be generated on the IBM PC bus on any of four interrupt channels 3, 5, 11, or 15; only 3 and
5 being available on the IBM PC-XT. Interrupts can be generated on the following events:

• Data byte received on the IMS C012 link

• IMS C012 ready to send a data byte out on the link

• Transputer system Error signal active

• End of DMA transfer

DMA

DMA logic on the IMS B008 allows data to be transfered between the PC memory and the transputer system at
a faster rate than possible using a polling scheme or interrupting on each byte transfered. DMA requests are
generated when the IMS C012 is free to transmit a byte or has received a byte depending on the directionm
of the transfer. These DMA requests can be generated on DMA channels 0, 1, or 3 with only 1 and 3 being
available on the IBM PC-XT. Control of the direction of transfer and starting of the DMA process is acheived
by writing into the DMA request register.

3.1.6 Link Speeds

The link speeds of the TRAMs, the IMS C012, and the IMS C004 can be set to 10 or 20 Mbits/s. Link speeds
for the IMS T222 link 0 can be set 5, 10, or 20 Mbits/s



3 Standard interface boards

3.1.7 Technical Summary

• IBM PC-XT or PC-AT format card

• 10 TRAM slots

• Reconfigurable using IMS C004 link switch

• IMS T222 for configuration control

• IBM PC bus interface designed around IMS C012

• Bus interface supports interrupts and DMA

• Conforms to the Module Motherboard Architecture

3.1.8 Ordering Information

Description
IMS B008 IBM PC Module Motherboard

Order Number
IMS B008-1

101

Table 3.1 Ordering information



Product Overview

FEATURES

• VM Ebus system master with interrupt
handler

• IMS T800 transputer

• 2 Mbyte dual-ported, parity protected
DRAM

• 4 EPROM sites (upto 256 Kbyte)

• 2 RS232 ports

• 2 TRAM slots

• IMS C004 programmable link switch

IMS 8011
VMEbus master card

GENERAL DESCRIPTION

The IMS 8011 is a high performance, parallel
processing board designed to be integrated into
VMEbus based systems. In addition to all the
features expected from a VMEbus master card, it
performs all the necessary communications
between an array of transputers and the VM Ebus.
In this way the IMS 8011 can form a bridge
between facilities readliy available on the VM Ebus
(eg. hard disk storage, I/O circuitry) and the
processing power of a transputer network (INMOS
produces a slave VMEbus board, the IMS 8014,
with 8 TRAM slots allowing such networks to be
implemented very efficiently). Alternatively, when
used in conjunctiqn with the IMS 0505 SUN-based
toolset, the IMS 8011 may be used as a transputer
development enviroment operating under UNIX.

102



3 Standard interface boards

3.2 IMS B011 Tranputer VMEbus Master Card product overview

3.2.1 Processor

103

The INMOS transputer family of microprocessors is the industry standard in the field of mUlti-processing.
The IMS T800, around which the IMS B011 is based, is a very high performance 32 bit device with floating
point unit, 4 Kbytes of single cycle SRAM, and 4 high speed serial communications links all integrated onto
the same chip. An interrupt response time of less than 1 ps makes it particularly applicable to real-time
applications.

3.2.2 Booting

A transputer can be booted either from external ROM or via one of its links. The method of booting the
master transputer on the IMS B011 is selected by a jumper. EPROM sockets are provided (up to 256 Kbytes)
for the "boot-from-ROM" option. Alternatively, the transputer may be booted down a link from the VM Ebus
interface (via an IMS C012 link adaptor), or direct from a link connection on the P2 edge connector.

3.2.3 Interrupts

The IMS B011 is a full VMEbus interrupt handler, supporting all seven bus interrupt levels. Each of the
interrupt levels can be disabled using jumpers. When an interrupt occurs, a transputer event is generated
and the interrupt level is determined by reading a status register. The VMEbus status/ID vector is then
obtained by reading the interrupt acknowledge register for that interrupt level.

3.2.4 Memory

The IMS B011 has 2 Mbytes of parity protected DRAM on the board. It is dual-parted so that it is accessible
from both the transputer and from the VMEbus. If a parity error is logged during a memory read from the
VMEbus *BERR is asserted. If it is logged during a memory read from the transputer, the transputer EVENT
input is activated.

The VMEbus appears several times within the transputers memory map. Each occurrence represents a
different mode of access to the VMEbus.

The IMS B011 also provides some EPROM sockets (see Booting Section above).

3.2.5 VMEbus Interface

The IMS B011 is designed to be compatible with VMEbus Specification Rev. C.1. The functional modules
that are incorporated in the IMS B011 are:

• SYSTEM CONTROLLER including

• SYSTEM CLOCK DRIVER

• BUS TIMER (BTO(500))

• ARBITER (PRI).
• lACK DAISY-CHAIN DRIVER

• POWER MONITOR

• DTB MASTER (A321A24/A16; D32/D16/D08(EO))

• DTB SLAVE (A32/16; D32/D16/D08(EO))

• REQUESTER (ROR)



104

• INTERRUPT HANDLER (IH(1-7))

Boards

3.2.6 RS232 ports

Two asynchronous RS232 ports are implemented using a 2681 DUART. This device has two RS232 ports
with handshaking, counter/timer and parallel I/O bits. The counter/timer may be used to generate a periodic
event for use in real-time systems.

3.2.7 TRAM slots

The processing power of the IMS 8011 may be expanded by adding TRAnsputer Modules (TRAMs) into the
slots provided. TRAMs are small printed circuit boards containing a transputer and some external memory
and they communicate over INMOS serial links using a standard 16 pin interface. Upto 2 of these modules
may be fitted to the IMS 8011. In addition, an IMS C004 link switch is also provided to allow the interprocessor
communication links to be configured under software control.

3.2.8 Ordering Information

Description
VMEbus Master with IMS T800

Order Number
IMS 8011-2



Product Overview

IMS 8014
VMEbus slave card

DITilmOS
FEATURES GENERAL DESCRIPTION

• Compatible with VMEbus Specification
Rev. C.1

• Accomodates 8 standard transputer
modules (TRAMs)

• Static or dynamic link configuration us
ing two IMS C004 link switches

• Expandable to form arbitarily large sys
tems

• Suitable for use as VMEbus-transputer
interface with IMS 0505 SUN based
development system

The IMS 8014 module motherboard is compatible
with VMEbus Specification Rev. C.1. It is a
standard depth (160mm), double height (6U) card,
containing 8 TRAM slots with associated
configuration circuitry and a VM Ebus slave
interface. Two IMS C004 crossbar link switches
are provided to allow the user to configure the
transputer link connections. This architecture
allows any topology to be established on the
board. Additionally, 24 links are brought to the
edge connectors (8 on the P2 back connector, and
16 split between two front connectors) so that
larger networks, using multiple boards, may be
constructed.

IMS C004(B)
config link

P1

8 IMS C004(A)

config link ~--
P2

105



106 1 Boards

3.3 IMS 8014 VMEbus Module Motherboard product overview

3.3.1 VMEbus Interface

The IMS 8014 has a slave interrupting interface to the VMEbus. This interface provides access to a single,
bi-directional INMOS link and a system service port. The interface appears as a number of registers located
in the A16 (short) address space on the VMEbus, which may be accessed by any VMEbus master such as
the IMS 8011. These registers are used to program and interact with the IMS 8014.

The TRAMS on the IMS 8014 can be reset or analysed via the VMEbus interface, or can be bootstrapped
through it. Data can be exchanged between TRAMs on the IMS 8014 and any bus-master on the VMEbus.
All bus communication is achieved using 008(0) data transfers.

3.3.2 Interrupts

The IMS 8014 is capable of generating a single VMEbus interrupt that may be assigned to any of the seven
VMEbus priority interrupt levels. Interrupts can be triggered by anyone of three events:

• data byte received on VMEbus link;

• VMEbus link free to send a data byte;

• an error has occured in the transputer system;

All interrupts may be individually masked.

3.3.3 IMS C004 Control

The IMS 8014 uses the same method of controlling the IMS C004 as other INMOS module motherboards. This
allows all IMS C004s to be programmed from a single master configuration link. Each module motherboard
has a "config-up" link and a "config-down" link. Thus, motherboards may be cascaded to build multi-board
systems, by connecting these links in a pipeline.

On the IMS 8014, the "config-up" and "config-down" links can be switched to either the P2 back connector
or to the front connectors (P4, PS). Jumpers are also provided that allow either the VMEbus link or slot 0,
link 1 to be the master configuration link (figure 3.1).

I MS
T212 3

2

config-up(P2) --0

slot 0, link 1 --0--....~---.
VMEbus link---o

config-up(P4) --0

config-down(P2) -0-----.....
config-down(P5) -0

Figure 3.1 Configuration Control



3 Standard interface boards 107

3.3.4 System Services Organisation

On all INMOS board products, the term "system services" refers to the collection of the reset, analyse and
error signals. "Reset-up" and "Reset-down" ports are used to carry these signals between boards. Error
signals "flow" in the reverse direction to the reset and analyse signals.

The IMS 8014 allows system service signals to be generated by bus-masters on the VMEbus. A bus-master
can reset or analyse the transputer system by writing to the appropriate registers in the interface. Transputer
error signals are propagated back to a register in the interface where they may be monitored by the bus
master.

TRAM slot 0 can be reset independently of the other TRAM slots on the board. This allows slot 0 to be used
as a "transputer master", controlling other transputers in the system. Thus, it is possible to establish a control
hierachy; a principle that can be extended to multi-level systems using multiple motherboards.

3.3.5 Technical Summary

• 6U (height) by 160mm (depth) VMEbus card

• 8 TRAM slots

• Fully reconfigurable architecture using two IMS C004 link switches

• One IMS T212 transputer for configuration control

• VMEbus interface designed around an IMS C012 link adaptor

• Conforms to VMEbus Specification Rev. C.1

3.3.6 Ordering Information

Description
VMEbus Module Motherboard with IMS T212

Order Number
IMS 8014-1



Product Overview

IMS 8016
VMEbus master slave

[][fi)mos
FEATURES

• VMEbus MASTER/SLAVE.

• IMS T801-25 transputer.

• 256 Kbytes private transputer RAM
(80ns cycle).

• 4 Mbytes RAM dual-ported between
IMS T801 and VMEbus. Slave OPRAM
supports all VM Ebus cycle types 
A32124/16, 032/16/8, RMW, UAT, BlT.
Write posting supported.

• Full VM Ebus master -A32124/16,
032116/08, BlT (UAT and RMW are in
compatible with IMS T801). Supports
all modern request/release modes in
cluding fairness requesting. ·

• Full VMEbus interrupter and interrupt
handler.

• Full VM Ebus slot 1 functions.

• Oatabus crosspoint switch between IMS T801 and
OPRAM/VMEbus allows fast byte re-ordering to
overcome bigllittle endian incompatabilities.

• 256 Kbytes PROM (in 32-pin JEOEC PlCC
sockets).

• 2 serial ports using 2681 OUART.

• Real-time clock for time-of-day, when power
supply fails, the RTC is automatically switched to
the VMEbus +5V standby rail.

• IMS T801 boots from ROM or link.

• PEX I/O connector for SCSI, Floppy, Parallel,
GPIB or custom interfaces.

• Interprocessor communication mailbox registers.

• 6U format board, compliant with VMEbus
specification rev C.1 .

IMS T801

256K
SRAM

~•••• Byte
~ multiplexor

ROM
4Mbyte
DRAM

(dual-access)

Peripherals

VMEbus
master/
slave

interface

RS-232

108



3 Standard interface boards 109

3.4 IMS 8016 VMEbus master/slave Motherboard product overview

3.4.1 General description

The IMS 8016 is a high-performance VMEbus master/slave, based around the IMS T801 32 bit transputer.
It is suited to all applications requiring a high performance interface between transputers and the VMEbus.
The availability of fast private RAM to the IMS T801 also ,makes the board suitable for many processing
applications.

3.4.2 Ordering Information

Description
IMS 8016 VMEbus master/slave motherboard

Table 3.1 Ordering information

Order Number
IMS 8016-1



Product Overview

[)[Ji)mos
FEATURES

• 5 slots for INMOS TRAMs
(Transputer Modules)

• INMOS link adaptor interface
to the NEC expansion bus

• Interrupt capability

• Choice of 10 address

• Conforms to INMOS module
motherboard architecture

• Can be used as an interface to
external transputer systems

IMS 8015
NEC 9800 series PC

Board

GENERAL DESCRIPTION

The IMS 8015 is a motherboard for Transpufer
Modules (TRAMs) for the NEC PC-9800 series of
personal computers. It allows transputer modules
to be fitted to a 9800 series PC for program
development, and application acceleration.

The IMS 8015 has five slots for TRAMs and an
interface to the 9800 series PC expansion bus.
This allows the PC to communicate with and reset
the TRAMs. It also has connections which allow it
to connect to other transputers, TRAMs, or
transputer boards (such as another IMS 8015).

I slot 4 J
r slot 0

I 0
'0

en

I ]
Q)

~Q) c:
0 c:

~.~ slot 2 0
0

(UQ)
.::tt:.'ten

Q)

[
I

0

.~ ~
(U

..0

(,)Ui slot 1
a.. >-en

I slot 3 J

110



3 Standard interface boards

3.5 IMS B015 Module Motherboard product overview

3.5.1 Link connections

111

The INMOS link connections on the IMS B015 are arranged as shown in figure 3.1. Two links from each
TRAM slot are taken to the back connector (P1). Slots 1-4 are connected in a pipe-line. Some of the link
connections can be configured by jumper blocks K1 and K2. K1 connects the PC interface link to SLOTO linkO
or connects both links to P1. K2 connects SLOTO link2 to SLOT1 link1 or connects both links to P1.

o o

LINK PC 0 2 2 1 21 21 2
ADAPTOR K1 SLOT 0 K2 SLOT 1 SLOT 2 SLOT 3 SLOT 4

~ 1 113 :~. 3 :: 3
PC BUS B A C D

Figure 3.1 link connections

Thus, all of the TRAMs can be connected in a pipeline or all of the links from slofO can be taken to P1. The
PC interface link and slof1 Iink1 can also be taken to P1.

link A in
slotO linkO in
PC link out
link Bout

link A out
slotO linkO out
PC link in
link B in

Table 3.1 K1 signals

link C out link C in
slotO link2 out slotO link2 in
slot1 link1 in slot1 link1 out
link D in link D out

Table 3.2 K2 signals

3.5.2 Link speed selection

TRAMs have two link speed select pins: LinkSpeedA and LinkSpeedB. On the IMS B015, there are five link
speed select jumpers. These control the TRAM link speeds as shown in table 3.3. To determine the effect
of these jumpers on the link speeds of the TRAMs you are using, refer to the data sheets for the TRAMs.

Jumper Controls inserted removed
J9 PC link 10Mbits/s 20Mbits/s
J14 slotO LinkSpeedA 0 1
J13 slotO LinkSpeedB 0 1
J11 slot1-4 LinkSpeedA 0 1
J12 slot1-4 LinkSpeedB 0 1

Table 3.3 IMS B015 link speed selection



112 1 Boards

3.5.3 System Services

A TRAM has a reset input, an analyse input, and an notError output. System services is used as a collective
term for these signals. The system services signals on the IMS 8015 are arranged as shown in figure 3.2.

PC BUS
J10: fit to
enable pc1interface

TRAM SLOTS

Figure 3.2 System services

2 3 4

If the PC interface is enabled, system services for slot 0 come from the PC interface. If the PC interface is
disabled, system services for slot 0 come from the Up port.

Some types of TRAM have three extra pins which allow them to drive reset and analyse signals and to monitor
an error signal. This is termed sub-system control. A TRAM with sub-system control can reset, analyse, and
monitor the error signals of other TRAMs. If the TRAM in slotO of the IMS 8015 has sUb-system control, the
IMS 8015 can be configured so that this TRAM controls the TRAMs in slots 1-4. The sub-system control
signals from slot 0 are also available at the SubSystem port on the back connector of the IMS 8015. This
allows the TRAM in slot 0 to control TRAMs on other boards.

TRAMs in slots 1-4 can be controlled by the same system services signals as the TRAM in slotO; or they can
be controlled by the slot 0 sub-system. The selection is made by a single jumper.

3.5.4 Up, Down, and SUbsystem

The IMS 8015 has three system services ports on the back connector. These are called Up, Down, and
Subsystem. Each of these ports comprises a reset, analyse, and error signal.

The Up port allows other TRAMs or transputer boards to control the IMS 8015. It can be connected directly
to the Down or Subsystem port of another transputer board. The PC interface must be disabled to
make use of the Up port.

The Down port repeats the reset and analyse signals from the Up port if the PC interface is disabled. If the
PC interface is enabled, it repeats the reset and analyse signals from the PC interface. The error
signal from the Down port is reported to the PC interface if the PC interface is enabled, and to the
Up port if the PC interface is disabled. The Down port can be connected directly to the Up port of
another transputer board (such as another IMS 8015).

The SubSystem port allows a TRAM with a sub-system controller in slot 0 of the IMS 8015 to control other
transputer boards. The subsystem port can be connected directly to the Up port of another transputer
board.



3 Standard interface boards

3.5.5 PC interface

113

The IMS 8015 is designed to plug into any NEC 9800 series PC. It occupies one expansion slot. The interface
to the PC expansion bus allows the PC to

• reset the transputer modules

• load code onto the TRAMs

• test the combined error signal from the TRAMs

• analyse the TRAM network to identify the cause of an error

• communicate with the TRAM network

The interface can be polled or interrupt driven.

3.5.6 10 Address

The IMS 8015 can be placed at one of several 10 addresses in the PC's 10 address space. The PC interface
can also be disabled so that it does not respond to any address. Table 3.4 shows which jumpers should be
fitted to enable the IMS 8015 at a particular 10 address. The 10 addresses are in hexadecimal (indicated by
a #). A jumper must be fitted if there is a * in the column, otherwise it must be removed, x means that it does
not matter tf a jumper is fitted or not fitted. The IMS 8015 occupies a block of sixteen adresses starting at
the base address.

Base address J6 J7 J10
#000 * * *
#100 * *
#200 * *
#300 *
none x x

Table 3.4 10 address

3.5.7 Reset, Analyse and Error registers

These registers allow software running on the PC to control the TRAMs on the IMS 8015 and to monitor their
combined error status. Their offsets from the board base address are given in table 3.5.

Register Address Read/Write Asserted State
reset base + #8 write only 1
analyse base + #A write only 1
error base + #8 read only 0

Table 3.5 PC system services register locations

Writing 1 to the reset register asserts reset to the TRAM in slot 0 and asserts notDownReset. Writing 1 to
the analyse register asserts analyse to the TRAM in slot 0 and asserts notDownAnalyse. The error register
indicates whether any of the TRAMs has asserted its error flag or if notDownError is asserted. A 0 is read
if any of the TRAMs has asserted its error flag.

3.5.8 Interface link

To allow the PC to load code to the TRAM network, an interface from the PC expansion bus to an INMOS
link is provided. The interface uses an IMS C012 link adaptor. This device is like a UART: it has output data
and input data registers, and output status and input status registers. These are located at the addresses
shown in table 3.6.



114

Register Address Read/Write
input data base + #0 read only
output data base + #2 write only
input status base + #4 read/write
output status base + #6 read/write

Table 3.6 PC interface link register locations

Boards

The output status register contains an output ready bit which is 1 if the output data register is empty. The
interrupt enable bit allows the link adaptor to assert one of the NEC PC's interrupt lines when the
output data register is empty.

Bit Name Function
0 output ready o if output data register is busy
1 interrupt enable 1 to enable output interrupt

2-7 none

Table 3.7 Output Status Register

The input status register contains a data present bit which will be 1 if the input data register contains a
valid byte received from the link. The interrupt enable bit allows the link adaptor to assert one of the
NEC PC's interrupt lines when the input data register contains data.

Bit Name Function
0 data present 1 if data has been received
1 interrupt enable 1 to enable input interrupts

2-7 none

Table 3.8 Input Status Register

Interrupts

The link adaptor can be made to interrupt the NEC PC when it has received or transmitted a byte. Interrupt
on output and interrupt on input can be enabled and disabled separately but both conditions drive the same
signal to the PC bus. The interrupt signal can be connected to either IR31, IR61 or IR121. These correspond
to channels in the PC's programmable interrupt controllers as shown in table 3.9.

Interrupt line PlC channel Interrupt Vector Fit Jumper
IR31 MPIC-IR3 JOB J5
IR61 MPIC-IR6 #OE J4

IR121 SPIC-IR4 #14 J3

Table 3.9 Interrupt lines

Only one interrupt line should be driven at any time so only one of J3, J4, J5 should be fitted. If it is not
desired to use interrupts, all of the jumpers should be removed.



3 Standard interface boards 115

3.5.9 External power supplies

The NEC PCs can supply a maximum of 0.5A to an expansion board. Because an IMS B015 when populated
with TRAMS can require more than this, there is an option to supply power to the IMS B015 from an external
power supply while remaining connected to the NEC expansion bus.

The socket for external power (P2) is the same type and pinout as a disk drive power connector. The pinout
is given in table 3.10. If you wish to supply power to the IMS B015 from an external supply

1 REMOVE J1 and J2.

2 Connect a suitable 5V power supply to P2.

3 Insert the IMS B015 into the NEC PC.

4 Switch on the PC.

5 Switch on the power to the IMS B015.

6 ALWAYS turn on the IMS B015 power last and turn off the IMS B015 first.

Pin Signal
1
2 OV
3 OV
4 5V

Table 3.10 P2 connector pinout

The IMS 8015 and any TRAMs will then draw all of their power from the external supply but is interfaced to
the PC as before. Note that the OV of the external power supply is connected to the NEC PC OV. P2 is also
suitable for supplying power to the IMS B015 when it is not connected to a PC.



116 Boards

3.5.10 External Connections

pin row c row b row a
1 GND GND GND
2 ne ne ne
3 link A out slot2 IinkO out slot4 linkO out
4 link A in slot2 IinkO in slot4 linkO in
5 GND GND GND
6 GND GND GND
7 ne ne ne
8 slotO link1 out slot2 link3 out slot4 Iink3 out
9 slotO link1 in slot2 Iink3 in slot4 link3 in

10 GND GND GND
11 GND GND GND
12 ne ne ne
13 link C out slot1 IinkO out slot3 IinkO out
14 link C in slot1 IinkO in slot3 linkO in
15 GND GND GND
16 GND GND GND
17 ne ne ne
18 slotO Iink3 out slot1 Iink3 out slot3 link3 out
19 slotO link3 in slot1 link3 in slot3 link3 in
20 GND GND GND
21 GND GND GND
22 ne ne ne
23 link 8 out link 0 out slot4 link2 out
24 link 8 in link p in slot4 Iink2 in
25 GND GND GND
26 ne ne ne
27 ne ne ne
28 notUpReset notSubsystemReset notDownReset
29 notUpAnalyse notSubsystemAnalyse notDownAnalyse
30 notUpError notSubsystemError notDownError
31 GND GND GND
32 GND GND GND

Table 3.11 IMS 8015 back connector pinout



3 Standard interface boards

3.5.11 Specification

117

feature Unit Notes
TRAM slots 5
Interface type IMS C012 link adaptor to NEC PC expansion bus
Length 6.65 inch
Width 5.85 inch
Component height above PC8 12.0 mm
Component height below PC8 4.0 mm 1
Weight 150 g
Storage temperature 0-70 oC
Operating temperature 10-40 oC
Power supply voltage (Vcc) 4.75-5.25 Volt
Power consumption 1.7(typ.) 2.1 (max.) W

Table 3.12 IMS 8015 specification

Notes:

1 This dimension includes the pes thickness of 1.6mm.

3.5.12 Ordering Information

Description
IMS 8015 Module Motherboard

Order Number
IMS 8015-1

Table 3.13 Ordering information



Engineering Data

cO[fi)mos
FEATURES

• 16 transputer module (TRAM) slots

• IMS T212 - 16 bit transputer

• Two IMS C004 programmable
32 way switches

• Double Extended Eurocard

• 40 links available at edge
connectors

IMS 8012
Double extended
eurocard

GENERAL DESCRIPTION

The IMS 8012 is a eurocard TRAM motherboard
designed to fit into standard card cages for double
extended eurocards (the INMOS ITEM provides
such a card cage complete with power supplies,
and connectors). The IMS 8012 provides 16 slots
for TRAMs, with IMS C004s to provide a wide
variety of configurations. A possible application
might be an image or speech recognition system
using eight IMS 8401 s for feature extraction and a
IMS 8405 running LISP or another AI language for
recognition.

The IMS 8012 can also be used to provide
switchable backplane connectors for other boards
plugged into a backplane.

118



3 Standard interface boards

3.6 IMS 8012 Double Eurocard Motherboard engineering data

3.6.1 Introduction

119

The IMS 8012 is a eurocard TRAM motherboard which is designed to fit into standard 6U, 220mm deep,
DIN41494 (and IEC 297) card cages such as the INMOS ITEM. It has slots for up to 16 TRAMs. These are
transputer-based circuit modules which communicate with the outside world by means of INMOS serial links
(a link is a two-wire serial communications port which can run at up to 20 MHz).

The smallest TRAM is 'size 1'. Each of the 16 sites for modules on the IMS 8012 will accept a size 1 module.
Each module site, or 'slot' has connections for four INMOS links which are designated link 0, link 1, link 2 and
link 3. TRAMs which are larger than size 1 can be mounted on the 8012. A larger module occupies more
than one slot and need not use all of the available link connections provided by the slots which it occupies.

The 8012 has two IMS C004 link switch ICs. These devices are able to connect together links from the slots
and 32 links which are available on an edge connector. The connections can be changed by control data
passed to the board down a configuration link, which may come from some master system or from one of
the TRAMs on the 8012 itself.

3.6.2 Hardware Description

The 16 module sites or slots provided by the IMS 8012 are 16-pin sockets in accordance with the TRAM
Specification (INMOS Technical Note 29). The slots are numbered as shown on the board silk screen and in
figure 3.1.

The IMS 8012 has two DIN41612 96-way edge connectors, P1 and P2. These carry almost all signals and
power to/from the board and are easily identified from the board silk screen printing and from figure 3.1. P2
carries power, pipeline and configuration links and system control signals (reset and analyse and error).

NOTE - it is very important that you do not mix up P1 and P2. Unrecoverable damage to the IMS 8012 will
almost certainly result.

Link Connections

The link connections to the 16 slots are organised as follows:

Two links from each slot (links 1 and 2) are used to connect the 16 slots as a 16-stage pipeline (in a pipeline,
multiple processors are connected end-to-end as in figure 3.2). The pipeline is actually broken by jumper
block K1. K1 will usually be jumpered in the standard way to give a 16-stage pipeline but can allow other
combinations.

When modules larger than size 1 are used, the pipeline will be broken at the slots which are underneath large
modules. Special plugs, called pipe-jumpers are provided (figure 3.3 shows a pipe jumper). These plug into
the unused slot and connect the signals for links 1 and 2 together, thus connecting the pipeline through to
the next TRAM in the chain.

Link 1 on slot 0 is wired to an edge connector (P2) and is called PipeHead. Link 2 on slot 15 is also taken
to P2 and is called PipeTail. 8y connecting the pipe heads and tails from multiple boards together, a large,
multi-board pipeline is created.

The other two links (links 0 and 3) of each slot are, in general, connected to two IMS C004 programmable
link switches (For detailed information on the IMS C004 see The Transputer Databook).

The IMS C004 has 32 input pins and 32 output pins, plus an INMOS link (ConfigLink) used to send configu
ration information to the IMS C004. Any of the output pins can be 'connected' to any of the input pins, so a
signal presented on the input pin would be buffered and transmitted on the output pin (with a slight delay).

The switch connections are made according to information sent to the IMS C004 down its ConfigLink. The
two IMS C004s on the IMS 8012 allow 64 link connections to be made under software control.



120

I &IT

Slot 1 Slot 2

Slot 5 Slot 6

Slot 9 Slot 10

Slot 13 Slot 14

Slot 0 Slot 3

Slot 4 Slot 7

Sk>t 8 Slot 11

Slot 12 Slot 15

Figure 3.1 IMS 8012 slot positions

P1

P2

1 Boards

"C
ctS C\J C\JCl)

::I: ~ SLOT 0 ~ ~ SLOT 1 ~

Cl) c:: c:: c:: c::
c. ::J ::J ::J ::Ja:

SLOT 15

Pin 1 marked "

Figure 3.2 A module pipeline

Figure 3.3 A Pipe-Jumper

In most applications using the IMS C004, the device is treated as a 32-way Link Crossbar. This means that
32 INMOS links, each of which has two signals, may be connected to each other in an arbitrary fashion.
That is to say that any of the 32 links can be 'connected' via the IMS C004 to any of the other 31 links.
The IMS 8012 uses the IMS C004s in a slightly different way, the difference being that the two signals from
any particular link are routed through different IMS C004 devices. So if the Linkln signal comes from one
IMS C004, then the LinkOut signal will go to the other IMS C004. Figure 3.4 shows the general routing of
link signals.

The link output signals from all the link Os on all the slots (16 signals) are connected to 16 inputs of one
IMS C004 (IC2). The link input signals from all the link 3s on all the slots (16 signals) are connected to 16



3 Standard interface boards

IMS C004 (IC2)

121

Link 1

LinkO t1 Slot 0 Slot 15

Li kout2

Li kln2

0 0 0 0
c: '5 c: '5
~ 0 ~ 0c:

~
c:

~
:..::i c: :..::i c:

:..::i :..::i

IMS C004 (IC3)

Edge connector links

Figure 3.4 Link Organisation - slots to IMS C004s

outputs of the same IMS C004. The remaining 16 inputs and 16 outputs of that IMS C004 are connected to
an edge connector (P1).

The other IMS C004 (IC3) is connected similarly, except that 16 of its inputs are connected to the outputs of
all link 3s on all the slots, and 16 of its outputs are connected to the inputs of all link Os on all the slots. The
remaining inputs and outputs are connected to P1.

The result of this connection scheme is that any link 0 on any module may be routed via the IMS C004s to
any link 3 on any module, but may not be routed to any of the link Os on any other module. The same is
true for link 3s on any modules, they may not be routed to any other link 3. Each of the links 0 and 3 on any
module may be routed to any of half of the link connections on edge connector P1 (see below).

By hardwiring two of the edge connector links together off the board, any of the slot link Os can be routed to
another slot link 0, via the two connected edge links.

MMS (Module Motherboard System) software which is available for all module motherboards allows the
configuration of module interconnection to be achieved easily from a connection list description of the desired
network.



122 Boards

Slot 0 link 0 is not directly connected to its appropriate IMS C004 pins. It is connected to edge connector
P2, along with the respective pins from the IMS C004s. A link jumper connector which is supplied with the
board can be used to make the connection between slot 0 link 0 and the IMS C004s. slot 0 link 0 is taken to
P2 in order to provide two links which are directly connected to module 0 on an edge connector. For some
applications it will be useful to by-pass the IMS C004 switches in this way.

Similarly slot 0 link 3 is connected to pins on jumper-block K1. Usually K1 will be configured to connect slot 0
link 3 to the appropriate pins on the two IMS C004s. Because there are K1 pins which are connected to pins
on edge connector P2, slot 0 link 3 can be wi'red to the edge connector instead of to the IMS C004s.

It is possible, using a non-standard configuration of K1 , to take links 0, 1 and 3 from slot 0 off the board via
P2. This is useful if slot 0 contains a TRAM which is controlling a system of other TRAMs or transputers.

Figure 3.5 shows the organisation of the pipeline links and the links which are available on P2 and K1.

IMS C004 link switches introduce a small delay into the signals which they switch. If multiple IMS C004s are
introduced into a link signal path, as with multi-board IMS B012 systems, the link data rate may be reduced.

AS !.rr'(
.....~E--'~-'·_&-'-D ---:..~ to C004s

P2~ ....,

9/4C'b 0

to C004s .....~~----------~.;....; ...~
K1

r--------~~~....

P2
Pir("--

Slot 0
2

Slot 1 Slot 2 Slot 3 K1

Slot 11 K1
J

!i K1

Slot 15

Slot 10

Slot 14

Slot 9

Slot 13

Slot 8

Slot 12

q H H H ~::Slot 4 Slot 5 Slot 6 Slot 7

K1

P2 ......""""'--.-;..,;.;,...o..---------------------------------'
~!2'1b .AD

P2'" i ~ K1
........~2-0-{-30-b-----------------------------·~-3~ ...

Figure 3.5 Links Available on P2 and K1

P1 Links

Connector P1 has three rows of 32 pins. All the pins in row la' are connected to ground. All the pins in row
Ib' are link inputs and all the pins in row IC' are link outputs. At each of the 32 positions along P1, the three
pins from rows a,b and c together carry one link. These signals may be connected to devices with link ports
in any way the user desires, as long as the correct electrical precautions required when dealing with links are
taken into account. (see section 3.6.2).



3 Standard interface boards 123

A special connector with a small PGB attached and press-fit pins fitted into this PG8 is supplied with the
IMS B012. This 'mini-backplane', when fitted to P1, allows standard INMOS link cables to be plugged into
P1 links. Note that these link cables are" not designed for use in arduous physical environments (vibration,
corrosion and pulling on the cable). This is why the IMS 8012 is provided with standard DIN 41612 connectors.
The user may design a connection method for attaching signals to the board which best suits the particular
application.

The 32 links available on edge connector P1 are numbered, for reference, starting at 'edge link 0' on pins 1
(a,b and c) through to 'edge link 31' on pins 32 (a,b and c) (see figure 3.6). This numbering scheme is for
convenience and there is no obvious mapping between these numbers (the order on the edge connector)
and the links to which they are connected on the IMS G004s.

»1

P1

I

Edge of board
Edge link 0

Edge link 31

Figure 3.6 P1 Connections

As explained in section 3.6.2, the IMS 8012 link switching organisation, using the two IMS C004s, does not
allow complete freedom to connect any link to any other link. The following table shows which P1 edge
connector links (numbered as above) may be connected to which links on the slots (via the IMS C004 link
switches):

P1 Edge Link To TRAM slot links

0 3
1 3
2 0
3 0
4 0
5 0

6 3
7 3
8 3

9 3
10 0
11 0
12 3
13 0
14 0
15 3

P1 Edge Link To TRAM slot links

16 3
17 0
18 0
19 3
20 0
21 0
22 3
23 3
24 3
25 3
26 3
27 3
28 0
29 0

30 0
31 0

The link connections on connector P1 are intended mainly for communication between the IMS 8012 and
other boards. However, it is also possible to use these P1 links and the IMS G004 link switches to switch link



124 Boards

connections for an external system. For instance, two IMS B012 boards in a card cage, unpopulated with
TRAMs, may act as a 'programmable backplane' to other boards in the card cage. The connections between
these boards and the IMS B012s being hard-wired.

Switch Configuration Transputer

The IMS C004 devices are controlled by an IMS T212 16-bit transputer. The IMS T212 has four links.
Links 0 and 3 are connected to the two IMS C004s (link 0 to IC2 and link 3 to IC3). Link 1 is available on
edge connector P2 and is called ConfigUp. Link 2 is also available on P2 and is called ConfigDown. The
organisation of these links is shown in figure 3.7.

Configuration data for the IMS C004 is fed into one of the IMS T212's links (ConfigUp) from the master
configuration system which must be connected to P2. The configuration system could be one of the TRAMs
on the IMS B012, provided that one of its links may be connected to ConfigUp.

ynfi9r
Link1

IC2 0 IC1 ('t) IC3
ConfigLink .::s:. .::s:. ConfigLinkc: c:

IMS C004 :.:J IMS T212 :.:J IMS C004

Link2

t !
ConfigDown

Figure 3.7 Link Configuration Organisation

The IMS T212 has 2 Kbytes of on-chip RAM. A transputer such as the IMS T212, after it is reset, is able
to treat bytes sent to it down any of its links as 'boot code'. This is how the IMS T212 on the IMS B012 is
used. The configuration host system sends a small program to the IMS T212. The code is stored in on-chip
RAM and takes information from ConfigUp, routes data out to the two IMS C004s and sends on data out
of ConfigDown (if required). The MMS (Module Motherboard System) handles all these software functions
transparently.

In a multiple motherboard system it is intended that the ConfigUp and ConfigDown links from adjacent boards
be connected together to form a configuration daisy-chain (see figure 3.8). Again the MMS is able to handle
the configuration of multiple-board systems (see the MMS User Manual).

This configuration architecture is fully compatible with other INMOS TRAM motherboards. Multiple board
systems may contain different motherboard types. For instance, an IMS B008 fitted to an IBM PC/XT or
PC/AT or compatible, may be part of a system containing multiple IMS B012 motherboards fitted into a card
cage. .

Reset, Analyse and Error

The Reset, Analyse and Error pins of TRAMs (and transputers) will be refered to collectively as 'system
services' in this section. The system service signals are used to reset TRAMs and transputers, to place
transputers in an analyse state (for debugging) and to carry the fact that an error has occurred in one
processor in an array back to some host system which will deal with the error condition.

Some TRAMs and most evaluation boards are capable of generating the system services for other TRAMs
and transputers. This is called a 'subsystem' control capability. The IMS B012 can be connected to another
board with subsystem control and can also accomodate one TRAM with subsystem control. Furthermore, the



3 Standard interface boards

E
Q)
1i)
~ r:::(J)
.0 c.. ~:::J c..
(J) ::>Ir (:) ::>,

125

HOST IMS 8012

"C ~ c..~~ r::: ~ ~ - ~~

C'CS ::> ~ ~Q) .g>I (:) Q)

1:: c..Q) .g> a:::c.. 0
a::: u 1::

0u

Figure 3.8 Multiple-Board Daisy-Chain

"C ~
C'CS
Q)

I
Q)
c..

a:::

IMS 8012

IMS B012 can generate subsystem control signals for other boards.

System services for TRAMs are slightly different to system services for boards since the Reset and Analyse
signals are active low for boards and active high for TRAMs.

The TRAMs and other circuitry on the IMS B012 splits into two sections for system services. System services
for slot 0 come from the 'Up' pins on edge connector P2. System services for slots 1 to 15 and IC1 (the
IMS T212) can either come from from 'Up' as slot 0, or from the SUbsystem pins of slot 0, depending upon
the state of switch 6.

The IMS T212 Error pin is unconnected so an error condition on IC1 can not propagate into the TRAM array.

Note that slot 0 is the only slot which has subsystem pins and that in order to use these pins it is necessary
to have a module with subsystem capability installed in slot O.

The system service signals for slot 0 are buffered and output on edge connector P2 as the 'Down' pins. This
allows system services for multiple boards to be daisy-chained, the 'Down' of one board being connected to
the 'Up' of the next.

Figure 3.9 shows the complete organisation of the system services (reset, analyse and error) on the board.

Reset and Analyse signals presented to the IMS B012 on connector P2 should have minimum low pulse
widths of 1 millisecond. The subsystem pins of slot 0 are also buffered and are available on edge connector
P2 as the 'Subsystem' pins.

The two IMS C004 link switches have a reset pin that is driven by a power-on-reset circuit. The IMS C004s
can be also soft-reset by a command from the IMS T212.

The IMS T212 has 2 Kbytes of on-chip RAM. It also has an external memory interface. Circuitry on the



126

'Up' pins on P2
Buffers

Module in slot 0

~---------.-d-/ Subsystem pins

Buffers

Switch 6

Modules in slots 1 to 15-
and IC1 (IMS T212)

'Down' pins on P2

'Subsystem'
pins on P2

Boards

Figure 3.9 IMS B012 System Services Organisation

IMS B012 is connected to the IMS T212's external memory interface which allows the reset signal to the
IMS C004s to be controlled from the IMS T212. By writing a one into bit position zero in any external
memory word, the reset signal to the IMS C004s is asserted. Similarly, by writing a zero into bit position zero
in any external memory word, the reset signal to the IMS C004s is de-asserted.

Note that if the IMS T212 (IC1) writes to external memory and sets the IMS C004 reset signal, subsequent
reseting of the IMS T212 will not alter the level of the IMS C004 reset signal. Note also that if the IMS T212
reads from any location in its external memory space then the IMS C004 reset signal will be set to an
unpredictable level.

Link Termination

INMOS serial links have two signals, linkln and IinkOut. If a link is to be connected over a distance or between
boards then some extra discrete components are needed. The linkOUT signal must be series terminated
to match its load, and the Iinkln should have a diode to VCC for ESD protection and a pulldown resistor to
prevent the receiving transputer booting itself from a floating Iinkln (see figure 3.10). The whole question of
link connections is covered in detail in INMOS Technical Note 18.

All links on TRAMs have the link termination and protection components on the module. The
PipeHead and PipeTail link connections from P2 are directly connected to the module pins (and
are therefore terminated). Link 0 from slot 0 is also directly connected to P2.

2 The ConfigUp and ConfigDown link connections to the IMS T212 are connected to P2 via termination
and protection components.

3 All the links on P1 (from the IMS C004s) are terminated and protected.



3 Standard interface boards

At 56A
t----------f LinkOut

VCC

Protection diode

----t-------------f Linkln

10K

GND

Figure 3.10 Link Termination and Protection

127

4 The link signals from the IMS C004s which would usually be connected to link 0 of slot 0 (via the
jumper connector on P2) are terminated and protected.

5 The link signals from the IMS C004s which would usually be connected to slot 0, link 3 (via K1) are
terminated and protected since it is possible to route these signals directly to an edge connector
(P2).

This means that any link available on the edge connector of an IMS B012 is correctly terminated and protected.

Error Lights

Three yellow LED indicators are mounted on the edge of the board, opposite P1 (see figure 3.11). An indicator
will be lit when a module asserts its error pin. One LED, LD1, monitors error from slot O. The other two
LEDs, LD2 and LD3, monitor error from the modules on the front row (not including slot 0), and back row of
slots respectively. The front row is the group of seven slots situated along the front-panel side of the board
(not including slot 0). The back row is the group of eight slots situated along the opposite edge of the board
(see figure 3.11).

When the IMS B012 is installed in a card cage, LD1 is the lower of the LEDs; LD2 is the middle one and LD3
is the upper LED.

LEDs -

Front row Back row

I I B1Slot 0

P1

P2

Figure 3.11



128

User Power Connector

1 Boards

A four pin power connector (designation P3) is mounted near the front edge of the board as shown in
figure 3.12. P3 is wirqd to Ov, +5V and via a wide PC8 track to 2 pins on P2. This connector type is the kind
used on most floppy-disk drives and when the appropriate pins on P2 are wired to +12V, P3 may be used
to power disk drives or similar equipment. Users may take other power signals to P3, such as ECl power
supplies.

Pin 4 is connected to connected to 5V, pins 3 and 2 are connected to Ov, pin 1 is pins 3a and. 3c on P2.
Pin 4 is the top pin when the board is viewed as in figure 3.12.

These power pins can carry up to 3A of current and pin 1 can have up to 50V with respect to GND.

There is a pin post fitted in one corner of the board (marked GND on the silk screen). This is connected
directly to the OV plane and can be useful for attaching 'scope probe ground leads.

User power connector

P1

P2

Figure 3.12 P3 Position

Uncommitted Pins

Nine pins on connector P2 are brought to a row of pads near to the connector at the edge of the board
(see figures 3.13 and 3.14). These pads, designated P4, may be hard-wired into any circuitry on the 8012
by the user for special applications. Possible uses would be RS-232 serial lines, analog signals and extra
subsystem control signals. The remaining two pads of P4 are connected to ground. Pin posts can be inserted
into the holes which make up P4. The posts could take a single-in-Iine connector similar to those used in the
IMS 8012 cable set.

These pins should carry no more than 50mA of current at no more than 25V with respect to GND. Note
that these signals, although they are short, have not been designed to carry analog signals and may be
susceptible to crosstalk.



3 Standard interface boards

P2

Figure 3.13

••••••••••••••••••••••••••••••}/i~b;-- Edge of board

P2

Figure 3.14

3.6.3 Ordering Information

129

Description

IMS 8012 Double Eurocard Motherboard

Order Number

IMS 8012-1

Table 3.1 Ordering information



130 Boards



rtnmos Chapter 4 131

- Evaluation
Boards



Product Overview

u[ft)mos
FEATURES

• IMS M212 disk controller transputar,
with two standard links and
64 Kbyte of static RAM

• SA400/ST506 standard disk drive
interface with buffering

• 20 Mbyte 3.5 inch Winchester
disk drive

• 1 Mbyte 3.5 inch floppy disk drive

• Double Extended Eurocard

IMS B005
Disk board

GENERAL DESCRIPTION

The IMS B005 board allows the user to evaluate
and demonstrate the use of the M212 disk
controller transputer.
The IMS M212 is able to control up to four disk
drives via the industry standard SA400/ST506
interfaces. Two drives are present on the
IMS B005 and provision has been made for
connecting other drives if the user so desires, or to
change either of the drives on the board (for
instance use two Winchester drives).
The external memory interface can address 64K of
memory space; as supplied this memory is static
RAM (two 32K x 8 devices), but it is possible to
replace one or both with EPROM if required. The
external memory interface may be switch
programmed for different speeds.

Reset
Analyse
Error

Clock
Generators

640 Kbyte 3.5"
floppy disc drive

Buffers
SA400/ST506

interface

132

Reset
Analyse
Error

64K
RAM/ROM

20 Mbyte 3.5"
winchester
disc drive



4 Evaluation boards

4.1 IMS B005 Double Extended Eurocard product overview

4.1.1 Ordering Information

133

Description
IMS BOOS Double Extended Eurocard

Order Number
IMS B005-1

Table 4.1 Ordering information



Product Overview

IMS 8009
Signal processing board

DUTImos

Address
decoder &
generator

INMOS serial links

IBM PC

I TRAM IBus
IBM PC (for running IMS T212
interface - - development - 64Kbyte SRAM

software)

... ....

Data
Input

Data
Output

IMS A100 IMS A100 IMS A100 IMS A100 1---....

Features

• High performance Digital Signal Processing development board for both real-time
and non-real time compute-intensive applications

• Cascade of four IMS A1OOs

• Up to 1280 Million Operations Per Second (MOPS) capability

• Up to 1OMSamples/sec continuous data throughput

• Fully programmable using an IMS T212 16 bit transputer with 64Kbyte SRAM

• Option to install TRAM
\

• Transputers arrayabl\for high performance pipelined systems

• General purpose address mapper (Look Up Table) for data sequencing

• Data supplied from internal (Le. software/file) or external sources

• Controllable from IBM PC applications under MS-DOS or other transputer systems

• IMS A100 cascade accessible directly from IBM PC bus

• Complete DSP development environment available, including IMS A100
and IMS B009 software simulators

• Compatible with full transputer board family

134



4 Evaluation boards

4.2 IMS B009 DSP System Evaluation Board product overview

4.2.1 The IMS B009 Evaluation Board

135

The IMS B009 can be used to evaluate and implement a wide range of high performance DSP techniques.
It can also be used by OEMs as a component for building high performance, flexible, DSP systems, where
the production quantities do not justify development of a specific DSP board. .

The IMS B009 is an IBM PC (XT or AT) add-in board containing 4 IMS A100 signal processors controlled by
an IMS T2. The 4 IMS A1OOs can be used to implement 128 tap FI R filters, convolvers or correlators, on 16
bit data, with 16 bit coefficients at rates up to 2.5 M samples/second, or at up to 10 10M samples/second
with 4 bit coefficients.

The IMS A100s can be controlled and configured either directly from the IBM PC or, for much greater
performance, by the IMS T2. Data flow through the IMS A1OOs can be controlled by the IBM PC, the IMS
T2xx or directly from an external digital signal source, via a DIN 41612 edge connector. This last option
allows the IMS A1OOs to process data at rates up to 10MHz.

The IMS T2xx connects to 64Kbytes of fast SRAM. The interface between the IMS T2, the SRAM, and the
IMS A1OOs is designed to allow the IMS T2xx to move data through the IMS A1OOs at speeds up to 1.25 M
samples/second. An address mapping table allows the IMS T2xx to perform complex data sequencing tasks
at high speeds. Each of the 4 transputer links on the IMS T2xx can be used to transfer data between the
IMS B009 and other transputer systems at up to 0.8 Mbytes/second simultaneously using more than one link
for data I/O can provide data transfer rates of several Mbytes/second.

The IMS B009 is a TRAnsputer Module (TRAM) motherboard. A single TRAM, up to size 4, can be installed.
For example, an IMS B404 TRAM can be used to provide 2 Mbytes of data storage and additional (possibly
floating point) data processing. This same TRAM could be used to run software packages such as the IMS
D700 Transputer Development System and the IMS D703 DSP Development System. The IMS B009 (with a
suitable TRAM) thus provides the basis for both a Transputer and a DSP development workstation.

Transputer

TRAM

4Kx12 SRAM
address mapper

IMS T2xx
transputer

T2xx memory
interface area

IMS A100
cascadable

signal processors

IMS C011
link adaptor

Figure 4.1 IMS B009 key components



136 Boards

4.2.2 Board Description

The IMS B009-1 contains a cascade of four IMS A1 OOs, an IMS T2xx 16 bit transputer with 64Kbyte SRAM,
and a socket for a standard TRAM.

An INMOS TRAM (e.g. IMS B404) provides a general purpose host processor, capable of supporting the
full INMOS occam 2 Transputer Development System, and the IMS D703 DSP Development System. The
IMS T2is used as a high performance controller for the IMS A100 cascade. Figure 2 shows the board with
the optional TRAM, and the configuration of the IMS A100 cascade.

IBM PC interface
DIN 41612 connector

. IMS C011
1~ Link~

~~
~1 IMS T2xx
~ Links
:::

~l TRAM
~ Links
*

Data in

111 .Ext. clock
~.

16

16

9

Low

High

llMS T2xx
1~1 services
:.~

ITRAM
1~ services
~

IIBM PC
~11 services

-~~~----~~~--~~--~-~-~12 c~
(24 muxed) 1~t:::=::>

~1 Go

~

I8

IBM PC ~
data ~ 8

~~

I
IBM PC ili
address ~

~:

Figure 4.2 IMS B009 Detailed Block Diagram

A 4Kx 12 'address mapper' is provided for high speed generation of arbitrary address sequences. This
mapper can be applied at any time to any addresses generated in the positive address space of the IMS T2,
without any performance degradation. Thus, arbitrary data sequences can be preloaded, and applied at the
appropriate point during data processing.

The IMS T2xx can be connected to any other transputer (including the optional IMS T414 on the IMS B009-2)
with one or more standard INMOS serial links, each link being capable of approx. 0.9MBytes/sec in each
direction, and operation in full duplex. The transputer links can also be used to connect to other transputer
evaluation boards, or for arraying IMS B009s to form a high bandwidth signal processing pipeline.



4 Evaluation boards 137

The TRAM/B009-1 combination offers a powerful concurrent processing environment, with preprocessing
operations such as data pre/post ordering handled by the TRAM, whilst the IMS T2xx drives the IMS A1OOs.
For highest performance, external ports are provided, enabling users to supply real time data to the A100
cascade, and output processed data at full speed. Thus, real time processing can be implemented with a
minimum of additional hardware.

In order to maximise the range of applications of the IMS B009, most of the key control and data signals are
brought to either the 96 way DIN 41612 connector, or to an internal connection area. This enables users to
construct DMA interfaces to all devices on the IMS T2xx memory interface bus. Thus, a wide range of real
time interfaces can be realised, making the IMS B009 ideal for general laboratory use or for prototyping final
systems.

Input data can thus be supplied from one of four sources:

• External data port (1 OMSamples/sec continuous)

• IMS T2xx memory interface (approx. 5MBytes/sec burst)

• Transputer link (approx. 0.8MBytes/sec x 4 burst)

• IBM PC bus (approx. 0.2MBytes/sec burst)

Due to the relatively small power supplies provided with some IBM PC compatibles, special links have been
provided to isolate the Vcc plane from the IBM PC power pins, and to provide external power directly via the
DIN 41612 connector. This enables several IMS B009s to be used in a standard IBM PC chassis without
danger of exceeding either power supply or backplane ratings.

4.2.3 Programming

The IMS B009 enables users to exploit the flexibility of the IMS A100 under a standard occam 2 environment,
by running the IBM PC Transputer Development System (IMS D700) on the TRAM located on the board itself.
In this way, high performance DSP systems can be realised, using high level languages throughout. The
IMS D703 DSP Development System, supplied in both source code and binary form, demonstrates how to
make best use of the various addressing modes and facilities of the board.

The board can also be treated as a peripheral to the IBM PC, responding to commands sent to it on the PC
bus. This mode of operation disables the transputers and limits data rates to those attainable on the standard
IBM PC bus, but does enable users to evaluate the potential of attaching IMS A1OOs directly to an IBM PC,
controlled by a normal PC based program.

Alternatively, using the IMS B009 driver program supplied with the IMS D703, the IBM PC application can boot
the IMS T2xx directly. It can then use the driver program in exactly the same way as any transputer application,
communicating with the IMS T2xx via the link adaptor. This approach provides far higher performance for
IBM PC hosted applications than controlling the IMS A1OOs directly via the PC bus.

4.2.4 Product summary

The IMS B009-1 comprises four IMS A1OOs, one IMS T2xx 16-bit transputer with 64Kbyte SRAM, and the
4Kx 12 address mapper. It also contains an unpopulated socket for a TRAM (up to size 4).

A comprehensive suite of documentation is supplied with each system, including full descriptions of the board
design, software users and reference manuals, and a set of application notes. Test software is also provided,
which performs extensive diagnostics of all functional components of the board.



138 Boards

4.2.5 Technical summary

Board ready for installation in a single IBM PC XT or AT system unit expansion slot

Four IMS A100-G21 S cascadable signal processors

One IMS T2xx 16 bit transputer with 64 kbytes SRAM

10 or 20 MBit!sec INMOS link transmission speeds

DIN 41612 96 pin I/O connector

A100 signals:
Data in/out
ClocklGo/OutRdy

Transputer signals:
TRAM, T2xx Reset!Analyse/Error
1 INMOS link from IMS C011
3 INMOS links from IMS T2xx
3 INMOS links from TRAM

+5V, ground

Cables (suitable for connection to all INMOS evaluation boards)

INMOS links
Up/Down ReseVAnalyse/Error cables
Standard Jumpers

Power supply required (from IBM PC or externally)

+5V (approx. 4 amps with TRAM)
Ground

Note: the IMS 8009-1 can operate with external power supplies if required.

4.2.6 Ordering details

Product
B009 Evaluation board

Part number
IMS B009-1



rmmos Part 2 139

Et Development
systems



140 2 Development systems



rmmos Chapter 5 141

_ Software
Development
Tools



Product Overview

1:1ulTIlmos

IMS 0705
IMS 0605
IMS 0505
occam 2
Toolset

Software for IBM PC and NEC PC
DESCRIPTION

The occam 2 toolset is a complete cross development system for building and debugging occam and mixed
~anguage programs for transputers.

KEY FEATURES

• Complete occam 2 development system

• Targets to mixed networks of IMS T212, T222, M212, T414, T425, T8DD

• Support for machine code inserts

• Support for mixed language developments

• Tools to aid system building and ensure program consistency

• Source level debugging tools

• Support for program loading and remote debugging

• Support for EPROM programming

• Support for teams of developers

• Easily used with project management and source control utilities

• Source and binary files directly compatible across PC, VAX and SUN hosts

APPLICATIONS

• Single and multi-processor embedded systems

• Scientific programming

• Framework for mixed language developments

• Framework for running existing applications (written in C, FORTRAN or Pascal) on transputer net
works and accelerator boards

• Evaluation of concurrent programming and transputers

142



5 Software development tools

5.1 occam 2 toolset product overview

5.1.1 Product overview

143

The occam 2 toolsets provide complete occam 2 cross-development systems for transputer targets. They
can be used to build parallel programs for single transputers and for multi-transputer networks consisting
of arbitrary mixtures of transputer types. Programs developed with the toolset are both source and binary
compatible across the host development machines.

The occam 2 toolset is available for three development platforms.

0705 IBM PC occam 2 toolset

0605 VAX occam 2 toolset

0505 SUN 3 occam 2 toolset

occam 2 development system

The occam 2 compiler supports the full occam 2 language as defined in the occam 2 reference manual. In
addition to type checking the compiler will check programs to ensure that variables and communication chan
nels are being used correctly in parallel components of a program. This detects many simple programming
errors at compile time. The language provides support for low-level programming, including the allocation of
variables to specific memory addresses, access to timers and the inclusion of transputer machine code.

The compiler will generate code for the full range of transputer types; IMS T212, T222, M212, T414, T425,
and T800. It can exploit the cases when the code for sets of these processors is identical. This reduces the
volume of code required in libraries and allows you to build programs which you can guarantee will run on a
range of processors.

A program may be compiled in one of several 'error modes' which determine the behaviour of the program
when a run-time error occurs. A mode which supports the use of the debugger may be chosen; in this mode
the network will come to a halt when a run-time error occurs. Another mode allows all error checking to be
removed from time critical or proven components and to call these components from within a checked system.

The processor target, error mode and other compilation options are specified by command line switches.

Collections of procedures and functions can be compiled separately with the occam 2 compiler. Separately
compiled units may be collected together into libraries. The linker is used to combine separately compiled
units into a program to run on a single processor. The linker supports selective loading of library units, and the
linking of C, FORTRAN and Pascal components. The logic of occam program fragments may be checked
using the transputer simulator, prior to building the complete system.

To build a multi-transputer program you must describe the distribution of procedures over processors. In
occam this distribution is explicit in the so-called 'configuration' description. This description is processed
by a tool called the configurer. The configurer creates all the necessary bootstrap and routing information -to
load the entire network, and stores this, along with the compiled code, in a program file.

The server is used to load programs on to transputer networks. Once loaded, the programs start automatically.
The server supports access to the host terminal and file system from the transputer network.

If the transputer network halts because of a run-time error, or if you bring the server to a halt by entering a
control break, you may use the symbolic network debugger to investigate the state of the network in terms of
program source texts.

The compiler and linker provide features which allow optimal use of the transputer's on-chip RAM. The
mathematical function libraries are precisely documented, fast and accurate; all mathematical functions rec
ommended by the IEEE are supported.



144 2 Development systems

Support for mixed language developments

It is often appropriate in the development of a large system to use a mixture of programming languages.
You may either already have software which you want to reuse, or find that an algorithm may be more easily
expressed in one particular language. The occam programming model provides an excellent vehicle for
building mixed language systems where the components built in each language can be clearly defined with a
simple interface. The occam 2 toolset can be used to bind these components together and distribute them
over a networK o'f transputers.

The occam 2 toolset allows you to build parallel systems using C, FORTRAN and Pascal whilst still using
the standard language definitions. A process can be built using the C, FORTRAN and Pascal compilers in
a form equivalent to an occam process (each language is supplied with a library which provides channel
input and output functions). The result of linking a C, FORTRAN or Pascal program is identical to the result
of compiling the equivalent occam process with the occam 2 compiler, and can therefore be called from
occam in exactly the same way as an occam process. In particular, using the configuration language you
can define the inter-connections between these processes and distribute them over a network of transputers.

When debugging a mixed language program the symbolic network debugger can be used to analyse a halted
network. It will automatically locate the source line (for each processor) where the network halted. It can do
this in any of the languages, and will allow you to backtrace through the sequence of function or procedure
calls executed prior to halting.

C, FORTRAN and Pascal compilers are available separately from INMOS.

System building and program consistency

The occam 2 language has been defined so that extensive security checks can be performed at compile time
providing a degree of reliability not found in other languages. In addition to full type checking the language
defines a comprehensive set of rules which ensure that variables and communication channels are correctly
used in parallel components of the program.

The occam 2 compiler implements the full occam 2 language as defined in the occam 2 reference manual.
All checks are performed both within a separately compiled unit, and across separately compiled units. This
detects many programming errors at compile time and avoids common pitfalls in other separate compilation
systems where external references are not checked against their definitions.

The toolset provides support for the use of the make program. The make program was originally a UNIX tool
but is now widely available for the PC both as a public domain program and from well respected commercial
sources. The make program operates from a 'makefile' which defines the rules for building programs, and the
dependencies between the program components. When make is executed it will determine which components
need rebuilding by identifying components which have dependents with a more recent time and date, it then
applies the build rules to create updated versions of these components. This means that the programmer
can make changes to a number of source files and then by just typing 'make' bring his program back to a
consistent state; the compiler, librarian, Iinker and configurer will all be invoked automatically as necessary.

The toolset provides 'imakef' a tool which will automatically generate make files for occam programs and
libraries. You can give imakef the name of a multi-transputer executable file and it will create a makefile for
the complete program by using suffix conventions and parsing source files for compiler directives. Then by
simply typing 'make' the system will be rebuilt.

The Iinker and librarian can both be driven by command files. The 'imakef' tool will also automatically generate
linker command files. This means you do not have to work out the list of binaries and libraries required to
build a program, nor should you discover undefined references at link time.

Source level debugging tools

The toolset includes two debugging tools: the symbolic network debugger, and the transputer simulator.

The symbolic network debugger can be used to examine the state of a transputer in a network, in terms of
the source of the program that was running on it. After a program has halted or been interrupted, the memory



5 Software development tools 145

state can be preserved so that the debugger can be run. The debugger will allow you to analyse the network
directly, or to save the complete state of the network for future analysis.

The debugger can be used to determine the position of the halted process, and of any other process waiting on
queues, in any processor in the network. These positions are displayed as lines in the occam C, FORTRAN
or Pascal source .. The values of occam variables can be displayed. For each process it is possible to trace
back through the sequence of procedure calls which led to the halted position.

You can also; inspect process and timer queues, inspect register and memory location values, browse memory
in different forms including disassembled machine code.

The debugger works with exactly the same code as will run in your final product; there is no additional code
inserted to support debugging. This avoids the cases where the program works when debugging is included,
but fails when the debugging is removed.

The debugger can be used for programs that run on your PC transputer board or for programs which run on
a transputer network attached to your transputer board by a link.

The transputer simulator simulates a single T414 processor connected to the host file server. It provides
single-step, breakpoint and watchpoint facilities for occam programs, and low level features to access to
memory addresses, process queues and internal registers. The simulator is used for testing the logical
correctness of occam program fragments prior to building the complete system. As the logical correctness
of an occam program is not dependent on the type of transputer on which it will run, the simulator can be
used to test programs targetted at any type of transputer.

Support for teams of developers

The occam 2 toolset has been designed to support teams of developers.

There are consistent versions of the occam 2 toolset on the PC, VAX and the SUN. The tools operate in
the same way for each host. The same sources and binaries can be moved between machines and used
without change. Mechanisms which avoid the need for directory paths to be included in compiler directives
have been implemented in each toolset. This allows you to move from PC to VAX or SUN systems as the
project grows, or to develop systems on VAX or SUN and still support debugging using a PC.

The tools allow you to take advantage of multi-user facilities of PC networks and VAX and SUN operating
systems. The tools are easily integrated with other development tools such as make, source control systems,
and text processing tools.

The library system provides a suitable basis for sharing code between development teams. It provides a
coherent scheme for collecting separately compiled units within a single library file. It will allow the same
procedure, compiled for different processor types and error modes, to be included in the same library.

A binary Iister program is provided to generate consistent documentation of library interfaces and cross
reference tables. You can also use the binary lister to display library interfaces without reference to the
source texts. The compiler supports a comment directive which allows comments to be included in binary
files and subsequently displayed with the binary lister. Typically these comments contain a version number,
date of last update and a short description of the separately compiled unit.

5.1.2 occam 2 toolset product description

The occam 2 toolset product consists of the following components:

Documentation

The occam 2 Toolset is supported with comprehensive user documentation.



146

Delivery manual

2 Development systems

The delivery manual provides instructions for installing the software on your machine, and checking that the
installation has been successful. The delivery manual will define the implementation limits for the products.

User manual

The user guide and reference manual are provided in a single volume. The user guide provides a complete
introduction to the software and is designed to be read while starting to use the software. A number of
examples are described to get you started. The reference manual describes the behaviour of the tools
and defines the user interfaces and software libraries in detail; it is supplemented by tabulations of useful
information in appendices, with a glossary and bibliography. The manual is fully indexed.

occam 2 toolset handbook

This quick reference guide is for the experienced developer. It provides a summary of all the toolset compo
nents in terms of the command line syntax and definition of options. It also provides a summary of procedures
and functions in the commonly used libraries.

occam 2 reference manual

This book, published by Prentice Hall (ISBN 0-13-629312-3), is the definitive reference manual for the occam
2 language.

Tutorial introduction to occam

This book, published by BSP Professional Books (ISBN 0-632-01847-X), contains a tutorial introduction to
concurrent programming using the occam language and also a concise formal definition of the syntax and
semantics of the language.

Software tools

This section gives an outline of the function of each of the software tools in the toolset.

icheck

The checker provides a fast tool for developing syntactically correct occam program units. It carries out all
checks made by the compiler, including checks for externally called procedures and functions. This tool runs
significantly faster than the compiler. It has an effective error recovery algorithm which provides multiple error
messages in a useful manner.

occam

The occam 2 cross-compiler supports the occam 2 language as defined in the occam 2 language reference
manual. It can generate code for IMS T212, T222, M212, T414, T425, and T800 processors. It supports
separate compilation and performs full security checks across separate compilation boundaries. The compiler
supports machine code inserts.

ilibr

The librarian allows separately compiled units to be grouped together in a single file. Libraries can contain
definitions of the same procedure or function compiled for different processor targets and in different error
modes. Libraries provide the basis for the selective loading mechanisms of the linker.

ilink

The linker composes separately compiled units, resolving external references, to give a single code unit. This
is typically used to build the code for a single processor.



5 Software development tools

ilist

147

The binary Iister is used to generate documentation of object code and libraries. It can produce listings of:
the syntactic interface to procedures and functions held in the library; table of units contained in a library
including the processor type and error modes for which they were compiled; external reference table.

iboot

The iboot tool prepends bootstrap loading code to the executable code for a single processor program.

iconf

The configurer builds multi-transputer programs from a configuration description and units built by the linker.
The configurer adds all loading and routing code so that a complete network of transputers can be loaded
through the server.

imakef

The imakef tool performs source dependency analysis of occam programs and occam libraries. The
tool can automatically generate makefiles and linker command files. It will also check for circularities in
the references between separately compiled units. This program is also provided in C source to allow
modifications to support tools similar to the make program.

isim

The T414 simulator is a tool for debugging the logic of occam program fragments. It supports breakpoint and
variable watchpoint facilities, and allows inspection of the simulated process queues, registers and memory.

idebug

The symbolic network debugger allows a halted network to be analysed in terms of the program source.
No additional code is generated by the compiler to support the operation of the debugger. The debugger
supports mixed language programs. The debugger will operate on the target transputer network or on the
transputer plug-in board. The debugger can save the state of a network for future analysis.

idump

When debugging a network which includes the first transputer on the plug-in board, the idump tool is used
to save the contents of memory from the first transputer in the network, so that the debugger can be loaded
and executed on the first transputer. The debugger then references the dump file to answer questions about
the first transputer.

iskip

The iskip tool is used to support running programs on transputer networks completely separate from your
development system. It supports loading programs to a separate network and carrying communications
between the program and the server when it is running.

iserver

The server provides two basic functions. Firstly it will load programs to a transputer network, and secondly
it will support access to the host file and terminal system. The server is also supplied as C source code to
allow user extensions and porting to different hosts.

Software libraries

occam.lib

This is the basic occam run-time library. It includes: multiple length arithmetic functions; floating point
functions; IEEE arithmetic functions; 20 block moves; bit manipulation and CRC; code execution; arithmetic



148 2 Development systems

instructions. The compiler will automatically reference these functions if they are required.

maths.lib

Single and double length mathematics functions (including trignometric functions). These libraries use floating
point arithmetic and will produce identical results on all processors.

t4maths.lib

Mathematical functions optimised for the T414 and T425 processor. These functions provide slightly different
results to the maths library above but within the accuracy limits of the function specifications.

string.lib

String conversion procedures. The occam source code is also provided.

hostio.lib

Procedures to support access to the host terminal and file system through the file server. The occam source
code is also provided.

msdos.lib

Procedures to access certain DOS specific functions through the file server. The occam source code is also
provided.

process.lib

Processes to support the use of the file server. Includes: server multiplexor to allow parallel processes
to access the file server; support processes for interfacing C, FORTRAN and PASCAL to the file server;
processes for interfacing to IMS B001, B002, and B006 transputer evaluation boards including· UART and
serial line drivers. The occam source code is also provided.

xlink.lib

These procedures allow access to external links. They include input and output routines which return error if
the link is not connected, or a communication is not completed.

Programming examples

The examples given in the user guide are provided in machine readable form. They provide a suitable basis
for getting started with the toolset.

5.1.3 07000 transputer development system support

The 0700D is a fully integrated PC development system for occam and transputers. A number of tools are
provided with the occam 2 toolset to support its use in conjunction with the D700D.

• D700 D folded file flattener

• Utility to import toolset compilation units as D700D SC foldsets

• Libraries to support transfer of programs from D700D to toolset



5 Software development tools

5.1.4 occam 2 toolset product components summary

Documentation

• Delivery manual

• Toolset user manual

• Toolset quick reference guide

• occam 2 reference manual

• Tutorial introduction to occam

Software tools

• occam 2 checker

• occam 2 cross-compiler

• Librarian

• Linker

• Binary lister

• Add bootstrap program

• Configurer

• Makefile generator

• T414 simulator

• Symbolic network debugger

• Memory dump program

• Skip loader

• File server and loader

Software libraries

• occam: standard compiler library

• maths: mathematics functions (includes sin, cos etc)

• t4maths: mathematics functions optimised to run on T414 and T425

• string: string conversion procedures

• hostio: file and terminal io procedures

• msdos: access to certain msdos calls

• process: standard occam processes

• xlink: external link primitives

149



150

5.1.5 0705 IBM PC version

2 Development systems

Although the PC tools are invoked as if they were ordinary PC resident tools they actually run on the transputer
board plugged into the PC.

Operating requirements

• IBM PC XT or AT, or NEC PC-9801 with 256 Kbyte memory

• IMS B008 or IMS B015 plus IMS B404 or equivalent

• At least 1 Mbyte of transputer memory

• DOS 3.0 or later

• 4 Mbytes of free disk space

Distribution media

Software is distributed on 360 Kbyte (48TPI) IBM format floppy disks.

5.1.6 0605 VAX VMS version

Both VAX hosted and transputer hosted development tools are provided in the VAX toolset. With the exception
of the symbolic network debugger which requires a target system to execute all tools are provided in both
forms.

Operating requirements

For hosted cross-development and debugging you will need

• VAX VMS 4.7 or later

• 10 Mbytes of free disk space

The hosted tools are provided in object code form so that if necessary they can be re-linked when operating
system upgrades demand this.

For loading target systems and remote debugging you need one of the following

• A third party interface board

• An IBM PC with DECNET connection and B008 motherboard.

A system for download and remote debugging over EtherNet is under development.

Distribution media

Software is distributed on a TK50 tape cartridge in VMS backup format.

5.1.7 0505 SUN 3 version

Both SUN 3 hosted and transputer hosted development tools are provided in the SUN 3 toolse1. With the
exception of the symbolic network debugger which requires a target system to execute all tools are provided
in both forms. The transputer hosted tools can be run on a transputer board in a SUN 4 or SUN 386i machine.

Operating requirements

For hosted cross-development and debugging you will need



5 Software development tools

• Sun 3 Workstation

• SunOS 4.0 or later

• 10 Mbytes of free disk space

For loading target systems and remote debugging you need one of the following

• IMS 8011 VME Card

• IMS 8014 VME Motherboard with 2 Mbyte IMS 8404 TRAM

A system for download and remote debugging over EtherNet is under development.

Distribution media

Sun Data Cartridge (Quarter inch tape) in tar format.

5.1.8 Associated products

D711 3L C compiler (PC)

D712 3L PASCAL compiler (PC)

D713 3L FORTRAN compiler (PC)

D611 3L C compiler (VAX)

D613 3L FORTRAN compiler (VAX)

D511 3L C compiler (SUN 3)

D513 3L FORTRAN compiler (SUN 3)

For more details of these products refer to their respective data sheets.

5.1.9 Licencing information

151

No licence fee is charged for including the binary of the INMOS libraries in software products. Example
programs, and other sources provided, may be included in software products. Full licensing details are
available from INMOS.

The following products are also available for licensing:

D705·8 0705 Binary Distribution Licence

D705·S 0705 Source Release

5.1.10 Error reporting and field support

Software problem reports are included with the software.

INMOS has a world-wide network of sales offices, providing support for INMOS products. In some areas the
support functions may be taken over by distributors or other third parties.

Customers requiring a formal support contract should contact their local INMOS sales office.



Product Overview

U[Ji)mos

IMS 0711
IMS 0611
IMS 0511
Parallel C

DESCRIPTION

The Parallel C compiler allows you to program single transputers and networks of transputers in C.

KEY FEATURES

• Kernigan and Ritchie C

• Compatible with INMOS occam 2 Toolsets (IMS 0505, D605, D705)

• Produces code for IMS T414, T425, T800, T801, T805 transputers

• Transputer channel I/O with timeouts

• Concurrent Tasks

• Semaphores

• Ability to allocate stack in on-chip RAM

152



5 Software development tools

5.2 Parallel C compiler product overview

5.2.1 Product overview

153

The 3L Parallel C compiler supports Kernigan and Ritchie C. Consequently existing C applications can be
easily ported to transputer systems. The Parallel C compiler can be used by itself to develop single and
multi-transputer systems. Alternatively, it can be used in conjunction with the INMOS occam Toolsets for
mixed language developments over single and multiple transputers.

Support for parallelism

Parallel C supports two types of components which can be used to build parallel programs: tasks and threads.

Tasks communicate by message passing over channels. Configuration tools are provided to distribute tasks
over transputer networks. A task may not be distributed over more than one processor.

Tasks can contain multiple parallel execution threads. Threads are light weight processes which can be
created at run time. Threads within the same task can communicate using channels or shared memory with
accesses synchronised using semaphores.

There are two configurers provided in the Parallel C package. A "flood-filling" configurer supports "processor
farm" applications This configuration method will allow the same software to run unchanged on any network.
An alternative configuration method involves the specification of the network in a configuration file by the user.

Using C with the occam 2 toolset

The Parallel C compiler can be used by itself to develop single and multiple transputer systems without the
need to write any occam code. However there are several advantages to using the occam Tootset with the
C compiler.

The occam Toolset products available for SUN, VAX and PC complement the Parallel C compiler by offering
the following additional facilities.

• Several communicating C processes can be run in a single transputer without using threads. This
encourages users to write software which could later be re-configured to run on more processors.

• Toolset configuration gives the user the added security of the occam configuration language.

• More control is available over the amount of workspace available to each C process, and where the
workspace is located.

• C processes can use and share compiled occam code and libraries on the same processor

• The occam Toolset provides a post-mortem symbolic debugger which can be used to assist de
bugging in an arbitrarily complex network. Should run-time errors occur within a C process, the
debugger can symbolically locate to the source line that caused the error flag to be set after the
network has halted. It is then possible to backtrace out through the source or object code to locate
the cause of the error (although the contents of C variables are not available with this tool).

5.2.2 3L Parallel C description

The 3L C consists of the following components:

Documentation

The 3L C is supported with comprehensive user documentation.



154

Delivery manual

2 Development systems

The delivery manual provides instructions for installing the software on your machine, and checking that the
installation has been successful. The delivery manual will define the implementation limits for the products.

User manual

The user guide and reference manual are provided in a single volume. The user guide provides a complete
introduction to the software and is designed to be read while starting to use the software. A number ·of
examples are described to get you started. The reference manual describes the behaviour of the tools
and defines the user interfaces and software libraries in detail; it is supplemented by tabulations of useful
information in appendices, with a glossary and bibliography. The manual is fully indexed.

Software tools

This section gives an outline of the function of each of the software tools in the toolset.

C compiler

The compiler implements the full Kernigan and Ritchie C language with several extensions.

• Multi-threaded synchronised tasks (synchronised by semaphores or transputer channels)

• Access to transputer timer functions and channel I/O

• Microsoft C cpmpatible DOS access functions (for PC version)

• Ability to include in-line transputer assembly language

• 31 character identifiers which can contain a $

ilibr

The librarian allows separately compiled units to be grouped together in a single file. Libraries can contain
definitions of the same procedure or function compiled for different processor targets and in different error
modes. Libraries provide the basis for the selective loading mechanisms of the Iinker.

ilink

The Iinker composes separately compiled units, resolving external references, to give a single code unit. This
is typically used to build the code for a single processor.

decoder

The Decoder Utility allows source-level disassembly of object files generated by the compiler.

iboot

The iboot tool prepends bootstrap loading code to the executable code for a single processor program.

config

The configurer allows multiple C tasks to be executed in parallel. The user supplies a configuration file which
describes the target transputer network in terms of processors, links and connections. This file should also
identify which software is to be executed on which processor. The placement of C tasks on the processors
can be easily altered by changing the configuration file. No recompilation or relinking is necessary. This allows
simple development on a single transputer and later execution on the network by altering the configuration
file.



5 Software development tools 155

fconfig

This configurer provides the flexibility of developing software that will run on any network of transputers
with sufficient memory. The configuration of the network need not be decided when the program is written.
Instead, this configurer can "flood-fill" an arbitrary network with copies of a user-supplied "worker" program.
A "master" task is used to generate work packets which are communicated to the "worker" programs on each
node. These "worker" programs will route the work to any free processor on the network and return the results
to the "master".

iserver

The server provides two basic functions. Firstly it will load programs to a transputer network, and secondly
it will support access to the host file and terminal system. The server is also supplied as C source code to
allow user extensions and porting to different hosts.

Software libraries

occam.lib

This is the basic occam run-time library. It includes: multiple length arithmetic functions; floating point
functions; IEEE arithmetic functions; 20 block moves; bit manipulation and CRC; code execution; arithmetic
instructions. The compiler will automatically reference these functions if they are required.

5.2.3 3L C components summary

Documentation

• Delivery manual

• User manual

Software tools

• C compiler

• Librarian

• Linker

• Decoder

• Add bootstrap program

• Configurer

• Flood-fill configurer

• File server and loader

Software libraries

• Full C run-time library

• Reduced C run-time library



156

5.2.4 0711 IBM PC version

2 Development systems

Although the tools are invoked as if they were ordinary host resident tools they actually run on the transputer
board connected to the host.

Operating requirements

• IBM PC XT or AT, or NEC PC-9801 with 512 Kbyte memory

• IMS 8008 or IMS 8015 plus IMS 8404 or equivalent

• At least 1 Mbyte of transputer memory

• DOS 3.2 or later

• 2 Mbytes of free disk space

Distribution media

360 Kbyte (48TPI) IBM format floppy disks.

5.2.5 0611 VAX VMS version

Although the tools are invoked as if they were ordinary host resident tools they actually run on the transputer
board connected to the host.

Operating requirements

• VAX VMS 4.7 or later

• 2 Mbytes of free disk space

• A third party interface board

• INMOS transputer motherboard plus IMS 8404 or equivalent.

A system for download over EtherNet is under development.

Distribution media

TK50 tape cartridge in VMS backup format.

5.2.6 0511 SUN 3 version

Although the tools are invoked as if they were ordinary host resident tools they actually run on the transputer
board connected to the host.

Operating requirements

• Sun 3 Workstation

• SunOS 4.0 or later

• 2 Mbytes of free disk space

• IMS 8011 VME Card or

• IMS 8014 VME Motherboard with 2 Mbyte IMS 8404 TRAM



5 Software development tools

A system for download and remote debugging over EtherNet is under development.

Oistribution media

Sun Data Cartridge (Quarter inch tape) in tar format.

5.2.7 Associated products

0705 occam 2 toolset (PC)

0605 occam 2 toolset (VAX)

0505 occam 2 toolset (SUN)

0713 3L FORTRAN compiler (PC)

0613 3L FORTRAN compiler (VAX)

0513 3L FORTRAN compiler (SUN 3)

0712 3L PASCAL compiler (PC)

For more details of these products refer to their respective data sheets.

157

5.2.8 Licencing Information

No licence fee is charged for including the binary of the INMOS libraries in software products. Example
programs, and other sources provided, may be included in software products. Full licensing details are
available from INMOS.

5.2.9 Error reporting and field support

Software problem reports are included with the software.

INMOS has a world-wide network of sales offices, prOViding support for INMOS products. In some areas the
support functions may be taken over by distributors or other third parties.

Customers requiring a formal support contract should contact their local INMOS sales office.



Product Overview

IMS 0713
IMS 0613
IMS 0513
Parallel FORTRAN

®

colJi)mos

.,.,...." ,.......,.

{t~i It~:

::t~t :~rt:

m .~~~

~~: .~~~

::tr~ ~rr:

~tw: ~rr:

.'.:.:.:.::.:.:.:,

DESCRIPTION

The Parallel FORTRAN compiler allows you to build programs for single transputers and networks of trans
puters in FORTRAN.

KEY FEATURES

• Full ANSI standard FORTRAN X3.9-1978 language support

• Compatible with INMOS occam 2 Toolsets (IMS 0505, 0605, 0705)

• Produces code for IMS T414, T425, T800, T801, T805 transputers

• Transputer channel I/O with timeouts

• Concurrent Tasks

• Semaphores

• Ability to allocate stack in on-chip RAM

158



5 Software development tools

5.3 Parallel FORTRAN compiler product overview

5.3.1 Product overview

159

The INMOS Parallel FORTRAN compiler is a full ANSI Fortran 77 compiler. Consequently existing FORTRAN
applications can be easily ported to transputer systems. The Parallel FORTRAN compiler can be used by
itself to develop single and multi-traf'lsputer systems. Alternatively, it can be used in conjunction with the
INMOS occam Toolsets for mixed language developments over single and multiple transputers.

Support for parallelism

Parallel FORTRAN supports two types of components which can be used to build parallel programs: tasks
and threads.

Tasks communicate by message passing over channels. Configuration tools are provided to distribute tasks
over transputer networks. A task may not be distributed over more than one processor.

Tasks can contain multiple parallel execution threads. Threads are light weight processes which can be
created at run time. Threads within the same task can communicate using channels or shared memory with
accesses synchronised using semaphores.

There are two configurers provided in the Parallel FORTRAN package. A "flood-filling" configurer supports
"processor farm" applications This configuration method will allow the same software to run unchanged on
any network. An alternative configuration method involves the specification of the network in a configuration
file by the user.

Using FORTRAN with the occam 2 toolset

The Parallel FORTRAN compiler can be used by itself to develop single and multiple transputer systems
without the need to write any occam code. However there are several advantages to using the occam
Toolset with the FORTRAN compiler.

The occam Toolset products available for SUN, VAX and PC complement the Parallel FORTRAN compiler
by offering the following additional facilities.

• Several communicating FORTRAN processes can be run in a single transputer without using threads.
This encourages users to write software which could later be re-configured to run on more processors.

• Toolset configuration gives the user the added security of the occam configuration language.

• More control is available over the amount of workspace available to each FORTRAN process, and
where the workspace is located.

• FORTRAN processes can use and share compiled occam code and libraries on the same processor

• The occam Toolset provides a post-mortem symbolic debugger which can be used to assist debug
ging in an arbitrarily complex network. Should run-time errors occur within a FORTRAN process,
the debugger can symbolically locate to the source line that caused the error flag to be set after the
network has halted. It is then possible to backtrace out through the source or object code to locate
the cause of the error (although the contents of FORTRAN variables are not available with this tool).

5.3.2 3L Parallel FORTRAN .description

The 3L FORTRAN consists of the following components:

Documentation

The 3L FORTRAN is supported with comprehensive user documentation.



160 2 Development systems

Delivery manual

The delivery manual provides instructions for installing the software on your machine, and checking that the
installation has been successful. The delivery manual will define the implementation limits for the products.

User manual

The user guide and reference manual are provided in a single volume. The user guide provides a complete
introduction to the software and is designed to be read while starting to use the software. A number of
examples are described to get you started. The reference manual describes the behaviour of the tools
and defines the user interfaces and software libraries in detail; it is supplemented by tabulations of useful
information in appendices, with a glossary and bibliography. The manual is fully indexed.

Software tools

This section gives an outline of the function of each of the software tools in the toolset.

FORTRAN compiler

The compiler implements the full ANSI Fortran-77 language with several extensions.

• Multi-threaded synchronised tasks (synchronised by semaphores or transputer channels)

• Access to transputer timer functions and channel I/O

• Routines to provide access to MS-DOS functions

• IMPLICIT NONE, DO WHILE and INCLUDE statements

• Bit handling intrinsic functions

• Data initialisation in type statements

• Extended range of DO loops

• Lower case in program text

• 31 character identifiers which C:in contain $ and '_'

ilibr

The librarian allows separately compiled units to be grouped together in a single file. Libraries can contain
definitions of the same procedure or function compiled for different processor targets and in different error
modes. Libraries provide the basis for the selective loading mechanisms of the Iinker.

ilink

The Iinker composes separately compiled units, resolving external references, to give a single code unit. This
is typically used to build the code for a single processor.

decoder

The Decoder Utility allows source-level disassembly of object files generated by the compiler.

iboot

The iboot tool prepends bootstrap loading code to the executable code for a single processor program.



5 Software development tools 161

config

The configurer allows multiple FORTRAN tasks to be executed in parallel. The user supplies a configuration
file which describes the target transputer network in terms of processors, links and connections. This file
should also identify which software is to be executed on which processor. The placement of FORTRAN tasks
on the processors can be easily altered by changing the configuration file. No recompilation or relinking is
necessary. This allows simple development on a single transputer and later execution on the network by
altering the configuration file.

fconfig

This configurer provides the flexibility of developing software that will run on any network of transputers
with sufficient memory. The configuration of the network need not be decided when the program is written.
Instead, this configurer can "flood-fill" an arbitrary network with copies of a user-supplied "worker" program.
A "master" task is used to generate work packets which are communicated to the ''worker'' programs on each
node. These "worker" programs will route the work to any free processor on the network and return the results
to the "master".

iserver

The server provides two basic functions. Firstly it will load programs to a transputer network, and secondly
it will support access to the host file and terminal system. The server is also supplied as C source code to
allow user extensions and porting to different hosts.

Software libraries

OCCamJib

This is. the basic occam run-time library. It includes: multiple length arithmetic functions; floating point
functions; IEEE arithmetic functions; 2D block moves; bit manipulation and CRC; code execution; arithmetic
instructions. The compiler will automatically reference these functions if they are required.

5.3.3 3L FORTRAN components summary

Documentation

• Delivery manual

• User manual

Software tools

• FORTRAN compiler

• Librarian

• Linker

• Decoder

• Add bootstrap program

• Configurer

• Flood-fill configurer

• File server and loader



162

Software libraries

• Full FORTRAN run-time library

• Reduce~ FORTRAN run-time library

5.3.4 0713 IBM PC version

2 Development systems

Although the tools are invoked as if they were ordinary host resident tools they actually run on the transputer
board connected to the host.

Operating requirements

• IBM PC XT or AT, or NEC PC-9801 with 512 Kbyte memory

• IMS 8008 or IMS 8015 plus IMS 8404 or equivalent

• At least 1 Mbyte of transputer memory

• DOS 3.2 or later

• 2 Mbytes of free disk space

Distribution media

360 Kbyte (48TPI) IBM format floppy disks.

5.3.5 0613 VAX VMS version

Although the tools are invoked as if they were ordinary host resident tools they actually run on the transputer
board connected to the host.

Operating requirements

• VAX VMS 4.7 or later

• 2 Mbytes of free disk space

• A third party interface board

• INMOS transputer motherboard plus IMS 8404 or equivalent.

A system for download over EtherNet is under development.

Distribution media

TK50 tape cartridge i,r VMS backup format.



5 Software development tools

5.3.6 D513 SUN 3 version

163

Although the. tools are invoked as if they were ordinary host resident tools they actually run on the transputer
board connected to the host.

Operating requirements

• Sun 3 Workstation

• SunOS 4.0 or later

• 2 Mbytes of free disk space

• IMS 8011 VME Card or

• IMS 8014 VME Motherboard with 2 Mbyte IMS 8404 TRAM

A system for download and remote debugging over EtherNet is under development.

Distribution media

Sun Data Cartridge (Quarter inch tape) in tar format.

5.3.7 Associated products

D705 occam 2 toolset (PC)

D605 occam 2 toolset (VAX)

D505 occam 2 toolset (SUN)

D711 3L C compiler (PC)

D611 3L C compiler (VAX)

D511 3L C compiler (SUN 3)

D712 3L PASCAL compiler (PC)

For more details of these products refer to their respective data sheets.

5.3.8 Licencing information

No licence fee is charged for including the binary of the INMOS libraries in software products. Example
programs, and other sources provided, may be included in software products. Full licensing details are
available from INMOS.

5.3.9 Error reporting and field support

Software problem reports are included with the software.

INMOS has a world-wide network of sales offices, providing support for INMOS products. In some areas the
support functions may be taken over by distributors or other third parties.

Customers requiring a formal support contract should contact their local INMOS sales office.



Product Overview

IMS 0712
Pascal

DITTImOS
Software for IBM PC and NEC PC
DESCRIPTION

The Pascal compiler allows you to program single transputers and networks of transputers in Pascal.

Originally designed by N.Wirth for teaching purposes, Pascal has now found application in many areas
including systems programming. Over the years since it was devised a great variety of Pascal dialects have
evolved, many of which are mutually incompatible, and this has led in recent years to the development of
international standards for the language. The Pascal compiler supplied by INMOS is one of the first to be
written to these standards, namely ISO 7185 (BSI 6129 :1982 Level 1).

Because the standard defines a language with limited application, the Pascal compiler provided by INMOS
includes optional extensions which when invoked extend its scope in key areas. For example, modules are
introduced to permit the· development of large applications in a structured and partitioned manner.

Extensions included are:

• Modules for separate compilation.

• Import and export of procedures, functions and variables.

• Source file inclusion.

• The use of "$" and "_" characters in identifiers.

• Constants specified to any base between 2 and 36.

• Bit vector operators (and, or, shift, etc)

• The use of "OTHERWISE" in CASE statements.

• Non-printable characters in strings.

• Universal parameter type.

• An address function.

164



Product Overview

Ada Compilers

165



166 2 Development systems

5.5 Ada Compilers product overview

5.5.1 Ada Compilers for the Transputer

Alsys provide validated Ada compilers for the transputer. The PC mothered compiler runs on a T8xx card.
The VAX hosted compiler runs on all VAX, MicroVAX and VAXstations running under VMS. Both compilers
can generate code for execution on single or linked T8xx, T4xx and T2xx transputers.

5.5.2 Features

The compilers share the following features.

• The Multi-Library Environment provides a powerful and flexible way to manage Ada development
efforts and share program units even across networks.

• Detailed error messages are provided with clearly understandable diagnostic information and, op
tionally, possible explanations and suggested fixes.

• The High Level Optimizer excels at constraint-check removal and detection of execution-time errors
at compile time.

• The Low Level Optimizer performs common sub-expression elimination and passes information to
the code generator.

• Floating point instructions are generated to exploit the speed of the built-in floating point unit on the
T8xx. For T4xx execution, floating point calculations are performed by software.

• Representation clauses to the bit level, address clauses (e.g. for peripheral devices), unchecked
conversion and de-allocation, and interface to occam 2 are among the supported low level features.

• The Binder supports unused subprogram elimination, removing all code for sUbprograms that are
not called.' ,

• Pragma INLINE is supported.

• Ada programs running on separate transputers can exploit rapid inter-program communication through
transputer links using the CHANNELJO Ada interface package provided. .

• Predefined Ada I/O packages are supported and performed via the INMOS iserver.

• Tasking support includes 10 levels of priority, pre-emptive scheduling, user controllable time-slicing,
and a fair implementation of selective wait.

• Storage is automatically reclaimed for each access type on scope exit.

• Absolutely no execution overhead is associated with exceptions unless one is raised; call/return and
block entry/exit sequences are free of exception management code and consequently very compact.



5 Software development tools

5.5.3 Recommended Configuration

Recommended Configuration for PC mothered compiler

Host:

• An IBM PC mothered T8xx with at least 4 Mbytes TRAM.

• DOS version 3.

167

• At least 512 Kbytes of PC memory.

• 30 Mbytes of available disk space on the PC.

• The product is supplied on both 5-1/4" high density (1.2 Mbytes) diskettes and 3-1/2" high density
(1 .44 Mbytes) diskettes.

Target:

• Single.or multiple T2xx, T4xx or T8xx transputers.

• The INMOS iserver is required for the implementation of Ada predefined I/O.

Tools:

• IMS 07058 occam 2 toolset which includes the linker, run time libraries and the iserver.

Recommended Configuration for VAX hosted compiler

Host:

• Any VAX, MicroVAX or VAXstation running VMS version 4.7 or later.

• At least 4 Mbytes of memory.

• At least 30 Mbytes of disk space.

Target:

• Single or multiple T2xx, T4xx or T8xx transputers.

• The INMOS iserver is required for the implementation of Ada predefined I/O.

Tools:

• IMS 0605A occam 2 toolset which includes the linker, run time libraries and the iserver.



Product Overview

IMS 0700
Transputer
Development
System

Software for IBM PC and NEC PC
DESCRIPTION

• Integrated software package for development of transputer-based systems

• Hosted on IBM PC AT or XT, NEC PC-9801 or compatible computer

• Add-in transputer board required

KEY FEATURES

• Integrated 'folding editor' user interface

• Memory-resident program development tools

• Help key, tutorial file and many introductory examples

• Full implementation of occam 2 language

• Optional machine code embedded within occam

• Automatic recompilation of program components

• Mathematical and input/output libraries

• Easy evolution from host development to stand alone or hosted target system

• Source-level debugging tool

• Tools for creating multi-processor programs in EPROM

• Targets to mixed networks of transputers (IMS T222, M212, T414, T425, T800 and compatible
processors)

APPLICATIONS

• Development of single-processor and multi-processor embedded systems

• Development of programs for application accelerator boards

• PC-based evaluation of concurrent programming and transputers

168



5 Software development tools

5.6 IMS 0700 Transputer Development System

5.6.1 Product overview

169

The IMS 0700 Transputer development system (TDS) provides a full occam 2 development system for
transputer targets. It allows the user to build concurrent programs for single transputers, and multi-transputer
programs for networks consisting of arbitrary mixtures of transputer types.

The development system software is executed on a transputer board plugged into the PC. A 'server' program
running on the PC provides terminal and filing system support.

The user interface

The principal interface to the system is an editor; as soon as the system starts up the user is placed in an
editing environment, and all editing, compilation and running can be carried out within that environment, by
means of a set of function keys.

The editor is based on a concept called 'folding'. It provides the ability to hide blocks of text lines in a program,
in the same way as a sheet of paper may be folded so that portions of the sheet are hidden. A fold contains
a block of lines which may be displayed in two ways: open, in which case the lines of the fold are displayed
on the screen, or closed, in which case the lines are replaced on the screen by a single fold line.

Some folds may correspond to files in the host filing system. If these files contain textual information then
the fold may be opened and displayed. Folds may be nested, which provides the ability to represent a large
program as a hierarchy.

A set of function keys (known as the utility function keys) can be loaded with different functions during a
session. These include the occam compiler, network loading software, and various file handling support
functions. After the utilities have been loaded, they remain in memory and may be invoked by pressing the
appropriate function keys.

occam 2 compiler

The occam 2 language implemented by the compiler in the Transputer development system is the full
language defined in the occam 2 reference manual. The compiler checks programs to ensure that variables
and communication channels are being used correctly in parallel components of a program. This detects
many simple programming errors at compile time. The language provides support for low-level programming
of transputers, including allocation of variables to specific addresses, access to timers, and inclusion of
transputer machine code.

A program may be compiled in one of three 'error modes' which determine the behaviour of the program on the
occurrence of run-time errors. In particular, a mode which supports the use of the debugger may be chosen.
A program may be compiled for one of a number of target processor types. IMS T222, M212, T414, T425,
T800, T801, T80S and other compatible processors are all supported. It is also possible to compile code for
certain classes of transputer, for example all 32 bit processors. These and other compilation parameters may
be defined by completing an on-screen form called a parameter fold before running the compiler.

A program may be defined to run within the development system, using the development system to provide
filing system and terminal support at run-time. Function keys are provided to load and run such a program
within the development system.

A program may be defined to run on a transputer network. Such a program contains declared procedures to
be loaded onto each processor in the network. If the same code is distributed to many processors, it only
needs to be declared once. The distribution of procedures to processors is defined explicitly in occam; this
is called the 'configuration' description, and it is processed by a part of the compilation system called the
configurer. From the configuration description, the configurer creates all the necessary bootstrap and routing
information to load the entire network, and stores this, along with the compiled code, in a file.

Parts of a program may be compiled separately, and linked together. The unit of compilation is the 'separately
compilable unit' which may contain one or more declarations of procedures or functions, accessing the calling



170 2 Development systems

environment solely through their parameter lists. Collections of procedures and functions used in a variety of
programs may be grouped into libraries. Libraries may be stored in a directory in the host filing system, and
shared by application programs in other directories.

After components of a program have been altered, programs and libraries may be recompiled. The system
will detect whether components of the program need to be recompiled, and will carry out the recompilation
automatically.

Programs are compiled to make optimum use of the transputer's on-chip RAM, both when running within the
development system and when running on a network.

Loading programs into transputer networks

After a network program has been compiled and configured, it may be loaded into the target network. This
may be done in three ways:

• The first way is to load the network directly from the development system using the 'load network'
utility, exporting the code over a link connecting the development board to the target network. The
program will start as soon as it is loaded. It may communicate with the transputer running the devel
opment system by a link, and may cooperate with another program running within the development
system.

• The second way is to write the program into a bootable file which can be directly loaded over a link
onto the network by a server program on the host computer. The program may then optionally use
the server for run-time support.

• The third way is to write the code into an EPROM which will be made part of the address space of
one of the.transputers in the network. Tools to write EPROMs are provided.

Debugging

The system includes a symbolic debugger which can be ·used to examine the state of a transputer in a
network, in terms of the source of the program that was running on it. After a program has halted, or been
interrupted by external action, it is possible to preserve the state of the memory so that the debugger can be
run. If the program was running in the development system, the memory can be stored in a 'dump' file for
future analysis. If the program was running on a target network, the state of the network may be examined
from the development system.

The debugger can be used to determine the position of the halted process, and of any other processes
waiting on queues, in any processor in the network. These positions are displayed as lines in the occam
source of the program. Values of variables may be displayed. For each process, it is possible to trace back
through the sequence of procedure calls which has led to that position.

5.6.2 Product description

The product consists of the following components:

Documentation

The Transputer development system is supported with comprehensive user documentation.

Transputer development system delivery manual

The delivery manual provides instructions for installing the software on the host computer, and checking that
the installation has been successful. It also discusses the changes that have been made since the previous
release of this product, and lists known problems in the software and documentation.



5 Software development tools

Transputer development system user guide and reference manual

171

The user guide and reference manual are provided in a single volume published by Prentice Hall (ISBN
0-13-928995-X). The user guide provides a complete introduction to the software and is designed to be read
while starting to use the software. The reference manual describes the behaviour of the tools and defines the
user interfaces and libraries in detail; it is supplemented by tabulations of useful information in appendices.
The book is fully indexed.

occam 2 reference manual

This book, published by Prentice Hall (ISBN 0-13-629312-3), is the definitive reference manual for the occam
2 language.

Tutorial introduction to occam programming

This book, published by BSP Professional Books (ISBN 0-632-01847-X), contains a tutorial introduction to
concurrent programming using the occam language and also a concise formal definition of the syntax and
semantics of the language.

The Transputer Applications Notebook • Systems and Performance

This book is a compilation of INMOS technical notes on hardware, systems, software, applications, and
performance. The notes contain discussions of important issues in transputer systems design and were
written by the engineers who pioneered this work.

Software components

The software is installed in DOS directory \ tds3 and its subdirectories. The software in each subdirectory
is listed below:

system

This directory includes the necessary DOS files for calling the TDS, both on IBM and NEC PCs, the TDS
loader, the code of the TDS and its principal utilities, and the debugger.

complibs

This directory contains the standard occam libraries. This includes the support for long integer and floating
point arithmetic on all processor types.

tutor

This directory contains the on-line tutorial and other examples mentioned in the user guide.

examples

This directory contains a wide variety of examples of occam programs.

tools

This directory, and a source subdirectory, contain the following tools and examples:

• Lister and unlister programs

• Program for transferring TDS files over a link

• Transputer network tester

• Tool for building stand-alone hosted programs



172

•. EPROM making tools, including the 'memory interface program'

• Example ROM sources

• Oisassembler

2 Development systems

Most of the tools are supplied as occam source so that the user may modify them to local requirements if
necessary.

iolibs

This directory and its subdirectories contain a wide variety of library code, mostly concerned with input and
output operations. Some of this library code is specifically designed to support the run-time interface available
to a program running within the TOS; some of it is useful for programs running on a separate transputer board
or network.

hostlibs

This directory and its subdirectories contain library code for communication directly or indirectly with the server
on the host. These procedures match those provided in the IMS 0705 occam toolset.

mathlibs

This directory and its subdirectories contain the mathematical libraries. These include all the usual trigono
metrical functions, exponentials, and random number generators.

iserver

This directory includes all the sources necessary to regenerate the server program which can be used on the
host computer to support the TOS, or programs generated using it, or by other INMOS software products.

5.6.3 Product components

Documentation

• Tutorial introduction to occam programming

• occam 2 reference manual

• Transputer development system delivery manual

• Transputer development system user guide and reference manual

• Applications Notebook

Integrated software components

• occam 2 checker and compiler

• occam 2 network configurer

• Spparate compilation and library system

• Network loader

• Source-level debugger

• Network explorer and tester

• EPROM making tools



5 Software development tools

• File handling utilities

• Program loader and file server (in C)

Software libraries

• compiler libraries

• mathematical fu nctions (sin, cos etc)

• mathematical functions optimised for fixed point processors

• string conversion and manipulation procedures

• host file and terminal ito procedures

• evaluation board terminal support

• handling of transputer link communications

173

5.6.4 07058 occam 2 toolset support

The D705B is an alternative vehicle for the development of occam programs for transputers. It is a collection
of portable development tools, called from a DOS command line environment. There are similar toolsets for
the scientific programming languages (C, Fortran and Pascal).

A number of tools are provided with the D705B to support its use in conjunction with the D700. It is also
possible to import programs and modules compiled with the D705B and scientific language compilers into
the D700. .

5.6.5 Operating requirements

• IBM PC or NEC PC-9801 (AT or XT compatible, 256 Kbyte memory)

• IMS B004, IMS B010 or (IMS B008 + IMS B404) transputer board or equivalent

• At least 1 Mbyte of transputer memory (greater flexibility with 2 Mbytes or more)

• DOS Version 3.0 or later

• 5 Mbytes of free hard disk space (preferably on 20 Mbyte or larger disk)

5.6.6 Distribution media

Software is distributed on 360 Kbyte (48TPI) IBM format floppy disks.

Delivery manual and floppy disks are distributed in standard A5-sized box and binder.

5.6.7 Licensing information

There is no licence fee incurred for including the binary of the INMOS libraries in software products. Example
programs, and other source provided, may be included in software products. Full licensing details are available
from INMOS.

The following products are also available for licensing:

0700-8 0700 binary distribution release



174

0700-5 D700 source release

2 Development systems

5.6.8 Error reporting and field support

Software problem report forms are included with the software.

INMOS has a world-wide network of sales offices, providing support for INMOS software products. In some
areas the functions of support may be taken over by distributors or other third parties.

Customers requiring a formal support contract should contact their local INMOS sales office.



firumos Chapter 6 175

- Board
Support
Software



Product Overview

IM55708
IM55514
Motherboard
Support Software

®

c

OlJi)mOS

.:.:.:.:. ~:;:.:.:.:

::~~mm mm~;~

::@~m: ~m~f~~~:

~\j ~~11

;11 i~~~

:~~mm! ~m~~~::

:~~;~;m; mmm!
.,.;.;.;.: .;.;.;.:.,

DESCRIPTION

The module motherboard software support packages provide full support for the INMOS module motherboards
including device drivers, server programs and switch setting software.

KEY FEATURES

• Host device drivers

• Inmos server program plus sources

• Support for switch setting on INMOS motherboards

• WORM program to investigate attached Transputer networks

• Support for Inmos development system

• Support for application programs

176



6 Board support software

6.1 IMS S708 and IMS S514 product overview

6.1.1 Product overview

The Motherboard Software Support packages provide full support for INMOS Motherboards.

177

Each package consists of a device driver, an inmos server, and the module motherboard switch setting
software.

The device driver allows the motherboard to be installed as a standard device in the host machine which can
be accessed through operating systems calls rather than by accessing the interface registers directly.

The board installation and installation test procedures are fully documented in the User Manual.

The module motherboard software will allow you to program your desired network topology. You provide a
logical description of the boards and the connections which you require and the MMS generates a program
to set the IMS C004 switches accordingly.

The motherboards provide a route for connecting networks of transputers to your host machine either by
adding transputer modules (TRAMS) or by transputer links to embedded systems. The module motherboard
software provides a worm program to explore the connected network and report on the configuration that it
finds.

The INMOS server will load programs to the connected network and provide access to the host file system
and terminal for programs running on the 8014. The INMOS server is used to load and execute the module
motherboard software. The INMOS server also supports execution of the Occam 2 toolset and applications
built with this toolset on the 8014.

Support for other hosts

The module motherboard support software provides support for specific host and board configurations. Other
host and board configurations can easily be supported as the INMOS server is provided as C source. The
board dependent part of the server is captured in a module called Iink.c which defines a standard interface
for reading and writing data from a host machine to a link. Porting this simple program will allow you to run
the programs supplied with this package on other host and board configurations. The design of this program
and advice on how to port it to a new system is documented in the User Manual.

Having ported the INMOS server to your system you will also be able to run the Occam 2 Toolset and
applications built with this toolset.

The iserver and Iink.c specifications are open standards maintained by INMOS. A wide range of companies
support these interfaces for their own transputer boards.

6.1.2 Product components summary

Documentation

• User manual

Software tools

• Device driver

• File server and loader

• Module motherboard switch setting software



178 2 Development systems

6.1.3 IMS S708

The motherboard support software for the IBM PC XT or AT is termed the IMS S708.

Operating requirements

• IBM PC XT or AT, or NEC PC-9801 with 256 Kbyte memory

• IMS B008 or IMS B015 plus a TRAM with at least 2 Mbytes (e.g. IMS B404)

• At least 1 Mbyte of transputer memory

• DOS 3.0 or later

• 1 Mbyte of free disk space

Distribution media

1 360K 48TPI IBM format floppy disk

6.1.4 IMS S514

The motherboard support software for the Sun 3 workstation is termed the IMS S514.

Operating requirements

• Sun 3 Workstation

• SunOS 4.0 or later

• 1 Mbyte of free disk space

• IMS B014 VME Motherboard plus a TRAM with at least 2 Mbytes (e.g. IMS B404)

Distribution media

Sun Data Cartridge (Quarter inch tape) in tar format.



Product Overview

c

DUilmOS
KEY FEATURES

IM55607
IM55507
Ethernet
Support Software

• Fast download of programs over Ethernet to transputer networks

• Support for remote debugging of programs from host terminal

• Support for shared use of transputer networks

• Support for VAX and SUN systems

179



180

6.2 Ethernet Support Software product overview

6.2.1 Product overview

2 Development systems

The primary objective of this development is support cross development of transputer software by allowing
programs to be rapidly downloaded to the target hardware over Ethernet and debugged remotely. A secondary
objective is to allow transputer programs to be executed remotely from the VAX.

6.2.2 Product description

A users can attach a transputer network to Ethernet.

A user at a VAX or SUN terminal will be able to download transputer programs from a VAX over the Ethernet
to the transputer network to be executed. The programs can be debugged remotely from the terminal using
the standard INMOS cross development tools.

Multiple users can gain access to the transputer network from their own terminals.

6.2.3 Software components

The VAX Link software consists of two parts

• Host server

• Transputer communications software

The host server is an extended implementation of the iserver program distributed with the toolset. The server
will download programs to the target transputer network and support the remote debugging of this program.
The server also provides the application program with host file and terminal services. The server will be
provided in source and binary forms.

The. transputer communications software will be implemented as firmware on the INMOS Ethernet TRAM.
This software will only be provided as binary.

Communication between the components will be achieved using TCP/IP.

6.2.4 Hardware requirements

• An EPROM module to hold the transputer software

• 8407 Ethernet module

• 8403 T4 plus 1Mb module

• Power supply, rack and motherboards.

The user may attach a number of transputer networks to this system and define names for each network.

6.2.5 Compatibility considerations

The implementation will be compatible with other INMOS software development products: occam 2 toolsets,
3L C and FORTRAN compilers, and Alsys Ada compiler.

6.2.6 Performance

The performance of the download system should be as good as a 8008.



6 Board support software

6.2.7 User Documentation

181

There will be a single user manual divided into two sections.

There will be an installation section which will explain how to set up the hardware, install the software and
check that the system is operational.

There will be small user guide section which will explain how to use the server with INMOS supplied devel
opment tools.

6.2.8 Distribution media

The transputer software will be distributed on INMOS EEPROM TRAMs with the EPROM ready programmed.

The host software will be distributed on either TK50 cartridge or SUN data cartridges.

6.2.9 Related products

Source and binary distribution releases of the TCP/IP software will be made available to OEM customers
wanting to build transputer based systems which can be connected to Ethernet.

PLEASE NOTE

Note: The first VAX implementation will only allow a single transputer network to be attached to the Ethernet
TRAM.

Note: VAX users must have the DEC TCP/IP running on the VAX to support the server to transpu'ter com
munications over Ethernet. This software is available from DEC.

Note: The first VAX product will use a restricted implementation of the UDP protocol (Assumptions will be
made regarding fragmentation of messages based on the use of Eth~rnet), plus internally defined protocols
to support INMOS subsystem RAE, and delivery checking of UDP packets.



182 2 Development systems



nrumos Chapter 7 183

- Transputer
Development
Kits



184 2 Development systems

7.1 Transputer Introduction Kit

The INMOS Transputer Introduction Kit provides an inexpensive entry point for the evaluation of transputers.
It provides the minimum necessary configuration for the use of any of the INMOS software products. However,
the motherboard allows the addition of many more modules to create a very powerful transputer network on
a single board. There are two options for the introduction kit.

Kit 1 includes:-

• IBM PC Motherboard (IMS 8008)

• PC device driver for the motherboard (IMS S708)

• 2 Mbyte DRAM TRAnsputer Module (TRAM) for hosting development software (IMS 8404-4)

• one piece of software from:- Parallel C, PASCAL, Parallel FORTRAN, Transputer Development Sys
tem or PC Toolset

Kit 2 includes:-

• NEC PC Motherboard (IMS 8015)

• 2 Mbyte DRAM TRAnsputer Module (TRAM) for hosting development software (IMS 8404-4)

• one piece of software from:- Parallel C, PASCAL, Parallel FORTRAN, Transputer Development Sys
tem or PC Toolset

7.2 Transputer Performance Evaluation Kit

The INMOS Transputer Performance Evaluation Kit provides all the necessary hardware and software for you
to evaluate the full potential of the transputer. It will typically be used for measuring real-time applications
performance and benchmarking. It provides four high performance transputers each containing a Floating
Point Unit and a variety of memory configurations. The Performance Evaluation Kit includes:-

• IBM PC Motherboard (IMS 8008)

• PC device driver for the motherboard (IMS S708)

• IMS T800-25 + 2 Mbytes DRAM size 2 TRAM (IMS 8404-5)

• IMS T801-20 + 160k SRAM size 2 TRAM (IMS 8410-11)

• IMS T800-20 + 1 Mbyte size 4 TRAM (IMS 8403-3)

• IMS T800-25 + 32k SRAM size 1 TRAM (IMS 8401-5)

• PC Toolset (IMS 0705) plus
a Parallel C or PASCAL or Parallel FORTRAN compiler.

7.3 Custom Development Kits

If neither of the INMOS development kit packages precisely meets your requirements, it is very straightforward
to put together your own. There are a variety of motherboards available for several host platforms, and the
wide range of compatible TRAMs provides you with the freedom to tailor a system to your particular needs.

To produce a custom development kit, you need a minimum hardware configuration of an IMS 8008 mother
board and a TRAM with at least 2 Mbytes of memory (eg. IMS 8404, IMS 8405, IMS 8417). Any number of
other TRAMs and motherboards can be added to this minimal system, either as part of the initial system, or



7 Transputer development kits 185

later as an upgrade. To this hardware you add the PC development tools that you require from the following:

• Parallel C compiler (IMS 0711)

• PASCAL compiler (IMS 0712)

• Parallel FORTRAN compiler (IMS 0713)

• PC Toolset (IMS 0705)

• Transputer Development System (IMS 0700)



Product Overview

c

O[fi)mos

KEY FEATURES

IMS 8211
INMOS Transputer

Evaluation Module
(ITEM)

• Slots for 10 double extended Eurocards

• Rugged built-in power supply capable of delivering 50A @ 5V and 8A @ 12V

• Built-in forced air cooling

• Removable card assembly allowing easy access

• Meets U.S. FCC standards (part 15, subpart J, limit A)

186



7 Transputer development kits

7.4 IMS 8211 INMOS Transputer Evaluation Module (ITEM)

7.4.1 Introduction

187

The IMS 8211 Transputer 80ard Rack (or ITEM, INMOS Transputer Evaluation Module) is a modular cabinet
that has been designed to accommodate up to 10 INMOS double extended Eurocard transputer boards. For
example, the 8211 will accept boards such as the 8003, 8005, 8006, 8007, and the 8012 motherboard. It
will also accept other boards of the Eurocard format.

7.4.2 Applications

The 8211 provides a simple means of connecting transputer boards together with the necessary power and
cooling requirements to provide potential supercomputing power. The 8211 is consequently suitable as an
evaluation vehicle for large transputer systems or as a powerful embedded accelerator accessible from a
host.

The 8211 is designed to be upgradeable to meet the user's changing requirements as a project evolves.
Further evaluation boards can be easily added to give additional functionality such as disk storage or graphics.
If greater computing power is required, the multiple 8211 's can be linked and stacked to build even larger
transputer arrays.

Several INMOS products exist which make use of the 8211. One such product is the ITEM 4000 (IMS 8213
4), which includes 10 transputer boards, each containing 4 IMS T800-G20 floating point transputers and
1 M8yte of RAM. A Transputer Development System (IMS D701-4) for the IBM PC XT/AT is also included.
This provides the user with a complete transputer development system, a performance of 800 MIPs and a
sustainable processing power of 90 MFLOPS!

Other configurations are possible. For example, an ITEM complete with 10 IMS 8012 motherboards has a
maximum processing power of 3200 MIPs/360 MFLOPs sustainable power, when each one is loaded with
16 T800-G20 Transputer Modules or TRAMs (eg. IMS 8401-3).

7.4.3 Rear Connector Panel

The connector panel at the rear of the ITEM includes:

• Four 8NC connectors for linking the ITEM to colour monitors.

• Two 25-way D connectors for RS232 connection terminals, computers, and peripherals.

• Two 37-way D connectors, each of which can carry 12 transputer links, and three system service
ports. A cable is supplied with the ITEM to connect to these D connectors.

7.4.4 FCC Compliance

The IMS 8211 has been found to comply with the limits for a Class A computing device persuant to subpart
J of Part 15 of the FCC regulations. These rules are designed to provide a recognised standard to protect
against he emission of any harmful interference to radio communications within a commercial environment.

7.4.5 Ordering Information

Description Order Number
IMS 8211 for 11 OV AC mains supply IMS 8211-1 US
IMS 8211 for 240V AC mains supply IMS 8211-1 UK

Table 7.1 Ordering information

The facility to change the mains power requirements from 11 OV to 240V and vice-versa is provided.



188 2 Development systems



Ilrnmos Part 3

_ Applications

189



190 3 Applications



Chapter 8 191

e Dual Inline
Transputer
Modules
(TRAMs)



192

8 Dual Inline transputer modules (TRAMs)

8.1 Background

INMOS has built a number of transputer evaluation boards. Most are the same size (220mm x 233.4mm),
which fits the INMOS ITEM. These boards have different transputer configurations and different amounts of
memory (IMS T212, T414, T800, M212, transputer graphics, several transputers, 64K to 2M of RAM).
INMOS has also produced boards to fit particular computers, such as the IBM PC and the NEC 9801.

The need

It would have been nice if we had been able to offer all the different transputer configurations to fit into
these personal computers. But instead of about ten different designs of boards, this would have meant 30
different designs. And there was market demand for transputers to plug into VME, to VAX, to SUN, to other
workstations, process control computers, minicomputers, mainframes. And there was further demand for
more configurations, such as more memory per transputer, more transputers with less memory, or the same
memory in much less space, graphics and other different peripherals......

Clearly to produce all these different transputer configurations, to plug into all these different computers,
would need over 100 different board designs. Even if INMOS could design those, it would be foolish to stock
and sell so many different designs. But a genuine market demand existed to be met. Somehow we had to
separate the transputer configuration from the computer and its size and shape of board.

Meeting the need

A small range of transputer configurations, implemented as modular subsystems, and a small range of
motherboards with sockets for the modules, offered this separation.

Users can mix and match different physical sizes of modules, modules with different memory sizes and
modules with different functions. By mixing and matching, many more than 100 different combinations are
possible.

An advantage to many customers who have the expertise in interfacing to their own computers is that they
can design their own module motherboards, and use the ready-built transputer configuration supplied as
modules. This should greatly reduce the time needed to prototype a transputer system.

The building block

In effect the module Is a board level transputer, with a very simple standardized interface. The building block
concept is practically realized by integrating memory and peripheral functions on board, and by limiting the
pin out to 16 pins (although some modules use several sets of these 16 pins). It is just as easy to build
transputer circuits with modules as it used to be to build logic circuits out of TIL.

Several of the modules are densely packed, oHering thousands of MIPs, hundreds of MFLOPs and many
megabytes, all on a few motherboards in a small box.

Two questions

Two questions are frequently asked - why OIL, and why just this size?

We use OIL because it is more robust'than SIL when assembled on the board; also because the height of a
transputer SIL strip would be over 1" using PGA transputers. The pin out of adjacent modules is arranged,
however, so that if at some future time SIL strips appear viable, the SIL pinout works.

The size comes from considering how small a transputer could become. As the chip is about 1cm square,
!t would not fit with a 0.3" 16 pin DIP, but it would fit into a 0.6" 16 pin DIP. Put four of these on a regular
prototyping board with rows of sockets on 0.3" centres and you have a set of pins 9-16 just 3.3" away from
pins 1·8. Add enough at each end for mechanical fixing and width for a PGA to give the final size.

So .the size was primarily chosen to fit standard prototyping boards. Conveniently, the size also fits the IBM
PC, VME boards, and the INMOS ITEM, as well as a host of other computers.



8 Dual inline transputer modules (TRAMs)

8.2 Introduction

193

TRAMs are small subassemblies of transputers (or other components with INMOS links), a few discrete
components, and sometimes some RAM and/or application specific circuitry. They:

interface to each other via INMOS links

have a standard pinout

come in a range of standard sizes

The basic size of a TRAM is 1.05" by 3.66" overall, about half the size of a credit card. This basic size is
referred to as Size1. Larger TRAMs can be up to 8.75" by 3.66", which fits comfortably on an IBM PC board
or on a VME board (this largest size is referred to as Size8). Smaller TRAMs (hybrids or silicon, not yet
implemented) can be as small as a 16 pin DIP with leads on 0.6" centres.

The standard pinout and standard sizes of TRAMs make it very simple for users to build customized mother
boards with sockets for TRAMs. These can either be in prototype form (Perfboard, Vectorboard or Veroboard),
or in printed circuit form.

TRAMs may be plugged into the TRAM sockets on any of the following INMOS evaluation boards: B006
(eight Size1 modules), B009 (one Size4 module), B010 (four Size1 modules), and B011 (two Size1 modules).
Connections between modules are hard wired on the B006 as two squares; on the other boards the links are
connectable either at header plugs or at an edge connector.

The IMS B008 and B012 are specifically designed for TRAMs. Both boards can be connected into a wide
variety of different networks by 'softwiring' connections between transputers by using the IMS C004 link switch.
The B008 takes 10 Size1 TRAMs and plugs into the IBM PC, The B012 takes 16 Size1 TRAMs on a double
extended Eurocard and plugs into the INMOS ITEM. INMOS will introduce other boards to fit other hosts.

The TRAM standards refered to above are independent of:

transputer type (IMS T212, T414, T800, M212, etc.)

number of transputers (1, 4, 8, 12, 16 are all possible)

wordlength of transputer (16 bits on T212, 32 bits on T414)

speed (T414-15, -20, to T800-30 and beyond)

function (transputer plus RAM, disk control, other peripheral control)

memory size (no external RAM up to many megabytes)

package (68 pin PGA, 84 pin PGA, PLCC, and other transputer packages)

implementation (through-hole PCB, surface mount PCB, hybrid, silicon)

Further information is available from INMOS on the B008 and B012 module motherboards, and on the product
family of TRAMs.



194

8.3 Functional description

8.3.1 Pinout of size1 module

3 Applications

The pins include four INMOS links, which require no off-module buffering.

Table 1 shows the pinout. This pinout has been chosen partly to simplify layout of the motherboard, and
partly to simplify the layout of the TRAM.

Table 1: Standard TRAM pinout

1 Link20ut Link3in 16
2 Link2in Link30ut 15
3 VCC GND 14
4 Link10ut LinkOin 13
5 Link1 in LinkOout 12
6 LinkSpeedA notError 11
7 LinkSpeedB Reset 10
8 Clockin(5MHz) Analyse 9

When LinkSpeedA and LinkSpeedB are both low, the TRAM links operate at 10Mbits/s. When they are both
high, the links operate at 20Mbits/s. Other states of these pins are reserved for future enhancements.

The notError signal is driven by an open collector transistor so the signal can be wire ORred. This allows for
the error line to be bussed in the same way as Clock, Reset, and Analyse. The fan-in of the notError signal
must be controlled, and it is recommended that no more than ten notError outputs are wi red together.

Pin 1 is marked by a silk screened triangle.

8.3.2 Pinout of larger sized modules

Figure 8.1 shows two adjacent Size1 TRAMs side by side. Notice that the orientation of the two modules is
different. This difference in orientation serves two purposes: cooling of Size1 modules is improved; and it
makes it possible at some future date to have Single-In-Line modules.

16

:I~ 2

~
, ,.

1

4 ::::: JI Kl
0
0
0
9

·1 I::;K~:O ::i' I

Figure 8.1 Orientation of adjacent Size1 modules



8 Dual inline transputer modules (TRAMs) 195

Many modules, and all the early products IMS 8401 to B405, contain a single transputer, and so do not need
more than one set of 16 pins for electrical signals. Modules larger than Size1, however, are assembled with
extra sets of 16 pins; the extra pins give mechanical support, allow modules to be stacked, and provide extra
GND and VCC pins. A Size2 module with one transputer is shown in figure 8.2a.

o
o
o
o
oo
o
o

a

~::;K:-r 14114--~~:::::~i
o

o
o
o
o
o
o
o
o

-.
:Q~

Q .... '\.J

Q....
~ ~

0 """"0
0 0
0 0

0 0
0 0
Q .. Q
0"- -~

QQ
~ .~- -
b

Figure 8.2 Size2 TRAMs with one and four transputers

TRAMs may be built with more than one transputer, or with transputers having more than four links. An
example of a possible TRAM with more than one transputer is shown in figure 8.2b. This has four transputers
connected as a square, in the same way as the IMS B003 and B006. (In practice, if INMOS were to produce
a TRAM with four transputers, the links would probably be routed to make better use of standard motherboard
connections.)

The detailed pinouts of larger modules are shown with the mechanical details in section 8.8 and assume that
each TRAM has a single transputer, with four links.

Notice that the Size2 module and the Size4 module have the pins which are actually used at one end. The
Size8 module (when it has a subsystem capability) has the pins which are used in the middle.



196

8.3.3 TRAMs with more than one transputer

Standards for pinout of transputers with more than one transputer are to be defined.

3 Applications

8.3.4 Extra pins

TRAMs may include application specific circuitry which requires pins other than the standard 16 pins. Ex
amples are peripheral controllers or pipelines used for graphics or signal processing. The recommended
connector for these is a strip of pins on 0.1" grid, such as a stripcable socket will attach to. '

8.3.5 Subsystem signals driven from a TRAM

It is useful for TRAMs to be able to control a network of transputers and/or more TRAMs. Such a slave
network is known as a subsystem of the master, and the set of control signals from the module are described
as a subsystem port.

The subsystem port consists of three signals: SubsytemReset and SubsystemAnalyse, which enable the
master to reset and analyse its subsystem; and SubsystemnotError, which is used to monitor the state of
the error flag in the subsystem. The polarity of these signals is such that a motherboard can be built with a
master TRAM controlling slave TRAMs via its subsystem port with no buffering or gating. (Note that a change
of polarity may be required for a subsystem port v'Ihich goes off the motherboard.)

The three subsystem signals 'are located on low profile sockets which are positioned 0.1" inside the standard
module pins 1-3. This is illustrated by figure 8.3.

".
001a
002a
003a
o
o
o
o
o

Figure 8;3 Location of subsystem sockets

o
o
o
o
o
o
o
o

The pinout is as follows:

Pin Signal
1a SubsystemnotError
2a SubsystemReset
3a SubsystemAnalyse

The sockets are fitted into the module PGS upside-down. The motherboard into which the module is plugged
will also have three such sockets in the corresponding positions, but fitted from the component side in the
usual fashion. The connection between the module and the motherboard is then made by a double-ended
header, strip (see figure 8.4). This arrangement ensures that if the subsystem port of a module is not used,
the module remains mechanically compatible with modules which do not have subsystem ports.



8 Dual inline transputer modules (TRAMs)

3-way double ended
header strip

Figure 8.4 Subsystem port connections

197

SUbsystem registers

The subsystem is controlled by reading and writing to addresses in positive address space (Le. location zero
onwards). On all INMOS evaluation boards and TRAMs, two BYTE locations are used, where each byte is
the least significant byte of a 32 bit word. A further two locations control parity generation logic, which will be
described in section 8.3.6. These four locations are permitted to repeat throughout the whole of the positive
address space.

The subsystem registers are located at the following addresses for 32 bit transputers

Register Hardware byte address
SubSystemResetLatch (write only) #00000000
SUbSystemAnalyseLatch (write only) #00000004
SUbSystemnotError (read only) #00000000

The subsystem port operates as follows:

Writing a 1 into bit 0 of #80000000 asserts SUBSYSTEM Reset;
Writing a 0 into bit 0 of #80000000 deasserts SUBSYSTEM Reset.

Writing a 1 into bit 0 of #80000004 asserts SUBSYSTEM Analyse;
Writing a 0 into bit 0 of #80000004 deasserts SUBSYSTEM Analyse.

A 1 read from bit 0 of #80000000 indicates that SUBSYSTEM Error is TRUE.
A 0 read from bit 0 of #80000000 indicates that SUBSYSTEM Error is FALSE.

The subsystem is reset or analysed under the control of the transputer on the TRAM, but must also be reset
when the TRAM itself is reset. To pass the signals on to the subsystem, the following combinational logic is
included:

SubsystemReset = Reset OR SubsystemResetLatch
SubsystemAnalyse = Analyse OR SubsystemAnalyseLatch
the latches are initialized at power-on to be inactive.

Note that SUbsystemError does NOT propagate to the TRAM's notError pin.

Multiple subsystems

TRAMs may contain more than one subsystem port. They should have their locations separated by 16 bytes.



198 3 Applications

8.3.6 Memory parity

TRAMs may include parity logic for external RAM. The implementation on TRAMs must ensure that there is
no way that corrupt data can reach any other transputer.

One way to achieve this is that if a parity error occurs, the wait signal is held active so the memory cycle does
not complete. All data in memory is lost, however, when an error occurs, and the memory cycle is slowed
down by the parity check.

Parity checking may be enabled or disabled by writing to a parity control register. If parity is enabled and an
error occurs, the error is ORed in to the notError signal from the module. Information on the cause of the
error can be found by examining the parity status register.

Reset disables parity checking and deasserts MemWait. When the transputer is analysed, MemWait is
deasserted and the contents of the parity status register are preserved.

The parity registers are as follows:

Register Hardware byte address
Parity control (write only) #00000008
Parity status (read only) #00000008

The locations are used as described below:

Writing a 1 into bit 0 of #80000008 enables parity error detection;
Writing a 0 into bit 0 of #80000008 disables parity.

Reading the contents #80000008 returns the status of the parity detection hardware.

Bit Status
Bit 0 Indicates a parity error has occured.
Bits 1 & 2 Indicate the BYTE in which the error occured. (Bit 1 is Isb).
Bits 3..n Indicate the BANK in which the error occured. (Bit 3 is Isb).

8.3.7 Memory map

The memory map should be of the form:

ROM ~p~memo~

Peripherals
Subsystems
External RAM
On-chip RAM bottom of memory

In the particular case of TRAMs with 32 bit transputers, the memory map should be as follows:

Byte address Description

7FFF FFFF
7FFF FFFE Boot from ROM

Peripherals

Comment

Bootstrap program requires ROM at top of memory.
7FFF FFFE will contain a backward jump to the bootstrap.

If used

oooooooe
0000 0008
0000 0004
0000 0000

8FFF FFFF
Memstart

Parity status and control
SubsystemAnalyseLatch
SubsystemResetLatch

RAM
RAM

These locations must
be decoded as a set
of four, even if Parity
is not used.

Both internal and
external RAM



8 Dual inline transputer modules (TRAMs) 199

Substantial logic can often be saved by not fully decoding the hardware address. An effect of not fully
decoding the address is that hardware can appear at multiple addresses.

In particular, if the module does not have a subsystem, the RAM can repeat throughout the address space,
including the positive address space (above location 0).

The Subsystem and parity locations can also repeat throughout the positive address space.

Figure 8.5 Recommended circuit between TRAM pins and transputer

8.4 Electrical description

8.4.1 Link outputs

Link outputs must be terminated so that the combined output impedence of the transputer plus termination
resistors is 100 ohms ± 20%. For the optimum value of resistor, see the appropriate transputer data sheet.

8.4.2 Link inputs

Link inputs may be taken off a module motherboard and so must be protected from positive ESD by a diode
to VCC. Signal diodes such as 1N4148 or LL4148 may be used. To prevent an unconnected link input from
floating high, link inputs must be pulled down to GND by a resistor, preferred value 10K ± 50/0.

8.4.3 notError output

The notError output is a wired OR signal driven by an open collector or an open drain. Maximum leakage
should not exceed 10 microamps. Maximum saturation voltage when the transistor is ON and is sinking
10 mA should not exceed 0.4 V. A suitable transistor is BC846 (SOT23) with a 10K resistor between the
transputer's Error pin and the transistor base. The pullup resistor on the module motherboard should draw
between 5mA and 1OmA when a transistor is ON.

Although the above is conservative and should allow a fan-in of several hundred, it is recommended that the
fan-in is limited to 10.

8.4.4 Reset and analyse inputs

These signals are connected directly from the TRAM pins to the transputer. They must always be driven by
buffers on the module motherboard. Because the motherboard will often have filters on the Reset and Analyse
signals, the Reset pulse width should be much wider than specified for the transputer. Recommended pulse
width is 5 ms, with a delay of 5 ms before sending anything down a link.



200

8.4.5 Clock input

3 Applications

The TRAM must not present excessive capacitance to the clock input signal. The clock input should therefore
be limited to a single load, which should be connected to the TRAM pin by a trace no longer than 30mm.

Particular care should be taken on the module motherboard to ensure that the clock input is clean, with fast
edges, minimal undershoot, and minimal jitter (see transputer data sheet for clock specification).

8.4.6 notError input to subsystem

The notError input should not have a pullup resistor on the TRAM. The pullup resistor must be on the
motherboard.

8.4.7 GND, VCC

Adequate high frequency decoupling capacitors must be used. In particular there should be decoupling
capacitors close to the GND pin and to the VCC pin of each TRAM. Recommended value is 100 nF, preferably
at least half as many as the module has ICs.

8.5 Mechanical description

In the following, dimensions are quoted in inches for PCS length, width and related dimensions; all other
dimensions are quoted in millimetres.

8.5.1 Width and length

o
o
o
o
o
o
o
o

1 (reference)

TRAM A B C D
module
size
1 3.3 11 3.5 11 1.05 3.66 11

2 3.3 11 3.5 11 2.1511 3.66 11

4 3.3 11 3.5 11 4.35 11 3.66 11

0
8 3.3 11 3.511 8.75 11 3.66 11

0 1/2 1.5 11 1.711 1.0511

0 1/4 0.6 11 0.8 11 1.0511

0 2/4 0.6 11 0.8 11 2.15 11

0
0
0
0

I~ A (pitch between pins)
I~

I~ B (to inside edges of board)
D (overall, including fixing/polarizing lugs)

Figure 8.6 TRAM sizes

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

~

0
0
0
0
0
0
0
0

0
C0

0
0
0
0
0
0

11
·1



8 Dual inline transputer modules (TRAMs) 201

The basic size of a TRAM is a very wide 16 pin DIP, with 3.3" between the two rows of pins. These TRAMs
fit on a 3.6" pitch on their length, and a 1.1" pitch on their width. Extra length is added beyond the pins to
hold the pins, to provide for mechanical fixing, and to polarise the module shape.

TRAMs can be made larger than the standard size by keeping the 3.3" between pins and using two or more
sets of the 16 pins.

TRAMs can be made smaller than the standard size, down to a 16 pin DIP with 0.6" between the two rows
of pins, or 1.5" between the pins. These sizes will normally be used for single chip modules or hybrids.

In general the printed circuit TRAMs are longer than the pitch between the two rows of pins. The TRAMs are
also wider than the 0.8" suggested by 16 pins. The small TRAMs may be side-brazed DIPs, as short as 0.8"
long.

The top drawing in figure 8.6 shows a Size1 module and how the jigsaw pattern fits together between
adjacent modules. The lower drawing in figure 8.6 shows the various sizes of TRAM. Detailed dimensions of
the different sizes are given in section 8.8.

8.5.2 Vertical dimensions

There are no vertical height constraints for TRAMs. However, keeping the height of a TRAM, both below and
above the board, within certain limits allows the TRAM to fit together with other TRAMs and motherboards.

Figure 8.7a shows height specifications which allow double-stacking of the TRAMs and which will allow two
deep stacked TRAMs on a motherboard to fit into a 1.0" pitch card-cage, (see figure 8.7e). Figure 8.7b shows
how this vertical size fits onto a motherboard which has no components under the TRAM. Figure 8.7c shows
the same TRAM fitted above components on a motherboard, using spacer socket strips to gain extra height.

Figure 8.7d shows another height specification which allows components such as zip packaged les and
5MB connectors to be used on the TRAM, whilst permitting these TRAMs to fit onto motherboards in a 0.8"
pitch card cage. Note that this is only possible when there are no components under the TRAM on the
motherboard.

It is recommended that any component reaching a maximum specified height has an insulating surface.

Note that the datum for component heights on both sides of the TRAM is the component side surface. This
datum is also used for the stackable socket to minimize tolerance buildup.



202 3

13.7mm max

Applications

gap = O.2mm min

Motherboard pca

18.2mm max

gap = O.2mm min

Motherboard pca

Figure 8.7 Component heights

Components must not interfere with the TRAM pins, and so the area shown in figure 8.8 must be left free of
components.

No components
in this area
along length I
of stackable ~

socket
0.055"

Components may
be placed in the
cross hatched area
between stackable
sockets, indeed this
is a suitable place
for tantalum
decoupling
capacitors.

Figure 8.8 Area close to TRAM pins



8 Dual inline transputer modules (TRAMs) 203

8.5.3 Direction of cooling

TRAMs should be designed so that cooling air can flow freely across the width of the the module, or in other
words parallel to pins 1 to 8 rather than from pin 1 to pin 16. Care should also be taken to ensure that the
surface of a module is not too flat: projections cause turbulence which improves cooling.

8.6 TRAM pins and sockets

8.6.1 Stackable socket pin

The stackable pin socket is shown in figure 8.9.

Splined, 1.1 dia +/-0.01

Top of pin/contact assy must line up
exactly with top of wafer (if wafer fitted)

contact .- 1.473 dia +/-0.012 (barb)

Left side shown fitted in wafer,
Right side shown without wafer.

1.346 dia +/-0.025

0.45
0.48
dia

f

1.8

5.0

r:-
2.7

Datum

Note: All dimensions in mm.

Spherical end
Dimension A is to bottom of contact, 2.3 max
Dimension B is to seating plane of pin, 0.6

Tolerances on lengths +/- 0.05

Finish (on both shell and contact): Commercial quality gold.
Material: see separate specification on bending/breaking.

Figure 8.9 Stackable socket pin

Approved manufacturers of the stackable socket pin are (with part numbers): 1

Individual socket pin Strip of 8 sockets

Scott 128-446 151 08-128-446

The individual socket is used on the TRAMs themseleves. Strips of 8 sockets are used on TRAM mother
boards and as spacers (as in figure 8.8) between TRAMs and motherboards.

8.6.2 Through-board sockets

The component height given in figure 8.7 means that there is not enough height for conventional sockets
for the components. A number of manufacturers make sockets which fit into a PCS in such a way that the
thickness of the PCS is used for the socket, rather than extra height above the board.

1These parts are available from Scott Electronics Ltd, Tonbridge, Kent, England (Tel: 0372 359270), or Andon Electronics Corp,
Albion, RI, USA (Tel: 401 333 0388).



204 3 Applications

INMOS has seen and used the following sockets. No particular recommendation for any of these is given
or implied. Other manufacturers have shown data sheets for similar sockets with a height of approximately
0.8mm. The Augat 'Holtite' sockets, which sit below the PCS surface, have been seen but not used. The
Augat 'Soldertite' sockets have similar dimensions to the Harwin 3153 and have been seen in prototype
quantities. All of the sockets are available individually or assembled into strips; some are available in DIP
and PGA format.

Manufacturer type height above PCS

Harwin (UK)
Mark Eyelet (AMP) (US)
PreciDIP (Switzerland)

H 3153-01 0.38mm
M8043PEC 0.2mm approx
014-92-001-41-012 0.4mm

Advanced Interconnections (US) type -85
Harwin (UK) H 3155-01
PreciDIP (Switzerland) type 1407

0.78mm
1.2mm
0.8mm

8.6.3 Subsystem pins and sockets

The preferred socket to fit on the solder side of the TRAM is Harwin H 3153-01, and on the motherboard
also. Samtec pin strip HLT-03-G-R is suitable for connecting between these sockets.

8.6.4 Motherboard sockets

The TRAM pins/stackable sockets will plug into any standard IC socket. To meet the component heights
given in figure 8.7, the stackable socket (see section 8.6.1) must also be used on the motherboard.

Motherboard sockets for the Subsystem signals should be the 0.38mm or 0.4mm sockets referred to above.

8.7 Mechanical retention of TRAMs

Vibration tests have shown that in a normal office or laboratory environment, the TRAMs remain plugged into
their sockets. In transit, however, or in an environment where there is vibration, some form of mechanical
retention may be necessary.

• •
~--------------------~• •• •• •• •
~--------------------~• •

0.150"~ I_ 3.3" _I
Holes 2.5mm dia

opposite pins
2,7, 10, 15

Figure 8.10 Fixing holes for mechanical retention

The detail drawings of the module sizes in section 8.8 show fixing holes in the modules. Similar fixing holes
should be drilled in the motherboard as shown in figure 8.10. M2.5 nylon bolts may be used between these
fixing holes to secure the modules.



8 Dual inline transputer modules (TRAMs) 205

8.8 Profile drawings

0.600
0.724

000
co Lt') 0

- DATUM

000
o Lt') co
-.::t-.::t-.::t
MMM

1// 1//
III III
I11 (pin 1) I11
I11 I11
I I11
I" III
r±:t:=~~--------------------------111

I 1 11
Link2out--- ------------ -----I..ink3in 0
Link2in Link30ut 0 11

o VCC GND 0 11
o Link10ut LinkOin 0
o Link1 in Size 1 LinkOout 0
o LinkSpeedA notError 0
o LinkSpeedB Reset 0
o Clockln(5MHz) Analyse 0

0.775

0.875

0.175

DATUM 

0.100

0.224

0.175

DATUM 

0.100

0.224

0.775
0.875

1.076
1.200

1.480

1.975

000
co Lt') 0,......,...... ,......
000

I DATUM (pin 1)

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0
NC 0
NC 0

Note. All dimensions are in inches and measured from the datum line

Figure 8.11 pes profile drawings and pinout, TRAMs Sizes 1 and 2



206 3 Applications

-DATUM

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0
NC 0
NC 0

NC 0
NC 0

GND 0
NC 0 2.520
NC 0
~C 0
NC 0 2.800
NC 0 2.924

3.125
3.225

NC 0
NC 0
NC 0
NC 0
NC 0

3.776VCC 0
NC 0 3.900

NC 0

(pin 1)

Link2out --------- -------Link3in 0
Link2in Link30ut 0

o VCC GND 0o Link 1out LinkOin 0
o Link1in S' 4 LinkOout 0o LinkSpeedA Ize notError 0
o LinkSpeedB Reset 0
o Clockln(5MHz) Analyse 0

000
co Lt') 0

2.025

0.775

0.875

1.076

1.200

1.480

2.300

2.424

2.975

3.075

3.276
3.400

4.175

3.680

0.175

DATUM _

0.100

0.224

Note. All dimensions are in inches and measured from the datum line

Figure 8.12 pes profile drawings and pinout, TRAMs Size 4



8 Dual inline transputer modules (TRAMs) 207

000
o Lt') co...
c.)c.)c.)

1/

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0
NC 0
NC 0

NC 0
NC 0

GND 0
NC 0 2.520
NC 0
NC 0
NC 0 2.800
NC 0 2.924

3.125
3.225

NC 0
NC 0
NC 0
NC 0
NC 0

VCC 0 3.776

NC 0 3.900

NC 0

DATUM (pin 1)

link2out-------------------link3inO
link2in link30ut 0

o VCC GND 0
o link10ut linkOinO
o link1in linkOout 0
o linkSpeedA not Error 0
o linkSpeedB SizeS module Reset 0
o Clockln(5MHz) without subsystem Analyse 0

1.480

0.775

0.875

1.076

1.200

2.300

2.424

2.025

3.680

2.975

3.075

3.276

3.400

4.225

o NC NC 0
4.500 o NC NC 0
4.624

o VCC GND 0
o NC NC 0 4.720o NC NC 0
o NC NC 0
o NC NC 0 5.000o NC NC 0 5.124

5.175

5.275 5.325

5.476 o NC NC 0
5.425

5.600 o NC NC 0
o NC NC 0
o NC NC 0

5.880 o NC NC 0
o GND VCC 0 5.976
o NC NC 0 6.100
o NC NC 0

6.375
6.425

o NC NC 0
6.700 o NC NC 0
6.824

o VCC GND 0
o NC NC 0 6.920o NC NC 0
o NC NC 0
o NC NC 0 7.200

7.375
o NC NC 0 7.324

7.475 7.525

7.676 o NC NC 0
7.625

7.800 o NC NC 0
o NC NC 0
o NC NC 0

8.080 o NC NC 0
o GND VCC 0 8.176
o NC NC 0 8.300
o NC NC 0

8.575

0.175

DATUM 
0.100

0.224

Figure 8.13 pes profile drawing and pinout, TRAMs Size8 without subsystem



208 3 Applications

- DATUM

000
0<1)<0..,...,...,.
MMM

1/

SizeS module
with subsystem

ONC NC 0
ONC NC 0
o VCC GND 0
ONC NC 0 2.520
ONC NC 0
ONC NC 0
ONC NC 0 2.800
ONC NC 0 2.924

3.125
3.225

ONC NC 0
ONC NC 0
ONC NC 0
ONC NC 0
ONC NC 0
o GND VCC 0 3.776
ONC NC 0 3.900
ONC NC 0

'10 0 Link20ut ISubsystemnotError Link3inO
o 0 Link2in I SubsystemReset Link30ut 0o 0 VCC I SubsystemAnalyse GND 0o Link10ut LinkOlnO 4.720o Link1in LinkOout 0o LinkSpeedA not Error 0
o LinkSpeedB Reset 0 5.000o Clockln(5MHz) Analyse 0 5.124

5.325

ONC NC 0 5.425

ONC NC 0
ONC NC 0
ONC Ne 0
ONC NC 0o GND VCC 0 5.976
ONC NC 0 6.100
ONC NC 0

6.375

ONC NC 0
o ~gc NC 0
ONC

GND 0
ONC

NC 0 6.920

gNC
NC 0
NC 0

ONC NC 0 7.200
ONC NC 0 7.324

7.525

ONC NC 0
7.625

ONC NC 0
ONC NC 0
ONC NC 0
ONC NC 0
o GND VCC 0 8.176
ONC NC 0 8.300
ONC NC 0

0.775
0.875

1.076

1.200

4.500

4.624

4.225

5.880

6.425

5.175
5.275

5.476
5.600

2.025

1.480

..............
; ; ~

8.080

6.700

6.824

2.300

2.424

3.680

7.375
7.475

7.676
'7.800

2.975
3.075

3.276
3.400

0.175
DATUM --++~~,---- NC 0

0.100 NC 0
0.224 G~g g

NC 0
NC 0
NC 0
NC 0

o

8.575

figure 8.14 pes profile drawing and pinout, TRAMs Size8 with subsystem



Bnmos Chapter 9 209

-. Module
Motherboard
Architecture



210

9 Module motherboard architecture

9.1 Introduction

INMOS transputer modules are designed to form the building blocks of parallel processing systems. They
consist of printed circuit boards in a range of sizes which typically hold a member of the transputer family
of processors, some memory and perhaps some application specific circuitry. A module needs only a 5 volt
power supply and a 5MHz clock to operate. These are supplied to the module through pins on the periphery
of the board. Other pins bring out the transputer's serial links and reset, analyse and error signals. Some
modules can control a subsystem of other modules through another set of pins. The Dual-In-Line Transputer
Modules (TRAMs) document provides a complete specification of INMOS transputer modules.

In order to use modules as parallel processing building blocks INMOS has developed a range of mother
boards. While these boards provide access to transputers from a number of different host machines, they
have a common architecture to allow control and interconnection of potentially large numbers of transput
ers. This document describes the generic architecture of module motherboards. It is recommended that this
specification is followed when designing in order to preserve compatibility with INMOS module motherboards.

9.2 Module motherboard architecture

The INMOS range of module motherboards has a common architecture making it easy to build and configure
systems consisting of large numbers of transputer modules. The goals aimed at in the design of the module
motherboards, and the architecture developed to achieve them, are described below.

9.2.1 Design goals

The main goals aimed at in the design of module motherboards are:

• To be able to build systems with any number of transputer modules in any combination of type or
size

• To be able to build a variety of different kinds of network (e.g. arrays, trees, cubes, etc.)

• Enable any number of motherboards to be chained together

• Make transputer link connections easily configurable by software

• To be able to run test and applications programs on transputers without first configuring links

• Provide a standard hardware interface to configuration and applications software

• Allow hierarchical control of systems of transputers

• Make the transputer hardware and software independent of the host system

9.2.2 Architecture

In order to achieve the design goals outlined above, a standard architecture is adopted for all module moth
erboards. The rest of this document describes the motherboard architecture in detail, but the salient features
are given below.

• The modules in a network are connected in a pipeline using two links from each module

• The remaining links from each module are taken to IMS C004 programmable link switches

• A number of links are taken from IMS C004s to edge connectors for wiring to other boards



9 Module motherboard architecture 211

• Each IMS e004 is controlled by an IMS T212 transputer

• The IMS T212s are connected in a separate pipeline

• The first module in the pipeline on a particular motherboard can control a subsystem of other trans
puters that may reside on the same motherboard, another motherboard or may be distributed across
a number of boards

• An interface may be provided to enable a non-transputer based host system to control and commu
nicate with a motherboard

9.3 Link configuration

Transputers communicate with each other via serial links operating at 10 or 20Mbits/s. The module mother
board architecture facilitates the interconnection of links between transputer modules by providing a standard
hardware link configuration and allowing software configuration using IMS e004 programmable link switches.
Links should be interconnected by properly terminated transmission lines (peB trace or cable) having a char
acteristic impedance of 100n. INMOS Technical note 18, Connecting INMOS links, gives full details on all
:lspects of connecting links.

9.3.1 Pipeline

Each module resides in a module slot which provides two sockets that take the 16 pins of a size 1 module. A
motherboard may have any number of module slots, determined only by the physical size of the board. The
slots are numbered starting at slot O.

All the modules on a motherboard are connected in a pipeline as shown in figure 9.1. Link 2 of the module in

Pipehead 1 2 1 2 1
Slot 0 Slot 1 Slot 2

~ 1 Slot n 2 Pipetail

Figure 9.1 Module pipeline

slot 0 is connected to link 1 of slot 1 and so on for the rest of the pipeline. Link 1 of module slot O(Pipehead)
and link 2 of the last module slot (Pipetail) are brought out to an edge connector thus enabling the pipelines
of any number of boards to be chained together by connecting Pipehead of one board to Pipetail of the next.
See figure 9.2.

Pipehead
Board 0

Pipehead
Board 1

Pipetail
___~ie~h_e.?~_
Pipetail

Board n
Pipetail

Figure 9.2 Module pipeline on several boards



212 3 Applications

Some applications may not require a full complement of modules or may use size 2 or larger modules which
take up more than one slot, but use only one slot for electrical connection. In either case the pipeline will be
broken unless steps are taken to keep it intact. A pipe jumper is a small connector used for this purpose.
See figure 9.3. It plugs into an unused module slot and connects link 1 of that slot to link 2 of the same slot,
thus preserving the pipeline.

Pin 1 marked "

Figure 9.3 Pipe jumper

9.3.2 IMS C004 link configuration

An IMS C004 programmable link switch is used for software configuration of links. This device is a crossbar
switch which can handle up to 32 links. It can connect any of the 32 link inputs to any of the 32 link outputs
under software control from a separate configuration link.

Links 0 and 3 of each module are taken to an IMS C004 or a number of IMS C004s, depending on the number
of links. Links may be taken from an IMS C004 to an edge connector to allow links from one motherboard to
be connected to those of another.

The number of IMS C004s required on a particular motherboard depends on the number of modules the
board can hold. The exact arrangement of IMS C004 links is not specified here in order to give the designer
maximum flexibility for his particular application. The only restriction is that links 0 and 3 of each module
are taken to a C004. This may be done in a number of ways. For example:

• Link Os may be taken to one IMS C004 or a set of IMS C004s; link 3s may be taken to another IMS
C004 or a set of them

• Both Link Os and link 3s may be taken to the same IMS C004(s)

• LinkOutOs and LinkOut3s may be connected to an IMS C004 or a set of the same, while LinklnOs
and Linkln3s are taken to another IMS C004 or a set of them

9.3.3 T212 pipeline and C004 control

Each IMS C004 on a motherboard is controlled from an IMS T212 16-bit transputer as shown in figure 9.4.
An IMS T212 can control up to two IMS C004s via its links 0 and 3. Links 1 and 2 of each IMS T212 are used
to connect the transputers in a configuration pipeline. Link 1 of the first IMS T212 on the board is taken to an
edge connector designated ConfigUp; link 2 of the last IMS T212 in the board's configuration pipeline is also
taken to an edge connector designated ConfigDown. In this way the configuration pipelines of any number
of motherboards may be chained together by connecting ConfigDown of one board to ConfigUp of the next,
enabling a network of transputer modules spread over several boards to be configured from software.

The IMS C004 configuration data may come from software running on a module residing on the first moth
erboard in the system. It is therefore necessary to be able to connect a link of that module to the board's
configuration pipeline. A jumper provides the option of connecting link 1 of the first IMS T212 in the config
uration pipeline either to ConfigUp or to link 1 of module slot O. In the latter, the jumper also disconnects
PipeHead on the edge connector from slot 0 link 1. This is shown diagrammatically in figure 9.5.

9.3.4 Software link configuration

The hardware configuration described in Sections 9.3.2 and 9.3.3 provides the standard architecture recog
nised by the Module Motherboard Software (MMS), a software package available from INMOS which allows



9 Module motherboard architecture 213

ConfigUp 1 IMS T212 1-2 ~1 IMS T212 _2 IMS T212 2 ConfigDown

o 3 o 3

Config Link

IMS C004

Config Link

IMS C004

--ll~~~~~-:_~~~~~~~-:::-~~lrr--

"'-----------------------_--1/
Slots 0 to n, Links 0 and 3

Figure 9.4 IMS C004 control by a pipeline of IMS T212s

----,

-~
1

Slot 0
2 -----

'- 1
IMS T212

2--
- --

r-----
I
I

Pipehead :--....,~o---

L _

Jumpers

ConfigU....;...p_....,~o- _
I
I
I
I

Figure 9.5 ConfigUp/Pipehead jumper

easy configuration of the IMS C004 link connections.

The MMS takes a list of link connections that are hardwired on the board together with a list of the required
'softwired' connections and generates the configuration details for each IMS C004.



214

For each board in the system, the user can:

• Connect link 0 of any module to link 3 of any module

• Connect link 0 or link 3 of any module to an edge connector link

• Connect an edge connector link to another edge connector link

The MMS is described in detail in the MMS2 User Guide.

9.4 System control

3 Applications

The subsystem control function of the module motherboard architecture allows hierarchical control of networks
of transputers. It enables a module capable of driving a subsystem to reset or analyse a network of modules
and to handle errors in the network. The driving module can itself form part of a network which is controlled
by another module. In this way a hierarchy of control is made possible.

Each module on a motherboard requires a 5MHz clock. The module motherboard specification provides a
scheme for distributing the clock signal from a single crystal oscillator to all the modules on a motherboard.

9.4.1 Reset, analyse and error

Three signals are provided by transputers for the purpose of allowing system control: Reset, Analyse and
Error. The Reset and Analyse inputs enable the transputer to be initialised or halted in a way which preserves
its state for subsequent analysis. The transputer Error signal is connected directly to the processor's Error
flag. See the Transputer Reference Manual for a detailed description of these signals.

A transputer module has a similar set of signals: module Reset and Analyse are connected directly to the
respective pins on the transputer; the transputer Error pin is taken to a transistor on the module to produce
an open collector notError signal that can be wire-ORed with the notError signals of other modules.

Some modules are capable of controlling a subsystem of other modules. They have three extra pins: SubSys
temReset, SubSystemAnalyse and notSubSystemError, which are controlled by the on-module transputer
through latches in memory. These pins are connected to the Reset, Analyse and notError pins of the
modules in the subsystem being controlled. The subsystem can then be reset or analysed by asserting the
relevant signal of the subsystem controller module. The subsystem's ORed notError signal can also be
monitored by the controlling module.

9.4.2 Up, down and subsystem

A module motherboard has three ports that provide hierarchical control: Up, Down and subsystem (see
figure 9.6). Each port appears at an edge connector and has three active-Iow signals: notReset, notAnalyse
and notError. A board is able to control a subsystem of other boards by connecting its subsystem port to
the Up port of the next board. Boards in a subsystem are chained together by connecting the Down port of
one board to the Up port of the next board. A board within a subsystem is in turn able to control another
network through its subsystem port.

Figure 9.7 shows how a board can be connected to a subsystem of boards.

The notReset and notAnalyse signals flow from subsystem of one board to Up of the next board. From
there, they go directly to Down. They are also logical ORed with that board's subsystem reset and analyse
latches and then pass to the subsystem port. The notError signal passes from a board through its Up port.
If it is connected to the Down port of the board above, it is logical ORed with that board's Error signal and
passed to the Up port. If it goes to the subsystem port of the board above, the Error signal is not passed
on, but is handled by that board. (Figures 9.10, 9.11 and 9.12 show the module motherboard system control
logic.)



9 Module motherboard architecture 215

notUpReset
notUpAnalyse

notUpError

Up port

Module motherboard

Up port Subsystem port

notSubSystemError

notSubSystemAnalyse

notSubSystemReset

notDownError

notDownAnalyse

notDownReset

Figure 9.6 Up, down and subsystem

Up

Sub
Down system

I I
Up Up Up

Sub Sub Sub
Down system Down system Down system

I I

I I

Up Up Up

Sub Sub Sub
Down system Down system Down system

I I

Figure 9.7 Controlling a subsystem of boards



216 3 Applications

9.4.3 Source of control

If there are n slots on a motherboard, modules in slots 1 to n may be controlled from either the Up port (or
a host machine if the motherboard has an interface to one, see Section 9.5) or may be part of a subsystem
controlled by a suitable module in slot O. The source of control is determined by a jumper or switch, as shown
in figure 9.8.

stem

S T212

1Board control-0

I select

Down

Subsy

0 Slot 0 ! I () Slots 1 to nand IMI subsystem
control select

------------------
I I
I I
I I
I

Slots 1 to nand I
Slot 0 I IMS T212s I

I I
I I
I IL ________________ ~

Slot
contro

Host subsystem

Up

Figure 9.8 Source of control

The on-board IMS T212(s) may be reset and analysed from the same source that controls slots 1 to n. The
Error pin of the IMS T212(s) is not connected.

A power-on reset circuit is required for the IMS C004(s) on board. An IMS C004 may then be reset at
power-on or by the IMS T212 controlling it. Each IMS T212 has a latch mapped into its memory space. See
figure 9.9. This enables software running on the IMS T212 to reset the IMS C004 either by setting the latch
or by sending a reset message to the IMS C004 Configuration link.



9 Module motherboard architecture

VCC

DO PR

IMS 1212
D a IMS C004 Reset

notMemCE
CK

CL

Power on Reset

..,-- 4n7

--L- GND

Figure 9.9 IMS C004 reset circuit

217

Figures 9.10, 9.11 and 9.12 show the logic required for Reset, IMS C004 Reset, Analyse and Error, respec
tively. These diagrams provide a logical description only: the actual implementation is left to the individual
designer. It is important, however, to include the passive components indicated in the diagrams. The 1K
pull-up resistors on the notUpReset, notUpAnalyse, notDownError and notSubSystemError signals are
necessary to ensure that if these signals are unconnected they are not left floating, but are deasserted. The
4K7 pull-up resistors are required to wire-OR the open collector notError signals from the module slots. Note
that the Dual-In-Line Transputer Modules (TRAMs) document specifies a maximum of ten notError signals
should be wire-ORed together. The combination of each 100n resistor and 1OOnF capacitor filters out noise
on the notUpReset, notUpAnalyse, notDownError and notSubSystemError signals coming from off the
board.

To improve noise rejection, it is recommended that Schmitt gates are used to receive signals from other
boards. These gates should use bipolar technology (e.g low power Schottky 74LS series TTL). It is also
recommended that gates driving signals off the board are capable of providing a full output voltage swing
from OV to 5V, e.g. HCT series gates.

The Reset logic (figure 9.10) uses the Board Control Select switch and multiplexer to select whether Slot 0
and the Down port are reset from the Up port or from the host. The Slots 1 to n & IMS T212 Control Select
switch and multiplexer determine whether Slots 1 to n and the IMS T212s are reset from the Slot 0 subsystem
port or from the Up port or the host. A similar arrangement is used for the Analyse logic (figure 9.11).

In the Error logic (figure 9.12), the Slots 1 to n & IMS T212 Control Select switches and multiplexers select
whether notError from Slots 1 to n is passed either to the Slot 0 subsystem port or to the Up port or the host.
The Board Control Select switch and decoder determine whether Slots 1 to n notError, notDownError or
notSlotOError are passed to the Up port or to the host.

Board Control Select and Slots 1 to n & IMS T212 Control Select correspond to the conceptual switches
in figure 9.8.



218 3 Applications

notUpReset

notA/B
A

y

Select

Up Y
---.l- GND

Slot 0 & Host
interface Reset

notHostReset
B

notDownReset

VCC

Slots 1 to n & IMS 1212
Control Select

UP/HOS~

...-_.a--...... GND
notA/B

A
Other Reset

Slot 0 SubSystem Reset-----......-----t B

y....-------
(Slots 1 to n
& IMS 1212)

notSubSy stem Reset

Figure 9.10 Reset logic



9 Module motherboard architecture 219

notUpAnalyse

Control Select

Up Y
--l- GND

notA/B
A

Slot 0 Analyse
y....------.------

B

not DownAnalyse

VCC

Slots 1 to n & IMS T212

UP/HOSl Control Select

GND
notA/B

A

Slot 0 SubSystemAnalyse
-----,-------1 B

Other Analyse
yt--------

(Slots 1 to n
& IMS T212)

Figure 9.11 Analyse logic

notSu bSys temAnalyse



220 3 Applications

VCC

notUpError

Board
Control

Up y Select

-LGND

notHostError
B ......-----

notSlotO SubSystemE rro r

notA/B

A ......-----
x

GI~----------.....

VCC

1K

vcc

y1---------"

y1----------_---1

Slots 1 to n
& IMS T212
Control

UP/Ho~elect

GND

Slots 1 to n
& IMS T212

U IHostY ~ontrol
p ~elect

GND

B

notA/B
A

B

notA/B
A

GND

GND

notSlotOE rror

Figure 9.12 Error logic



9 Module motherboard architecture

9.4.4 Clock

221

A 5MHz, TTL compatible clock signal is required for each module slot, IMS T212 and IMS C004 on board.
Since the clock must be distributed to a number of modules and devices the buffering scheme shown in
figure 9.13 is used to minimise distortion of the clock waveform caused by excessive loading and transmission
line effects. This is a star configuration and it may be extended indefinitely by adding more buffers at the star
points which may drive further buffers, and so on until the required number of clock signals are derived. The
length of any pcb trace carrying a clock signal should be limited to 30cm.

VCC

100
r--C::::::I--- SI0to Ciack
r--~::::J--- SIot1 Clock

5MHz
Clock

1--<=:::>-- Slot n-1 Clock

Slot n Clock

Figure 9.13 Clock distribution

9.5 Interface to a separate host

Some module motherboards may require an interface to a host machine or system that is not transputer
based, e.g. the IBM PC, VMEbus or Futurebus. Because the implementation of the interface is specific to
the host system, it is not defined here. However, it should allow the system to access the module pipeline
and control a subsystem of modules.

9.5.1 Link interface

The host system accesses the module pipeline via Slot 0 Link 0, as shown in figure 9.14. It is beyond the
scope of this document to define the implementation of the host to link interface, but it might consist of an
INMOS link adapter, the registers of which may be mapped into the host's address space, or it may involve
the use of dual-ported RAM shared between the host and a transputer.

The interface must be capable of interrupting the host when a data transfer in either direction has been
completed.



222

Host system

Host/motherboard
interface

Host subsystem

3 Applications

Slot 0 subsystem

Reset interfaceLink

Pipehead

o

Slot 0

Slot 0 control

2

Up
--.0

t
Slots 1 to n

and IMS T212
control

Down

subsystem

Figure 9.14 Host to motherboard interface

9.5.2 System control interface

The host system must be able to control a network of modules. This is made possible by the provision of
latches mapped into the host's memory. There are three latches: Reset, Analyse and Error, which correspond
to the notHostReset, notHostAnalyse and notHostError signals of the HastSubSystem port shown in
figure 9.14. The Reset and Analyse latches are mapped into successive locations of host memory. Reset
and Analyse are write only by the host; the Error latch is read only and shares the same address as the
Reset latch.

Writing a '1' into bit 0 of the Reset latch asserts notHostReset;
Writing a '0' into bit 0 of the Reset latch deasserts notHostReset.

Writing a '1' into bit 0 of the Analyse latch asserts notHostAnalyse;
Writing a '0' into bit 0 of the Analyse latch deasserts notHostAnalyse.

A '1' read in bit 0 of the Error latch indicates that notHostError is asserted;
A '0' read in bit 0 of the Error latch indicates that notHostError is deasserted.

The host to motherboard link interface is reset by the same source as Slot 0, Le. the Up port or the
HostSubSystem port.



9 Module motherboard architecture

9.5.3 Interrupts

223

The host to subsystem interface must be capable of generating an interrupt to the host when certain eve'1ts
occur on the motherboard. These include:

• Completion of transfer of data from the host to the motherboard

• Completion of transfer of data from the motherboard to the host

• Error in subsystem indicated by notHostError being set

Other system specific conditions may also generate an interrupt, e.g. if DMA is used to transfer data between
the host and motherboard, the end of a DMA cycle may trigger an interrupt.

The host may select which conditions cause an interrupt by setting bits in a register or registers on the
motherboard, mapped into the address space of the host. Other registers hold status information that can be
read by the host to determine the source of an interrupt.

9.6 Mechanical considerations

The size and shape of a module motherboard is determined by its application. However, there are a number of
mechanical constraints which must be adhered to in order to maintain compatibility between different modules
and motherboards.

The size and spacing of module slots must conform to the mechanical specification in the Dual-In-Line
Transputer Modules (TRAMs) document, the main points of which are reiterated here.

9.6.1 Dimensions

In the following, dimensions are quoted in inches for PCS length, width and related dimensions; all other
dimensions are quoted in millimetres.

Width and length

The basic size of a TRAM is a very wide 16 pin DIP, with 3.3" between the two rows of pins. These TRAMs
fit on a 3.6" pitch on their length, and a 1.1" pitch on their width. Extra length is added beyond the pins to
hold the pins, to provide for mechanical fixing, and to polarise the module shape. Modules can be made
larger than the standard size by keeping the 3.3" between pins and using two or more sets of the 16 pins.
They can be made smaller than the standard size, down to a 16 pin DIP with 0.6" between the two rows of
pins, or 1.5" between the pins. These sizes will normally be used for single chip modules or hybrids.

The top drawing in figure 9.15 shows a Size1 module and how the jigsaw pattern fits together between
adjacent modules. The lower drawing in figure 9.15 shows the various sizes of TRAM. Detailed dimensions
of the different sizes are given in the Dual-In-Line Transputer Modules (TRAMs) document.



224

oo
oooooo

8Pin 1 (reference)
0 TRAM A B C 00
0 module
0 size
0 1 3.31 3.51 1.05 3.88 1

0 2 3.31 3.51 2.151 3.88 1

4 3.3 1 3.51 4.351 3.88 1

8 3.3 1 3.51 8.751 3.88 1

1/2 1.51 1.71 1.051

1/4 0.81 0.81 1.051

2/4 0.81 0.81 2.151

A (pitch between pins)

B (to inside edges of board)
o (overall, Including fixing/polarizing lugs)

Figure 9.15 Transputer module sizes

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

~

0
0
0
0
0
0
0
0

0 C0
0
0
0
0
0
0

11
·1

3 Applications

Vertical dimensions

The height specifications, both above and below the TRAM pes, are shown in figure 9.16a. Figure 9.16b
shows a module with these dimensions plugged Into a motherboard.

Figure 9.16c shows a TRAM above components on a motherboard and the overall component height is
13.7mm, which Is within normal specifications for motherboards on 0.8" centres.

It Is recommended that any component reaching a maximum specified height has an insulating surface.

To provide the spacing shown In figure 9.16c, the TRAM pins are implemented as a stackable socket, and
an extra stackable socket Is used between the motherboard socket and module pin.

Figure 9.16d shows an alternative component height which meets the 13.7mm overall height if the module is
not above components on a motherboard.

Figure 9.16e shows two modules stacked.

Note that the datum for component heights on both sides of the TRAM is the component side surface. This
datum Is also used for the stackable socket to minimize tolerance buildup.



9 Module motherboard architecture 225

Motherboard pcs

18.2mm max

TRAM module PeS

Motherboard pcs

Motherboard pcs

:::: Components to 3.7mm ~:::

~~t .!.~.~.!.~..~!.~.R ~.~.~ !.~.!.~~.~.~.~~ J~,.. :======::::: gap = O.2mm min

IiilI

Motherboard pcs

Figure 9.16· Component heights

9.6.2 Motherboard sockets

The TRAM pins/stackable sockets defined in the Dual-In-Line Transputer Modules (TRAMs) document will
plug into any standard IC socket. To meet the component heights given in figure 9.16, the stackable socket
must also be used on the motherboard.

Motherboard sockets for the Slot 0 subsystem signals should be the O.38mm or O.4mm sockets referred to
in the Dual-In-Line Transputer Modules (TRAMs) document.

9.6.3 Mechanical retention of TRAMs

Vibration tests have shown that in a normal office or laboratory environment, the TRAMs remain plugged into
their sockets. In transit, however, or in an environment where there is vibration, some form of mechanical
retention may be necessary.



226 3 Applications

Modules have fixing holes to facilitate mechanical retention, see the Dual-in-Line Transputer Modules (TRAMs)
document. Similar fixing holes should be drilled in the motherboard as shown in figure 9.17. M2.5 nylon bolts
may be used between these fixing holes to secure the modules.

Holes 2.5mm dia
opposite pins
2,7, 10, 15

• •
~--------------------~• •• •• •• •
~-------~------------~• •

O.150.~ I" 3.3" _I

Figure 9.17 Fixing holes for mechanical retention

9.6.4 Module orientation

Figure 9.18 shows the orientation of transputer modules when mounted in slots on a motherboard. Notice how
each module is rotated through 1800 with respect to adjacent modules. This serves two purposes: cooling
of Size 1 modules is improved; and it makes it possible to have Single-In-Line modules at some future date.

00000000 00000000 00000000 00000000
8 1 16 9 8 1 16 9

9 16 1 8 9 16 1 8
00000000 00000000 00000000 00000000

Figure 9.18 Orientation of module slots

9.7 Edge connectors

Connectors are necessary to enable links and system control signals to be taken from a motherboard to other
boards. Several types of connector have been used on INMOS module motherboards.

The IMS B008 module motherboard for the IBM PC uses a 37-way D-type connector, the pin-out of which is
shown in figure 9.19.



9 Module motherboard architecture

notUpReset ~ GND

notUpError 21 notUpAnalyse

EdgeLinklnO 22 EdgeLinkOutO

EdgeLinkl n1 23 4 EdgeLinkln1

EdgeLin kOut2 24 GND

EdgeLin kOut3 25 EdgeLinkln2

EdgeLinkOut4 26 7 EdgeLinkln3

GND 27 EdgeLinkln4

EdgeLinkln5 28 EdgeLinkOut5

EdgeLinkln6 29
10 EdgelinkOut6

11 EdgeLinkOut7
EdgeLinkln7 30

12 GND
ConfigU pLinkOut 31

13 ConfigUpLinkln
PipeHeadLinkOut 32

14 PipeHeadLinkln
notSubSystem Reset 33

15 notSubSystemAnalyse
notSubSystemError 34

PipeTailLinkln
16 PipeTailLinkOut

35
17 ConfigDownLinkOut

Config DownLinkln 36
18 notDownReset

notDownAnalyse 37
~hotDownError

Figure 9.19 37-way D-type connector

227

This connector provides up to twelve links (including ConfigUp, ConfigDown, PipeHead and PipeTail), plus Up,
Down and Subsystem ports. A cable suitable for connecting IMS B008s together is shown diagrammatically
in figure 9.20.

The IMS B012 is a module motherboard in double extended Eurocard format. It has two 96-way DIN 41612
connectors. The bottom connector (P2) provides connections for eight links (including ConfigUp, ConfigDown,
PipeHead and PipeTail) and Up, Down and SubSystem ports. Table 9.1 shows the general pinout adopted
by INMOS for such a connector, making it suitable for use with module motherboards while preserving
compatibility with the the rest of the INMOS range of boards. The pins marked Spare and Spare link may
be used for signals and links specific to a particular application. The IMS 8012 User Guide and Reference
Manual describes how these pins are used on the IMS B012.

The top connector (P1) of the IMS B012 is a DIN 41612 connector that takes a special mini-backplane to
provide connections to 32 links. See figure 9.21 for the mechanical details and Table 9.2 for the pinout of this
connector. On the IMS B012, the P1 connector is used to bring out links from the board's two IMS C004s. See
the IMS 8012 User Guide and Reference Manual for details. The mini-backplane is available from Varelco,
part number 07-8258-0940-01-00. Both the P1 and P2 connectors are used with the INMOS Link and Reset
cables provided with most INMOS board products.



228 3 Applications

37 way D
connector
(Female)

37 way D
connector
(Female)

1m

Link[n]in

PipeTailLinkln

PipeTailLinkOut

Link[n]in ----......X- _
Link[n]out - Link[n]out

For links 0 to 7

PipeHeadLinkOut X- _
PlpeHeadLinkln ~ -...

PipeHeadLinkOut

PipeHeadLinkln

ConfigDownLi nkOut

__--'x"-__PipeTailLinkln

PipeTailLinkOut

ConfigUpLinkOut ><--
ConfigUpLinkln ----" .....---- ConfigDownLinkln

ConfigDownLinkOut X- _
ConfigDownLinkln ~ -...

ConfigUpLinkOut

ConfigUpLinkln

Down

Up ---......~-.........--- Up
~ Subsystem

Figure 9.20 37-way cable



9 Module motherboard architecture

e b a
1 GND GND GND
2 VCC VCC VCC
3 PAUX ne PAUX
4 VCC VCC VCC
5 GND GND GND

6 VCC VCC VCC
7 GND GND GND
8 ne ne ne
9 PipeHeadOut Spare linkout PipeTailOut
10 PipeHeadln Spare Iinkin PlpeTallln

11 GND GND GND
12 ne ne ne
13 GND GND GND

. 14 ne ne ne
15 ConfigUpOut Spare linkout ConfigDownOut

16 ConfigUpln Spare Iinkin ConfigDownln
17 GND GND GND
18 ne ne ne
19 Spare ne Spare
20 Spare ne ne

21 Spare GND ne
22 Spare ne notSubReset
23 Spare' Spare Iinkout notSubAnalyse
24 Spare Spare linkin notSubError
25 Spare GND GND

26 Spare ne ne
27 ne GND ne
28 notUpReset ne notDownReset
29 notUpAnalyse Spare linkout notDownAnalyse
30 notUpError Spare linkin notDownError

31 GND GND GND
32 GND GND GND

Table 9.1 P2 DIN 41612 connector pin out

229



230

~ ~ 0.125"

0.200" min
0.230" nom

3 Applications

Figure 9.21 P1 32-link connector



9 Module motherboard architecture

c b a
1 LinkOutO LinklnO GND
2 LinkOut1 Linkln1 GND
3 LinkOut2 Linkln2 GND
4 LinkOut3 Linkln3 GND
5 LinkOut4 Linkln4 GND

6 LinkOut5 Linkln5 GND
7 LinkOut6 Linkln6 GND
8 LinkOut7 Linkln7 GND
9 LinkOut8 Linkln8 GND
10 LinkOut9 Linkln9 GND

11 LinkOut10 Linkln10 GND
12 LinkOut11 Linkln11 GND
13 LinkOut12 Linkln12 GND
14 LinkOut13 Linkln13 GND
15 LinkOut14 Linkln14 GND

16 LinkOut15 Linkln15 GND
17 LinkOut16 Linkln16 GND
18 LinkOut17 Linkln17 GND
19 LinkOut18 Linkln18 GND
20 LinkOut19 Linkln19 GND

21 LinkOut20 Linkln20 GND
22 LinkOut21 Linkln21 GND
23 LinkOut22 Linkln22 GND
24 LinkOut23 Linkln23 GND
25 LinkOut24 Linkln24 GND

26 LinkOut25 Linkln25 GND
27 LinkOut26 Linkln26 GND
28 LinkOut27 Linkln27 GND
29 LinkOut28 Linkln28 GND
30 LinkOut29 Linkln29 GND

31 LinkOut30 Linkln30 GND
32 LinkOut31 Linkln31 GND

Table 9.2 P1 DIN 41612 connector pin out

231



232 3 Applications



rtrmos Chapter 10 233

Scientific
language
application
parting and
farming using
transputers



234

10 Some issues in scientific language application parting and farming using
transputers

10.1 Introduction

10.1.1 Background

Until recently, cost-effective parallel processing was not available to commerce and industry. Software was
designed and implemented sequentially. Performance upgrades were achieved by using faster hardware and
dirty tricks. Ultimately, though, the Von Neumann bottleneck limits the performance of such a system.

The INMOS transputer [1] avails new opportunities in performance, flexibility, and cost-effectiveness. Software
can now be written to execute concurrently over a transputer network of arbitrary size, depend ing on the
required performance.

INMOS developed a programming language called occam [2] to express parallel requirements. occam is
the preferred programming language for the transputer. However, to protect the existing software investments
of applications not written in occam, INMOS provide a set of so-called scientific-language compilers for the
languages C, Pascal, and FORTRAN. Ada is under development. These compilers allow applications written
before the advent of the transputer to take advantage of the performance and expandability of the transputer
architecture.

This document demonstrates how easy it is to use existing application software with INMOS transputers.
The techniques, which are all incremental and progressively testable, do .not require the application to be
rewritten. Each intermediate stage produces useful operable software, allowing any amount of time and
effort expended to result in an inherently better product. By observing the problems associated with porting
and parallelizing existing applications, a framework and guidelines for writing future non-Occam applications
becomes apparent.

In performing a port to transputers, there is often very little occam to be written. Much of this occam
falls into standard frameworks, which are available from INMOS. This helps to remove some of the 'tedious'
supervisory aspects.

10.1.2 Document notes

Since C developers are expected to represent the largest body of people undertaking application porting, a
lot of this document will refer to C terminology and examples, but without any loss of generality. The INMOS
scientific-language compilers are all handled and used the same way, as far as a mixed language application
is concerned. The main software tools required to implement the techniques shown are contained within the
INMOS OCCam-2 Toolsets.

This document does not fully explore worked solutions, but rather provides examples and offers suggestions
for programmers to work with. The code fragments written in occam should be readily understandable, but it
is not important for the reader to understand the occam in order to understand the examples and concepts.

Three dots . .. will be used to represent areas of concealed source text in both occam and non-Occam
examples. It will be assumed that any applications referred to are not written in occam.

The assistance of Phil Atkin, Jamie Packer, Steve Ghee, David Shepherd, Sara Xavier, and Malcolm Boffey
is gratefully acknowledged.

10.2 Preliminary information

Before discussing the porting of an application to a transputer system, there are a few preliminary details that
are appropriately explained at this juncture.



10 Some issues in scientific language application porting and farming using transputers 235

10.2.1 Transputers

The INMOS transputer consists of a high-performance processor, on-chip RAM, and inter-processor links, all
on a single chip of silicon. The on-chip RAM is very fast (40ns access time on the 25 MHz part), and allows fast
data access and fast code execution in comparison to off-chip performance (the INMOS development tools
allow the user's application to make use of the on-chip RAM [3]). The inter-processor links are autonomous
DMA engines, and permit any number of transputers to be connected together in arbitrary networks, allowing
extra processing power to be injected into a system very easily. The external memory interface allows linear
access to a total memory space of 4 gigabytes on the 32-bit devices.

The transputer family includes 16-bit and 32-bit architecture processors. For further information on the trans
puter family, the reader is directed to [1]. For comparative guidelines on the most suitable transputer / board
products for your application, refer to [4].

10.2.2 Processes

Transputers are hardware processors. Transputer processors execute software processes. Any number of
processes can be executed on a single transputer processor at the same time. The architecture and instruc
tions of the transputer family have been designed to efficiently support high level languages. Transputers can
be programmed in conventional sequential languages such as C, Pascal, and FORTRAN.

The programming model for transputers is defined by occam. occam offers best support for utiliZing the
concurrency and communication facilities offered by transputers. Using occam, a system framework can be
described in terms of a collection of concurrent processes which communicate with each other and with the
outside world. These processes can be written in any language. Processes not written in occam can be
encapsulated in a standard and simple occam framework which makes them appear as an equivalent occam
processes (the EOP, [3]). This allows them to be used without restriction in multi-process environment.

Processes are connected together using synchronized, un-buffered, point-to-point, uni-directional communi
cation channels. An example of this is shown in Figure 10.1, where each circle represents a process, and
each arrow represents a communications channel. Each process may be written in a different language.

Figure 10.1 A collection of processes and their communication channels

Processes can be mapped onto transputers in an arbitrary configuration, which is independent of the pro
cesses themselves. It is not necessary to recompile any of the processes in order to change the way they



236 3 Applications

are mapped onto the available hardware.

In the context of application porting, part or all of the application will be compiled and made to appear as an
occam process in the system.

10.2.3 The transputer I host development relationship

In the development environment, the transputer is normally employed as an addition to an existing computer,
referred to as the host. Through the host, the transputer application can receive the services of a file store,
a screen, and a keyboard. Presently, the host computer can be an IBM PC or compatible, a NEC PC, a
DEC MicroVAX 11, or a Sun-3. One example of this arrangement is shown in Figure 10.2. In all cases, the
development tools execute on the transputer connected to the host. In addition, the VAX- and Sun-hosted
systems offer tools and utilities which execute directly on that host. For a more thorough guide to product
availability, please refer to [4].

The transputer communicates with the host along a single INMOS link. A program, called a server, executes
on the host at the same time as the program on the transputer network is run. All communications between the
application running on the transputer and the host services (like screen, keyboard, and filing resources) take
the form of me~sages. Software written with the INMOS occam toolsets and scientific-language compilers,
to use the standard INMOS servers, assume master status in a master / slave relationship between the
transputer and the host. In this situation, messages are always initiated by the transputer system.

Keyboard

IBM PC Host

Local Hard Disk

To other transputers

Figure 10.2 The transputer / host development relationship

The root transputer in a network is the transputer connecting to the host bus via the link adapter. Any other
transputers in the network are connected together using INMOS links, to the root transputer. A transputer
network can contain any size and mix of transputer types.

The relationship between the transputer and the host during software development does not impose restric
tions on the way the transputer is employed in the target environment.

10.2.4 ¥/hy port to a transputer?

Before proceding further, consider why one may wish to port all or part of an existing application onto a
transputer system.

• Scalable performance : Superb performance is offered by even a single transputer. The more
transputers involved, the faster the application will run.



10 Some issues in scientific language application porting and farming using transputers 237

• Incremental expandability : Opportunities exist for achieving greater performance through paral
lelizing the application (Section 10.4), and through multi-processor techniques and farming (Sec
tion 10.7). INMOS TRAMS [4] are off-the-shelf board products containing a transputer and memory.
These devices can be incrementally purchased and introduced to a system as the need / means
avails itself. There is no need to dispose of hardware already obtained. The software development
tools permit this incremental integration without loss of development effort. Nothing is ever wasted.
The hardware and software adapt to the current climate.

• Straightforward implementation: There can be minimal/no modification to the application source.
It can be as simple as two commands to prepare an existing application for execution on a transputer.
In other cases, tools exist to allow source-level manipulation of the application to take advantage of
new processing power. These tools are provided by INMOS and a growing number of third-party
developers.

• Portability: Any application executing on a transputer, using one of the standard INMOS servers, is
complelety host-independent. The server (thoroughly documented, of low complexity, and shipped
with source and build instructions with the occam toolsets) translates the host-independent com
mands from the transputer to the host-dependent implementation actions. Literally any computer
with a memory-mapped link adapter and a C compiler (to build a server from INMOS sources) can
be used to host transputer applications developed using the toolset development systems, because
only the server must be implemented on the host. For example, transputer software written using
the PC-based development tools can run unmodified on any supported platform, such as the Sun-3.

OK, so you just can't wait to get started. What do you hope to achieve with your port? Let's look at a few
categories of porting open to you :

10.2.5 Different categories of application porting

Depending on the requirements of the port, the time available, and the characteristics of the application, the
following list outlines the categories of application porting :

Minimum modification porting

This involves porting all the application onto a single transputer, with no attempt at parallelization
of the code. The standard services offered by the host server are assumed. This is the fastest to
implement, but is the most restricted in terms of suitable applications.

2 Use with other microprocessors

For various reasons, it may not be desirable or suitable for the whole application to operate on a
transputer system. In this case, a transputer system can be implemented to accommodate part of
the application; a so-called part port.

3 Performance port

This involves attempting to inject some computation power exactly where it's needed in an application.
The transputer software is fragmented into a small number of modules that execute concurrently,
and these can then be distributed across multiple transputers using various application-specific and
general-purpose techniques. Examples of this, discussed later, would be to introduce algorithmic,
geometric, or farming parallelism.

Each category of porting offers a phased, progressive implementation. Each step builds on the workings of a
previous, operational stage. For example, the transputer software would be initially ported without introducing
parallelism, to execute on a single transputer. Then, it would be fragmented into a small number of modules,
using a stub technique to minimize disarray in the source environment. Then, a multiplicity of transputers
would be introduced. Each stage results in a useful working product, building incrementally on a working
platform.

The remainder of the document discusses these categories of application porting, and the incremental tuning
stages, in more detail. But first, lets survey what tools exist to help.



238

Transputer software development tools

3 Applications

INMOS provide a range of scientific-language development systems for C, Pascal, and FORTRAN. All these
support the 32-bit transputer family. In conjunction with Alsys, an Ada environment is being developed, which
can additionally target to the 16-bit transputers. On their own, the vanilla scientific-language development
systems permit a single transputer, single process application to be constructed.

To build a multiple processor system, one is advised to use an INMOS OCCam-2 toolset, in conjunction with
the appropriate scientific-language compiler. The toolsets are available for PC, Sun-3, and VAX environments,
and offer debugging facilities. The examples in this document will refer to tools for the PC environment, and
in particular, the 0705B occam toolset. Access to [3] is useful. Remember though, that for example C
software compiled using the PC development system can be integrated with other parts of an application
on a VAX platform,with the ultimate intention of hosting it on a Sun-3 etc. This trans-platformal portability
overcomes limitations of availability of development tools across the spectrum of platforms.

There are, of course, other development systems to select from. The INMOS Parallel C and Parallel FOR
TRAN systems permit multiple process systems to be accommodated, without requiring any occam to
"connect" the modules together.

Many third party development systems exist. In addition to the C, Pascal, and FORTRAN compilers, there are
third party offerings for Lisp, Prolog, Modula-2, Strand, and BASIC. Some tools are aimed specifically at one
language on one platform, offering an integrated range of compilers, profilers, and debuggers, such as Meiko's
CStools for Sun-3 C applications, or Parasoft's Express. In addition, some standard libraries are available
for scientific and engineering applications (such as NAG, FLOLIB etc). Caplin Cybernetics offer a range
of MicroVAX development tools to allow communication between the VAX and a transputer application (the
Caplin VAX/CSP libraries). A number of transputer operating systems are also available, such as HELlOS,
translORIS, and Hobbes.

Reference to [18] will show a selection of development products available from third party developers. Make
sure you get your copy. INMOS would be pleased to advise individual customers on any aspects of software
development tool applicability.

10.3 Altering the application as little as possible

This section considers the simplest porting situation for an application. The application is to be lifted from an
arbitrary computer system, and executed on a single transputer connected to a supported host platform.

Compliance with the goal of altering the application as little as possible requires that the entire application is
executed on a single transputer. This is because the programmer can overlook the additional overheads of
decomposing the application into a distributed interacting parallel system, and can use the standard INMOS
occam supporting software.

The goal is to modify the application as little as possible, while achieving significant performance increase.

10.3.1 The scenario

Before the porting to transputers, the application looks like Figure 10.3. No assumptions are made about
the nature and capabilities of the original compute engine, except that the application uses only the following
facilities through standard function calls to the language's run-time library :

• Keyboard

• Screen, and

• File system.

It is significant that the Figure does not show the application as having access to any special host-dependent
interfacing features, and the orignal host's identity is not important.



10 Some issues in scientific language application porting and farming using transputers 239

Keyboard

Local Hard Disk

Figure 10.3 The starting point

The ported application is shown in Figure 10.4. It is shown in the context of a PC host. This can be thought
of as a flat port, in the sense that no articulation or re-arrangement of the program structure is performed.

Keybo ard

from .server

to.server

Transputer

Local Hard Disk

Figure 10.4 The entire application on one transputer

The host system, shown as an IBM PC, runs a simple program called a server which ensures that the access
reqUirements of the application in terms of keyboard, screen, and filing, are fully satisfied. The standard
INMOS server supplied with the scientific-language development systems and the D705A occam toolset is
called AFserver. This server is not recommended for use with application ports.

The OCCam-2 toolsets use a different server called iserver. It must be stressed that all new software tools
/ applications should be written to use the INMOS iserver where-ever possible. This server is available
on a growing number of host platforms (such as VAX and Sun-3) and environments (such as HELlOS). It's
adoption brings immediate binary-level platform portability for the software concerned.

A small amount of software support is reqUired on the transputer, shown in the Figure. In this specific situation
of minimal modification to the application, the support is concealed from the programmer and is supplied by
INMOS with the development systems.



240

10.3.2 Suitable applications

Requirements

3 Applications

For the fastest and simplest route to implement an application on transputers, then ideally all of the following
apply:

• All the application source code is available, and can be easily transferred to a host platform for
transputer compilation targetting. It is particularly important to remember that the application need
not originally come from that platform.

• The application is written in C, Pascal, FORTRAN, or occam. Any mixture of these languages can
be employed, but this involves additional steps [3] to operate the development tools. Third parties
provide support for other languages, such as Lisp, Prolog, Modula-2, Strand, and even BASIC (!).

• The application source does not deviate from the appropriate International standards for these lan
guages, to which the INMOS scientific-language compilers conform [4,3].

• The application does not use any special host dependent features like memory-mapped screen i/o,
sound, etc. Keyboard input, file operations, and simple screen output, are all permissible in this
category of application as long as they are performed using standard run-time library function calls.
Interactive-type programs that perform simple cursor-addressing and all facilities concordant with the
ANSI device driver (in the case of a PC host) can be safely placed on a transputer and used with
the standard servers.

This is the scenario depicted by Figure 10.4, which also shows the server running on the host computer, and
some invisible software support on the transputer.

Good candidates

Good candidates for transputer porting would be compute-intensive programs, which do not require much
interaction with any host services (and therefore with a user at run-time). Generally, the smaller the amount of
host interaction, the faster an application will execute. This is because availing host services usually takes a
long time compared to the processing capabilities of the transputer. By avoiding user-interaction, a transputer
host combination can operate together at maximum speed without intervention. Batch-type applications are
generally well suited to this, providing the quantity of file traffic is small in relation to the computation performed
on the data.

Transputers can be particularly impressive with applications employing a lot of floating point mathematics.

10.3.3 Identifying the best transputer for your application

An outline of transputers has already been given. Here is a summary of some important areas in connection
with device suitability in specific cases.

• If an application is integer-based, then a 32-bit IMS T414 / IMS T425 would be appropriate. These
both offer 20MIPS peak performance, with the latter offering a higher performance 25MIPS ver
sion, superior link bandwidth, and additional microcoded instructions for 2-dimensional block moving
(useful in graphics applications, and in block memory initialization) and CRC error detection facilities.

• If the application uses a lot of floating-point mathematics, then one should consider using an IMS
T800. This is also a 32-bit 25MIPS processor, with 3MFLOPS peak performance on a 25 MHz part.
The T800 can overlap floating point operations with normal CPU activity, and with link operations.
A flavour of T800 called the IMS T801 is also available, which has a non-multiplexed address/data
bus. This allows faster (2 cycle) interfacing to external memory, offering higher memory bandwidth.

Evaluation boards and TRAM modules [4] are available from INMOS and third parties, offering different
combinations of transputers and external memory in off-the-shelf units.



10 Some issues in scientific language application porting and farming using transputers 241

10.3.4 Some potential porting difficulties

Certain parts of any application will have been fine-tuned to run on the original host computer. This tends to
make parts of the application less general than they would otherwise be.

For example, the following areas can present difficulties in a total port to a transputer system:

• Some programmers use their own compilers with language extensions for their software. This could
require some re-work to get the software through the INMOS scientific-language compilers. As an
example, strings in Pascal can make porting difficult because almost all Pascal compilers implement
this aspect slightly differently. This applies to any language extension not covered by an appropriate
international standard.

• Timing facilities offered by most languages tend to be host-dependent, and fall outwith the scope of
international standards. Programs making use of non-standard host-dependent facilties like this can
be accommodated by making small modifications to the server.

• Some applications making heavy and intimate use of host-dependent hardware or peripherals are
best left partly on the original host computer. For example, to keep graphical WIMp1-type applications
with memory-mapped screens interactive and responsive, the host-dependent graphics and mouse
interfacing is best left on the host. Such an implementation is known as a part port, discussed in
Section 10.6.

• Portability of tightly coded optimized assembler instructions between processors is notoriously diffi
cult. However, most companies would write an entire application in a high level language (like C)
as part of the normal application development route, and then write selected parts in assembler
following program profiling. So, it is reasonable to expect that (most) low-level functions will have
their high-level counterparts available for porting, in a transputer-supported scientific-language. If
the high-level counterpart is not in one of the transputer's supported scientific-languages, it should
be easier to express it as such than would a specific non-transputer assembler source.

If some source is not available or suitable for porting, then it must present a well-defined "interface"
to other parts of the system. In this case, a small amount of glue-software could be written to mesh
and interact between this code and some transputer software.

10.3.5 An implementation overview

To implement an application on a single transputer, involves three logical steps:

• Source compilation : All the application source must be compiled for the target transputer. The
INMOS scientific-language compilation systems permit separate compilation of source units down
to the function / procedure / subroutine level. This means that it is possible to take an application
which is fragmented over many source files, each containing one or more functions / procedures /
subroutines, and compile each file independently of any others. Once all source has been compiled,
the application can be linked.

• Object linking: Following source compilation, the object binaries are linked together with the relevant
run-time library and a proprietary occam support harness. The support harness ensures that the
application has correct access to the server running on the host platform.

• Bootstrap prepending : Before an application can be loaded onto a transputer, a bootstrap must
be prepended to the linked file. The bootstrap ensures the transputer is correctly initialized before
the application is loaded.

For this scenario, it is not necessary to make use of the INMOS occam toolsets. The scientific-language
development systems are sufficient for porting an application this way.

1Windows, Icons, Mice, and Pull-down Menus



242 3 Applications

However, the occam toolsets additionally offer the INMOS symbolic debugger. This can be used to help
identify execution difficulties in the parted application. Luckily, because in this situation the entire application
is running as a single transputer process, any execution difficulties are likely to be of the traditional sequential
domain type, rather than be due to the interaction of communicating parallel processes.

The result of this implementation is an executable file for one transputer, connected to any of the iserver
supported development platorms.

10.3.6 Porting example: SPICE

Here is an example of a real application that was parted in it's entirety onto transputers, with barely any
modification. An overview is presented here, but the detail can be found in [5].

About SPICE

SPICE is a large public-domain industry-standard electrical circuit simulator program. It is very computationally
intensive, and is well-suited to being placed entirely on a transputer due to its total independence of the host
machine. SPICE is written in FORTRAN 77, receives all its input from one file and generates all output to
another file (ie, it's a batch-mode program, rather than an interactive program). It is an ideal candidate for
the IMS T800 transputer due to it's extensive use of floating point mathematics.

The time taken to port SPICE onto a transputer, once all the source files were available, could be measured
in a number of days. There were only three files (out of 130 files) that had to be slightly adjusted to get them
through the V1.1 transputer FORTRAN compiler. One part of SPICE is written in C, and used a transputer
assembler-insert to establish the address of a variable. This part is the only transputer-dependent aspect.

Performance

The code compiled down to just under 500 Kbytes. of object, which meant it could be run with a 2 Mbyte 8004
(preferably fitted with a T800), or on a 8008 with a 8404 2 Mbyte T800 module. The performance figures
using a 20 MHz T800 were every bit as good as a VAX 11/785, and ten times that of a Sun-3 - not bad for
one T800 transputer !

The high useage of floating point mathematics in SPICE lends itself much better to the IMS T800 transputer
than the IMS T414. The equivalent implementation on a T414 required almost 75k of software support for
floating point routines, and the performance penalty incurred was observed to be about a factor of ten when
compared to the IMS T800 on the same jobs (this is still a very respectable figure).

The table below gives an indication of the performance of some randomly selected SPICE input decks when
run on a variety of different machines. Comparisons were made between a Sun-3 (with and without a 68881
numerics co-processor), a VAX 11/785 with FPA2, and the IMS T800 transputer hosted by a Tandon PC.

The timings, in seconds, represent the CPU time used, apart for the T800 timings which represent the total
job time including disk i/o.

Machine Resist Invert Corclk SenseAmp
Sun-3/160C 0.20 19.40 356.90 1855.50

Sun-3 + 68881 0.30 4.60 44.20 266.70
VAX 11/785 + FPA 0.38 4.51 30.22 141.55

IMS T800-20 1.48 5.17 23.72 153.04

For more information on the parting of SPICE to transputers, the interested reader is referred to [5]. This
reference also discusses various farming opportunities for SPICE in more detail.

2FPA - Floating Point Accelerator



10 Some issues in scientific language application parting and farming using transputers 243

10.3.7 Parting example: TEX

About TEX

TEX is a document formatting and preparation system, originally developed by Donald Knuth. Because INMOS
use a TEX macro package called LaTEX for internal document preparation, it was decided to port TEX to a
transputer to relieve VAX CPU loading.

TEX is most widely available in source as a large single-file Pascal program. However, a public-domain version,
written in C, was obtained. It consisted of around 20 C files, each of which contained many functions. Each
file was separately compiled using the V1.3 transputer C compiler - there were no difficulties involved in
getting the source through the compiler. The binary objects were then linked with the standard run-time
support library, and an invisible occam harness. This loaded and ran successfully first time on an 8 Mbyte
transputer evaluation board - the application was marginally too large for the 2 Mbyte board. Only the
standard C compiler was used; there was no need to use the occam toolset in this case.

A small change was made to the C source code in order to reduce the size of the boot file. This was done
because the transputer C compiler handles initialization of static arrays by storing a byte of initialization
data for each byte of the static array. In the TEX source, there were around 5 such static arrays which were
resulting in a boot file much larger than it need be. This prevented the application from executing on a
2 Mbyte board. The arrays were made non-static, and given simple run-time initialization code, resulting in a
smaller boot file, which loaded and executed on a 2 Mbyte board.

For greater flexibility, a minor change was made to TEX's path parsing mechanism to allow drive names to be
specified as part of a path name. This is useful for a PC-based host, but was not necessary in the original
host which would have been a sizable mini-computer. A small fragment of C was also procured to convert
the time obtained from the host server using the standard C function (in seconds) into an actual date.

Performance

There is little floating point mathematics involved in TEX. This results in a boot file around 300k in size when
compiled for either a T414 or a T800. As a consequence, the performance on the T414 and T800 is very
similar.

TEX performs a lot of disk i/o in addition to heavy computation. This means that the efficiency of the server
program and the link communications can have a considerable impact on the performance of the application.
The table below indicates the performance achieved for different document sizes over a range of machines.
The transputer is PC-hosted. The timings are given in seconds.

Machine Loading time 1 page letter 16 page paper
PC-AT, fast disk 6.04 15.54 112.74

PC-AT with T414-20 30.32 33.40 65.98
VAX 11/785 10.96 14.37 66.82

When loading up TEX to a transputer, a 30 second penalty is incurred while the program boots and loads up
about 500k of format data. A transputer and PC combination attains a performance around that of the Sun-3,
with a boot file around half as big again as that produced by the Sun GNU-C compiler. The performance
degrades to around half that of the Sun-3 for larger tasks because the Sun's disk i/o is so much faster than
the host PC's. However, even this is more than three times faster than PCTEX running the same large jobs
directly on an 80286-based PC. The VAX timings shown represent the CPU time; consequently the elapsed
time would be much longer.

The PC version is not directly comparable because it's format file consists of 16-bit words, which makes it
half the size of the 32-bit versions used by the transputer. This results in a correspondingly smaller heap
requirement. The effect of this is that for smalldocuments, the 16-bit PC has the advantage over the transputer
implementation. But for larger documents, the transputer streaks ahead, and can also be re-run consecutively
without incurring the re-load penalty.

Using the HELlOS transputer operating system [6], developed at Perihelion Software Limited, it is possible
to load the transputer application and the disk-resident format files from a host PC into transputer board



244 3 Applications

"RAM-disks" before execution. This has the effect of reducing disk-bound ilo bottlenecks, and gives even
higher performance.

10.3.8 Further work

Once the application port at this level of complexity is operating, a few steps can be taken without altering
any of the application source to hopefully increase performance. These steps will be most effective if the
application is compute-bound, rather than communication-bound with the host server.

[3] shows how to build an occam harness for the application that makes better use of the transputer's on-chip
RAM. This is because for applications requiring more than 512 (32-bit) words of run-time stack space, the
standard harness places the whole stack off-chip, but prevents a valuable 2048 bytes of on-chip RAM being
used for other purposes (like speed-critical code segments). Most reasonably-sized applications will require
more than 512 words of stack space.

[3] also describes how to force the Iinker to order the object modules of the application to squeeze critical
modules on-chip. The word module is used in this context as meaning the smallest unit of selective loading
that the Iinker can process. A knowledge of which are the most heavily used routines in the application is
required (perhaps from profiling data acquired from the original host system), but the usage of run-time library
modules must also be considered.

10.4 Parallelizing the application

Following a successful implementation of an application on a single transputer, as described in the previous
section, the road to increased performance begins by attempting to introduce some parallelism. This is done
by expressing the application as a number of independent entities which can be made to execute concurrently.
These entities will be referred to as modules, and are the atomic components of the parallelism in the system.

10.4.1 Types of parallelism

There are three broad types of parallelism that can be introduced to an application, all of which lead ultimately
to multiple-transputer solutions:

• Algorithmic: The application is divided into modules, each one of which can execute concurrently
on different transputers. This is the easiest to implement, because there is no need to change
much of the existing application. The idea is to allow modules to process data concurrently with
only occasional communication. There is no necessity to divide up the problem-space or modify the
structure of the application.

• Geometric: The application input data space is divided up into independent data sets according to
the "geometry" of the problem. For example, in image processing, a rectangular grid of transputers
could be used to operate on an image, with each transputer responsible for a fixed area and position
in the scene. This approach works best where the amount of work done in each fragment of
the geometry is the same. Introducing geometric parallelism is more complex than algorithmic
parallelism, because the data space must be sub-divided.

• Farming : Similar to geometric parallelism, the input data is partitioned into independent sets of
data, which are distributed over a transputer network. The difference here is that farming is a more
general-purpose technique than geometric parallelism, and the farm topology is independent of the
application geometry. Farming is also best suited to applications where the unit of work varies in
complexity.

It is advised to begin with an algorithmic parallelization, and then proceed to geometric or farm parallelizations
as required. These classifications all utilize the same module concept.



10 Some issues in scientific language application porting and farming using transputers 245

10.4.2 Why parallelize ?

There are a number of advantages to be gained by fragmenting an application into the concurrently executing
modules described in this document:

• The functional/data-flow decomposition of an application into independent and self-contained frag
ments allows best exploitation of the architecture and parallel processing capabilities of the INMOS
transputer. Performance opportunities for concurrent processing, multiple processor solutions, farm
ing, and pipelining are within reach.

• There is a clean, well definable interface between the module and all external modules. This facili
tates development by independent teams of programmers who work only to the specification of the
interface.

• The source for each module is separately compiled and linked, allowing fast implementation of
specific updates and revisions to a large system.

• Any module can be re-implemented in a different way, in a different language, or on a different
processor, without any impact on the rest of the system, providing it retains the same well defined
interface to other modules.

• Each module's memory is logically separate from the memory used by all other modules.

• If several functions which operate on a data structure exist within a module, then since only one
function in a module can be active at once, mutual exclusion of access is afforded.

• The scoping of functions is restricted to the module they are contained within. This is similar to the
PACKAGE concept in Ada, or the MODULE concept in Modula-2, and has important consequences
in providing security by means of data abstraction. The INMOS transputer Pascal compiler offers a
similar modu1e concept with good control over the visibility of functions and procedures. Instead
of providing this security by a public specification of the procedures and functions available, one
provides a specification of the channels and protocols available for use with the module.

• An implementation can be configured to run easily on a variety of hardware topologies, which also
aids portability between different hosted machines. Operating systems like HELlOS [6] allow an
application, comprizing of concurrent modules, to adapt at run-time to the existing hardware available.
The application requests certain services such as floating-point transputers, or graphics facilities, or
filestores. It is not constrained to any pre-determined hardware topology.

Converting an application to modules in an attempt to introduce algorithmic parallelism will itself only give
speedup if the programmer can arrange for computation activity during periods of screen / keyboard / file
system interaction. The greatest performance benefits will come from distributing a modular system over a
number of transputers.

Attempting to parallelize an application is not as simple as the flat-port to a single transputer described in the
previous section, because one has to identify specific parts of the application involved that could be (profitably)
executed in parallel. This is very dependent on the application concerned, and how it is structured.

10.4.3 Definitions

The following definitions apply rigorously to the remainder of this document:

• The word function is used to represent code units written in a non-OCCam language. The code
units could be functions (as in C and Pascal), procedures (as in Pascal), or subroutines
(as in FORTRAN).

• A function grouping consists of a collection / hierarchy of functions that call each other in some struc
tured way. This is generally the same structure (or a branch of it) as in the flat-ported implementaion.
The senior function is the single function that can be thought of as the "entry point" or "call" to the
grouping.



246 3 Applications

• A "module" is a collection of function groupings which is executed concurrently with other mod
ules. This useage of the word module should not be confused with that generally associated with
separately compiled object binaries, which are not complete self-contained "sub-programs". The
module is the unit of concurrency in a system. A module represents the so-called non-OCCam pro
cess (NOP), which is made to appear as an equivalent occam process (EOP) by a small occam
support harness [3].

• The root module is the module that communicates directly with the host server.

• Modules communicate with each other in pairs. A super-ordinate module "calls" or "accesses"
services provided by a sub-ordinate module. Generally, the root module is the most super-ordinate
module, ie, it ultimately controls all other modules in the system. Generally, to avoid software
overheads, a sub-ordinate module is always accessed by the same super-ordinate module.

• The module interface is the only gateway for modules to communicate with each other and ac
cess data and code items. This communication always takes the form of message-passing, which
conforms to a specified protocol for the modules concerned.

• The environment of a module represents all the data and functions contained within the module.
Figure 10.5 shows each module consisting of an environment boundary, enclosing a number of
items, which are code items (ie functions), and data items.

• The expressions non-local and remote are used to indicate access to code or data. items in a
different module. Access to code or data items in the current module are local accesses. All non
local accesses are accomplished by a communication interchange on specified communications
channels between the two participating modules. All local accesses are unchanged from the original
non-ported application (and the same as the flat-ported application) by reading variables or calling
functions by name, for example.

Armed with these definitions, and a really hot cup of tea, consider the work involved :

10.4.4 The stages in modularizing

To take an application and decompose it into modules, the following stages will generally be involved:

• Decomposing the application into several independent function groupings that can be profitably
executed in parallel.

• Enclosing these function hierarchies with a standard piece of simple source code (in their own
language) to make them appear as message-passing modules.

• Generation of simple occam support for the modules, to make the so-called equivalent occam
process (EOP) [3]. This allows the module to be freely used within a multiple process system.

The EOP modules, with their encapsulating occam, are interconnected using a simple top-level occam
harness. Each transputer in the system will have a top-level harness to bind all the processes together. A
single configuration description then maps all the software components onto the transputer network.

If the application is written entirely in C or FORTRAN, the INMOS Parallel C and Parallel FORTRAN devel
opment systems allow the entire interconnectivity of the application to be expressed without using occam.
This is done using a meta-Ianguage, but achieves the capabilities as the occam Toolsets. This document
refers to the use of the occam toolsets in the examples.

10.4.5 Modules

This section discusses modules, as they relate to the fragmentation of an application into a series of parallel
processes. The system is under the control of a single module, derived from the main control structure of
the original application. This requires the minimum of occam support.



10 Some issues in scientific language application porting and farming using transputers 247

Module properties

Fundamentally, the use of non-Occam languages on transputers is controlled by occam statements to
instantiate sub-programs and allocate workspaces [3]. The occam model imposes certain restrictions on
parallel processes in a transputer system, for example, communication is restricted to the form of messages
propagating on unidirectional point-to-point unbuffered channels. Since a module is represented as a single
parallel process on a transputer, modules themselves can only communicate with other modules by message
passing.

A summary of module properties is now listed :

• Contains many functions from the original application, almost all of which are unaltered.

• Normally written in one language.

• Communicates with modules implemented in any language - all INMOS development systems
share the same internal representations for the most common data types. Thus, characters sent by
a Pascal module will be interpreted as the same characters by a C or FORTRAN or occam module.
Similarly, integers and floating point representations are standardized in so far as the languages
permit them to be, allowing free interchange of standard data types throughout a mixed-language
system.

• Posesses one entry point which can be used to select any of several internal function groupings.

• Communicates with other modules exclusively through channels by means of point-to-point message
passing.

• Has a completely self-contained environment, making no "background" accesses to data or capabil
ities in other modules except by a message-based communication.

• Independent of the hardware topology upon which it is executed,

• Is instanced very infrequently (usually only once at the start of execution of the system), but utilized
very frequently by sending it work request messages and awaiting result replies.

• Terminates cleanly and in a controlled way,

These aspects are now considered in more detail.

Modules provided by the INMOS tools

The INMOS development tools offer the best support and least run-time overheads if each module performs
a fairly substantial amount of work (in the computation sense).

A non-occam unit in a transputer system is almost a complete sub-program. It is separately compiled. It
has run-time library support linked in with it. It has a main entry point that initializes data structures. Each
module has its own run-time library support, even if more than one module uses the same routines from the
library. This leads to a certain overhead in memory space, which increases with the number of non-OCCam
modules in the system. In addition, there are temporal overheads involved in instancing a module, which are
caused by the module start-up routines relocating static initialized data from the tail of the module code area
to the run-time heap for the module.



248

Concerning the collection of functions contained within a module, consider Figure 10.5 :

3 Applications

module
interface\

Module 1

environment
boundary

,/

Module 2

Figure 10.5 Examples of a module contents

Module 3

With reference to the Figure, the small shaded rounded boxes represent functions, and the large unshaded
boxes represent the boundaries of a module. Three different modules are shown :

• Module 1 consists of a single function body and some data items used only by that function. A data
structure and all the functions required to access and update the data structure are generally pack
aged together in the same module. This is normally a sensible way to bundle a function grouping,
in the sense of localizing information and it's manipulation functions. As a corollary, in an implemen
tation of this type only one function may be executing at once, thereby offering a "critical section"
mutual exclusion feature of the type originally proposed by Hoare in his schema for Monitors [7].

• Module 2 shows the main entrypoint function (F1) calling other functions (within the same module).

• Module 3 consists of two function groupings, the F1 ,F2, and F3 grouping shown on the left, and the
F4 and F5 grouping shown on the right.

A module would generally contain many functions and function groupings.

Instancing modules

Modules require some supporting occam, known as the harness. The harness can be thought of at two
levels. Each module is firstly enclosed in an occam wrapping which allocates workspace to satisfy the stack
and heap requirements of the module. This harness and the module together represent an equivalent occam
process (Eap). It is written as a PROC, allowing it to easily connect to other Eaps using only channels. Then,
all the Eaps are interconnected using a top-level harness, one per-transputer. Refer to [3] for guidelines on
all aspects of harnessing.

Modules communicate by passing messages. Modules can utilize an arbitrary number of channels to com
municate externally. These channels are set-up by the occam harness.

occam statements are used to control execution of each Eap module. Because all the useful application
code is confined to non-Occam modules, the system instantiation pattern is for the occam top-level harness
to instance all modules together in parallel at the start of system execution, and let the application control



10 Some issues in scientific language application porting and farming using transputers 249

itself until termination.

define interconnect channe1s
PAR

instance modu1e 1
instance modu1e 2
instance modu1e 3

Once a module terminates, it cannot be restarted under the control of module. Only occam can be used to
instance a module.

Module structure

A module has to be structured such that once it is entered (upon instantiation by the occam code), it does not
terminate until the application has finished with it. It is useful at this point to compare the temporal existence
of modules and functions.

Module communication requirements

Modules communicate with other modules using messages sent on channels. Absolutely anything non-local
that is required by a sub-ordinate module must be copied from the super-ordinate module into the local
environment. This falls into two categories :

• Parameter requirements.

• Non-parameter requirements, ie, free variables.

Some data items will only have to be read into the module, and not exported afterwards. Examples of this
would be "value" parameters and free variables that are not written to in the module. Some data items
must be sent both ways, for example, any "reference" parameter or written-to free-variables. Non-local data
items such as strings and arrays, which are generally referred to by pointers, must have their entire body
communicated (both ways if the data item could be written to) instead of the pointer value.

Any data item used outwith the current environment must be message passed for every interaction with the
module. The messages represent the values of the parameters and free variables that would have been
passed to and from the module if it were still implemented as a function call in a flat system.

Module communication protocol

It is vitally important to ensure that each interaction between two modules observes a constant, fixed, defined
protocol sequence. This is the only safe way to prevent deadlock, and prevent parameters getting muddled
up. For example, Figure 10.6 shows the consequences of an inconsistent message ordering in the sending
and receiving environment. Referring to the Figure, if data elements C and 0 are the same size, then they
will end up at the Controller module having each other's value. If they have different workspace requirements,
then the system will possibly hang, depending on the primitives used at each end to transfer the data - but
the results will definitely be incorrect.

Figure 10.7 shows a system deadlock, caused by an inconsistent ordering of channel reading, between the
sender and receiver modules. Although the Worker and Controller are transferring data in the correct order,
the deadlock arises from the Worker module sending data on channel 1 while the Controller is waiting on
data from channel 2. This data will never arrive on channel 2 because the Worker won't send anything else
until it's message on channel 1 has been accepted. If the language allowed both transfers to occur in parallel
as in occam then there would be no deadlock potential here.



250

Controller Wo rker

3 Applications

Figure 10.6 Incorrect message ordering on a single channel

Controller

[1 ]

[2]

[1 ]

[2]

Worker

Figure 10.7 Deadlock due to incorrect channel ordering

10.4.6 Guidelines on dividing an application into modules

This section discusses some gUidelines to follow when planning the decomposition of an application into
independent message-passing modules. This part of an application porting is very dependent on the way the
application is structured. One must have a knowledge of the data flow within the application to allow effective



10 Some issues in scientific language application porting and farming using transputers 251

partitioning of the program into orthogonal modules.

The objectives are that each module performs a lot of computation, but with minimal communication between
neighbours.

• Coarse Granularity : Parallelize the application into a manageable number of separate modules,
say around ten, executing concurrently on one transputer (initially). This' means that within each
module, there can be a large number of completely unchanged functions. The structure of the
original application is mostly preserved, offering even better maintainability than before, and the port
is correspondingly simpler and faster, and more rugged. The burden of interconnecting the modules
is also lessened. In almost all cases, there are more software processes (modules) than hardware
processors.

• Minimizing inter-module communications : Anything referenced outwith the current module's
environment has to be copied into local environment store before use. One will be able to estimate
the amount of inter-module traffic by the size of each item and the frequency of useage of the
module by it's super-ordinate. A cost can be associated with each message interchange between
two environments. Every communication adds to this cost. Aim to minimize it.

• Restrict host-dependent constructs: It is important to try and restrict the number of modules that
make use of host-dependent services, preferably to only the root module.

For example, any construct performing screen, keyboard, or file system interaction is host-dependent.
If several modules use full language input / output capabilities, then it is necessary to arrange, by
means of multiplexers, for these modules to have a communication path routed to the root module
that communicates with the server. Due to the limited number of links on each transputer, it is best to
try and avoid the overheads of mUltiplexing messsages along chains of modules. The best approach
is to have only the root module performing full language input / output.

Supposing an application has been written in such a way that several clearly delineated operations
proceed sequentially. Each operation reads some input from a file, processes it, and writes the results
out to another file. A particular speech synthesis system springs to mind. If such an application
were to be converted to modules with a view to distributing it across a transputer network, then there
would be serious penalties paid for accessing the data files. Several approaches can be taken. One
approach is to pay the disk access penalty and arrange for occam software to route messages
to the hest for file access. Another approach is to tweak the application to write and read from a
RAM-resident FIFa data buffer3 . This removes the bottlenecks associated with host dependency.
A futher method is to use the HELlOS transputer operating system to use local processor RAM as
disk storage and FIFa.

• Profiling: If a profiling knowledge of the application is available, perhaps from studies performed
on the host system or an examination of the source code, the functions responsible for the most
computationally-intensive tasks can be identified. Attempt to isolate pockets of compute-intensive
activity. There is no current profiling support offered by the INMOS development systems. However,
Parasoft's "Express" development system offers profiling assistance with C applications.

Note that, a detailed data-flow knowledge of the way the application is written is needed to establish
blocks of code that could be completely self-contained, and operate effectively in parallel with other
parts.

• Grouping data structures and their access operations : If one has a data structure and a
number of functions that initialize and access the structure, then it could be appropriate to group
the data structure and these functions into one module. The only way to access the data structure
would be by these access functions contained within the module. This is most appropriate when
several other super-ordinate modules would access this module, otherwise all the data and functions
would be put in the same module as everything that accessed them. This object-oriented approach
offers portability and freedom to alter the implementation details, providing the interfaces to external
modules are unchanged.

3 Note that the application itself need not be modified - an intelligent occam filter can be used to intercept host-bound file access
commands and convert them into FIFO accesses



252 3 Applications

The usual considerations of module traffic compared to computation performed per access should
be used to establish the effectiveness of this grouping. Note that if more than one module requires
to access another, a control channel and occam multiplexer, shown in Section 10.5.3, is required.

• Large or global data structures

If a large "global" data structure exists, it is probably best to package the structure and all its access
functions into a module to maintain coherency and integrity of access to the structure.

For example, a compiler or spreadsheet will contain a number of global data structures. The struc
tures and all functions that operate on them could be packaged up as a module. This ensures
consistency and integrity of the data structure and provides a clean, well-documented interface, to
the outside world.

It is important to ensure that a different module does not attempt to access any parameters or free
variables while they are being used (and possibly altered) by any other environment. This would lead
to an inconsistency in the data values, which may not be appropriate behaviour for the application.
This is normally prevented by a careful and strategic decomposition of the application, and by using
an access protocol that forces read-modify-write operations to the data structure.

If a large collection of unrelated writable global variables have to be shared amongst a number of
concurrent modules, one has to consider the overheads of broadcasting (both ways) the global data.
Using protocol to "lock" access to the module (to prevent unscheduled modifications) can reduce
performance because other parts of the system can become blocked. One could decide not to
parallelise at the level that would require heavy overheads in frequently broadcasting and receiving
global variables. Select a level of modularity that minimizes the traffic on such broadcasts} since
these have to be done both ways for each access by a module.

Under very special and limited circumstances, a suitably robust application may not suffer if infre
quently the "most recent" data values held in a large global array are not used for current computa
tions. In this case, given that all the modules using this data structure are actually guaranteed to be
executing on the same transputer as the data strucure, then the address of the item can be used
to directly write into the memory of the (single-copy) data item. This memory is outwith that of the
module using the data item. Beware of parallel modules attempting read / modify / write operations,
because there will be non-deterministic effects using this technique.

10.5 Implementing modules

Given that a ported application has been examined with a view to introducing some algorithmic parallelism,
the next stage is to implement the identified function groupings as modules. A strategy for implementing the
modules with minimal changes to the application is now discussed by way of examples.

10.5.1 The technique

The method involves making no changes to the bodies of any functions / procedures, or to the way in which
they are normally called. It is unaffected by recursion or un-clean exiting from loops and nested conditional
statements. It is independent of the topology of the transputer network. The technique is also appropriate for
part-porting situations, described in Section 10.6.

Overview

Briefly, the method replaces the call to a function grouping of functions with a message-passing stub, and uses
a standard fragment of non-OCCam code in the called module to re-create the original environment of the
function. This offers the immediate benefits of portability of modules throughout the hardware in a system,
but without explicit parallelism between modules. Then, by a simple extension of the method, parallelism
amongst the modules is introduced, offering even greater performance when used in conjunction with several
transputers.



10 Some issues in scientific language application porting and farming using transputers 253

The technique is as follows:

• The group of functions to be made into a module are placed in a separate file from the functions
that call them. These two files will represent two modules, which will be separately compiled and
linked. Think of the modules as a sub-ordinate (containing the functions just picked out) and a
super-ordinate (containing the calls/accesses to these functions).

• The communications protocol between the sub-ordinate and the super-ordinate modules, in both
directions, is specified. This consists of a sequence of messages, firstly from the super-ordinate to
the sub-ordinate module, then in the other direction. Remember that one channel is required for
each direction. If several different functions in the module need to be individually "requested", part
of the message protocol should identify which service is being requested.

• In the super-ordinate, the original definition of any functions now in the sub-ordinate module is
replaced by a stub which communicates (with the sub-ordinate) using the agreed message proto
col. This ensures that all references to a service in the sub-ordinate are converted to a message
interchange. The stub takes the same name as the function(s) involved.

• In the sub-ordinate, a standard format in the same language is wrapped around the calls to the
functions in the module. This standard format will communicate (with the super-ordinate) using
the agreed message protocol, and also ensure that the module does not terminate until requested
specifically.

• The occam support for each module is written according to guidelines in [3]. The support ensures
each module has sufficient workspace. The modules are connected to each other using standard
occam channel specifications.

Consider now the benefits provided by the technique.

Benefits

The technique is a fast and safe way to implement parts of an application in parallel, because:

• There is no change to either the function bodies or their parameters.

• In the super-ordinate (calling) environment, only one point in the code has to be changed to call a
module, using message passing. Stubs detach all references to a module from its physical position.

• All references to the function within the calling environment are automatically intercepted by the stub,
and fired off to the module performing the behaviour of the original function.

• The stub conveniently collects together the values of any global variables and strings etc required
by the module, and can re-assign to these "globals" after the module returns control.

• It accommodates assignment of function values from a function return (data) operation.

• It allows simple alteration of the module access protocol in the calling and receiving environments,
because all message passing is localized into just one function in each case.

• New capabilities can be added to a module by virtue of a tagged protocol used to identify the service
requested.

Figure 10.9 shows how stubs impact the execution of two modules, MO and M1. The shaded boxes represent
active processing. Module MO processes activities 0, 1, 2, 6, 7, 9, and 11. Module M1 processes activities
3, 4, 5, 8, and 10. Notice that the system about to be described does not yet allow any explicit overlapping
of module processing.



254 3 Applications

10.5.2 Example of module implementation

It is assumed that the application has been decomposed into several groups of function hierarchies, as shown
in Figure 10.8. The lines represent hierarchy between the functions, with an implied reference to some free
variables (global data).

Function hierarchy

Function Hierarchy
In-scope dependency

Figure 10.8 Functions to be modularized

Function F1 is considered to be the top-level function in the grouping comprizing F1, F2, F3, and F4. F1
is itself called from FO, which will be represented by a different module. The method of converting the F1
grouping into a module, and referencing it from the FO module, will now be discussed, with the objective of
not changing the content or declarations of any of the functions / procedures within the F1 grouping, and also
not changing any actual "calls" to the F1 grouping made within FO. These objectives are realized using the
technique described above.

Module execution time without overlapping•
o 1 2 3 4 5 6 7 8 9 10 11

M1

Figure 10.9 Module execution pattern using stubs

The creation of a sub-ordinate module (M1) and it's reference from a super-ordinate (MO) are explained. An
overview of what the two module system will become is given in Figure 10.10.



10 Some issues in scientific language application porting and farming using transputers 255

Module M1
sub-ordinate

Module MO
super-ordinate

Original function hierarchy
is preserved in all modules.

Figure 10.10 The twin module system



256 3 Applications

• Before changing anything

In the pre-modular system, suppose the C function F10 looks something like this:

int F1(param1, param2, param3, param4)
int param1, *param2;
doubl.e *param3;
char param4[];
{

l.ocal. variabl.es defined and initial.ized

COMPUTE !! (Cal.l.s to F2, F3, and F4)

return (answer)

F1 is the top-level function in this grouping. It references functions F2, F3, and F4.

• Making the M1 sub-ordinate module

The M1 module consists of F1, F2, F3, and F4. The call to F1 is enclosed by a controller loop, to
ensure the module never terminates until specifically instructed. This is represented by the controller
in Figure 10.10. Because the functions are written in C, the standard structure for M1 is also written
in C:

main (argc, argv, envp, in, inl.en, out, outl.en)
int argc, inl.en, outl.en;
char *argv[], *envp[];
CHAN *in [] , . *out [] ;
{

int running = 1, tag;
... decl.s for non-l.ocal. data

whil.e (running)
{

/** main l.oop **/

... receive tag from cal.l.ing process
if (tag = COMPUTE)

{
... receive and unpack data from super-o
F1(val.ue, &reference, &bigref, string)

pack and return data to super-o
}

el.se if (tag = INITIALIZE)
... receive and unpack data from super-o

el.se running = 0; /** te~ination **/

source for F1 and dependent functions

Using this arrangement for calling F1 means that none of the bodies or parameters for any of the
constituent functions in the module need be changed. All parameters needed are received and
unpacked by the surrounding controller loop. All non-parameter variables required are also received
as messages and made available in the background, exactly as in the original environment. All
results and changed free variables are packaged and returned as messages to the stub that "called"
the module. Don't worry about the arguments to main () - they are required to allow the message
communications [3].

In effect, the structure described above creates the exact environment that the function would have
experienced in its original place.



10 Some issues in scientific language application porting and farming using transputers 257

• Making the MO super-ordinate module reference the M1 module

The MO super-ordinate module contains a stub function F1 which takes the same parameters as
the original F1. It's purpose is to perform message-based communication with the M1 module. The
structure of the F1 stub could look like this :

int Fl (paraml, param2, param3, param4)
int paraml, *param2;
doub1.e *param3;
char param4[];
{

send messages to Ml modu1.e

receive messages from Ml module

return (answer)
}

The stub contains only the message passing aspects required by the real body of F1 in the other
module. Figure 10.10 shows the stub of F1 being called from FO. The actual computation, originally
performed by F1, is now performed by module M1 , also shown in Figure 10.10.

This technique can be applied to software being used with any of the INMOS development systems.

10.5.3 Implementation notes

There are a few general implementation points to note here'

• Start at the bottom

It is important to convert the most subordinate items into modules first. This is so that when a
super-ordinate item refers to functions within a sub-ordinate fnodule, all the sub-ordinate's access
channels and protocols will have already been defined - all the information required to reference
the other module is available.

• Protocol

It is advisable to use the equivalent of an occam tagged protocol when defining the protocol for
access to a module. As well as identifying which one of several possible senior functions are to
be executed, it is easily extended to incorporate new facilities. For example, module termination
is cleanly addressed using this technique, simply by the use of an additional tag. It also simplifies
including a module loop-back "debugging" mode which can be used to test that messages are being
sent, modified, and returned correctly.

In this example, the tag INITIALIZE is used to handle an infrequent distribution of system data·
which does not form part of the regular interchanges with the module (to minimize traffic). Here is



258 3 Applications

an outline for the controller loop in a module. Notice how simple it is to implement a termination tag.

main ( ... )
{

int running = 1, tag;

whi1e (running)
{

... receive tag from super-o modu1e
switch (tag)

{
case COMPUTE:

hand1e computation request
break;

case INITIALIZE:
... hand1e initia1ization request
break;

case NEWMODES:
... hand1e this computation request
break;

case DEBUG:
. .. hancUe debug mode request
break;

case TERMINATE:
... hand1e termination
/** sets running = 0 **/
/** may propagate terminate signa1 /*
break;

} /* switch */
} /* whi1e */

}

The COMPUTE tag could indicate normal work for the process, and would invoke a standard mes
sage interchange between the calling module and called module. Imported free variables would be
declared outside of main () , and assigned to as 'part of the message input protocol. The DEBUG
tag could be used to select a different operation mode tuned to debugging, perhaps to produce addi
tional message traffic or return checkable results. A retro-fitted function grouping could be accessed
with NEWMODES .

• System termination

It is important that all processes in a transputer system complete their application processing cleanly.
This is often done by the root module initiating a termination condition which spreads to each module
in the system on a predetermined route. This option is pursued in Figure 10.11 , where the termination
signal propagates clockwise from the root module. This can be implemented using a termination tag
described above, which is forwarded to sub-ordinate- modules from super-ordinates.

The shut-down is more secure if each module handshakes the shut-down with all it's sub-ordinates
before handshaking with it's own super-ordinate. Modules are therefore shut down remotest first.

It is possible to arrange for the root module to send a terminate command to the host server, and
neglect to shut down any of the modules. This causes control to be returned to the host operating
system, but the transputer network is left running. This can allow the system to be re-run without
re-booti ng the transputers.



10 Some issues in scientific language application porting and farming using transputers 259

Module 1

Root module

Last

Module 2

3

Last Module

Direction of
propagation of
system termination

Figure 10.11 A system termination example

• Why there's no name clashing

Once F1 has been implemented using a stub, it means that within the system, as a whole, -there are
two entities called F1. One is the original, real, F1, and the other is the stub used to call it. This
does not lead to any name-clash problems, because each module is separately compiled and linked
before inclusion to the rest of the system.

In general, names of stubs, real functions, or data item do not clash with those in other modules.

• Multiple super-ordinates

If a module has to be accessed from many super-ordinate modules, then it is important to realize
that all the tag messages will be sent on the same channel. This is because most non-OCCam
languages do not permit the simultaneous testing of data arrival on several channels (akin to the
occam ALT). A simple occam ALT would be used to funnel access request tags from all super
ordinates to the module. A module expecting access from several super-ordinates has, as part of
the access protocol, an identification tag which it uses to select channels for communication with
the successful super-ordinate. The actual data messages (ie, everything except the tag) travel on



260 3 Applications

different channels, an input and an output channel per super-ordinate. Only the identity of the current
super-ordinate must be sent on the same channel, which is why a simple occam ALT is used to
select one of several.

This is shown in Figure 10.12.

exchange

Shared Sub-ordinate

Module
Current super-ord .... --.......1

Figure 10.12 Sharing a common sub-ordinate module

To terminate the multiplexer, one of the super-ordinates should have an additional channel, and as
part of its termination protocol it terminates the mUltiplexer.

• Handling compile-time shared data

If a large global compile-time constant base exists with respect to a number of modules, that has
to be available to a system of processes, then the easiest way to handle this is to place definitions
shared between several modules in an #include file (for C and Pascal). With C, the pre-processor
#define facility would be used to prevent declaring run-time storage for any of these constants.

In this way, changes to the values of any compile-time constants can be easily made available to
all separately compiled modules that need them. Unfortunately, the V1.1 FORTRAN compiler does
not support file inclusion mechanisms because this is not part of the ANSI X3.9-1978 standard4 , so
one would have to make explicit textual inserts for all global constants (which would probably take
the form of COMMON and PARAMETER statements).

Since compile-time constants, such as C'S #define do not occupy any storage, there is no penalty
in having them #included in lots of modules.

Note that with the current INMOS C compilers (V1.3 and 2.00), static initialized arrays are imple
mented inefficiently with respect to the size of boot file. A static initialized image is stored with the
bootable code, meaning that large arrays lead to large boot files. Try to avoid using static initialized
arrays, especially those defined across several modules.

• Handling run-time shared data

To ensure the integrity and consistency of run-time initialized data shared between several modules,
with each module performing the initialization rather than a broadcast reception, any source code

4Version 2.00 Parallel FORTRAN does support file inclusion



/** stub **/

10 Some issues in scientific language application porting and farming using transputers 261

shared by more than one module should be #incl.uded. This ensures that all modules supposed
to hold the same data actually do.

There are cases where the infrequent broadcasting of global constants, which are initialized at run
time by another module, is very useful. For example, where a module has to perform some intensive
computations to initialize a data structure which is thereafter unaltered but shared between several
other modules. Another example might be where a shared read-only Gatabase has to be loaded
once from slow disk drives and is broadcast once to modules requiring it.

In these situations, this information can be broadcast once only to all the modules that reqUire it,
allowing smaller message protocols to be used for all subsequent interactions.

It is straight-forward to implement any number of these data broadcasts, using the tagged message
protocol described. The sizes of these broadcasts are not so important because of their infrequency
of occurrence (usually only once), and also because the transputer can overlap computation with
message passing. Each module in the system may require a different set of global constants to be
sent to it, because the concept of globality is made with respect to the given module.

If the initialization of the run-time shared constants is trivial in the computation sense, then instead
of calculating once and broadcasting, each module can calculate locally as well as store locally. If
too many modules require frequent access to shared run-time constants, then the application may
be better decomposed.

10.5.4 Some coding examples

This section contains some coding examples of handling parameters and accessing non-local environment
data, with stubs and the message-passing functions. The examples are trivial, in that they only show the
handling of a single type of parameter or free varaible at once. However, by combining the techniques shown,
the interface to a module of any complexity can be derived.

Consider again the F1 function grouping in module M1, being called from function FO in Module MO. These
examples assume that communications between the modules take place using element 2 of the input and
output channel vectors of each module. So, the C examples use out [2] and in [2] for communication,
using messaging functions called _inmess and _outmess from the C run-time library. Although not shown,
each sub-ordinate message fragment is within the main controller loop to ensure services are available until
the module is instructed to terminate.

• Scalar value parameters

A value parameter is one for which any changes that may occur to it in a function / procedure, are
not reflected back to the caller. In C, consider a real value parameter called by_val.ue sent by the
stub F1 in module MO as follows :

int Fl (by val.ue)
fl.oat by val.ue;
{ -

outword(COMPOTE , out[2]);
:outword(by_val.ue, out[2]);

This would be received by the co-ordinator in sub-ordinate module M1 as follows :

fl.oat by val.ue; /** l.ocal. storage **/
{ -

inmess(in[2], &by_val.ue, 4);
Fl (by_val.ue) ;

Body of Fl in here

This is the mechanism used for all scalar value parameters. Consider the same situation in Pascal.



262

Here is the stub, placed in the calling module :

procedure Fl (ByVa1ue : rea1);
begin

outmess(channe1, COMPUTE,4);
outmess(channe1, ByVa1ue,4);

end;

{stub}

3 Applications

{10ca1 storage}

This would be received by the co-ordinator in sub-ordinate module M1 as follows:

Body of Fl in here
var ByVa1ue : rea1;
begin {main body}

inmess(channe1, ByVa1ue,4);
Fl (ByVa1ue) ;

end.

• Scalar reference parameters

A reference parameter is one for which any changes that may occur to it in a function / procedure,
are propagated back to the caller. In e, this is implemented by passing in the address of the item to
be used, allowing changes to be directly written into that item. With modules, the actual data (and
not just the reference to it) must be passed. Here, a reference parameter called by.xef is sent by
the stub F1 in module MO as follows :

int Fl (by_ref) /** stub **/
int *by_ref;
{

outword(COMPUTE, out[2]);
:outword(*by_ref, out[2]); /* sent data */

_inmess(in[2], by_ref, 4); /* received data */

Notice that the new value for the changed parameter is slotted back into the same memory location
as original - the stub does not declare additional storage for it.

The' corresponding communications in the co-ordinator in sub-ordinate module M1 are as follows:

main ( ... )
{

/** 10ca1 storage **/

_inmess(in[2], 'by_ref, 4);

/** ca11 Fl the same way! **/

_outmess(out[2], 'by_ref, 4);

Body of Fl in here

Parameters that are not four bytes long are handled exactly the same way as four byte parameters,
except that the predefines _inmess and _outmess are used. All parameters can be handled this
way, even complex records and structures.

In Pascal, the situation is very similar to that in the previous section, except that the Pascal keyword
var, used to define reference parameters, indicates that the value must form part of the outgoing
message protocol as well as the incoming message protocol.

With FORTRAN, all parameters are passed by reference. Examination of the code would indicate
whether the parameter must be returned to the calling environment, or whether it can never be
changed.



10 Some issues in scientific language application porting and farming using transputers 263

• Function value returns

Supposing F1 happened to return a function value, which may have been used in the original
environment like this :

answer = Fl (&by_ref);

This is easily implemented using the stub approach. An extra message is used in the communications
protocol for the result. The stub in the super-ordinate becomes :

int Fl (by ref) /** stub **/
int *by_ref;
{

int resu1t; /** Fl's return va1ue **/
outword(COMPOTE, out[2]);

:outword(*by_ref, out[2]); /* sent data */

inmess(in[2], by ref, 4); /* received data */
-inmess(in[2], &resu1t, 4);
return(resu1t);

Here, the stub declares local storage for the return parameter.

The corresponding communications in the co-ordinator in sub-ordinate module M1 are as follows:

main ( ... )
{

int by_ref, answer; /** 1oca1 storage **/

_inmess (in [2], &by_ref,' 4) ;

answer = Fl(&by_ref); /** ca11 Fl the same way! **/

outmess(out[2], &by ref, 4);
:outmess(out[2], &answer, 4);

Body of Fl in here

• Strings

Variable length messages, for example, strings, must be handled by sending as part of the protocol
the length of the string to send. By specifying the length of the string before the actual byte vector
containing the data, source and destination modules always know how much data to expect.

A particular efficiency observation is appropriate for C programs. Rather than use the C function
str1en () to calculate the current size of the string, it is faster to block-send the entire area
reserved for the string. As well as avoiding timely computation in determining the string size, the
block transfer can be overlapped with useful computation in other modules. This is true even for
strings occupying only a small part of their reserved storage area.

In C, the zero byte ('\0') is used to denote the end-of-string sentinel. In occam and other languages,
this is not necessarily the case. Therefore, a little recipient-end processing is useful. Any C recipient
module receiving from a non-C module must append the zero byte sentinel before availing the string
to any other C routines. The position can be determined from the length information prepended to
the communication.

As an example of handling strings, consider a C source and C destination module. The constant
MAXSTRINGSIZE is declared in both modules at compile-time. Here is the code for the stub in the



264

source module :

int Fl (string)
char string[];
{

/** stub **/

3 Applications

_outword (COMPUTE, out[2]);

_outmess(out[2], string, MAXSTRINGSIZE);

_inmess (in[2] , string, MAXSTRINGSIZE);
}

The C destination sub-ordinate contains the following :

main ( ... )
{

char newstring[MAXSTRINGSIZE];
int len;

_inmess(in[2], newstring, len);

Fl (newstring);

/** local stor~ge **/

}
_outmess(out[2], newstring, len);

Fl body in here

If the source module were not implemented in C, the zero byte sentinel should be appended in the
C destination. This would also require the transmission of the true length of the string, rather than
the maximum possible length.

• Pointers

Similarly to strings, any items that are referenced by pointers, either through parameters or free
variables, must be sent in their entirety. If any alteration could be made, the entire item must be
passed back to the calling process after use. As an example, consider a small array of double-length
floating point numbers required by a C module environment. Given that the number of elements in
the array is declared as a #define compile-time constant called SIZE_VEC, then the stub in the
calling environment might look like this :

int Fl (dbl array) /** stub **/
double dbl array[];
{ -

int i;
outword (COMPUTE, out[2]);

for (i=O; i<SIZE VEC; i++)
_outmess(outT2], dbl_array[i], 8);

for (i=O; i<SIZE VEC; i++)
_inmess(out[2l, dbl_array[i], 8);

}

Each element of the array occupies 8 bytes, and is accordingly handled by the _inmess and
_outmess routines. It is not necessary to send the size of the array with the transmission, because
the C destination must know this in order to declare a suitable amount of local environment storage
(achieved using the #define useage described earlier).



10 Some issues in scientific language application porting and farming using transputers 265

The C sub-ordinate destination may contain the following :

main ( ... )
{

doub1e db1_array[SIZE_VEC]; /** 10ca1 storage **/

for (i=O; i<SIZE VEC; i++)
_inmess(out[2], db1_array[i], 8);

Fl (db1_array);

for (i=O; i<SIZE VEC; i++)
_outmess(outT2], db1_array[i], 8);

If the size of the array were not specified in a #define statement, then it is necessary for the
stub message protocol to include the number of elements being transported at each useage - as an
additional parameter. Ensure that a sufficient maximum local memory is declared to accommodate
the biggest ever array transfer.

An observation on efficiency is appropriate. All array elements are stored contiguously. If the sub
ordinate and super-ordinate modules allocate array storage "compatibly", then it would be advisable
to block-send the appropriate number of bytes occupied by the array, in one operation. Again, this
avoids computation and looping overheads. This is straight-forward if the two modules are written
in the same language. If this is not the case, differences in the number of bytes per element, array
index subscripting, and multi-dimensional storage must be accommodated.

If a pointer happens to point to an actual function rather than data (as permitted in C for example),
then this would be a good instance of including that function in the same module as the one that
references it by a pointer, rather than in different modules.

To avoid the overheads of sending strings and arrays as messages, a short-cut is possible if it is guaranteed
that the participating modules are resident on the same transputer. In this case, the start address of the data
area may be passed a parameter into another module. This approach can be used in any language, because
it is possible to call a C function to determine the address of any data item. Remember - if this approach
is used and the modules execute on different transputers, the results will be interesting to say the least.

10.5.5 Software methods of increasing performance

Once one has a system operating, there are several areas one can explore to increase the system perfor
mance, for example, by a greater overlapping execution of interacting modules. Some ideas are explored in
this section.

Good ideas

This section lists a few useful techniques for increasing performance in a module-based system.

• Using two stubs per module

The use of a single stub to call a module means that explicit execution overlapping between the
super-ordinate module and the sub-ordinate module is not possible - the super-ordinate sends
messages to the sub-ordinate module then deschedules until the sub-ordinate completes. At the
expense of including some additional synchronization code to the application, two stubs per function
entry in a module can be used.

The existing function stub in the super-ordinate module is split into two parts. The outgoing mes
sage protocol goes in a "start stub", having the name originally used to access the module. The
incoming messages go in an "end stub", with a (uniformly) slightly different but meaningful name.
The programmer inserts a "call" to the end stub at the latest possible moment in the super-ordinate,
following the start call, which serves to prevent the super-ordinate doing anything with results or
changed parameters from the sub-ordinate. This allows the super-ordinate to continue processing



266 3 Applications

while the sub-ordinate executes. The performance increase is most apparent when the modules are
on separate transputers. The re-synchronization is provided by the occam channel mechanisms.
One then still retains all the stub advantages and also has the capability to overlap executions. This
is shown in Figure 10.13. Note that evaluating 6 and 7 does not depend on results of 3, 4, or 5.

Execution time without overlapping..
o 1 2 3 4 5 6 7 8 9 10 11

MO

M1

Time with overlapping stubs
•

MO

M1

3 4 5 8 10

Figure 10.13 Overlapping execution using two stubs per module

Not every function entry point in a module need be converted to two-stubs, and of course neither
must every module. The stub technique is a convenient way to achieve this.

• Send results before house-keeping

Th~ implementation of modules often allows a previously unexploited execution overlap between
communicating modules.

For example, a sub-ordinate module could return all results to the super-ordinate module, and then
do any house-keeping and re-initialization. In cases where a call to a particular function in a module
does not return anything, but just cause some action to be· done on a data structure, there is no
need to re-synchronize with the super-ordinate module.

• Byte vector communications

If the module access protocol involves many, many wonderful messages, it may be more efficient to
package them all up into a byte vector and communicate that in one go. This approach requires that
both partners undertake some encoding / decoding of data items. However, since each communica
tion has an associated small overhead in setting it up, regardless of the size of the communication,
these overheads are significantly reduced. A further advantage is that this type of protocol is easy
to route in farming situations. If the vectors are too large (more than a few Kbytes) then latency
penalties may be unacceptable.

Another approach would be to look at the division of the application into modules, since module
should be selected so as to be compute-intensive with relatively low inter-module traffic.



10 Some issues in scientific language application porting and farming using transputers 267

• Mingling communications and computation in the sub-ordinate

In the sub-ordinate module (containing the actual bodies of the function grouping being stubbed), it
would be possible to have the message-passing inputs interleaved with calculation (once the identity
of the requested service had been established). Similarly, some results may be returnable before
the end of the module's work. If the message protocol is carefuly chosen, this can be intermingled
with output calculations.

The extent of mingling in either of the above cases requires the programmer to make decisions about
the earliest moments that communications can be performed. The modifications to the structure of
the functions in the sub-ordinate require to be done only once.

For example, consider a function FX with six parameters and a return value. The first three pa
rameters are part of the module access protocol, the last three and a result are output only. The
sub-ordinate scenario might look like this :

whiJ.e (running)
{

/** main J.oop **/

... receive command tag from super-o
if (tag == DO FX)

{ -
... read a, b, c from super-o
resuJ.t = FX(a, b, c, &d, &e, &f)
... write d, e, f, resuJ.t to super-o

}
eJ.se other things

source for FX(a, b, c, d, e, f)

By having the protocol changed between the super-ordinate and the sub-ordinate, to facilitate max
imum overlap in execution between the two participating modules, the message reception can be
interleaved with the body of FX. The body of FX becomes:

int FX()
{

get a from super-o
do caJ.cuJ.ations
get c,b from super-o
do J.ots of caJ.cuJ.ations
send f to super-o
do even more caJ.cuJ.ations
send d, resuJ.t, and e to super-o

This technique will usually result in parameters being transferred in a different order to that in which
the function is instanced with.

Bad ideas

These ideas are fast, but lead to loss of structure and lose some (or all) of the portability aspects offered
by stubs. Basically, these approaches should only be used when one is certain that the communications
protocols won't change between neighbours. The bullets are in order of increasing nastinessl

• Unbunched in-line code substitution in the super-ordinate

Using a knowledge of when certain items of data are available, it is possible to replace sub-ordinate
module access stubs by in-line messaging primitives in the super-ordinate module. This involves
sending parameters as soon as they are available, and may even involve interleaving accesses to
several sub-ordinate modules at the same time. For maximum effectiveness in module overlap, an
in-line code substitution for the message-handling body of each stub must be done, where ever the
stub is referenced (ie frequently). This can be macro-automated using an interesting text editor, to
minimize risk of error. Then, each messaging primitive is pushed as far down the source code as



268 3 Applications

possible, thereby increasing potential module overlap.

While this approach (coupled with the others) introduces the maximum possible opportunity for
parallelism in a system (without introducing new modules), it is desparately difficult to modify the
communications protocol between neighbouring modules. Also, the Iikelyhood of errors and deadlock
introduced by unsuspecting subtle modifications to the logic of the application code is increased.

For example, referring to the use of FX in the super-ordinate module, a stub would normally be used
to ensure all references to FX conformed to the correct protocol. The FX stub would be'frequentJy
used within the module :

whi1e (running) /** super-o **/
{

... chuff
resu1t = FX (a, b, c, &d, &e, &f)
... chuff chuff
resu1t = FX (a, b, c, &d, &e, &f)
... chuff chuff chuff
resu1t = FX (a, b, c, &d, &e, &f)

}

Using the technique just described would result in this:

whi1e (running)
{

/** super-o **/

chuff
send a to sOO-o
ming1ed chuff on outgoing
send c, b to sOO-o
ming1ed chuff not inv01ving FX
receive f from sOO-o
ming1ed chuff on incoming
ming1ed chuff not inv01ving FX
receive d, resu1t from sOO-o
ming1ed chuff on incoming
receive e from sOO-o

/* we've just done ONE access to FX */

... do other two accesses in the same way
}

The performance increase at this stage is overshaddowed in comparison to the problems that could
be introduced. All appeal from the standpoint of maintaining a clear structure and the ease of
changing protocols is lost. It's a lot of work to implement and the code size penalty can be large.

Don't do it!!

• Making assumptions about data storage

By making assumptions about the way the compilers store data, it is possible to communicate many
discrete values as byte vectors and save on the encoding / decoding of parameters. This is done
by taking the address of the first of a list of variables, and sending a certain number of bytes of data
from that address. The assumptions are that the variables to be transmitted occupy consecutive byte
locations (yet could be of mixed type). Remember that currently, successive array elements occupy
ascending memory addresses and are allocated from the module's heap storage [3]. Further, by
declaring the data items identically in the destination module, it is possible to stream the byte vector
into memory used by the required variables.

This is a very dangerous technique, which is very dependent on the current revision of the compiler
being used - INMOS make no guarantees about the persistence of storage allocation strategies
between tool releases. This is safest if participating modules are implemented in the same language.
Yet, in some situations this is a useful technique.



10 Some issues in scientific language application porting and' farming using transputers 269

10.5.6 Further work

Only after a single-transputer working system is demonstrable, one may elect to implement the following:

• Optimize the performance by ensuring that the development tools are being used to the best ad
vantage, in terms of using on-chip RAM for the stacks of the most compute-intensive modules, and
also in terms of code-utilization. Refer to [3] for guidelines.

• Incorporate additional processors into the system. Considerations of link interconnectivity, processor
loading, and memory availability [8] can be used to guide the distribution of modules over various
hardware topologies. This distribution has a dramatic effect on the overall system performance.

• One can further optimize system performance by injecting hardware compute power just where it's
needed in a transputer network. The pin-compatability between the IMS T800 and IMS T414 makes
it straight-forward to have a mixed-processor network on non-TRAM boards like the INMOS B003.
The range of INMOS TRAM modules [4] offers a selection of processors, speeds, and memory
configurations which can be tailored to the requirements of the application.

• Retro-parallelize existing modules into finer-granularity systems, following careful study of the com
putation and comunication requrements of the module concerned.

• Introduce multiple-stub techiques at strategic places to obtain more processing overlap.

10.6 Using transputers with other processors

In some applications, it is advisable to consider retaining an original processor in addition to using a transputer.
This is known as a part port. In some cases, the other processor will be the host development platform, and
in other cases the target environment will be a custom processor card. For the remainder of the discussions
on using transputers with other processors, the word processor will be used to refer to a non-transputer
processor. The words host and target will be used interchangeably and without loss of generality for the
remainder of this document, to indicate processors operating symbiotically with a transputer (network).

Figure 10.14 shows an arbitrary processor which interacts with a range of devices and peripherals. A layered
software structure is shown.

Original processor

Keyboard

Local Hard Disk MIDI

Figure 10.14 Before a mixed-processor parting

The lowest-level device driver interfaces operate intimately with the hardware of the orignal processor. The



270 3 Applications

computation part of the application is quite separate from the low-level interfacing code, and uses clearly iden
tifiable requests to the device handlers to obtain the required device services. The application is independent
of the implementation details of these devices.

The software situation following a part port is shown in Figure 10.15. The non-transputer part still handles the
machine-dependent interfacing, and need hardly be changed. This saves time in putting together a mixed
processor implementation. The lowest-level device handlers are left alone, and the computation parts are
replaced by stubs. Before, device requests from the computation part of the application were directly handled
by the low-level device drivers. Now, device requests from the computation elements on the transputer pas'
through a communications medium (a transputer link) and are reproduced exactly on the other processor
using the stubs.

Keyboard

Other processor(s)

Local Hard Disk MIDI

Transpute r.

Compute

OptionJtoot from
ROM or other host

Figure 10.15 After the mixed-processor porting

The part of the application that is implemented on a transputer is subject to all the previous considerations
and techniques in the previous section, on the subject of parallelizing an application.



10 Some issues in scientific language application porting and farming using transputers 271

10.6.1 Suitable applications

Retaining another processor in a system is sensible in applications that make intricate use of some target
dependent facilities, yet are heavily computationally intensive in some clearly identifiable areas. This is often
the case in embedded systems, where the transputer can offer invaluable performance rewards.

For example, the following cases could be considered as suitable for partly leaving on host/target hardware
in a mixed processor environment :

• If the application has normal but heavy host ito references scattered uncleanly throughout it - putting
all this on a transputer and parallelizing it would involve through-routing overheads in multiplexing to
the host server, and bottle-necking at the transputer's link adapter. In this case, leave all the heavy
ito on the orignal host - don't give data further to travel by placing code on a (distant) transputer.

• If part of application is written in a language other than C, Pascal, FORTRAN, or occam eg,80286
assembler (or any other non-supported language), then clearly it has to stay where it is. This is also
true if some source lSnOt available at all, or is proprietary to another company, or would compromize
maintenance and update arrangments, or is under the jurisdiction of another vendor. In these cases,
don't move the affected parts from their orignal host.

• If the application makes intimate assumptions about target environment interfaces, peripherals, or
specialized hardware, (such as DMA5 controllers, blitters, SCSI interfaces, memory-mapped graph
ics, VME devices...) then leave it! Software that talks directly to hardware is notoriously difficult to
write, debug, and is usually timing-critical. It would be inadvisable to disturb such software, so only
move the hardware-independent parts that need some compute-power.

Envisage a system solution which retains the specialist hardware products currently in use, yet
employs a transputer network to increase performance where its needed. This is certainly to be
advised as a first approach, as the existing hardware investment and interfacing which already
operates, is guaranteed to be working.

Some examples of applications which may contain segments to be left undisturbed are those includ
ing:

• Acoustics: from simple host "bleeps" to advanced multi-instrument control using MIDI6.

• Laboratory instrument control and monitoring using IEEE 4887 .

• A memory-mapped menu-based graphics user-interface system, with a pointer device for
inputting commands (in addition to the keyboard). For speed, this would directly write
bytes into host's screen RAM. Such WIMp8 applications are very attractive to use, and are
normally a friendly interface to something computationally heavy. For example, the type of
WIMP interface presented by Turbo C and Turbo Pascal would be ideal for leaving on the
host.

Many non-WIMP user interfaces are assembler-based for responsiveness. For example,
the Lotus 1-2-3 spreadsheet user interface. If an application like Lotus were to be ported
to transputers, the fast user interface would stay on the host, and the computationally
intensive parts would be run on transputers. The result would run faster than implementing
the whole application on a transputer, because of the communication overheads between
the host and the transputer network. For example, this technique was adopted in Risk
Decisions' "Predict" Monte-Carlo simulation package.

Working with other processors requires awareness of a few architectural differences that can exist between
these processo'rs and the transputer network.

SOMA - Direct Memory Access.

6MIDI - Musical Instrument Digital Interface - an industry standard for interconnecting musical equipment.

7The General Purpose Interface Bus (GPIB), sometimes known as the Hewlett-Packard Bus - an industry standard for laboratory
equipment interfacing and interconnection.

8WIMP- Windows, Icons, Mice, and Pull-down menus.



272

10.6.2 Software support for mixed processor systems

3 Applications

In dealing with mixed processor systems, some software support is required to handle problems presented
by the interactions of several heterogeneous processors.

Accommodating architectural differences

When dealing with other processors, certain inevitable differences between the machine architectures have to
be allowed for. These differences are most cleanly handled by the code at each end of the communication link
between the target/host and the root transputer, directly involved with data interchanges. This has the effect
of minimizing the amount of code that has to accommodate these differences. The differences in question
include the following :

• Differences in word lengths. Generally, the other processor will not be a 32-bit word length machine.

• The compilers on both machines will probably allocate different numbers of bytes for certain funda
mental data types. As an example of this, an IBM PC with MicroSoft C will allocate 16 bits for an
integer, whereas the transputer C compiler will allocate 32 bits. Therefore, in transferring integers
between the host, this difference must be accommodated.

• Differences in byte ordering within words.

• Differences in bit ordering within bytes.

• Differences in floating-point representation. Any two software implementations of floating-point sup
port are almost guaranteed to be different. Most software implementations do not conform to the
ANSI/IEEE 754-1985 floating-point standard, with which alllNMOS software complies. For example,
real numbers in Turbo Pascal on a PC occupy 6 bytes, (unless a floating-point co-processor chip is
available for the PC). Therefore, to transfer real numbers between the PC and the transputer, 4 or
8 bytes (for single or double precision) must be derived in IEEE 754-1985 format for the transputer
- a similar conversion must be performed to exchange data the other way round.

Caplin Cybernetics offer a VAXlCSP library package to automatically handle data exchange and format
conversion between MicroVAX and a transputer network.

Using services provided by another processor

There are some implications concerning the software support required on both processor types if code on one
processor references something provided by the other processor. For example, consider the transputer-host
relationship :

If the transputer requires any file, screen, or keyboard operations, obtained by calling standard run-time
library functions, then host software must be capable of supporting the standard server protocol in addition
to any other programmer-defined protocols required by the application9 . This implies that, during this time
at least, the host software assumes a slave role to the transputer. If this is always the case, then one way
to implement this while taking advantage of existing INMOS software is to embody the application within the
standard server structure, and simply add any new protocols to the repertoire. This has the further advantage
of providing a capability to boot the transputer code and "serve" it in one neat manoeuver. However, if the
host code is normally the master of the pair, then it may be easier to embody all relevant parts of the server
(to provode protocol support) into the host part of application (rather than the other way round which has just
been described). In this scheme, the host part will temporarily delegate master status to the transputer while
the server communications are under way.

In the relationship between the transputer and other non-host processors, a custom protocol must be devised
to allow the partners to request services provided by the other. As long as all partners are kept synchronized
to the extent of one master and one slave at anyone time for anyone communication, there should be no
problems. Once this synchronization is achieved, a simple stub technique like that used on a wholly-transputer
system offers little disruption to the actual operation of the functions being performed remotely.

9The run-time library translates anything requiring host services into a protocol sequence, and sends this protocol to the host server.



10 Some issues in scientific language application porting and farming using transputers 273

10.6.3 Hardware support for mixed processor systems

The interface between a transputer network and any other processor is normally achieved by using an INMOS
link adapter1o . This is a byte-wide peripheral, that is memory-mapped into the i/o address space of the other
processor. It can be read from or written to by the other processor, in the same way as for other peripherals.

The first step to implementing a transputer to any foreign host would be to establish operation of a link adapter.
This then permits both processor types to communicate. The rest involves writing software to exchange data
meaningfully, bearing in mind the architectural differences that may exist.

Depending on the total system scenario, it may be necessary to permit the other processor to reset or analyse
the transputer at will, or to boot code into it, or monitor the error flag 11 . These supervisor functions are most
easily accommmodated by mapping in an 8-bit register (in addition to the link adapter),' at a different address
of course. Reference to any INMOS board-product documentation will demonstrate the relevant hardware
techniques. Conformity to the INMOS techniques for implementing link adpater / system supervisory services
is advised.

At application run-time, the transputer code must be booted onto the network. If the development host is part
of the run-time configuration, then the host can be used to boot the network. The standard toolset server
can be used to boot the transputer network, without the need for the programmer to build code into the host
part of the application to fulfill this requirement. The host part of the application can then be started up. For
example, to boot the transputer with transbit .btl. associated with hostbit. exe, the following simple
DOS batch file could be used :

iserver Isc transbit.btl. Isr Isl. #300
hostbit

This has the effect of resetting the root transputer and copying the boot file to it, using the link adapter at
address hex 300. In addition to booting the transputer, the target part may also be used to monitor the
transputer error flag.

Alternatively, the transputer code can be booted from ROM; this is probably the preferred option in embedded
systems. Previously, the technique here was to have the root transputer explicitly boot from ROM by tying
the transputer's BootFromRom pin high. This places certain requirements on where the ROM has to be in
the transputer's memory map, and adds design complexity to the external memory system. However, it is
now possible to have a transputer network boot from ROM by streaming the network boot data in any link
on the root transputer. Phil Atkin's published design of a suitable TRAM, called the TransBooter, is given in
[9]. As well as simplifying the system design by allowing off-the-shelf only-RAM TRAM boards to be used,
the transBooter TRAM also allows fewer RaMs to be employed than would be required in a direct boot from
ROM situation (because it doesn't require word-wide RaMs; only byte-wide), it also overcomes the 64 Kbyte
limitation of a 16-bit transputer based BootFromRom system by allowing up to 512 Kbytes of EPROM.

101n some cases it is legitimate to memory-map other devices into the address space of the transputer, rather than the other way round
as is discussed here. This is not normally done for other processors, but usually only for peripheral devices having a small number of
registers and high requirements for data exchange rate.

11 When dealing with multiple transputer solutions, there are opportunities for allowing some transputers to have reset control over
others. This hierarchy is implemented using the INMOS triplet of subsystem control ports Up, Down and Subsystem. Refer to any
INMOS board product documentation.



274 3 Applications

Depending on the physical arrangement of the mixed processor system, some special considerations may be
appropriate. The transputer links should be buffered if used between equipment racks, or where the electrical
environment is "noisy". RS-422 differential transcievers can be used reliably at up to 20 Mbits/second over
respectable distances (tens of metres). Fibre-optic communications products should be considered where
electrical isolation or greater distances are involved.

As far as the transputer software is concerned, a link is a DMA engine. The other processor(s) can use this to
advantage if they have the necessary hardware to support this (ie, a DMA controller), or they can simply use
"busy" polling techniques to exchange data. There is clearly a performance implication here, which needs
some discussion. The subject of heterogeneous processor communication is explored further in the next
section.

10.6.4 Communication mechanisms

The transputer communicates with other processors by reading and writing messages down the links. This
is how the transputer communicates with the development host, for example. There are several different
ways to handle this communication. In each case, any architectural differences between the communicating
processors have to be accommodated. Some of these communication methods are described now.

Communication by explicit polling

This is the easiest method of communicating between the transputer and another processor. Transputer
development boards such as the IMS 8004 are communicated with by a host server program using "polling".
While this is the simplest method for the host to communicate, it is also the slowest. This is because every
byte is explicitly transferred and a polled handshaking is in operation (a particular bit a status register port).
The ease of accessing port addresses depends on the compiler's implementation of low-level facilities for the
language in question. Some source examples in C and Turbo Pascal of poll-based communication are now
given, for use on any processor other than the transputers.



10 Some issues in scientific language application porting and farming using transputers 275

• C communications

The following examples of C host-source for communicating with the link adapter are taken from
INMOS server source :

#define BIT_O 1

int byte from 1ink ()
/* Read a byte from the 1ink adaptor. */
{

whi1e (! (inp (1ink_in_status) & BIT_O»
,

return (inp(1ink_read»;
}

void byte to 1ink (ch)
int ch; - -
/* Write a byte to the 1ink adaptor. */
{

whi1e (! (inp(1ink_out_status) & BIT_O»

outp (1ink_write, ch);

int word from 1ink ()
/* Read a word from the 1ink adaptor. */
/* A host INT is 2 bytes, and a transputer INT is 4 bytes.*/
{

register int t, ch;
t = byte from 1ink();
ch = byte from 1ink();
t = t I (-ch«S);
ch = byte from 1ink();
ch = byte-from-1ink();
return (t); -

/* 1.s. byte */
/* m.s. byte */

/* Ignore upper 16-bits */
/* sent by transputer */

}
void word to 1ink (w)
/* Write a word to the 1ink, 1east significant byte first. */
/* A host INT is 2 bytes, and a transputer INT is 4 bytes. */
int w;
{

byte to 1ink (w & Oxff);
byte-to-1ink «w » 8) & Oxff);
if {w <-0)

{
byte to 1ink (Oxff);
byte-to-1ink (Oxff);

e1se - -

byte to 1ink (0);
byte:to:1ink (0);

/* 1.s. byte */
/* m.s. byte */

Notice that the last two functions, word_from_1ink and word_to_1ink, accommodate the
architectural differences bet\veen the transputer and the host, in terms of word length and endian
considerations.



$150;
0;
1;
2;
3;

276 3 Applications

• Pascal communications

The following examples of Pascal host-source for communicating with the link adapter are taken
from an example shipped with the IMS B008 PC-format TRAM motherboard :

const
1inkBaseAddress =
inputData =
outputData =
inputStatus =
outputStatus =

procedure outByte (b : integer);
begin

whi1e not odd (port[1inkBaseAddress + outputStatus]) do
begin

{ do nothing }
end;

port[1inkBaseAddress + outputData] .- b;
end;

function inByte : integer;
begin

whi1e not odd(port[1inkBaseAddress + inputStatus]) do
begin

{ nothing }
end;

inByte := port [1inkBaseAddress + inputData];
end;

procedure outWord (w : integer);
begin

outByte (w AND $FF);
outByte «w SHR 8) AND $FF);
if w < 0

then
begin

outByte ($FF);
outByte ($FF);

end
e1se

begin
outByte (0);
outByte (0);

end;
end;

function inWord : integer;
var

bO,b1,junk : integer;
begin

bO . - inByte;
b1 .- inByte;
junk .- iilByte;
junk . - inByte;
inWord := bO + (b1 sh1 8);

end;

Again, the architectural differences are accommodated in these low-level routines. Once written and
tested, all communications use these routines. Architectural dependencies are localized.



10 Some issues in scientific language application porting and farming using transputers 277

In communications-limited situations, if several link adapters are available, then it is possible for the other
processor to send bytes to each one cyclically (ie, round-robin), which can almost linearly increase the data
transfer rate. This is because time which was previously dead-time is now used productively, and once polling
begins there is much less time to wait before one can proceed with the next transfer.

For large amounts of traffic, the "status register polling" technique can be more time consuming than neces
sary, even with additional link adapters. An alternative technique is to use DMA.

Communication by explicit DMA

Some INMOS development boards (such as the IMS B008) support a more complex method of data transfer,
well suited to moving blocks of memory at high speed, between the host and the transputer. This method is
known as DMA (Direct Memory Access), and can be used to achieve higher performance in communication
limited situations between the host and transputer (network). It operates by freeing the other processor of
the supervising of data transfer, allowing it to do other things in the meantime.

DMA is particularly well suited for large blocks of memory, such as image data perhaps, being transferred
from a device on the PC bus to the transputer for processing. This is because the actual data transfer is
performed by additional hardware circuitry which supervises the transfer independently of activity on the main
host processor. DMA can also be used between the transputer and any other processor in the system,
providing each processor concerned is equipped with a DMA controller.

The intialization of a DMA transfer is fully dependent on the DMA controller chip used by each participating
processor. It typically involves setting up a few memory-mapped registers, used by the DMA controller, to
specify the direction of DMA (ie, from the transputer to another processor, or the other way round), the number
of bytes to transfer, and the address. The memory transfer is then handled invisibly by the DMA controllers.
Again, architectural differences between the processor types have to be accommodated.

The performance improvement over the simple polling technique is typically a factor of two, rising for large
block movements.

Communication by device drivers

Although this technique is not likely to be applicable to an embedded system, a processor which runs a full
general-purpose operating system can offer the previous techniques of polling and DMA transfer implicitly,
without the application having to be aware of the mechanisms employed. Assume that the application runs
partly on such a processor, and partly on a transputer system.

Many operating systems allow the programmer to add device handling capabilities, known as Device Drivers.
They allow any program running on the machine to access the device via the operating system. By using
a device driver to handle communications, programs can gain access to the transputer card in an efficient
way, without needing to know anything about the specific hardware interface. Caplin Cybernetics implement
communication between a transputer network and a MicroVAX using device driver techniques.

In UNIX on a Sun-3, adding new device drivers requires the operating system kernel to be recompiled and
linked with the new device driver. In MS-DOS, all device drivers are installed at boot-time, which makes
adding new ones simple. There are two distinct kinds of device under MS-DOS:

• Block Devices: These are devices which usually support a disk file structure. A block device driver
tells MS-DOS about the physical characteristics of its device (Block Size, Maximum Device Capacity
etc) at start up time and thereafter DOS will only make calls to read and write blocks on the device.
A block device cannot be opened as if it were a file because it is itself a File System. In this way
only MS-DOS can access the device directly, the application program may only access the device
indirectly through files held on it.

• Character Devices: These devices have support for transfering random ammounts of data to and
from the device. Unlike block devices, character devices can be opened as if they were files. This
allows data to be transfered to and from the device using the normal MS-DOS read and write to file
calls.

If an MS-DOS character device driver [10] is i:1stalled on the PC to service the link adapter, then the host part



278 3 Applications

of the application can communicate with the transputer simply by opening a "file" and reading I writing data
in the normal manner. The transputer software would read and writes bytes to and from the link connected
to the host, and form these bytes into the correct numeric representations.

For example, the following fragment of host Turbo Pascal attempts to open a device driver installed under
the name of IMS...B004 for reading and writing data to the transputer software:

program DeviceTa1kerToTransputer (input, output);
var

toLink, fromLink : text ;
procedure definitions

begin
write1n ('Device Driven communications');
if fopen (toLink, 'IMS B004', 'w') and

fopen (fromLink, 'IMS B004', 'r') then
begin -

initia1ize 1ink adapter and transputer
perfo~ comms using toLink and fromLink

end
e1se

write1n ('Error opening 1ink device driver')
end.

In a PC system, the list of device drivers is specified in the config. sys file. For the link adapter device
driver, the configuration file might have this line in it :

device = c:\bin\1inkdriver.sys 150 160 IMS_B004

The 1inkdriver. sys file is the device driver image, 150 and 160 represent the link adapter reset and
analyse addresses (on the host bus), and IMS...B004 is the name of the device. The INMOS IMS 8004
transputer evaluation board uses addresses #150 and #160 on the host PC's bus. This technique allows the
same device driver to be installed, with a different name, at a different address. So, for example, if the same
PC had an IMS 8008 card at address #300, then the config. sys file could also have this line:

device = c:\bin\1inkdriver.sys 300 310 IMS_BOOS

To use this environment, the following host Turbo Pascal fragments read and write integers to the transputer :

var
start, finish, i, j : integer;

begin
initia1izations

for i := start to finish do
begin

write ('sending ',i);
write1n (toLink,i);
read1n (fromLink,j);
write1n (' .. and received ',j);

end
end;

The communication of these integers must be handled on the transputer by software expecting to send and



10 Some issues in scientific language application porting and farming using transputers 279

receive bytes. So, for example, the following occam PROC could be matched to the Turbo Pascal above:

PROC the.transputer.test (CHAN OF BYTE from.1ink,
CHAN OF BYTE to.1ink )

lOSE "string.1ib"

PROC readint (CHAN OF BYTE in, INT n)
convert byte stream into transputer integer

[lOO]BYTE string
INT str.1 :
BOOL err :
SEQ

GETSTRING (in, err, str.1, string)
STRINGTOINT (err, n, [string FROM 0 FOR str.1])

PROC writeint (CHAN OF BYTE out, INT n)
~- convert transputer integer to a byte stream
[lOO]BYTE string
INT str.1 :
BOOL err :
SEQ

INTTOSTRING (str.1, string, n)
SEQ i = 0 FOR str.1

out ! BYTE string[i]

WHILE TRUE main body
INT data
SEQ

readint (from.1ink, data)
operate on data

writeint (to.1ink, data)
to . 1ink ! ' *n'
to.1ink ! '*c' -- a110ws read1n in Pasca1 host

The device drivers can be used from any host language supporting file access. By using device drivers and
transfering information as "human-readable" quantities, all the architectual differences between the host and
the transputer are nullified, as far as the application programs are concerned. So, considerations for endian,
wordlength, and data-type representation incompatabilities are no longer important, as long as the transputer
packages up the textual representation of data into suitable transputer format. This has considerable benefit
in exchanging floating-point information, but there is an unavoidable inefficiency because more bytes have to
be exchanged than for data encoded in the normal host representation.

A further benefit exists when it comes to testing the part ported system. It is possible to test one part
without the other, by using real files containing dummy information which represents the data being trans
communicated.

For example, to test the host input and output messaging under a specific execution path, an ASCII file would
be prepared containing expected responses from the transputer system. The host would open that file for
input in place of the incoming channel from the link adapter. The resulting output communications from the
host part can be fed to file and analysed afterwards. Because all data is human-readable, it is easy to prepare
and check test cases.

Increasing data exchange bandwidth by software means

If the hardware implementation of a communications interface between a transputer system an.d another
processor is most efficient at exchanging "large" data blocks (100 to 10000 bytes say), then performing
mostly single-byte transfers is far from ideal.



280 3 Applications

To take best advantage of this, it may be necessary to arrange for the application to perform mostly multiple
byte transfers. For example, a typical file loading would sequentially read bytes from a file until the end
was reached. By either placing a filter on the channels between the application and the file store, or by
adjusting the application slightly, large data blocks can be requested for transfer. The situation is depicted in
Figure 10.16

Non-transputer
system

Block-transfer
interface to
other processor
system

Transputer system

Intelligent
filter to group

data
exchanges

Single-byte data
exchange requests

Figure 10.16 Using a filter to block-up data exchange requests

The filter technique is application independent. It consists of a software process on the transputer connected
to the other processor. The filter detects a request from the transputer application for a byte held (in a file
perhaps) on the other processor, and delays servicing this until the next request has been examined. If
the request is exactly the same, the filter blocks these up until (say) 128 byte reads (or writes) have been
processed in succession. The filter then arranges for an appropriate interaction with the other processor in
an efficient block transfer. If the request is different, it will purge its current backlog. This technique can
be used to good advantage on DMA-type interfaces. The overheads in running the filter are dwarfed by the
increase in performance due to efficient operation of the inter-processor communications.

10.6.5 Implementation strategy

The best implementation strategy for a mixed processor system is very similar to the methods of modularizing
an application described in the previous section. The concept of using message passing stubs in the target
parts, and unmodified original parts on the transputers, is unchanged .

• Transputer code: All transputer code should be implemented in one module on one transputer. This
requires minimal occam support [3]. Depending on whether host services are required, either the
full or standalone run-time libraries are used. A tagged protocol between the transputer and the other
processor is used to select one of several function groupings in the module. The module structure
on the transputer is exactly the same as described in the previous section, making allowances for
possible changes in the master / slave relationship.

• The other processors : All code now implemented on the transputer should be implemented as
stubs on the other processors which access communication primitives to exchange information with
the transputer (using the selected communications method). This localizes and confines all parts
which communicate across the link adapter, and help to make the interface between the target
and the transputer "clean". It also clearly minimizes the amount of recoding that would have to
be done to re-implement them (the communications primitives) in target assembler for performance
reasons. Ensure all communications use the same set of primitives, otherwise something mutually



10 Some issues in scientific language application porting and farming using transputers 281

incompatible is bound to show up at an inconvenient moment.

10.6.6 Testing strategy

There are several areas which could cause problems in a mixed processor system, so a phased testing and
implementation is to be recommended. The following ordering is suggested:

• Initially, check that code can be booted to the transputer, and the exchange and modification of the
fundamental data types (characters, integers, and real numbers etc) is operable. Initially this is done
between any two adjacent hardware partners. This will also serve to test the software frameworks
implemented on the transputer. Furthermore, any difficulties concerning floating point representation,
differences in machine word length / endian possibilities etc will also show up. This test should be
performed using some dummy functions, in a dummy module written explicitly for test purposes, but
conforming to the ultimate module structure and using the ultimate occam harness techniques.

• Once this has been shown to operate, the next stage is to implement one real function grouping
(in only one module, and on only one· transputer). This will test the proposed control structures
operating between the two systems.

• Once operational, proceed to incrementally implement all the function groupings required, building
on the working steps of the previous stages. This involves making stubs of the functions left on
the other processors. Phase the stub implementation and test systematically as you go. Confine
everyting to one module for simplicity.

One unique feature of a system incorporating transputers is the ease by which the system can be investigated
by software means when behaviour is unexpected. For example, simply connect any unused transputer link
to a host platform supporting the iserver, (and arrange for the transputer to boot from link), and wheel
in the toolsets' symbolic debugger. This allows an embedded system to be examined, pr to have diagnostic
code loaded instead, even if the debugger platform is not part of the normal configuration. A network memory
dump can be taken at a remote customer site by a field engineer, and taken back to the laboratory for analysis
and reproduction by the debugger.

10.6.7 Further work

Once the mixed processor system is operational, and all code intended for transputer targetting is implemented
on the transputer, there are some other areas that can be looked into.

• Use the development tools to make best use of the transputer's on-chip RAM.

• Apply modularizing techniques from Section 10.4 to the transputer code.

• Then apply multiple transputers to the problem.



282 3 Applications

10.6.8 Mixed processor example

The implementation techniques discussed above are now illustrated by considering a Turbo Pascal application
on a PC. Part of the application is to be ported and executed on a transputer, using the Transputer Pascal
compiler.

Suppose only function HugeTask is to be ported to a transputer. It has two value integer parameters, and
returns an integer result. It uses no free variables. The actions of the function are not important. The stub
for this, left on the host PC, may look like this.

function HugeTask (a, b:integer) : integer; { stub !!}
begin

outWord(OpCalcl);
outWord(a);
outWord (b) ;

HugeTask := inWord;
end;

The integer tag OpCalcl is simply used to identify that the HugeTask function is required, rather than some
other function which may be subsequently implemented. The procedure outWord and function inWord
accommodate architectural differences between the PC and the transputer.

The Pascal on the transputer represents a module. A standard "entry-point handler" called runController
is used to read the tag identifying the action requested, and then passes control to a message-passing
procedure for the action; DoHugeTask in this case. This structure allows simple accommodation of many



10 Some issues in scientific language application porting and farming using transputers 283

different functions on the transputer :

modul.e remote;

$incl.ude '\tplv2\channel.s.inc'

const
OutChannel. = 2;
InChannel. = 2;

OpCal.cl = 0;

function HugeTask (a, b:integer) : integer;
{ Define the original. function here}

procedure DoHugeTask; { Message handl.er for HugeTask }
var

a, b, resul.t:integer; { l.ocal. storage}
begin

inmess(InChannel., a, 4);
inmess(InChannel., b, 4);
resul.t := HugeTask (a, b);
outmess(OutChannel., resul.t, 4);

end;

procedurerunControl.l.er; {Standard component }
var

stopping : bool.ean;
command : integer;

begin {runControl.l.er}
stopping := FALSE;
repeat

inmess(InChannel., command, 4);

if (command = OpCal.cl) then
DoHugeTask { List al.l. modul.e entry points here}

el.se stopping .- TRUE;

until. stopping;
end; { runControl.l.er}

begin { main }
runControl.l.er;

end.

A standard occam harness connects the Pascal module channels to the link adapter connected to the host.

The same structure of software components is used for any application, in any language. On the other
processor, message-passing stubs replace the functions to be ported. On the transputer are placed all
the ported functions (like HugeTask), a message-passing handler for each one (DoHugeTask performs
communications to reproduce the original environment, calls HugeTask, and sends the results back), and
one standard runControl.l.er framework.

10.7 Farming an application

Farming involves using additional processing power (in the form of transputers) to work concurrently on a
problem and thereby achieve a performance or through-put increase.



284 3 Applications

A processor farm consists of a transputer network, frequently of regular topology, which routes work to
worker processors and retrieves the results when they are ready. The general farm structure is shown in
Figure 10.17. It is independent of the application, and requires only minimal implementation modifications to
a suitable modular application.

Work distribution channel

From other
transputers

channel

Figure 10.17 A general farm structure

In a processor farm, the work to be done for a single job is decomposed into a set of independent tasks
which can be executed concurrently, with each processor performing a part of the total task. For example,
the Mandelbrot Set [11 ,12] is a infamous example of a transputer farm. Each processor calculates a small
part of a scene, which is gradually built up in patches. Only a small amount of input data is required to
enable a worker to calculate the image for that patch of the total scene. Ray tracing [11,12] is another good
opportunity for processor farming. A database of world objects is broadcast to all workers. Each processor
then computes an image tile for a small segment of the image.

Alternatively, a farm of entire applications can be constructed. This is useful where the same application
has to be run many times, each with different sets of input data, and where the outputs can be stored
independently (perhaps on the host's filestore). Each transputer executes the entire application, which is
completely unmodified.

Before looking in detail at some different categories of processor farm, consider what affects an application's
suitability for farming.



10 Some issues in scientific language application porting and farming using transputers 285

10.7.1 Suitable applications

The requirements for introducing farming to an application include :

• Independent sets of input data are available (or can be determined automatically) at the start of
execution.

• The application does not require user interaction to be associated with each data set while operating,
ie, autonomous operation.

• The application is easily ported onto (initially) a single transputer. This involves satisfying the re
quirements given in Section 10.3.2.

10.7.2 General farm discussion

This section discusses farming in general, beginning with the various components found in a farm. Each
transputer in the farm typically executes identical "worker" code.

The software components

There are three key software components in any farm, in addition to the application to be farmed. These are
explained with reference to Figure 10.17.

• Router process - R : This process feeds work tasks into the farm; If the local worker application
is busy, work is passed onto the neighbour processor.

• Results merger process - M : This process combines results from the local worker with those
from the neighbour worker in the farm, and returns them towards the controller process.

• Farm control process - Fe : This process controls the distribution of work and data around the
system by sending jobs out whenever a processor is free, until no more are left. It never sends more
work than there are workers. The control process closes down the farm once all the work has been
done.

All these processes are written in occam, but the application itself remains in C, Pascal, or FORTRAN. Each
farm worker node requires a router and merger to be run in parallel with the application. The root transputer
usually controls the farm, and therefore additionally executes the farm controller process, (although a farm
can have it's root anywhere within a transputer network). Various data buffers employed for performance
reasons are not shown in the diagram. Reference [11] gives good advice and many practical examples.

The farm protocol

All traffic within the farm should be made to conform to a rigid protocol. The design of the protocol is trivial
in relation to the actual application, and can be made independent of the application. The usual procedure is
for the protocol to allow control and data information to travel on the same channels. This protocol is typically
variant, with less than five variants. In particular, a Work Request variant would be sent by the farm controller,
and accepted by the first available processor; and a Results statement variant would be sent back to the
farm controller from a worker. Other variants may allow debugging messages to be transported, and allow
the farm to terminate cleanly.

In a farm, results often come back to the controller in a different order to which they were sent. This implies
that with each results packet, information must be supplied to allow the non-farmed environment to receive
the results and "put them in the correct place". A neat way to do this is tu consider the specification of the
work packet to include any necessary pointers / addresses useful to the receiving process. So, for example,
any writable parameters, results, or free variables passed between the module to be farmed and it's calling
environment, must also have storage addresses sent as part of the work request protocol. These addresses
also form part of the results protocol, and allow the receiver outside the farm to store data in specific memory
locations. An example of this is given later.



286 3 Applications

10.7.3 Interfacing to the farm

Usually only part of an application is farmed. This requires interfacing to the non-farmed bit. To achieve
this, the farm control process has two channels to the outside world - one accepts work requests, and one
delivers results. The occam model of ~ommunication ensures synchronization between all the participating
processes.

There are two cases worth looking at.

Interfacing to another transputer process

The FarmInterface process shown below is sent work requests on CommandToFarm by the rest of the
application. Replies from the farm are collated and returned to the application on FarmRepl.y. The farm
protocol is defined as farm. p. Work is only injected to the farm if the controller has received at. ready
tag, indicating an available worker. The controller keeps a count of the number of available processors to
which work has not yet been dispensed.

PROC FarmInterface (CHAN OF farm.p fromFarm, toFarm,
CHAN OF ANY CommandToFarm,
CHAN OF ANY FarmRepl.y)

SEQ
initial.ise

WHILE fa~ctive

PRI ALT
-- Test for free workers needing tasks
(FreeWorkers > 0) & CommandToFarm ? l.en::data

SEQ
... send work to farm
FreeWorkers := FreeWorkers - 1

-- Handl.e data from farm
fromFarm ? CASE

t.ready; processor
PRI ALT

... if work to send then send it

... remember avail.abl.e worker has no work
t.resul.ts; processor; l.en::data

FarmRepl.y! l.en::data -- data to rest of appl..

Interfacing to a process on a non-transputer processor

In the situation where work is being dispensed from a non-transputer processor, the synchronization offered
by a pureiy transputer-based system is lost. The other processor, say the host, in order to synchronize with
transputer activity, must be allowed to "free run" and send task after task to the farm before any resu Its are
received. This can be accommodated in a handshaking protocol between the host and the transputer, and
encapsulated in a HostInterface process which connects directly to the host and the FarmInterface
process.

The HostInterface implementation shown below operates as follows. If a valid job specification is
received, it sends it onto the farm directly. If the farm is fully busy, it will be unable to receive any further
correspondance from the host. If there are any results from the farm, they are returned as part of the
handshaking; otherwise a null result is returned. At the end of the application, this mechanism will have
resulted in fewer valid results received than job specifications issued. An enquiry tag t . Enquiry is used



10 Some issues in scientific language application porting and farming using transputers 287

to return results if there are any -.this can be used by the host until all results have been received.

PROC BostInterface (CBAN OF BostToTP.p fromHost,
CBAN OF TPToBost.p toBost,
CBAN OF ANY CommandToFa~,

CBAN OF ANY Fa~ep1y)

SEQ
initia1ize

WHILE going
SEQ

fromBost ? CASE
-- Va1id job for the fa~

t.Va1idJob; 1en::data
PAR
CommandToFa~ ! 1en::data
PRI ALT

FarmRep1y ? 1en2::data2
toBost ! t.Va1idResu1ts; 1en2::data2

TRUE 'SKIP -- no resu1ts yet
toBost ! t.Nu11Resu1ts -- nu11 rep1y

Farm enquiry
t.Enquiry

PRI ALT
Fa~ep1y ? 1en::data

toBost ! t.Va1idResu1ts; 1en::data
TRUE 'SKIP -- no resu1ts

toBost ! t.Nu11Resu1ts

10.7.4 Performance issues

Linearity

Farming can offer a linear performance increase for an application. In some cases, this can be super-linear.
For example, in the ray tracer farm, ten transputers can perform at eleven times that of one transputer. The
reasons for this are two-fold. Firstly, the use of each transputer's on-chip RAM means that more of the
"total" task can be accommodated in ultra-fast memory. Secondly, in any application there is generally an
initialization portion which only has to be done once. In the ray-tracing case, the overheads of initialization
are minimized because each processor does their own portion.

Priority

All routing processes are run at high priority to ensure that traffic is kept moving in the farm. This helps to
ensure that workers at the extremities of the farm are kept serviced [13]. If the workspace of the routing
processes is in internal on-chip RAM, the latency of response to link inputs is reduced 12 .

The application code is executed at low priority.

Protocol

Counted byte vectors are frequently used within farms because this serves to make routing and merging
simple, and is more efficient per byte sent - the amount of processing resource used by a communication
depends more on the number of communications than the amount of data in each communication. However,
for large byte vectors, there is a transfer latency penalty to be paid. By breaking a long message into shorter
ones, several processors can transfer the data concurrently which reduces inter-processor latency (this is
useful when broadcasting data throughout an array) [12].

12When a process is scheduled, several words are written into the workspace of the descheduled process. If this workspace is on-chig,
the process swap-time is reduced.



288

Overheads

3 Applications

There is virtually no overhead in running the additional farm routing and control processes [11]. This is
because the transputer can perform communication and computation concurrently and independently of each
other. Processes waiting to communicate are descheduled by the transputer hardware, thereby freeing some
processor resource for other processes. There is a penalty paid for setting up each communication. This is
independent of the amount of data in the communication, favouring the use of efficient counted byte-vector
communications protocols.

Buffering

Software buffers should be used to decouple communication and computation, allowing a greater overlap
between them. In particular, buffers should be used on all routing and merging channels to decouple the
communications from computation, allowing a very high compute-utilization [11, 12]. Copying data in buffers
is inefficient, so a swing-buffer approach would be used - data fills one buffer while work is drawn from
another, then the other buffer fills etc. This can have a dramatic effect on the overall system performance
[11]. These buffers are easy to implement in occam. For example, work packets can be pre-fetched and
bufferred locally by each worker transputer. This allows a new work task to begin immediately the old one is
completed. Buffering on each input to the merger process allows a greater throughput, again by allowing a
new task to begin immediately and achieve computation overlap with communication.

Load balancing

The farm achieves a run-time dynamic load balancing throughout itself, with the whole system keeping itself
as busy as possible [13]. This is because workers accept work automatically as and when they finish a work
packet. If the time taken to process a work packet is longer than the time taken to receive a new work packet
from the controller, then each worker is automatically kept busy all the time~ The end-latency in a dynamically
load-balanced processor farm is much lower than in a statically load-balanced system.

General farming principles

The following list contains some additional points concerning processor farming :

• Farming is generally independent of the application, and if the entire application is being farmed it
requires absolutely no modifications.

• Each worker activity operates on orthogonal (ie, independent) data sets with respect to other workers.
A data set may correspond to an entire application's work information, or more probably it will
represent a small proportion of a total task.

• The worker module should have preferably only one channel of "input" and one channel of "output"
messages. If this is not the case, either modify the worker to satisfy this criterion, or make the Router
and Merger processes reproduce the multi-channel environent locally on each worker transputer
(otherwise the farm is not independent of the applciation).

• Farming is a particularly useful technique when the amount of computation required in any given
sub-task is not constant [13].

• The work packet is devised to cause a suitable amount of work to be done by each worker, in relation
to the overheads of routing the work request packets through the farm. This parameter is termed
the ratio of computation to communication, and should be as large as possible.

• The ratio of computation to communication can vary with the hardware used. For example, [12]
shows that introducing a floating-point transputer to a farm will drastically alter the computation load
of a Mandelbrot Set worker. As a consequence, the size of work packet should be increased to
retain a favourable ratio.

• Generally, farming implies that the same execution code is used for each worker transputer. The
INMOS development tools create the smallest boot files if the code on each processor is exactly the
same.



10 Some issues in scientific language application porting and farming using transputers 289

• In systems where some farm-wide read-only data has to be shared by all participating workers,
(such as a physical model for a ray-tracer), this database can be broadcast once-only at start-up to
minimize traffic per work packet during rendering requests.

• If smaller tasks can be sent to a farm towards the end of a job, this helps to keep all processors busy
for the longest time. This is because all tasks take a different time to execute, when the jobs run
out there will be successively more processors inactive before the farm shuts down. Saving short
tasks until the end helps to minimize the amount of non-utilization.

• Farms arranged as a linear pipes are easiest to handle routing and distribution requirements. How
ever, a structure having the minimum depth will result in the greatest performance because non-local
communications slightly degrade performance.

Armed with this general farm information, it's time to look at three specific types of farm, and consider how
they differ from the general farm discussion above.

10.7.5 Farming part of an application'

Scenario

Transputer

To host----~~

or other
process or

(a) Before farming module D

Transputer

To host----~~

or other
processor

(b) After farming module D

Transputer Transputer

Figure 10.18 Farming part of an application

Start with an application that has already been ported to a transputer, and has been split into modules.
Assume that a module can be assembled that represents the part of the application to be farmed (which is
of course very compute intensive in relation to the amount of data that has to be provided with earn work



290 3 Applications

task). This might be the case where a non-farmed user interface package dispenses work to a farmable
computation module. It could also be a part ported application, providing that not all of the original transputer
code is farmed. Figure 10.18(a) illustrates this situation, with Module D to be farmed. No assumptions are
made about other processors the farmed module may require to interact with, but in this case the best results
will come from farming a module that directly (or otherwise) makes no accesses to a host processor (because
Module D is distant from the host and would require protocol routing on intermediate modules).

Implementation

The implementation starts with a ported application that has been decomposed into modules. One or more
modules will be identified as the part of the application that is to be farmed - the worker; Module D in
Figure 10.18(a).

With reference to Figure 10.1.8(b) : Between the non-farmed part of the application and the worker module, a
farm control module, FC, is written in occam. This communicates with the rest of the application via a stub,
in such'a way that the channels and protocols to the rest of the application are minimally modified. The farm
controller divides the total task into a number of sub-tasks, and injects these into the farm using the Routers
R. Module D is replicated in the farm, completely without change. Additionally, the farm controller FC ensures
that results, which will be returned in a non-determinstic order via Mergers N, are suitably returned to the rest
of the application (the results protocol will include enough information to allow them to be correctly slotted in).

10.7.6 Farming an entire application

Scenario

Consider farming an entire application, which is already successfully ported to a single transputer (this pre
cludes a part ported application). The application uses host services, so it is necessary for these host accesses
to be correctly ir:'lterleaved to prevent cross-interference. The application is not modified - it doesn't even
know it's in a farming environment. With reference to Figure 10.18(a), this would correspond to farming the
whole of Modules A, B,C, and D, with Module A connected to the host. In this case, the controller FC of (b),
instead of being a stub to the rest of the application, would enquire of the host the work to be done. The host
will provide a list of (independent) tasks to be performed. Each transputer will perform an entire "application's
worth" of work.

Implementation

This farm is implemented without modification to the application. Some issues are:

• Task specification : A file of tasks to be executed is provided by the user, and the farm controller
reads this and distributes information to available processors. The lines of this task file are sent
(usually) to appear as the command line parameters to the application programs running in the farm.
These will typically represent the names of files which must be opened and used by each application
- all the files must be different per application ! The rest of the command line parameters to the
farm program could be appended and also sent to the farmed application.

• Sharing server access : Although the farm will support multiple applications accessing the server
concurrently, the server facilities being used determine the suitability of the application for this type
of farm. For instance, if the application participates in screen output, then it will appear interleaved
with all the other applications in the farm.

• Common keyboard input : Keyboard input which would be common to all applications is also
readable from a file, and the manager distributes this along with the tasks specifications. This
avoids any user interaction with the farm once it is running, which ensures the fastest possible
through-put. Alternatively, the farm can arrange to read keyboard input whenever a task is to be
sent to a free processor.

• Handling the host server: In this type of farm, results are "achieved" by writing data in little pieces
to files held on the host, rather than a single block result at the end of the task. To keep the farm
independent from the application, an occam filter can be used to intercept server access commands
and package them into a suitable byte vector before releasing it to the farm. The farm controller



10 Some issues in scientific language application porting and farming using transputers 291

unpacks the vector and forwards commands to the server. A paired decoding filter operates on the
input channel to the application.

A further technique used here is to give short-circuit replies to the workers in place of the server.
The need for this arises because all server communications involve a reply handshake, which is
frequently ignored by the application anyway. The server filter can detect the use of commands to
which this technique is appropriate, and immediately acknowledge them. Handling commands like
this where possible also reduces the amount of traffic in the rest of the network, further contributing
to overall performance.

• Command-line parameters : With C applications, the command-line parameter mechanism often
employed is still operable. The farm manager takes information from its task specification file and
makes them available to the application. Note that the application does not need to be modified at all.
For Pascal and FORTRAN applications, it is not possible to read the command line parameters, so
the job specification is provided exculsively through keyboard data information sent to the application.

Alternative implementation

An alternative implementation of a farm requiring many workers to access the host, but requiring no user
interaction at all, is to simply use server protocol multiplexers as routers. The multiplexers understand a
superset of the standard server protocol (so that workers can ask the farm controller for new tasks when
they are ready for work). By ensuring that the route that the workers's request packet has to travel in order
to reach the farm manager is locked by the multiplexer until the farm manager responds, the system avoids
having to make routing decisions at each node if the network is not simply linear (eg, trees, forks, pipes,
stars). Although simpler to implement, this type of arrangement will typically give lower performance than the
Router/Merger approach.

This approach was used with SPICE in [5] for a simple star network of three worker transputers.

10.7.7 Farming a heterogeneous processor application

Scenario

Consider farming any application which co-executes on another processor type, where all the transputer code
is to be farmed. The case of farming part of a mixed-processor system is the same as in Section 10.7.5,
because the other processor does not communicate directly with the module to be farmed.

A good starting point for farming a heterogeneous processor application is a working non-farmed system,
with the transputer module to be farmed clearly identified.

Implementation

The host source needs to be altered slightly for maximum effectiveness, because results are likely to be
returned out of order. Also, using the BostInterface source shown earlier, does not guarantee that
every job request leads to a valid result. The original access protocol between the host and transputer is
modified to accommodate out-of-sequence results and dummy results. The protocol still follows the same
pattern of an outgoing followed by an incoming sequence, but the important thing is that the incoming message
must identify what work packet the result corresponds to, and how how to integrate the results into the host
environment.

Often, calling a function or procedure causes variables to be written to which are dependent on the value of
the parameters at the time ofd the function call. For example, a parameter i would be passed to a function,
and used to reference an array element or scalar variable in the calling environment. Farming will result in
out-of-sequence data being returned, which obviously must be used with care in the calling environment. Any
writeable variables should be handled by a Resul.tsManager procedure which ensures that the returned
results are correctly matched up with the original parameters, and correctly integrated. To achieve this,
additional data is sent to the farm and returned with the results.

Incoming work requests to the farm from the host will be not accepted by the farm controller until there is er
worker available (therefore the host can be held up at this point). The host keeps track of how many items



292 3 Applications

the farm is processing, by incrementing a counter each time work is sent to the farm, and decrementing it for
every valid reply returned.

For example, consider the farming of the part parted function BugeTask, originally part parted in Sec
tion 10.6.8. The host stub for BugeTask now only handles outgoing messages directly:

procedure BugeTask (a, b:integer); {stub}
begin

outbyte(Va1idJob); ( intercepted by Bostlnterface
outwo~d(OpCa1c1); {Do BugeTask operation}
... send any info to s10t resu1ts into origina1 environment
outword(a);
outword (b) ;

{ origina11y, BugeTask := inWord;}
Resu1tsManager (1);

{ Band1es ALL incoming messages}
{ The parameter 1 increments what's in the farm }

end;

Originally BugeTask was a host function. It has been converted to a host procedure to prevent anything
writeable being written to directly following execution of BugeTask - this is because the result returned is
unlikely to correspond to the same set of parameters as were just sent to the farm. All writeable variables
must be handled by the Resu1tsManager, unless it does not matter in what order the data is written.

To allow the results to be returned out of sequence, a host Resu1tsManager procedure is used to handle
all received handshakes from the transputer farm controller:

procedure Resu1tsManager (AddToFarmCount : integer);
var

. .. dec1arations
begin

InFarm := InFarm + AddToFarmCount;
Rep1yTag := inbyte; { Va1id or not va1id resu1ts }

if (Rep1yTag = Va1idResu1ts) then
begin

InFarm := InFarm - 1;
Command := inWord;
if (Command = OpCa1c1) then begin

... receive data from BugeTask operation

... hand1e a11 order-sensitive writes
end { OpCa1c1}
{ 1ist other operations here }

end {Va1idResu1ts}
end;

To purge the farm of all tasks in it, the host PurgeFarm procedure gathers all results together by sending
enquiries to the transputer Bostlnterface :

procedure PurgeFarm;
begin

repeat
outbyte(EnqFarm); { intercepted by Bostlnterface}
Resu1tsManager (0);

unti1 InFarm <= 0
end;

Alternative implementation

By altering the application structure slightly, the complexity of a part port farm described above can be reduced
to that of just a part port. This is done by arranging that instead of actions on the host (or other processor)



10 Some issues in scientific language application porting and farming using transputers 293

directly feeding to the BostInterf.:J..ce, they instead feed a small stub-like auxiliary routine on the root
transputer with a total job specification. By specifying the total amount of work to be done at the outset,
the host is freed from the issues of handling out-of-sequence results. The auxiliary routine on the transputer
divides up the task into sub-tasks and farms it out to the FarmInterface. When all the work is done, the
results are packaged up and returned in one consolidated communication to the host. The host part of the
application would typically receive an entire array containing all the results in one go.

In this way, the host does not know that farming has occurred, and therefore needs no modification if the
original part port was implemented to communicate in this way.

10.7.8 Part port farm example: Second Sight

About Second Sight

Second Sight13 2 is a Turbo Pascal application, with a snazzy front-end using pull-down menus and host
graphics. It analyses sets of data and detects trends in them, allowing forecasting future values. The appli
cation is suited to farming, because all the sets of data can be operated on independently and concurrently.
The code was split into a computational part that executed on a transputer system (doing data modelling),
and a user-interface part that executed on the host (unchanged).

All host service accesses are confined to the host computer itself, thereby obviating the need for a standard
server. All message passing between the host and the transputer farm was done according to a custom
protocol devised for the application. Using techniques outlined in the previous sections, message passing
stubs in the host part communicated with the real function bodies on the farm. Certain global data items were
broadcast to the transputer farm beforehand the application began in earnest.

For speed of implementation, all the functions that were to run on a transputer were grouped as a single
process, and a tagged message protocol was used to indicate which function to run at any time.

The work took about longer than normal (two weeks), because the transputer parts had to be converted from
Pascal to occam since at the time (1986), the scientific-language tools were not as powerful as they are
now.

Performance

Second Sight running on a single T414-G20 runs about 10 times faster than an 80286/80287 host combination.
One T800 transputer runs about 25 times faster. With four T800-G20 transputers, this figure rose to around
a factor 100 performance improvement.

10.7.9 Further work

Flood-filling a transputer network

The INMOS development tools are best suited to generating transputer programs for transputer networks of
pre-determined size. In other words, prior to run-time, the number and arrangement of transputers is known.
Using worm-technology [14], it is possible to write programs that flood-fill a transputer network at boot-time.

The Parallel C and Parallel FORTRAN compilers include utilities for performing a so-called network flood-fill
in a homogeneous transputer network. In this way, at boot time all the available processors are utilized
depending on their presence, without having to change the software if the hardware arrangement changes.
These compilers also support rudimentary but useful farming based on master and worker tasks14. The
application makes explicit calls to run-time library functions which transparently farm the total work load
specified by the Master task [9].

13Second Sight 2 Copyrights P.H.Todd 1985, and INMOS 1986

14The worker task cannot access any host facilities.



294 3 Applications

Extraordinary use of transputer links

It is possible to make a transputer network more resilient to the environment by performing all off-chip com
munications using the link communication recovery facilities. occam provides a set of procedures which
can be used to recover from communications that do not complete successfully for some reason [16, 11].
$0, for example, the router and merger processes associated with each farm worker would perform "safe"
communications for off-chip channels.

The incorporation of additional communication facilities is very much like adding another layer of abstraction.
Again, this layer is independent of the application. The application does not need to be aware of this additional
framework, and therefore doesn't require modification.

[16] discusses the use of the facilities provided at the occam level. [11] gives a practical application of using
safe link communications in a linear topology farm, showing firstly how a system will continue to operate 'at
reduced performance and with loss of data as transputers begin to fail, and then showing how automatic error
recovery (as well as detection) can be achieved.

The Parallel C and Parallel FORTRAN run-time libraries allow direct use of link recovery primitives from C
and FORTRAN [9]. This approach involves modification to all applications that want to use this facility.

Overcoming i/o bottlenecks

The nature of farming can impose additional demands on the host services, for example, in terms of much
greater access to the host file store. In these situations, there are a few practical steps that can be taken in
an attempt to alleviate i/o bottleneck problems.

• Operate the link adapter between the host and the transputer at the maximum speed - 20 Mbit/second
communications. This may not assist in disk-bandwith limited situations, but it will serve to reduce
servicing latency.

• Use several link adapters on the host bus, each connecting to a transputer link in the farm. If two
link adapters are available, affix one to each end of the farm and stream data through the farm in
one direction - in at one end and out at the other. Alternatively, connect all adapters at the farm
controller end and use it to increase host to transputer throughput.

• Use a more efficient form of data communication between the host and the transputer. For example,
use efficient counted byte vector communications in both directions, coupled with DMA or device
driver operation run from the host.

• If disk bandwidth is the real problem, then the above techniques will not significantly result in speedup.
The only way to go is for faster disk drives (lower access latency), or use host operating system
caching to achieve apparently faster disk drives, or ...

• Use several disk drives. For maximum effectiveness, these should each have local busses to avoid
performance degradation due to contention clashing. Better still would be for each worker transputer
to have exclusive access to a disk drive using the INMQS IMS M212 disk control chip. This can
avail data at high speeds directly into transputer links, and is by far the fastest solution. Even if each
worker didn't have a whole drive to themselves, the performance increase will still be significant.
INMOS has source code available that makes an IMS B00515 appear as an MS-DOS disk drive
[10], allowing easy exchange of files between the bandwidth-limited host drives and the BOOS drives
before and after the farm application executes. An example of this is Steve Ghee's near-real-time
pipelined animation machine, which used eight BOOS disk drives to store part of a screen's image
on each drive.

These techniques can also be used to good effect in increasing communications bandwidth between a trans
puter farm and non-transputer processor.

15A bOOS is a double-extended Eurocard board which contains a 20 MByte winchester and a 3.5" floppy drive, both under the control
of an IMS M212 16-bit transputer.



10 Some issues in scientific language application porting and farming using transputers 295

Comparison between farms and application pipelining

[12] compares the farming concept with that of introducing pipelining into an application. Pipelining is very
dependent on the application, has a throughput limited by the slowest element of the pipeline, and is very
sensitive to buffering between stages. However, the code requied in each stage of a pipeline is generally
less than that for a farm worker. Pipelining also accommodates sequential dependencies in an application
which would be difficult to deal with in a processor farm.

Pipelining falls outside the scope of this document.

Farms of farms

It is possible to operate a farm of farms, whereby an entire application is farmed, but each application consists
of a f~irm of worker sub-tasks. This would be implemented by getting a farm of non-farmed applications working
first. The communications protocol between the application and the farm would be carefully documented.
Then, the application itself would be decomposed.

Dynamic link switching

In some cases it is important to get data into or out of a farm in a critical time period. In other words,
the latency in moving results about must be minimized. It is possible to construct a farm where instead .of
routing results (or work specification packets) up and down the farm, a direct link connection between the
two participating transputers is transiently established for the duration of the exchange. A necklace is still
required to permanently connect all transputers, but this is only used for low-bandwidth connection requests
and acknowledges. Figure 10.19 shows such a dynamic switched farm, where results are directly routed out
of the farm. In the Figure, the work request packets are still distributed conventionally.

This hardware could be constructed using an off-the-shelf B008 or B012 TRAM motherboard, which both
contain INMOS C004 cross-bar link switches. A dynamic switched farm similar to this was found to give 15%
to 20% better performance in a farmed MandelBrot application16.

10.8 Planning the structure of a new application

This document has concentrated on taking existing non-OCCam applications and showing how they can be
executed on transputers in a variety of circumstances. Now, a few reminders are called for concerning how
one would structure a new application so as to make a future transition to the transputer architecture easy.

Here is a summary of some key ideas to guide writing a new application :

• Confine all input I output to a small part of the application. In a transputer implementation, this part
should be held within the root module to avoid incurring routing overheads.

• Confine all machine-dependent parts to a small part of the application. This is similar to the above
requirement, except that the target-dependent parts may have to stay on the target in a transputer
implementation, suggesting some type of part port.

• Structure the application in independent blocks, with well defined interfaces between the blocks.
This simplifies implementation as modules. Be aware of the frequency and amount of traffic that
would have to pass between these interfaces in a modular scenario.

• Try to arrange that the compute-intensive parts operate on independent data, which facilitiates a
farm implementation.

• Try to arrange for some computation opportunities during periods of 1/0, especially those involving
user interaction.

• Take into account the underlying hardware bootinglreset authorities.

16Using the Esprit P1085 SuperNode's analogue link cross-bar switching. Research by Sally Baker at RSRE, Malvern.



296

Work
requests

Work

Low-bandwidth
results
notification
channel

Switch co ntrol

High-bandwidth
results channel

3 Applications

Figure 10.19 A dynamically re-configurable farm

10.9 Summary and Conclusions

Existing applications spanning a wide spectrum of target environments are easily adapted to the transputer.
Transputer software is fast, expandable, maintainable, and portable.

The techniques described have all been incremental. Each step builds logically on the operable stages before
them. Capabilities and sophistication introduced in this phased way minimize the risks of failure and delay in
porting, allowing stratification of the amount of effort in a project.

INMOS provide off-the-shelf slot-in hardware and software components to assist with application porting,
parallelization, and farming using transputers. On the hardware side is the TRAM module and motherboard
range. On the software side is the farming support, mixed-processor communications support, and the
development tools.

Together, these provide an unrivaled facility for qUickly putting together a cost-effective system tailored to the
exact requirements of the application. The modular nature of both the hardware and the software components
allow an implementation to adapt to the changing requirements of an application.



10 Some issues in scientific language application parting and farming using transputers 297

10.10 References

The Transputer Databook, INMOS Limited

2 OCCam-2 Reference Manual, INMOS Limited, Prentice Hall 1988, ISBN 0-13-629312-3.

3 Using the occam toolset with non-OCCam applications, INMOS Technical Note 55, Andy Hamilton,
INMOS Limited, Bristol.

4 INMOS Spectrum, containing a brief description of the products in INMOS' portfolio.

5 Porting SPICE to the INMOS IMS TBOO transputer, INMOS Technical Note 52, Andy Hamilton and
Clive Dyson, INMOS Limited, Bristol.

6 The HELlOS User's Manual, Perihelion Software Limited.

7 Fundamentals of Operating Systems, A. M. Lister, University of Queensland, third edition, MacMillan.
ISBN 0-333-37097-X, and ISBN 0-333-37098-8 pbk. Refer to Appendix for Monitors.

8 Program design for concurrent systems, INMOS Technical Note 5, Philip Mattos, INMOS Limited,
Bristol.

9 Interface TRAMs, INMOS Technical Note 42, Phil Atkin, INMOS Limited, Bristol.

10 Using the IMS M212 with the MS-DOS operating system, INMOS Technical Note 50, Jamie Packer,
INMOS Limited, Bristol.

11 Exploiting concurrency; A Ray tracing Example, INMOS Technical Note 7, Jamie Packer, INMOS
Limited, Bristol.

12 Communicating Process Computers, INMOS Technical Note 22, David May and Roger Shepherd,
INMOS Limited, Bristol.

13 Performance Maximization, INMOS Technical Note 17, Phil Atkin, INMOS Limited, Bristol.

14 Exploring Multiple Transputer Arrays, INMOS Technical Note 24, Neil Miller, INMOS Limited, Bristol.

15 Parallel C User Guide, 3L Limited, Scotland.

16 Extraordinary use of transputer links, INMOS Technical Note 1, Roger Shepherd, INMOS Limited,
Bristol.

17 IBM Technical Manual, Personal Computer AT, March 1984, Document 1502494.

18 Transputer White Pages, Software and Consultants directory, INMOS Limited, Bristol.



298 3 Applications



llIl.JTlOS Chapter 11 299

_ Using the
070580ccam
toolset with
non-occam
applications



300

11 Using the 07058 occam toolset with non-occam applications

11.1 Introduction

There is a planet-wide plethora of existing C, Pascal, and FORTRAN software which could benefit from exe
cution on INMOS transputers [1]. Transputers are fast, flexible, and fun. And cost-effective too. Transputers
offer an unparalleled opportunity for incrementally upgradable mUltiple-processor solutions.

In the past, most of the available transputer software support has been centered on the occam [2] program
ming language, which was developed by INMOS especially for the transputer. Now, development systerns
for a number of popular languages are available from INMOS and third parties. These development systems
can accommodate a range of target and development environments.

This document explains, in programmers terms, how one can use the INMOS development systems to support
existing non-OCcam applications for execution on single or multiple transputers across a variety of hosts.
For information concerning the actual modifications required to the structure of a non-OCCam application, in
order to fUlly exploit the parallelism offered by transputers, the reader is directed towards [3].

11.1.1 Article notes

This article places emphasis on the INMOS 0705B occam toolset. However, VAX and Sun-3 versions of
the occam toolset are available [4]. Everything shown here in relation to the 0705B is also applicable to any
other development platform. Three dots • •. will be used to represent areas of hidden source text in any
language. Hexadecimal numbers will be prefixed by the hash character 'I'. A typewriter font denotes
program text (occam or otherwise). For information on the occam language the reader is advised to refer
to [2]. The % symbol is used as a one character wild-card in 0705B toolset file names. The term "EOP"
represents "Equivalent occam Process". An EOP consists of compiled C, Pascal, or FORTRAN, with the
necessary run-time .library support, linked together with special occam interface code.

Many thanks to the INMOS Bristol Software Group for their assistance in the preparation of this document.

11.2 Background information

11.2.1 Transputers

The INMOS transputer consists of a high-performance processor, on-chip RAM, and inter-processor links, all
on a single chip of silicon. Program variables in on-chip RAM are accessed much faster than if they were
off-chip. The inter-processor links are autonomous OMA engines~ and permit any number of transputers to
be connected together in arbitrary networks. The external memory interface allows linear access to a total
memory space of 4 gigabytes.

The T800 and T425 transputers have 4 Kbytes of single-cycle on-chip RAM (40ns access time on a 25 MHz
part), and the T414 has 2 Kbytes. The on-chip RAM is usually at least four times faster than the external
memory provided with most transputer boards, depending on the hardware design of the board. The fastest
external memory supported by the transputer is three-cycle (two cycle on the T801), with most boards using
four- or five-cycle memory - using external RAM will not make programs run three to five times slower.

For further information on the transputer family, the reader is directed to [1].

11.2.2 The transputer / host development relationship

In the development environment, the transputer is normally employed as an addition to an existing computer,
referred to as the host. Through the host, the transputer application can receive the services of a file store,
a screen, and a keyboard. This document assumes an IBM PC or compatible host, in so far as it makes
reference to some MS-DOS specific features - there are equivalents for the other toolset platforms. For a
more thorough guide to product availability, please refer to [4].

The transputer communicates with the host along a single INMOS link. A program, called a server, executes



11 Using the 07058 occam toolset with non-OCCam applications 301

on the host at the same time as the program on the transputer network is run. All communications between
the application running on the transputer and the host services (like screen, keyboard, and filing resources)
take the form of messages. The standard transputer C, Pascal, and FORTRAN development systems uses
a server called afserver. The D7058 occam toolset, along with the INMOS Parallel C and Parallel
FORTRAN development systems, use a server called i.server.

Keyboard

PC Host

l\\\1.\\1"\\\\\1J.f.ttUltttl~1~111It\\1"\\\11 fro m.Server

to .server

To other transputers

Local Hard Disk

Figure 11.1 The transputer / host development relationship

The root transputer in a network is the transputer connecting to the host bus via the link adapter. Any other
transputers in the network are connected together using INMOS links, to the root transputer. A transputer
network can contain any size and mix of transputer types.

The relationship between the transputer and the host during software development does not impose restric
tions on the way the transputer is employed in the target environment.

11.2.3 Connecting transputers together

The INMOS transputer development and evaluation boards use a triplet of signals to control and monitor the
status of a transputer network connected to them. These signals are called reset, error, and analyze, and are
all used in three ports called up, down, and subsystem. This allows a hierarchy of transputers in a network,
where some transputer board can be given the authority to reset and analyze others.

The down and subsystem ports can assert the reset and analyze signals to control boards connected to thel",
and in turn monitor the error signal of the sibling board. The up port receives the reset and analyze lines
from its parent board, and is used to feed back the status of the error line to the parent. On any given board,
a connection is made between the down or subsystem ports to the up port on next board. If the down port is
used, then both boards are at the same hierarchy. If the subsystem port is used, then the child board is at a
lower level of hierarchy than its parent.

With the occam toolset, a single bootable program is created which contains code for all the transputers in
the network. The host (PC) computer should have the authority to monitor and control the reset, analyse, and
error signals for the whole network. Therefore, when using the toolset software to develop multi-transputer
programs, all transputer boards should be connected "down port to up port" from the root transputer outwards.
If this is not done, then

• It will be impossible to load the whole network without taking additional steps to ensure that all
transputers are correctly reset and analysed.

• The host file server will be unable to monitor the error situation in the network, which will impair the
use of the post-mortem debugger.



302 3 Applications

For users familiar with the INMOS Transputer Development System (TDS), the network attached to the root
transputer board is normally connected to the subsystem port, rather. than the down port. This allows the
TDS to monitor and control a transputer network, without the risk of itself hanging up due to an execution
error in the network. It should be noted however, that this type of connection is not preferred when using the
toolsets.

11.2.4 The other occam toolsets

Equivalent versions of the INMOS D705B occam toolset exist for the VAX and Sun-3 environments. These
development systems contain the same components and libraries, they accept the same command line
arguments and parameters, and offer compatibilty at occam source and object binary levels.

This means that occam source, or compiled/linked object code can be freely migrated amongst these
development platforms, and compatibility is guaranteed. So, for example, at the time of writing (April 1989),
INMOS did not offer VAX and Sun-3 hosted scientific-language compilers. But C Pascal, or FORTRAN source
could be compiled with the PC scientific-language compilers, transferred to a different development platform,
and integrated with the rest of the application to be ultimately fully portable accross the range of occam
toolset development platforms.

11.3 The INMOS scientific-language compilers

The ·INMOS scientific-language compilers can be used to compile and run a non-Occam application on a
single transputer. They can also be used to build a compilation unit equivalent to an occam process, which
can then be incorporated into a complex mixed-language system using the D705B occam toolset (or the
Parallel C and Parallel FORTRAN packages).

This section deals only with the capabilities of the scientific-language compilers, and not with those of the
D705B occam toolset.

11.3.1 The compilers

In connection with the PC environment, the scientific-language compilers discussed in this document are:

C, Version 1.3 As defined in Kernighan and Ritchie "The C Programming Language",
Prentice-hall, 1978.
INMOS Part no : IMS D711 C

Pascal, Version 1.2 As defined in BS6192:1982,
Functionally equivalent to ISO 7185.
INMOS Part no : IMS D712C

FORTRAN, Version 1.1 Based on ANSI FORTRAN 77,
Defined in ANSI X3.9-1978 with extensions.
INMOS Part no : IMS D713C

Parallel C, Version 2.0 As defined in Kernighan and Ritchie "The C Programming Language",
Prentice-hall, 1978.
INMOS Part no : IMS D711 D

Parallel FORTRAN, Version 2.0 Based on ANSI FORTRAN 77,
Defined in ANSI X3.9-1978 with extensions.
INMOS Part no : IMS D713D

INMOS scientific-language compilers are additionally available for the VAX environment. Remember that
binary object code produced by the PC scientific-language development systems can be integrated with the
occam toolsets on a different development platform. For details concerning the current product availablility
and part numbers for the products, refer to [4].



11 Using the 07058 occam toolset with non-OCCam applications

Features

303

Each scientific-language system offers some useful features over and above those required by the respective
standard. The features common to all the scientific-language compilers are listed below:

• They support T414 and T800 transputers. At the time of writing (January 1989), support from INMOS
and other manufacturers for the 16-bit transputers (such as the T2121T222 and M212) is in progress.

• In the PC environment, most of the scientific-language tools execute on a transputer board connected
to the PC. They can run on any 32-bit transputer. In other environments, such as the VAX, the tools
are executed di rectly by the host computer, but create code for a transputer network.

• The same Iinker and loader are supplied with C V1.3, Pascal V1.2, and FORTRAN V1.1, for flexibility
without requiring additional tools. The D7058 occam toolset, D711 D Parallel C V2.0, and 07130
Parallel FORTRAN V2.0, all use a different but more versatile Iinker and loader.

• There is a standardized, language-independent, procedural calling interface to access non-OCCam
code.

• 2 Kbytes of the transputer's fast on-chip RAM is reserved for use as a run-time stack.

• Separate compilation program units are permitted in any language.

• One can repeatedly execute the compilers and Iinker without reloading. This is useful when there
are several operations that have to be done consecutively, using the same tool.

• The tools support the host operating system's terminal i/o redirection and piping.

• There are two versions of run-time libraries supplied for each transputer target, depending on whether
the application program requires host i/o support.

• The scientific-language run-time library mechanism allows component library modules to be selec
tively linked.

11.3.2 Using the scientific-language compilers in the simplest case

A single transputer, single non-OCCam process, is the special simplest case where the occam toolset is
not required. It is possible to compile and run a scientific-language process on a single transputer in as few
as three commands! These systems are constructed using the pre-compiled binary object files supplied with
each of the scientific-language transputer compilers, using a comman9 structure which is similar for C, Pascal
and FORTRAN applications. A transputer bootable file is one which contains enough information to allow it
to be sent to a transputer (network) by the host file server, and executed. A bootable file is created by linking
the compiler's object output with various run-time support components, and prepending a bootstrap loader.

Each command shown below causes the appropriate tool to be loaded onto the transputer board, and run
with the apppropriate parameters. All the compilers accept their respective source-level input, and produce
by default a binary object file as output. The linking command causes the compiled binary object file to be
linked with the appropriate run-time library, and also with a supporting fragment of occam which is known
as the "harness". The purpose and content of the harness is described in Section 11.5.

Note that the file name extensions are optional, but are included here explicitly. The filename conventions for
the PC environment for binary object files is .bin. The scientific-language compilers can optionally produce
hexadecimal object code, identifed by a . hex filename extension. A .b4 extension identifies a transputer
bootable file for a single transputer. Source files for C, Pascal, and FORTRAN have the default extensions
of . c, .pas, and . £77 respectively.



304

Building a simple C program

Standard tool operation is :

Operation T414 target T800 target
Compile t4c prog.c t8c prog.c
Link t4c1ink prog.bin t8c1ink prog.bin
Run run prog.b4 run prog.b4

Building a simple Pascal program

Standard tool operation is :

Operation T414 target T800 target
Compile t4p prog.pas t8p prog.pas
Link t4p1ink prog.bin t8p1ink prog.bin
Run run prog.b4 run prog.b4

Building a simple FORTRAN program

Standard tool operation is :

Operation T414 target T800 target
Compile t4f prog.f77 t8f prog.f77
Link t4f1ink prog.bin t8f1ink prog.bin
Run run prog.b4 run prog.b4

3 Applications

11.3.3 Loading the tools

Although the user may not be aware of it, all tools are loaded by calling the host file server. This is afserver
or iserver depending on the development system. For systems using the afserver, the server is
supplied with the name and parameters of the tool to be loaded. For example, the command t4c wor1d,
to compile the C program wor1d. c, is actually doing something like this :

afserver -:b \tclv3\tc.b4 wor1d /t4 -:0 1

The - :b command is the server's boot command, and causes the file referenced to be sent to the transputer
board and executed. The -: 0 1 is concerned with the workspace allocation that the compiler will use on
the transputer board. This is an example of using the run-time workspace specification capability described
in Section 11.3.8.

The same approach is used for the other scientific-language compilers, and for the Iinker. For example, the
command t4c1ink wor1d does the following:

1inkt wor1d.bin+\tclv3\crt1t4.bin+\tclv3\t4harn.bin,wor1d.b4

The plus signs above represent the concatenation of the input files, and the comma separates the list of
input files from the output file. The reference to 1inkt calls the afserver with the 1inkt.b4 transputer
bootable Iinker. This adds the necessary parts from the T414 C runtime library crt1t4.bin, and the
supporting harness t4harn.bin, to make a bootable file called wor1d.b4.

For the Parallel C and Parallel FORTRAN compliers, which use the iserver, the principle is the same as
above, but the boot files and server options are different.

11.3.4 Re-running the tools without reloading them

It is straight forward to re-run the compiler and linker tools described above, without having to boot the tool
onto the transputer board each time the tool is used. This is achieved by calling the afserver program



11 Using the 07058 occam toolset with non-OCCam applications 305

directly, but without specifying the boot command (-:b fi1ename).

As an example of this, suppose that the C compiler has been loaded onto the transputer board, and set to
compile a file called cl . c for the T800, using the following command:

t8c cl

Then to compile separate applications c2 and c3 for the T414 and c4 to c7 for the T800, but without
reloading the C compiler each time, one can use the following commands:

afserver c2 It4 -:0 1
afserver c3 It4 -:0 1
afserver c4 Its -:0 1
afserver cS Its -:0 1
afserver c6 Its -:0 1
afserver c7 Its -:0 1

Note that once a compiler has been loaded, then each time it is re-run, the afserver must be given a
-: 0 1 directive. This is so that when the compiler is running, it is given the maximum available memory on
the transputer board for its own workspace requirements (see Section 11.3.8). For example, to compile the
following three FORTRAN programs, use this technique :

t8f f1.f77
afserver f2.f77 Its -:0 1
afserver f7.f77 It4 -:0 1

The first command here will actually load the FORTRAN compiler, and the remaining two will correctly re-run
it for the different processor targets.

The same technique can be used to re-run the linker, and also applies to iserver tools.

11.3.5 Running transputer bootable files as MS-DOS commands

It is possible to run any transputer executable .b4 file as if it were an MS-DOS command. This is done
using the J.inkt . exe program supplied with all the scientific-language compilation systems. Make a copy
of the J.inkt. exe program but give it the same root filename as the bootable . b4 program you wish to
run as an MS-DOS command; keep the . exe extension.

The 1inkt. exe program works by taking the command verb from its command line, adding the. b4 exten
sion, and calling the host file server afserver to load that file from the same directory as the 1inkt. exe
was loaded from. When invoking a . b4 file in this way, the afserver is passed the -: 0 1 directive
automatically to give the application (if it uses the standard occam harness) one large combined workspace.
It is still possible to specify the - : 0 0 directive on the command line to over-ride this, ensuring the run-time
stack is placed in on-chip RAM.

11.3.6 The run-time libraries

Each scientific-language comes supplied with two different run-time libraries. This is important when one
is developing multiple-process systems. A process which expects to communicate with the host file server
must be linked with the full run-time library. A process which uses only the channel communication primitives
discussed in Section 11 .3.9, plus other functions that do not require to access the host i/o facilities, can be
linked with the reduced (stand alone) run-time library. This offers certain advantages in terms of code size,
execution speed, and "portability" within a multi-process system.

Each run-time library consists of separately compiled program modules. The full and stand alone libraries have
many modules in common - the stand alone library being essentially a subset of the full run-time library. The
languages of implementation of the modules include C, IMP, and occam. The library management facilities
offered by the linker permit the binary object files produced from different language compilers to be mixed
together and referenced as a single entity; the library. Only those library modules that satisfy outstanding
external references will be linked into an application by the linker.



306 3 Applications

At start-up, all the static workspace in the referenced modules in the run-time library is relocated from the
non-OCCam code area to the heap workspace area. This is done because the code area could be in read
only store such as EPROM, whereas the heap workspace must be writeable. The existence of this static
data in some component modules prevents the run-time libraries (as a whole) from sharing the re-entrancy
property that occam libraries possess.

The component object modules which were used to build each library are also supplied with each scientific
language system, along with control files to allow the Iinker to reconstruct these libraries. This allows users to
create their own libraries, add their own modules to them, and delete unused modules, to suit specific project
requirements.

11.3.7 Transputer memory allocation

This section discusses the memory allocation policy used by the scientific-language compilers. An overview
of the occam memory allocation strategy is given first, because all scientific-language memory allocations
conform to this framework.

The occam memory allocation map

The transputer employs a signed memory address space, which for 32-bit machines begins at MOSTNEG INT
(Mint) #80000000 and extends up through zero to the positive address space and onwards to MOSTPOS
INT #7FFFFFFF. External memory is usually decoded at very negative addresses, because in this way
it forms a seamlessly-joined contiguous block with the transputer's on-chip RAM. Memory in a system is
allocated from the most negative addresses onwards. This is shown in Figure 11 .2.

Board size

unallocated memory

occam vector space

occam code

#80000000
occam scalar workspace
reserved by transputer

Figure 11.2 The transputer memory map

Memstart
Mint

With reference to the Figure, there are five memory zones in the memory map. Starting at the bottom of
memory is an area reserved by the transputer. The first memory location in the transputer not required by
the transputer itself is called Memstart. On a T414, this corresponds to address #80000048, and on the
T425 / T800 series corresponds to #80000070. The host file server loads the boot file, using memory from
Memstart onwards.



11 Using the 07058 occam toolset with non-OCCam applications 307

The Figure shows that scalar occam workspace is placed as low down in memory as possible, starting in
on-chip RAM just above Memstart. The occam compiler places the most recently declared variables in
the lowest workspace slots.

Directly following the scalar occam workspace is the code area. This represents the concatenation of all the
object files comprizing the application, plus any library routines that were referenced. If any of the occam
source was compiled with separate vector space on, then after the code area follows the vector space area.
Above this, the memory on a transputer system is unallocated.

This memory arrangement is made possible because, in occam, all data allocation is static. This means
that after compilation and linking, the loader knows exactly the data requirements of the program, for both
scalar and vector workspaces.

After the boot file has been loaded by the file server, the bootstrap code does a KERNEL. RUN of the process
code, and execution on that processor begins.

All memory allocation in the scientific-language systems is ultimately under the control of some standard oc
cam specification. All memory allocation in the scientific-language systems conforms to the occam memory
allocation policy described above. This fact should guide one's understanding of the memory allocation dia
grams in Section 11 .5.4.

The scientific-language memory allocation map

Memory for scientific-language workspace usage is allocated from an integer vector representing all the
available memory left on the board once the application has been loaded. This vector extends from the top
of the board memory right down to the top of the occam vector space zone. This memory area is shown in
Figure 11.2 as unallocated memory.

Using only the tools provided with a scientific-language compiler, a single transputer single process system
can be created 1

. The memory allocation in this system is shown in Figure 11.3. This represents the memory
map of the standard occam harness supplied with each scientific-language system (for creating a single
process single processor system).

All the scientific-language compilers operate with two logical workspaces : a run-time stack and a combined
heap and static data area. Depending on a run-time option, and various decisions made when compiling the
occam support software, the physical realization of these logical workspaces varies.

Figure 11.3 shows this reserved run-time stack area in the occam scalar workspace zone. On a T414
transputer, this uses up all the on-chip RAM. Even if the user does not run the application to make use of this
stack, this memory is always reserved when using the standard occam harness. The Figure also shows a
run-time stack at the top of the memory map, and a heap lower down. Only one stack area is ever used by
a scientific-language process at anyone time.

11.3.8 Implementation details

These features are common to all the scientific-language compilers. Some are designed to allow good use
of the transputers' on-chip RAM. Others simplify the accommodation of changing development situations.

The run-time stack

The run-time stack is known as a "falling" stack. The stack pointer starts off high in memory and descends
as space is allocated. Called functions will have their workspaces placed at lower addresses than the caller.
The loader will attempt to determine the size of the target board, so it can make best use of the available
memory by placing the top of the stack at the very top of physical memory.

If the user elects to use the on-chip stack (assuming it is sufficiently spacious for the application), then the
space at the top of memory will not be used. If the off-chip stack is selected for use, then it is important that
as the stack grows downwards and the heap grows upwards, "never the twain shall meet". Heap allocation

1The Parallel C and Parallel FORTRAN systems additionally support multiple transputers.



308

#80000000

non-occam stack

non-occam statics

occam and non-occam code

[512]INT stack:
- oCCan; scaTar- workspace-

reserved by transputer

3 Applications

Board size
specification

Memstart
Mint

Figure 11.3 The scientific-language compiler memory map

requests are range checked to ensure that the stack is not about to be overwritten - but for performance
reasons, this is not true of stack allocation requests. The stack can overwrite the heap area, but not the other
way round. If any workspace overwriting occurs, the program will fail in unpredictable ways.

The run-time heap

The run-time heap is known as a "rising" heap. This means that it starts off at a low memory location and
uses successively higher memory locations as data is added to it. The heap directly follows from the static
data storage area. The heap is used typically for variable-length memory allocations, for items such as
strings, arrays, and the dynamic commands like ma110c (). Compared to the stack, allocation requests
for heap space are much more infrequent, and tend to be for larger data items. This means that there is
a comparatively low overhead in checking run-time requests for heap space, to ensure that the heap is not
about to overwrite the stack.

Section 11.5.4 discusses ways of calculating and fine-tuning the amount of stack space and heap space to
reserve for non-OCCam processes in multiple-process systems.

Selecting the run-time stack

The user can select to use the run-time stack either in on-chip RAM or in external memory.

If the whole of the stack for a program can be accommodated within 2 Kbytes, then the on-chip stack can be
used on either the T414 or the T800. In this case, only the heap and static data area is placed in external
memory - the default assumed by the standard harness implementation. The standard harness reserves an
on-chip stack regardless of whether it is used.

If the size of the stack is expected to be larger than 2 Kbytes, then the off-chip stack area is used, and the
application will therefore have all its workspace off-chip. The parameter -: 0 1, supplied to the afserver



11 Using the 07058 occam toolset with non-OCCam applications 309

at run-time, specifies that all workspace is to go off-chip. Note that no action is required at compile-time or
link-time to specify the location of the run-time stack. This facility should be used while developing a program,
for which one is uncertain of the requirements in terms of stack size. Refer to Section 11.5.4 for details on
dynamic fine-tuning of workspace requirements.

Note that the Parallel C and Parallel FORTRAN development systems operate slightly differently than de
scribed above. With these systems, the "standard harness" does not reserve an on-chip stack area unless
this is specified when the bootstrap is prepended. In this way, no on-chip RAM is wasted needlessly. Using
an option on the bootstrap tool, the programmer specifies the size of a separate stack (if one is required),
and this is placed as low down in memory as possible.

Placement of the code

Some on-chip RAM can normally be used for code storage. On the T414, using the afserver-based
development systems, there is no internal RAM available for code storage. The iserver-based tools,
because they don't reserve unused stack space, do permit code storage on-chip in a T414. The T800/T425
families have at least 2 Kbytes of on-chip RAM that is not reserved for the variable stack, available as a code
store. The iserver tools avail even more.

The ordering of the files to link is critical for the performance of the program, because code placement on
the processor is determined by the linking order of the binary object files. Programs will therefore run faster
if small, speed-critical routines are placed at the beginning of the list of files to be linked, and the occam
calling process is placed at the end.

It is not possible to have the whole of on-chip memory on the T800 exclusively as a stack or code area. It is
also not possible to have part of the stack on-chip and part of it off-chip. This is due to the implementation
of the development tools.

These restrictions on the specification of the scientific-language compilers were adopted for the following
reasons. Studies showed that in the event of a trade-off in the use of on-chip memory between code and data,
it is generally more efficient to permit some data to be placed on-chip (in the stack) rather than only having
application code on-chip. This is due to the high density of transputer machine code, and the transputer's
hardware instruction pre-fetch mechanism. Therefore, any transputer can offer some on-chip RAM for stack
purposes, but the availability of on-chip RAM for code depends on the transputer and the family of development
tools.

The static data area

Physically, the initialized static data area is placed at the bottom of the heap workspace area. This is placed
immediately above the mixed-object code area. The size of the initialized static area can be determined at
compile-time, and all the compilers generate a pre-initialized "image" of this static data, rather than generating
code to perform a run-time initialization of this area. Two draw-backs of the adopted method are that large
static initialized arrays result in large binary object files, since the value of each element appears explicitly.
However, in addition to this, some run-time initialization is performed by using embedded initialization infor
mation in the code output by the compiler for each module (some items cannot be initialized at compilation or
linkage phases). Each static data variable has initialization data embedded in this way; a byte of initialization
data for every byte of static data required by the variable.

The run-time initialization involves relocating the static data from the code area to the static/heap workspace
area, and initializing it prior to execution. This is because the code area could be in read-only store.

The scientific-language process communications interface

The scientific-language systems create compilation units which can be made into an equivalent occam
process (EOP). The interface to this compilation unit was devised for flexibility, and is not suitable for direct
inclusion into a parallel system - it should always be wrapped in a layer of occam, described in Section 11.5.

The "raw" communications interface to an EOP takes the form of two arrays of pointers to channels. These
are passed as arguments to the process by the surrounding occam environment, and consist of one array
of pointers to input channels, and one array of pointers to output channels. The run-time libraries for the



310 3 Applications

language involved provide access to these channels. The general interface to an EOP is shown in Figure 11.4.

output
vector

-....- ~diag nos tic
output

&
4

3

2

1
r served 0

Non-occam
application

process

input
vecto r

Figure 11.4 General scientific-process interface

Depending on the run-time library used with a particular scientific-language process, some elements of the
channel address vector will be reserved :

• If the EOP uses the full run-time library, then the first two elements of both vectors are reserved.
Element 0 of the output vector is used for run-time library diagnostic output, and element 1 of both
vectors carries host i/o traffic as defined by the language's input / output facilities.

• If a C or FORTRAN EOP uses the standalone run-time libraries, then only element zero of both
vectors is reserved.

• If a Pascal EOP uses the standalone run-time library, then no elements are reserved.

Either vector of pointers to channels can be arbitrarily large, and the user is free to use them for interconnection
to other processes, occam or otherwise. In general, elements 0 and 1 of the input and output channel pointer
vectors should never be used by the programmer; only elements 2 and upwards should be used. Section 11.5
shows how best to conceal the implementation interface to non-OCCam components in a system, using the
07058 occam toolse1.

11.3.9 Scientific-language channel i/o support

In occam, parts of an application communicate by sending messages to each other on channels. This is also
true of the scientific-language implementations. Channels provide unbuffered, unidirectional, synchronized,
point-to-point communications between two concurrent processes. Each scientific language is provided with
four message-passing facilities by means of run-time library functions, which map directly onto the transputer's
channel i/o instructions [5]. These facilities in each scientific-language behave exactly the same as occam's
input (?) and output (!) primitives, and are outlined below:

C support

The four channel communications functions for V1 .3 C are as follows :



11 Using the 07058 occam toolset with non-OCcam applications

Command Parameters Description
_outword w, chanp word output
_outbyte b, chanp byte output
_inmess chanp, buffer, nbytes message input
_outmess chanp, buffer, nbytes message output

The parameter types in the above table are as follows :

int w, nbytes ;
CHAN *chanp;
char b;
char buffer[];

The C main () body is given the following arguments:

typedef int CHAN;
main (argc, arqv, envp, in, in1en, out, out1en)
int argc, in1en, out1en;
char *arqv[], *envp[];
CHAN *in[], *out[];

311

Elements of the vectors in [ ] and out [ ] correspond exactly to those described in the previous section
about the scientific-language program interface.

The channel communication primitives shown above are made available by including this header file in all
compilation units that perform message passing:

#inc1ude <chanio.h>

These examples assume that the messaging routines are called from within the main () function body,
otherwise the in and out vectors declared as arguments to main () are not in scope :

• Receive on channel 3 a one byte value and store as an integer

int tag=O;
_inmess(in[3], &tag, 1);

Notice that the tag is initialized to zero before the byte read. This is because only the least significant
byte of the integer will be affected by the byte read, so it is advisable to initialize the whole integer

. to a known and sensible value before operating on only part of it.

• Receive on channel 2 a 4 byte integer, then display it

int va1ue;
inmess(in[2], &va1ue, 4);

printf("%d\n", va1ue);

• Receive on channel 4 a doub1e, then send it out on channel 3

doub1e item;
inmess (in[4] , &item, 8);

:outmess(out[3], &item, 8);

• Output a byte tag #02 on channel 4, then output integer 3

outbyte(2, out[4]);
:outword(3, out[4]);

It is particularly important to notice that in the case of the _inmess and _outmess functions, the second
parameter is the address of a buffer containing the actual data. If one uses the _outmess to send a word
or a byte, be sure not to place a literal constant (ie, a number like 42) as the data. This should only be



312 3 Applications

attempted with the _outbyte or _outword functions.

To be able to use the messaging facilities from functions outwith main (), and yet avoid passing in the
channel pointers as function parameters each time, it is necessary to declare outside main () two pointers
to these channel vectors. One way of doing this would be as follows :

typedef int CHAN;

CHAN **in, **out; /** This does the scoping **/

main (argc, arqv, envp, topin, in1en, topout, out1en)
int argc, in1en, out1en;
char *arqv[], *envp[];
CHAN *topin[], *topout[];
{

usua1 dec1arations
in = topin;
out = topout;

}

Only now is it possible to globally reference elements of in and out from any functions other than main () .
This is particularly important, because the system may appear to behave as if the channels were correctly
connected, yet produce incorrect results and fail to terminate if this channel scoping is not correct.

Pascal support

The four channel communications procedures for V1 .2 Pascal are as follows :

Command Parameters Description
outword w, channe1 word output
outbyte b, channe1 byte output
inmess channe1, buffer, nbytes message input
outmess channe1, buffer, nbytes message output

The parameter declarations in the table above are as follows :

w, channe1:INTEGER;
b: CHAR;
VAR buffer:UNIV CHAR;
nbytes: INTEGER;

These are made available by including the following file with one's application code, and compiling the appli
cation with the Ix option (which has the effect of allowing certain extensions to the ISO 7185 1 886192:1982
Pascal definition to which the compiler normally conforms) :

$inc1ude '\tplv2\channe1s.inc'

The directory tplv2 is the home directory for the version 1.2 Pascal compiler, so it is specified in the path
for the include file.

The UNIV type of parameter, shown above in procedures inmess and outmess, provides a loophole
for breaking Pascals' strict type checking rules when passing parameters. As an extension to the ISO/88
standards, the reserved word UNIV can be prefixed to the type of a VAR parameter. This allows the parameter
to be specified as a variable of any type.

The channel numbers used with these message-passing procedures corresponds exactly to those described
in the previous section about the scientific-language program interface.

Some examples of Pascal channel communications in action :



11 Using the 07058 occam toolset with non-OCCam applications

• Receive a byte called tag on channel 2

inmess(2, tag, 1)

• Receive an integer called data on channel 3

inmess( 3, data, 4)

• Output an integer called count on channel 2

outword(count, 2)

• Output a byte #05 on channel 3

outbyte(chr(S), 3)

FORTRAN support

The four channel communications subroutines for V1.1 FORTRAN are as follows:

Command Parameters Description
CHANOUTWORD VALUE, ICHANNEL word output
CHANOUTBYTE VALUE, I CHANNEL byte output
CHANINMESSAGE ICHANNEL, BUFFER, NBYTES message input
CHANOUTMESSAGE ICBANNEL, BUFFER, NBYTES message output

The parameter declarations in the table above are as follows :

INTEGER ICBANNEL, NBYTES, VALUE

Any FORTRAN object - BUFFER

313

It is not necessary to specify any additional information in the source text of your application (as is the case
with C and Pascal) before these can be used. They are made available at link-time from the FORTRAN
run-time libraries.

The ICHANNEL number used with these message-passing subroutines corresponds exactly to those de
scribed in the previous section about the scientific-language program interface.

Now, some examples of FORTRAN channel communications:

• Send a real number on output channel 2

REAL*4 A
C Note that A IS 4 bytes in size

CALL CHANOUTMESSAGE(2, A, 4)

• Receive an integer number from input channel 2

INTEGER*4 B
C Note that B IS 4 bytes in size

CALL CHANINMESSAGE(2, B, 4)

• Receive into channel 2 as an integer a byte tag (length 1)

INTEGER TAG
TAG = 0
CALL CHANINMESSAGE(2, TAG, 1)

The TAG integer is initialized to zero before reading in data to its least significant byte - the byte
read will not affect the top 3 bytes in the integer, so to allow direct comparisons in this way it is



314

sensible to pre-initialize the whole word to a known value .

3 Applications

• Output a byte of value #01, then a word VALUE, on channel 2

INTEGER VALUE
VALUE = 1
CALL CHANOUTBYTE (1, 2)
CALL CHANOUTWORD (VALUE, 2 )

It is particularly important to notice that in the case of the CHANINMESSAGE and CHANOUTMESSAGE
subroutines, the second parameter is the address of a buffer containing the actual data. So ensure you never
attempt to use literal constants for this parameter. For example, CHANOUTMESSAGE (2, 0, 1) will not
send a byte of value 0 on channel 2 - it will attempt to decode memory at hardware address 0 and send
that as a byte. Since positive address space is rarely decoded as physical memory on current production
transputer boards, this is certainly wrong and could be dangerous!

Parallel C support

Parallel C version 2.0 offers some additional message passing primitives compared to the C version 1.3. One
gains access to these by inserting #incl.ude <chan. h> in the source.

Command Parameters Description
chan_in...l:>yte in...b, chanp byte input
chan_in...l:>yte_t in...b, chanp, timeout timeout / byte input
chan_init chanp initialize a channel word
chan_in...message nbytes, buf, chanp message input
chan_in...message_t nbytes, buf, chanp, timeout timeout I message input
chan_in_word in_w, chanp. word input
chan_in_word_t in_w, chanp, timeout timeout I word input
chan_out.byte out.b, chanp byte output
chan_out.byte_t out.b, chanp, timeout timeout I byte output
chan_out..message nbytes, buf, chanp message output
chan_out..message_t nbytes, buf, chanp, t imeout timeout I message output
chan_out_word out_w, chanp word input
chan_out_word_t out_w, chanp, timeout timeout I word input
chan_reset chanp reset channel word

The parameter types in the above table are as follows:

char *in b, out b;
int *in w, out w;
char *buf; -
int *chanp;
int timeout;

For compatibility reasons, the channel messaging routines supplied with the version 1.3 C compiler are also
included, and can be accessed by referencing header file #incl.ude <chanio. h>.

Parallel FORTRAN support

Parallel FORTRAN version 2.0 again offers a superset of message passing primitives compared to the FOR
TRAN version 1.1. One gains access to these by inserting INCLUDE ' CHAN. INC' in the source.



11 Using the 07058 occam toolset with non-OCCam applications 315

Command Parameters Description
F77_CHAN-ADDRESS CHANWORD address of channel word
F77_CHAN_IN-BYTE IBUFF, ICHANADDR byte input
F77_CHAN_IN-BYTE_T IBUFF, ICHANADDR, TlMEOUT timeout / byte input
F77_CHAN_INIT ICHANADDR initialize a channel word
F77_CHAN_IN~SSAGE LENGTH, BUFF, ICHANADDR message input
F77_CHAN_INJMESSAGE_T LENGTH, BUFF, ICHANADDR, TlMEOUT timeout / message input
F77_CHAN_IN-.PORT PORTNO value of input port binding
F77_CHAN_IN-.PORTS - number of input ports
F77_CHAN_IN_WORD WORD, ICHANADDR word input
F77_CHAN_IN_WORD_T WORD, ICHANADDR, TlMEOUT timeout / word input
F77_CHAN_OUT-BYTE IVAL, ICHANADDR byte output
F77_CHAN_OUT-BYTE_T IVAL, ICHANADDR, TlMEOUT timeout / byte output
F77_CHAN_OUT~SSAGE LENGTH, BUFF, ICHANADDR message output
F77_CHAN_OUT~SSAGE_T LENGTH, BUFF, ICHANADDR, TlMEOUT timeout / message output
F77_CHAN_OUT-.PORT PORTNO value of output port binding
F77_CHAN_OUT-.PORTS - number of output ports
F77_CHAN_OUT_WORD WORD, ICHANADDR word input
F77_CHAN_OUT_WORD_T WORD, ICHANADDR, TlMEOUT timeout / word input
F77_CHAN-RESET ICHANADDR reset channel word

The parameter types in the above table are as follows:

INTEGER CHANWORD

INTEGER IBUFF, ICHANADDR, TIMEOOT

INTEGER PORTNO, IVAL

INTEGER NCHAN, ICHANADDRARRAY(NCHAN)

Any FORTRAN object - BUFF

Any 4 byte FORTRAN object - WORD

For compatibility reasons, the channel messaging routines supplied with the version 1.1 FORTRAN compiler
are also available.

11.3.10 Additional support from Parallel C and Parallel FORTRAN

The Parallel C and Parallel FORTRAN compilers have some additional capabilities to support the generation
of parallel processes, and also replace the toolse1's occam configuration stage with a C-like meta-Ianguage.

Parallel C has the concept of parallel threads of execution. A C task can contain several parallel execution
threads. All of a task's threads share the same static, extern, and heap data, and therefore run on the
same processor as the governing task. Each thread has its own stack for auto variables, which is allocated
from the heap of the main task by using a thread_create function. A semaphore mechanism is provided
to ensure mutual thread exclusion from critical shared data areas. Threads can also communicate with each
other by using channels.

Parallel FORTRAN also has a multiple thread facility, but this is more restricted than in Parallel C because
FORTRAN sub-programs are not re-entrant - a sub-program cannot call itself, directly or otherwise.

Using threads without due care in synchronizing access to shared data areas with semaphores can introduce
errors which are very difficult to pin-point. In contrast to a thread, a task is a more substantial entity. Tasks
correspond to the compilation units of the other compilers. Tasks communicate with each other only by using
channels. Each task has its own code and data areas which are separate from those of all other tasks.



316 3 Applications

The Parallel C and Parallel FORTRAN configuration meta-Ianguage allows one to specify a process to pro
cessor mapping without recourse to an occam specification. The hardware topology is described in terms
of processor and wire statements, which include the host PC as a processor. Each task in the network
is identified with a task specification which names the task and identifies the number of input and output
channels, plus specific requirements such as heap space. Tasks are allocated to processors with the pl.ace
directive, and are interconnected using connect statements.

One attraction of the Parallel C and Parallel FORTRAN compilers over the occam toolset software is the
flood-filling configurer. This allows applications written in a particular way (a single controller task with arbitrary
numbers of identical workers) to be broadcast in a transputer network to automatically take advantage of how
ever many transputers happen to be present.

The Parallel C compiler is supplied with a decoder utility which can examine the binary object output from
the compiler. It produces a listing showing the source code and the corresponding disassembled machine
code. It can also be used on the object output of the V1.3 C, V1.2 Pascal, and Parallel FORTRAN compilers.
Note that the utility cannot be used on bootable .b4 files. The utility is similar to the 07058 toolset's il.ist
utility.

For further information on INMOS Parallel C or Parallel FORTRAN, refer to [6,7].

11.3.11 Transputer assembler inserts

The two C compilers described earlier both support the inclusion of transputer assembler inserts. This is not
documented for the version 1.3 C compiler because the implementation provided in this case is limited and
can give incorrect code generation without notification (for example, if one attempts to access local auto
variables symbolically). Note clearly that this facility is not supported by INMOS. The Parallel C version 2.0
offers a more flexible and correct assembler insert capability.

Usage of assember

The use of transputer assembler should be restricted to either increasing the performance of short sections
of time-critical code, or for direct manipulation of the hardware. The assembler capability in the C compilers
is suitable for these tasks, but should not be seen as a means of writing large sections of code in assembler
(for this a proper symbolic macro-assembler is advised). And don't try it unless you have access to [5].

A transputer assembler insert is introduced with the asm directive. Instruction mnemonics are expressed in
lower case. An example of using transputer assembler is shown below :

int l.oc (a)
int *a;
{

asm
{ l.dl. 2 ; }

This function was used in a large FORTRAN application [8] to return the address of a variable passed as a
parameter to it. As FORTRAN passes parameters by reference anyway, it is simply necessary to load the
parameter into the transputer's A register and return. To understand why the parameter is referenced with a
l.dl. 2 instruction, the following discussion on workspace allocation is helpful.

Local workspace allocation

Assuming that no temporary variables are required, the transputer C compilers allocate local function workspace
as follows:

• Local auto variables are allocated from workspace slot 0 upwards, in their lexicographic defini
tion order. So, for example, the C function below, called snark, declares three auto integers
called source, dest, and l.en. These variables would be placed in workspace slots 0, 1, and 2
respectively (workspace slot °has the lowest memory address in the falling stack).



11 Using the 07058 occam toolset with non-Occam applications 317

• Following the local auto variables, is the return address and the static link pointer. The static link
pointer is used by the transputer's non-local load, store, and pointer instructions. With reference to
snark, this would put the return address in workspace slot 3, and the static link in workspace slot
4. However, if the module used any static data, another slot is used as a static pointer to the other
module.

• Finally, in ascending slot positions, comes the function parameter list, again in order of their lexico
graphic left-to-right declaration. So, for snark, parameter a occupies slot 5, b occupies slot 6, and
slots 7, 8, and 9 go to parameters i, j, and n.

If the function has no local variable declarations, then the first parameter occupies workspace slot 2. This is
why the J.oc (a) example above used the assembler command J.dJ. 2 to access the first parameter.

int snark (a, i, b, j, n)
char *a, *b;
int *i, *j, *n;
{

int source, dest, J.en;

source = b + (*j) - 1;
dest = a + (*i) - 1;
J.en = *n;

asm
J.dJ. 0
J.dJ. 1
J.dJ. 2
move;

/* source */
/* dest */
/* J.en */

A function like snark is used in [8], again called from a FORTRAN environment. The reason for the -1
offset in the initialization of source and dest is to do with the subscripting incompatibilities between C
and FORTRAN languages (as opposed to an obscure feature of the INMOS scientific-language systems).
This problem is further compounded in higher dimensions (as Or Who frequently observes) due to the array
column / row major allocation differences.

Review of how the transputer implements procedure calls

It is instructive at this point to consider how the transputer implements a function call / return. The snark
function will be used as an example to show how the parameters are set up and how the workspace is used.
Figure 11.5 illustrates the situation.

The transputer implements function / procedure calling with the caJ.J. and ret instructions. The workspace
pointer is adjusted using the ajw instruction. [5].

Consider the mechanics of a function call :

• The function that calls snark places all but two of the snark parameters at the bottom of its own
workspace. In descending memory order, these are shown as n, j, and b. It then puts the other
two parameters and the static link into the transputer's registers. Register C gets i, register 8 gets
a, and register A gets the static link.

• The transputer's caJ.J. instruction adjusts the workspace pointer, allocating four new positions into
which it stores the three registers and the instruction pointer. This has the effect of placing the
function return address, the static link, and all the function parameters contiguously in memory, as
shown in Figure 11.5. The diagram shows the initial value of the workspace pointer, immediately
following the call to the snark function - the return address (old instruction pointer) is at slot O.

• The first action done by snark is to allocate workspace for its own auto variables. Since there are
three, it does this with an ajw -3, which leaves the snark workspace numbered as shown in the



318 3 Applications

~ static link

WS before ~ 7 b i;:·· caller m
call to snark ~6-1----~m.:::~~~..o:.

5 a

WS after ~ 3 return address
call to snark t-2--+-------1e-n------t

1 dest

Loaded into
registers by
calling function

Placed in workspace
by calling function

C re
g

)
8 reg

A reg

Workspace used by
calling function

~~ji~i~1~~~~11~*~1~1~~~~1~111111j 1~i call er ~~
~1111~~111~1j1j~~111~~11jjj~~~~lj~jjjj~j11jjjj 1j~~: call er .~~

~m1~1*i1~1~~m~~a1j~1 ~i~~~: call er {~
S n .~.. call er .~

High memory
addresses

Low memory
addresses

WS adjusted ~O source

by snark '---+~jl;~:~~~~~~.~~jjjjj1jmjj~j~j~jmj~j~~jj~~j~jj~j~~jj~j~j~'~jj~jj:~~j~j~jjm~j~lj~j~j~jj~jjmj~jjjjj~~j~lj~~~.1~j~j~j~jjjj~j~j~~jjjj

!~j!~[1~1j1j1111ij1~1~11j1![1!j111jj1[111111j11j11~jij~j1jj111111j11~111~1~11i[1~1~1j1j~jj11~lj11~11~11111111111[11

Free
wo rkspace

Figure 11.5 Function calls and workspace usage

Figure. The total stack workspace of snark is then ten words, of which the top three overlap with
the workspace of the calling function. All the parameters are stored contiguously above the static
link pointer, and all the local variables are stored contiguously below the return address.

• The last action of snark is to restore workspace used by the local function variables. This is done
by an ajw 3 instruction. This leaves the return address at slot 0 again. It is important to ensure
that the workspace pointer has the value it had originally, immediately following the cal.l. instruction
to the snark function .

• The ret instruction restores the instruction pointer to the value it had before the call to snark,
and deallocates four workspace locations. This returns the workspace pointer to the value it had
immediately preceeding the cal.l.. Since ret does not corrupt the evaluation stack, up to three
values can be returned to the calling environment.

The C assembler restrictions and capabilities

The V1.3 C compiler should not be used to symbolically access local variables or parameters - use the
explanations given here as to where items will be placed in local workspace, and access them explicitly by
slot number as in snark. Remember, the assembler insert feature in V1.3 C is not documented and not
supported, so don't expect too much from it. However, both C assemblers will handle automatically any pfix
and nfix instructions required to encode large values.

The Parallel C assembler allows symbolic access to parameters and local auto variables. extern variables
can also be symbolically accessed but only within the scope that reserves storage for them. Individual state
ments within an asm directive cannot be labelled. Reference [6] should be consulted for the implementation
capabilities of Parallel C.



11 Using the 07058 occam toolset with non-OCCam applications 319

11.3.12 Mixing occam and non-OCCam compilation units within the same process

There are many advantages to having a non-OCCam compilation unit call an occam PROC, rather than
call another scientific-language procedure compilation unit. Firstly, the occam PROC requires no elaborate
support from a run-time library. Secondly, occam PROCs are re-entrant because they have no concept of
"writable static data", which means that occam PROCs and any of the occam library support procedures
can be shared by any number of scientific-language processes on the same transputer. Thirdly, the occam
support package is more mature and robust than any of the current INMOS scientific-language development
systems.

In addition to the above discussions of the scientific-language compilation systems, some additional consid
erations are appropriate when involving occam PROCs. These include :

• Parameter type compatibilities between occam and non-OCCam systems.

• Hidden parameters required by occam PROCs.

• Array parameters.

• occam vectorspace support by non-OCCam compilation units.

• Calling occam FUNCTIONs rather than occam PROCs

These additional considerations are now explored :

Parameter type compatabilities

A working knowledge of the data storage and parameter passing mechanisms discussed above in the context
of mixed-language scientific-language systems is useful when calling occam PROCs.

occam's VAL parameters correspond to C's non-pointer parameters, and Pascal's non-VAR parameters. In
addition, occam VAL parameters which do not fit into a single machine word are expected to be passed
by pointer refenence. So, FORTRAN DOUBLE PRECISION real parameters would correspond to either a
VAL REAL64 or simply a REAL64 parameter in occam. (Generally though, FORTRAN parameters are
not in correspondance with occam VAL parameters).

C's pointer parameters, Pascal's VAR parameters, any FORTRAN parameters, and those parameters which
cannot fit into a single machine word correspond to occam's non-VAL parameters.

Hidden parameters

Each scientific-language compilation unit passes, as a hidden parameter, the so-called static link pointer. This
is a pointer to the static data for that compilation module. In occam this static link has to be accommodated
by explicitly including a dummy integer first parameter in the formal specification of the occam procedure:

PROC occamproc (INT dummy, REAL32 other.parm)

This PROC can be called from C, Pascal, or FORTRAN, but the caller must not explicitly use two parameters
in the calling specification.

Array parameters

C and occam enjoy totally compatible array allocation strategies, in terms of the storage mapping function,
and array index subscripting. This is definitely not true of FORTRAN, which stores array dimensions in exactly
the reverse strategy to occam, with wild and wacky possibilities as far as subscripting is concerned. It is not
encouraged to access multi-dimensional arrays between either occam or C, and FORTRAN. [8] shows an
example of the complications involved in accessing elements in a single dimensioned FORTRAN character
array, from a C function.

In occam any unsized array strides in the formal specification of the PROC are in fact included as hidden



320 3 Applications

parameters, immediately following the pointer to the array parameter, in lexicographic left-to-right order of
the missing strides. This means that a scientific-language compilation unit calling an occam PROC with an
unsized array must explicitly include parameters to specify the each unsized dimension. For example, the
following occam PROC specification

PROC occamproc (INT dummy, []BYTE other.pa~)

dummy ho1ds the static 1ink
this PROC has hidden parm for size of other.parm
ca11 it exp1icit1y with an extra INT parameter

must be called from, say C, like this:

char string[MAXSTRING];
initia1ize the string

occamproc (string, MAXSTRING);

Here, it is faster and safter to pass a pointer to the whole memory block reserved for the string, rather than
do a run-time str1en for example.

Vectorspace

If the occam PROC to be called has been compiled with vector space on, then it is necessary to explicitly
pass to the PROC, as the last parameter, a word vector of a size sufficient to contain the vectors used by
the occam PROC. The pointer required should point to the base address of a sufficiently large contiguous
memory area. This figure can be determined by using the 07058 i1ist utility on the compiled and linked
occam •c%% file, with the /e entrypoint option; or alternatively from the compilation descriptor. Worked
examples are included elsewhere in this document.

As an example, if the previous example was compiled with separate vector space on, and required 42 words
of vector space storage, then the C must pass an extra final parameter:

char string[MAXSTRING];
int vectorspace[42];

initia1ize the string
occamproc (string, MAXSTRING, vectorspace);

occam parameter supersets

In occam timers, channels, and ports can never be VAL parameters. A timer parameter occupies no storage
and so no parameter slot is reserved for it (this is also true for arrays of timers).

A CHAN type is represented by a pointer to the word containing the channel contents, which could be either
a hard or soft channel.

Ports are represented the same way as the datatype for which they are a port. When a port is passed as a
parameter, it is represented as a pointer to the corresponding data item.

Calling an occam FUNCTION

All the discussions of occam PROC parameter arguments apply to occam FUNCTIONs, but with some
additional complications. The recommendation to be given is to never directly call an occam FUNCTION
from a non-OCCam compilation unit. Instead, call the occam FUNCTION from a stub occam PROC. Here's
why:

For occam FUNCTIONs returning a single result that can be accommodated in a single machine word, the
result is returned in the transputer's A register (on a T414 or T425), or in the floating point A register on a
T800 if the result is floating point. The first case here is compatible with where the C compiler expects to find
function results.

However, for occam FUNCTIONs returning more than one result, or where the single result does not fit in a
single machine word, there is the additional complication of where to store the multiple results. This is in fact



11 Using the 07058 occam toolset with non-OCCam applications 321

achieved by passing hidden parameters to the FUNCTION arguments, which represfillt pointers to areas of
memory where the results can be stored. The first three results that can be accomodated in a single machine
word are returned in the transputer's A, 8, and C registers. Other results require one hidden parameter per
result, and on the T800, the floating point registers are not used at all to return values if there is more than
one result. It's life, Jim, but not as we know it!

These hidden parameters for FUNCTION result storage must be placed at the very start of the explicit
parameter list. The problem with calling non-OCCam FUNCTIONS directly from non-OCCam compilation
units is that the static link is unavoidably passed in as the first parameter to the FUNCTION. This is no good
because the FUNCTION could try to use it as a results storage area.

So, if one wishes to make use of occam FUNCTIONS from a non-OCCam compilation unit, and since you
canny change the laws of physics, the recommendation is to call the FUNCTION indirectly from an occam
PROC, and use non-VAL parameters to return the results to the calling e,lvironment, thereby circumventing
all the difficulties described above. You know it makes sense ...

11.4 The INMOS 07058 occam-2 toolset

The 07058 occam toolset consists of an OCCam-2 cross compiler, an OCCam-2 syntax checker, a librarian,
a Iinker, a binary Iister, a bootstrap utility, a configurer, a makefile generator, a symbolic network debugger,
a simulator, and the iserver file server / loader. In addition, some support for for converting TOS software
into toolset format is provided.

Code produced by the 07058 is compatible at source and binary levels across the PC, VAX, and Sun-3
toolset platforms. All tools display usage information if invoked with no parameters, all tools have the same
"work in progress" information selector (/i), and most can be re-run without reloading them. The file name
conventions facilitate the use of automated tools to control the system generation of arbitrary transputer
networks.

The remainder of this section discusses the 07058 product occam-2 toolset. As each tool is discussed, the
filename extensions employed at each stage will be shown in brackets. The % symbol is used as a single
character wild-card in these filename extensions.

11.4.1 Software development using the 07058

Figure 11.6 shows a simple overview of the software development cycle using the 07058 occam toolset
software. Software implementation begins at the top of the diagram, and ends at the bottom. Rounded boxes
represent specific operations, hexagonal boxes identify specific tools employed, and squared boxes represent
real files such as libraries. The dashed line shows that the occam compiler accesses the (proprietary and
user's) occam libraries at compile time, to check the procedure parameter interfaces across separately
compiled units. The security afforded by this strict type-checking is part of the occam language specification,
and is not offered by the scientific-language implementations.

In any software project, it is not possible to proceed down the diagram past any point until all the relevent
operations shown above it have been done. Any operations shown horizontally adjacent can be performed at
the same time. In broad terms, the software permits the occam and non-OCCam software for a transputer
network to be developed concurrently by independent teams of programmers. At both source and binary
level, the software developed will be compatible across PC, Sun-3, and VAX development platforms. A
further advantage is that any development systems not available accross the occam toolset development
base, can still be used on their native machine and contribute binary object code for integration by the
occam toolset on another platform. The 07058 facilitates hooks for use with the programmers favourite
version control and reconstruction software.

A typical application development scenario might look like this. Numbers refer to Figure 11 .6. When all
scientific-language source for a process is available, it is compiled and linked with run-time support. Once all
such scientific-language object is available for a single transputer, and all occam source is available for that
transputer, (point 1 in the Figure), the occam compiler is invoked. Immediately afterwards, at point 2, the
toolset Iinker resolves external occam references by reading in the occam libraries specified, and merging
all required code into a single object file that represents the process that runs on that transputer (point 2).



322

..

non-occam
libraries

Figure 11.6 Overview of 0705B software development

3 Applications

Only when'this has been done for each unique transputer (point 3) can the system as a whole be realized
(point 4).

In real-life, for a large project, one would place pre-compiled and pre-Iinked compilation units (derived from any
language) into libraries that could be used by other parts of the system. One would also employ structured
and methodical validation and verification techniques to components before bonding them together. The
toolset's support for teams of prog rammers facilitates all stages of software implementation.

Because it is expected that teams of developers could be working on the same project, across potentially
several development platforms, it is important to have a clear convention for identifying the contents of each
file. This is achieved by using a homogeneous set of filename extensions. Because of the sophistication of
the 0705B, this requires a sizeable range of filename extensions, shown in the next section.

11.4.2 File naming convention

The file name extension convention for the 0705B is extensive. For some files, the last two filename extension
positions are dependent on the processor type and the error mode, explained in Sections 11 .4.3 and 11 .4.4.



11 Using the 07058 occam toolset with non-OCCam applications

File extension Contents
.000 occam source
.i.no include file of protocol or constant definitions
.t%% separately compiled object code
.J.%% Iinker indirect command file
.0%% linked code unit
.a%% linker symbol table
.m%% Iinker code map
.b%% bootable code file for a single transputer
.d%% descriptor file for a single transputer
.r%% single transputer code with no bootstrap
. J.i.b library file
.J.bb librarian build command file
.J.i.u library useage file (describes library nestings)
.pgm occam configuration description file
.map configuration map
.dso configuration descriptor
.dmp memory dump file
.btJ. link bootable file for transputer network
.btr ROM bootable file for transputer network

323

Don't be put off by this horrific-looking table - its really seductively powerful once familiar. Simple calculation
shows that there are over 200 different possible filename extensions, although not all of these are likely to
materialize in a single project.

A word of advice : stick to these file name conventions, and be explicit with the filename extensions wherever
possible. This will give you the maximum support from the automated system makefile generator (imakef).

11.4.3 Processor types

The compiler can produce code for the T212, T222, T414, T425, and T800 transputers. While all transputers
are compatible at the occam source level, some transputers are additionally guaranteed compatible at the
binary T-code level. This compatibility is determined by the intersections of their instruction sets. To this end,
the compiler can produce code that is guaranteed to run on a set of transputers :

Code set Compatible processors
TA T414, T425, and T800
TB T414 and T425
TC T425 and T800

The source restrictions on what can be compiled in each code set are determined by the instruction set
intersection of the code class. Code set TA cannot contain any floating point, CRC, or 20 block-move. Code
set TB can contain floating point (implemented in software by libraries), but not CRC or 20 block-move. Code
set TC can support CRC and 20 block-move, but not floating point. Providing that the code produced for
the different processors in a class would be the same for a given compilation unit, then that unit can be
compiled in that class. All the 16-bit transputers (T212, T222, and M212) share the same instruction set, so
the compiler makes no distinction.

These code sets are illustrated in Figure 11.7, which also shows the relationship between the processor
classes and the basic processor types. The diagram shows that code compiled for processor types lower
down in the tree can call code compiled for processor types above them and connected to them (possibly
indirectly) by an ascending line. For example, T414 code can call T414, TB, or TA code, but TA code can
only call other TA code.

To identify which processor (class) a given piece of code has been compiled for, the table above uses the %
in the second position of the filename extension to indicate the processor type, which is one of 2, 4, 5, 8, -a,
b, and o.



324

Can call
anything
in this
direction

3 Applications

Figure 11.7 Processor compilation class hierarchy

If you compile code for any transputer class other than TB, the use of the compiler maths libraries must be
disabled with the le compiler option. This is because the compiler maths libraries are significantly different
between the floating point T800 transputer, and the non-floating point transputers which are represented by
class TB. So, classes TC and therefore TA encompass the floating-point and non-floating-point transputers,
and therein lies the problem. The main differences arise because the T800 implements directly as instructions
many functions which are represented as library calls for non-floating point transputers.

A further advantage of processor class compilation is that resultant libraries using generic code can be
considerably smaller while still supporting a processor range. This technique will help to reduce the software
size overheads of supporting present-day and future more powerful processor types.

11.4.4 Error modes

The compiler can produce code with differing behaviour when run-time errors occur. There are three error
modes, suitable in different cases:

Error mode Behaviour on error Identity
HALT system Total system halts h
STOP process Only errant process stops s
UNDEFINED Arbitrary effect u

These are referred to as HALT, STOP, and UNDEFINED (REDUCED), and are identified with the letters h,
s, and u in the last position of the filename extensions shown previously.

Each error mode is suitable in different situations.

• HALT: The default mode is HALT system mode, which is useful for developing and debugging a
system. This mode is implemented using the transputers' seterr instruction following segments
of code to be checked by causing an unconditional assertion of the error flag, or using in-line checks
like csubO.

This mode is used in conjunction with a halt-on-error bootstrap, and run with the iserver's I se
error test parameter.

• STOP : The STOP process mode ensures that errant processes do not communicate with other
processes. This mode can be used to construct a system with software redundancy that exhibits
"graceful degradation", allowing some operation even if parts of a system fail.



11 Using the 07058 occam toolset with non-OCCam applications 325

This mode is implemented using the stoperr instruction, which deschedules the current process
if the error is set (but does not affect the status of the error flag). It is used in conjunction with the
testerr instruction which loads false into the evaluation stack if the transputer's internal error is
set, and true otherwise (it also clears the error flag). This mode produces the largest and slowest
code, due to having to use testerr / stoperr pairs, rather than seterr instruction used in the
previous execution mode.

• UNDEFINED : The UNDEFINED (REDUCED) error mode should only be used for optimising pro
grams that are known to be correct, because the amount of run-time checking included by the
compiler is minimal. In this mode, invalid processes have an arbitrary effect. Code compiled in this
mode is the most compact and fastest, compared to the other two error modes.

There is an additional error mode called UNIVERSAL, identified by x. This is implemented in the same
way as UNDEFINED, with minimal checking. Separately compiled units compiled in this mode can be called
from units in any of the other error modes, and may call other units compiled in x mode. This is shown in
Figure 11.8. The general rule is that all separately compiled units must be compiled in the same error mode.
These error modes are described more fUlly in (2].

Can call
anything
in this
direction

Figure 11.8 Processor error mode hierarchy

If code is to be compiled in UNIVERSAL error mode, use of the occam compiler's libraries must be disabled
with the / e option. This is because the compiler libraries exhibit different behaviour in different error modes,
so it is not possible to use floating point, extended data type and other compiler library functions with the
UNIVERSAL error mode.

11.4.5 The makefile generator

The imakef utility automatically generates a makefile to rebuild a multi-transputer program, a single trans
puter program, or a library. The C source is supplied so that users can adjust the program for similar tools.
The program will also generate Iinker command files and library usage files. The program does not produce
any rules for object code that has been imported using the #IMPORT occam compiler directive, although it
does assume that any linked code referred to is derivable ultimately from occam source files.

11.4.6 The occam compiler

The compiler oocam is a full OCCam-2 compiler, supporting FUNCTIONS. occam source is placed in .occ
files, and compiled object is stored in • t%% files.

The #USE directive is used to reference separately compiled units from within occam source text. The
imakef utility ensures that certain rules surrounding #USE are observed, in connection with non-circularity
of references, compilation before usage, and compatible processor types and error modes. The default suffix



326 3 Applications

with fUSE is . t%% for compiled units, depending on compiler options, and .1ib for libraries.

The #SC references a separately compiled unit, and is included only for compatibility with the INMOS TDS. It
is recommended that the fUSE directive is instead employed to reference separately compiled procedures,
as this removes the constraint on specific ordering of separately compiled units at link time. (SCs must be
linked in a special order because the occam compiler generates direct calls to the SCs, rather than allowing
the linker to patch them. To do this, the compiler must assume they are loaded in a specific way). Simple
substitution of the directive fUSE for the #SC directive is sufficient.

The #IMPORT directive takes the filename of the compiled and linked non-OCCam application, to allow the
imakef utility to handle non-OCCam aspects of a system. This also serves to conceal unpleasant detail
concerning the instantiation of non-OCCam processes, while presenting to the occam compiler something
that looks like an occam PROC.

An additional #COMMENT directive allows a comment string to be associated with the compilation unit, in
tended to hold the version number, date of last udpate, and a short description.

The directory path in which a referenced file resides can be specified explicitly, or relative to the directory in
which the compiler was invoked, or have no path specified. It is strongly advised, especially in multi-platform
toolset development, that no directory path specifications are ever included in occam source directives. This
would have the effect of compromizing the source-level portability amongst platforms on the Sun-3, VAX, and
PC. To circumvent this, a sequence of directory paths which will be searched can optionally be specified by
using the PC environment variable I SEARCH. There are equivalent path specifications in the other toolsets,
and these should represent the only host-specific parts of toolset development.

The default is to compile occam for a T414 in HALT-system compilation mode, with separate vector space,
alias and usage checking enabled. This gives a . t4h object file.

11.4.7 The syntax checker

The occam compiler stops when it detects the first error. At times, it is more useful to have a list of errors
available to permit bulk editing operations on virgin source. The syntax checker icheck generates such a
list of errors, and has particularly good error recovery due to the fixed format of the occam language.

11.4.8 The librarian

The librarian i1ibr is used to collate separately compiled units into a single library file (. 1ib). Libraries
can be built from units compiled for mixed processor types and error modes. They provide a convenient unit
for distributing collections of procedures and functions in a single file. Libraries form the basis for the selective
loading mechanisms of the linker (The Iinker will selectively load separately compiled units from a library only
if they satisfy an outstanding reference and match the processor type and error mode requirements). Indirect
files can be used to list the names of files to be included in the library.

A specification describing what object files have to go into a library is provided in a .1bb file. One can
specify compiled object and linked object files, for a range of processors and error modes. Note that it is not
possible to mix source and object in the same file, so for example it is not possible to have occam source
INCLUDE files in a library.

The librarian also supports building libraries from units compiled with the scientific-language compilers. oc
cam procedures and functions are re-entrant and can be shared, through libraries, by separate parallel
threads of execution on a single processor. As not all modules in the scientific-language libraries are re
entrant, the libraries as a whole are not re-entrant. This requires that separate copies of the libraries are
linked with each scientific-language process.

Libraries may reference other libraries, but may not reference code via a #SC directive. This is because the
positioning of SC code is critical, whereas the library mechanisms locate code in arbitrary places.

The librarian ensures the integrity of the library by checking each new addition for violation of uniqueness of
processor type and error mode within the library.



11 Using the 0705B occam toolset with non-OCCam applications

11.4.9 The linker

327

The Iinker i1ink composes a collection of separately compiled units, (. t%% and .bin and . c%% linked
units) resolving external references, to give a single code unit (. c%%). This is typically used to build the
program code for a single processor. The output of the linker is in the form of a separately compiled unit,
like that produced by the occam compiler, which means that linker output can be re-submitted as input at a
later linking stage.

The first argument in the link list is always a separately compiled unit, not a library. This defines the processor
target type, error mode, and entry point for the linked unit, and all further units must be compatible with respect
to this processor target (set) and error mode.

Separately compiled units in the argument list are loaded unconditionally, but units in libraries are loaded only
if they match the processor type and error mode of the first argument, and if they satisfy some outstanding
reference. The processor target rule specifies that units may call units with at least as general target set (so
T800 units can call TA and TC units, for example). The error mode rule is that units may call units with at
least as general error mode set (so HALT, STOP, UNDEFINED, and UNIVERSAL may call UNIVERSAL, but
HALT may only be called from HALT).

If the #se directive is used to reference separately compiled units, then these units must be linked in the
correct order. The imakef utility will generate the Iinker command file to achieve this correctly.

There are some restrictions as to how the Iinker can be used with scientific-languages. Only complete
scientific-language programs can be linked using the Iinker - this is because the Iinker has to resolve the
initialization chain for the scientific language compilers. To do this, it has to associate an entry point name
with the output file it produces, and this is only meaningful for a complete scientific-language process. Multiple
scientific-language processes to run on a single processor may be individually prelinked with run-time support
and resubmitted to the Iinker with the main occam calling process.

Linker control input may be re-directed from a specified file or standard input. However, re-directed linker
command input may not itself be re-directed. Therefore, an indirect file may not refer to another indirect file
or to standard input. Several indirect files can be specified on the Iinker command line. Command options
can be placed in the linker indirect file, for example, to optimize the positions of certain symbols.

11.4.10 Binary lister

The binary object Iister i1ist is used to generate documentation information from binary files, either from
separately compiled units or from library files. Various command-line options permit different types of doc
umentation to be produced. The options are accumulative, so that more than one type of output can be
requested with a single command. Information concerning modules, procedures within them, entry points,
processor types and error modes, external references, and workspace requirements can be extracted from
any binary object file (.bin, .1ib, . c%%, . t%% etc).

11.4.11 The bootstrap tool

The iboot utility prepends bootstrap and loading code to a program for a single processor. The input file will
have been produced by the Iinker ( . c%%), and the output file can be executed on a transputer (. b%%) using
the server (iserver). The default bootstrap will halt the processor if the transputer error flag becomes set.
Optionally, the bootstrap will not halt the processor if the transputer error flag becomes set.

If the execution mode of the input object file is either HALT or STOP process, then the halt-on-error flag is
set by the bootstrap code; otherwise the halt-on-error flag is not set in the bootstrap loader code. This, in
conjunction with the type of bootstrap prepended, defines the program's behaviour if the error flag becomes
set.

11.4.12 The configurer

The iconf configurer is used to create multi-transputer programs (.bt1 or .btr), specified in a config
uration description (. pgm), by using output from the Iinker (. c%% files). The configurer generates loading



328 3 Applications

and bootstrap information for a transputer network of arbitrary topology and composition. The bootstrap and
loading information is complex due to the possibility of different transputer types in the network, each with
potentially different amounts of memory.

The toolset configurer allows multiple processes to be PLACEd at configuration level. In addition, any occam
that does not involve library references can be expressed at configuration level.

Network description information ( . dsc) is also created for use by the debugger tool.

11.4.13 The debugger

The toolset debugger idebuq allows a symbolic post mortem analysis of an arbitrary transputer network.
Facilities exist to examine the contents of memory symbolically and in many different representations. The
processes on the run-queues and timer-queues can be identified. It is possible to symbolically "walk down
links" to processes operating at different ends of a channel (whether soft or hard). The debugger will locate
to the source line at which the transputer error flag became set, allowing variable inspection. The procedure
calling sequence can be traced back, also through libraries.

In the case of scientific-language debugging, the debugger can locate to the source line at which the transputer
halted. This is possible in a mixed langauge system of arbitrary complexity. It is not possible to use symbolic
debugging facilities in scientific-language source file because the scientific-language compilers do not produce
sufficient information for the debugger. However, procedure trace-back is still possible within this framework.

Later sections in this document discuss how best to use the debugger with scientific-language systems.

11.4.14 The simulator

The toolset simulator isim can run almost any program that can be run on a single T414 transputer, on a
boot-from-Iink evaluation board. The simulator provides most of the symbolic debugging facilities provided by
the toolset debugger, plus the ability to set break and watch points at source level, and single-step a program.
An important feature of the simulator is that the compiled code is exactly that which can be booted onto the
transputer board and run normally.

Unfortunately, the simulator cannot accommodate non-OCCam components. The simulator is not discussed
further in this document.

11.4.15 Supplementary tools

There are a number of utility tools supplied with the TOS which are also supplied with the toolsets. In
particular, the tools for EPROM and memory interface programming, and the transputer network tester, are
provided.

11.5 Handling non-OCCam processes

The previous sections have presented information concerning the INMOS scientific-language systems, and
the 07058 occam toolset. Now, this information will be combined to show how to correctly integrate non
occam processes within an occam framework. The methodology of arbitrarily interconnecting non-occam
processes is known as equivalent occam process technology (EOP).

11.5.1 Equivalent. occam process technology

The scientific-language systems create processes which can be made equivalent to an occam process. The
interface to these processes was devised for flexibility, and is not suitable for direct inclusion into a parallel
system. The language-independent interface affords a general bilateral communication between a scientific
language process and an occam process, while accommodating a certain flexibility in the workspace ar
rangements. It should always be wrapped in a layer of occam which exposes only conventional occam
channel parameters to the outside world.



11 Using the 07058 occam toolset with non-occam applications 329

There are three basic forms of equivalent occam process (EOP) which can be built:

• Type 1 : Used when a program runs on a single transputer communicating only with the host server.

• Type 2 : Used when the program communicates with other processes as well as the host server.

• Type 3 : Used when the program communicates with other processes but does not communicate
with the host server.

To form an EOP from a C, Pascal, or FORTRAN program, the object modules comprizing the program
(including the run-time library) are linked with special occam interface code, using the toolset linker il.ink.
These interfaces conceal various supporting details, and offer a fixed language-independent interface to
occam. INMOS supplies interface code for the three types of EOP described above.

The Type 1 interface

A Type 1 interface is used for programs communicating only with the host server iserver. This is equivalent
to the standard occam harness used by the scientific-language development systems. The Type 1 interface
has the following parameters :

PROC MAIN . ENTRY (CHAN OF SP fs, ts,
[]INT free.memory,
[]INT stack.memory)

The channels fs and ts communicate from and to the host server iserver, using the protocol SP defined
in a standard library (not shown). The free. memory vector is used as program workspace. If the size of
the stack. memory vector is zero, then free. memory is used for the run-time stack, heap, and static
workspace. Otherwise, the free . memory is used for heap and static workspace. The DOS environment
vraiable IBOARDSIZE specifies the size of free. memory; its read at run-time by the bootstrap loader.
The stack. memory is used as run-time stack storage if the size of the vector is not zero. Its size is
determined when the bootstrap is prepended by the iboot tool, using the / s option.

The code for MAIN. ENTRY is contained in the files mainent . c%%, depending on the transputer type and
error mode required. The programmer dOes not have to write any occam for this interface.

To use this interface, consider the following example to build a T414 program in UNDEFINED error mode.
A list of compiled program object binaries (including run-time libraries) is placed in the linker control file
progl.ink .1.4u. The required linked output is to be placed in file cprogl. c4u, then bootstrapped with
a 512 word run-time stack vector. The 07058 operations required are :

il.ink mainent.c4u /f progl.ink.1.4u /0 cprogl.c4u
iboot cprogl.c4u /s 512

The Type 2 interface

A Type 2 interface is used for programs communicating with other processes as well as the host server.
This interface is used with non-OCCam programs linked with the full versions of their run-time iibraries. The
Type 2 interface has the following parameters:

PROC PROC.ENTRY (CHAN OF SP fs, ts,
VAL INT fl.ag,
[]INT wsl, ws2,
[] INT in, out)

The channels fs and ts cJmmunicate from and to the host server iserver. The fl.ag is used .in
conjunction with the workspace vectors wsl and ws2. If fl.ag is zero then wsl is used as the run-time
stack and ws2 is used for statics and the heap. If fl.ag is 1 then wsl is used as a combined stack/heap/static
workspace. Vectors in and out are used as pointers to occam channels going to and coming from the
non-OCCam process.

The code for PROC. ENTRY is contained in the files procent . c%%, depending on the transputer type and



330 3 Applications

error mode required. To use this interface, a simple occam harness of the type below is written to bind the
channels used by the server and the other processes to a clean procedural interface :

PROC p.EOP2 (CHAN OF SP fs, ts,
CHAN OF ANY from.outside, to. outside)

#:IMPORT "cprog2.c4u"
[3]:INT in , out:
[1024]:INT stack.vector
[SOOO]:INT heap.vector :
SEQ

-- estab1ish user input and output channe1s
LOAD.:INPUT.CHANNEL (in [2], from. outside)
LOAD.OUTPUT.CHANNEL(out[2], to. outside)

-- EOP2 is the entry point name in cprog2.c4u
EOP2(fs, ts, 0, stack. vector, heap.vector, in, out)

The #:IMPORT command references the file name containing the linked EOP object binary file, its run
time library, and the Type 2 interface code. The channel pointers are initialized using the predefines
LOAD. :INPUT. CHANNEL and LOAD. OUTPUT. CHANNEL. 1024 words have been allocated for the stack,
and 5000 words for the heap/static area. EOP workspace is required by the scientific-language process and
the run-time libraries, and must be large enough for all of the run time stack, static data, and the heap used
by the program and its libraries. As a rough guide, a minimum of 4000 words for static & heap workspace,
and a minimum of 400 words for the run time stack, is advised. By the time an EOP is ready to commence,
having been through the initialization sequence controlled by the run-time library, almost 100 words of stack
space have already been used.

It is important to emphasize that this occam harness is completely standard for a Type 2 interface. In
the last line in the example above, the EOP2 is the substituted name for the PROC. ENTRY defined. The
name-change occurs at link-time, allowing any number of EOPs in a system to use the same interface code:

i1ink EOP2=procent.c4u If prog1ink~14u 10 cprog2.c4u

This has the effect of creating a linked file called cprog2. c4u which is #:IMPORTed into the occam
harness above. From there onwards, the procedure p .EOP2 is considered as a standard occam procedure
in the system - but it must always connect to the server.

The Type 3 interface

A Type 3 interface is used for processes that do not need to communicate with the host server. There are
three types for use with C, Pascal, or FORTRAN programs linked with the reduced version of their run-time
libraries:

• C programs

PROC PROC.ENTRY.RC (VAL :INT f1ag,
[]:INT wsl, ws2,
[]:INT in, out)

• Pascal programs

PROC PROC.ENTRY.RP (VAL :INT f1ag,
[]:INT wsl, ws2,
[]:INT in, out)

• FORTRAN programs

PROC PROC.ENTRY.RF (VAL :INT f1ag,
[]:INT wsl, ws2,
[]:INT in, out)



11 Using the 07058 occam toolset with non-Occam applications 331

Another Type 3 interface is used with C, Pascal, or FORTRAN programs that have been linked with the full
version of the run-time libraries. This is called the stub interface. Normally, EOPs linked with their full run-time
library would require a connection to the host server, preventing their use in a "remote" position. But the stub
interface obviates this.

PROC PROC. ENTRY. STUB (VAL INT fJ.ag,
[lINT wsl, ws2,
[lINT in, out)

These interfaces take parameters with the same meaning as the Type 2 interface. Depending on processor
and error mode, the C interfaces are stored in files procentc. t%%, the Pascal interfaces are stored in files
procentp. t%%, and the FORTRAN interfaces are stored in files procentf. t%%. The stub interfaces
are in procents. c%%. They are used in exactly the same way as the Type 2 interfaces. A simple template
harness is written (exactly the same as for the Type 2 interface, but without the server channels), and the
linker is used to change the entry-point name. For example, a Pascal program for a T800 in HALT error
mode, to be instanced with the identifier EOP3 would be linked as follows:

iJ.ink EOP3=procentp.t8h If progJ.ink.J.8h 10 pprog3.c8h

The corresponding #IMPORT for this would refer to file pprog3. c8h. An example of a Type 3 EOP is
given in Section 11.7.2.

The most common arrangement in a multi-process system is for one Type 2 interface (communicating with
the server), and the remainder are all Type 3.

11.5.2 07058 Processor classes

Concerning scientific-language processes, the EOPs cannot be compiled for a general processor class (Le.
TA, TB, TC), and therefore cannot be called by code compiled for a general processor class. This has an
implication for library useage. For example, TA occam harness code cannot call T414 EOP code. TA code
can only call TA code. So, if one wishes to place occam harness parts into a library as well as the linked
EOPs, they must be compiled for either T414 or T800 execution.

11.5.3 EOP Startup and shutdown overheads

Each time an EOP is instantiated, there is a timing penalty to be paid. The nature and magnitude of this
penalty depends on whether the non-Occam process is using the host file server facilities provided by the
full run-time library, or whether the EOP is using the standalone run-time library for the language concerned.
In either case, the EOP instantiation overheads are enormous compared to calling an occam procedure.
An understanding of these penalties is useful in deciding how finely to partition a non-Occam system into
individual parallel processes. Both these cases are discussed below:

• EOP using the full run-time library

On a 20 MHz transputer, the time taken for an EOP to startup to be in a state capable of doing useful
work varies from 25 to 40 mil/i-seconds, depending on the language. The start-up overheads in this
case are partly concerned with run-time initialization of static data for each module in the EOP. Also,
the start-up routines attempt to open the standard input, output, and error channels to the keyboard
and screen. This involves dealing with the host file server, and accounts for the bulk of the time
spent for most reasonably sized EOPs. This is clearly not the sort of thing to do too often - once
an EOP is running, don't terminate it with a view to restarting it regularly!

There is also a timing penalty in shutting down an EOP. This is usually of lesser consequence than
the startup overhead. In the shutdown period, any open files and streams are closed, which again
involves dealing with the host file server. This is again typically 25 to 40 milliseconds, although it
can be less than 10 milliseconds in unusually trivial cases.



332

• EOP using the standalone run-time library

For an EOP using the standalone run-time library, none of the penalty associated with communicating
with the host file server is incurred. This typically results in start-up and shut-down penalties an
order of magnitude smaller than those using the full run-time library. In other words, expect to spend
between 1 to 4 milliseconds in starting and stopping each EOP in this way.

A corollary of this is that EOPs should only be used to perform fairly sizable units of work, compared to the
overheads in instantiating and terminating them. It is important to be quite clear that once instantiated, the
operation of the normal function I procedure I subroutine calls in EOPs is every bit as efficient as for compiled
occam. Calling an embedded heterogeneous compilation unit from within another compilation unit incurs
no additional temporal penalties.

11.5.4 Practical considerations for writing harnesses

In writing custom harneses, either as EOPs or as the top-level occam on a transputer, there are several
factors one can control. For example, the size and placing of stack and heap workspaces, board size
considerations, and run-time specifications can all be used to advantage.

These issues are discussed below, after reviewing how the single-processor standard occam harness sup
plied with the scientific-language systems is implemented.

Memory allocation by the standard scientific-language harness

In the INMOS scientific-language systems, all memory allocation is under control of occam procedures. The
INMOS scientific-language compilers employ a common model of memory usage. This enables the outputs
from all compilers to be linked and loaded with the same tools, and also facilitates some mixed..language
operations.

Using the Type 1 interface for an EOP on a single processor, the workspace allocated from the free. memory
vector extends from the top of the occam vector space zone to the top of the board memory. This memory
area is shown in Figure 11.2 as unallocated memory. The size (in bytes) of the board in use is specified by
the DOS environment variable :I:BOARDS:I:ZE. Figure 11.9 shows how the unallocated memory is used by
the Type 1 interface.

From Mint onwards, the occam compiler that compiled the "standard harness" to support a single EOP,
can allocate workspace. Using techniques described in [9], the compiler places a block of 512 words as low
down in memory as possible. This memory block is reserved for a run-time stack for an EOP, and is mostly
on-chip. Figure 11.9 shows this reserved run-time stack area in the occam scalar workspace zone. On a
T414 transputer, this uses up all the on-chip RAM. Even if the user does not run the application to make use
of this staCk, this memory is always reserved when using the standard occam harness2 . There will also be .
a few words of scalar workspace required by the occam process which instances the EOP.

With a single combined vector for workspace, the free .memory vector establishes the amount of memory
available. As the size of this is determined at run-time using a DOS environment variable, the application
always has access to the most workspace available. This obviates the need to re-compile an application to
take full advantage of a larger I smaller board. If :I:BOARDS:I:ZE is set too large, the run-time stack would
be placed off the end of the board; if :I:BOARDS:I:ZE is set too small then not all of the board's memory is
availed.

Directly following the occam scalar workspace (and EOP stack reserve) is the code for all the component
modules in the non-OCCam application and the occam calling process. This includes occam and non
occam library modules. The Iinker will decide in what order each component part should be linked. By
referencing any compiled occam in an application referenced with IUSE, the Iinker is free to select an
arbitrary loading map for each transputer.

Immediately above the code is the non-OCCam initialized static data area.

2The Parallel C and Parallel FORTRAN development systems do not reserve a block of 512 words for stack space unless instructed
to do so. This means that even on a T414, the standard harness has an opportunity to place some code on-chip.



11 Using the 07058 occam toolset with non-OCcam applications 333

#80000000

non-occam stack

non-occam statics

occam and non-occam code

[512]INT stack:
-oCCan; scaTar- workspace-

reserved by transputer

Board size
specification

Memstart
Mint

Figure 11.9 The scientific-language compiler memory map

Writing harnesses to allocate scientific-language workspace memory

When writing a harness, one can allocate workspace for the scientific-language systems from occam vec
torspace, rather than from the free .memory parameter. This would be the preference in two cases; first
when one is writing a compact EOP harness, and second when one is writing harnesses for a transputer
network (free .memory is not available in multiple processor systems).

One scientific-language process

The memory allocation for the system shown in Figure 11 .9, has been instead allocated from occam vector
space, as shown in Figure 11.10.

This figure shows that, providing the occam harness is compiled with separate vector space on, then the
stack and heap areas sit lower down in memory than before (but still above the code zone). Suitable 07058
occam to implement a Type 3 interface like this is :

[SOOOO]XNT heap.vector :
[S12]XNT stack.vector :

PLACE stack.vector XN WORKSPACE
program (0, stack.vector, heap.vector, in.EOP, out.EOP)

To increase the chances of placing the stack-vector (mostly) on-chip, the occam harness to implement this
would have to be compiled with vector space off (in which case the main static / heap workspace would sit
below all code, or with vector space on the stack vector would be explicitly PLACEd XN WORKSPACE. This
latter case corresponds to Figure 11 .10 and the occam fragment above.

Notice that if the application will definitely not require the use of a separate run-time stack, one need not
reserve any memory for it in a custom-harness. This will save on overall memory requirements, and allow
the code to be placed lower down in memory.



334

free.memory

#80000000

unused

heap
--------

statics

occam and non-occam code

[512]INT stack:
- oCCan; scaTar- worksp5Ce-

reserved by transputer

3 Applications

Board size
specification

Memstart
Mint

Figure 11.10 Allocating memory from occam vector space

In a single transputer system, the free. memory parameter is still available; but it is unused and will be
smaller than before since there is a much larger occam vector space content. In a multiple transputer
system, the free. memory parameter is not available, so harness techniques like those discussed here
must be understood and employed by the performance-conscious programmer.

Two scientific-language processes

In a more general case, applicable to a single transputer and to an arbitrary transputer in a network, consider
placing two scientific-language processes on a transputer. Following the guidelines above, one must allocate
workspace for the EOPs by using occam vectors (remember that the free. memory vector is not available
in a network). One would normally compile the occam harness with vector space on, thereby placing the
workspaces above all loaded code, but remembering to explicitly PLACE the stack vectors IN WORKSPACE.
In Figure 11.11, this case is illustrated.

D705B occam to implement this memory arrangement (as a pair of Type 3 interfaces) is shown below:

PAR
[SOOOO]INT heap.vector2 :
[S12]INT stack.vector2 :
PLACE stack.vector2 IN WORKSPACE
EOP2 (0, stack.vector2, heap.vector2, in.EOP2, out.EOP2)

[SOOOO]INT heap.vectorl :
[400]INT stack.vectorl :
PLACE stack.vectorl IN WORKSPACE
EOPl (0, stack.vectorl, heap.vectorl, in.EOP1, out.EOP1)

Because the occam compiler places the most recently declared variables in the lowest memory locations, this
occam and Figure 11.11 shows that the EOP1 stack is placed closer to Memstart because it is declared



11 Using the 07058 occam toolset with non-OCCam applications 335

Board size
specification

Memstart
Mint

unused

non-occam 1 heap
- non-occam-1-statiCS

reserved by transputer

occam and non-occam code
EOP2 and occam support

-EOP1 and occam- support -

[512]INT stack: EOP2
-[400]IN-T stack: EOP1 -

#80000000

free.memory

Ii~
"l! • 'I'!.

Figure 11.11 Allocating memory for two EOPs from occam vector space

after EOP2. The stack for EOP1 is also smaller than that of EOP2, which would have been empirically
determined as per Section 11.5.4.

Placing all EOP stacks below the code

It is usually worth compiling the occam harness with vector space on, and explicitly forcing stack vectors to
be placed in WORKSPACE. This has the effect that all EOP stacks are placed below the code area. Although
it is unlikely that all such stacks could be accommodated on-chip, some board products such as the INMOS
8404 module have a region of faster static memory below a large but slower dynamic store, and this software
technique would allow the most suitable use to be made of this fast memory block without adjusting the
software or re-compiling it.

Establishing EOP workspace requirements

INMOS do not provide any tools to allow one to estimate the size of stack or heap workspace required by
an EOP. There is no simple way to determine the requirements for workspace, but the following comments
might be useful in fine-tuning workspace sizes :

• When developing and testing an EOP, use one large combined stack and heap workspace. This is
because there is less chance of an EOP running out of workspace if one allocates a total amount
for stack and heap, compared to explicitly defining the sizes of these independently.

• As a rough guide, allow a minimum of 400 words for a separate stack area, and a minimum of
4000 words for static / heap area, for each EOP. Even during EOP start-up, at least 80 words from



336 3 Applications

the stack are used. The 0705B toolset i1ist object lister can be used to indicate the amount of
initialized static workspace required by the linked EOP - this could guide one's heap workspace
sizing estimates.

• The actual amount of memory used in any workspace by any given execution can be established by
adding some extra pieces to the occam harness. By initializing all the elements in the stack and heap
workspaces of an EOP to some value before instancing, as the EOP executes, the pattern will be
over-written. This allows the extent of each workspace to be established, and can be done for each
EOP in the system one by one. Remember that heaps grow upwards and stacks fall downwards:

Suitable occam PROes to perform the size estimation on stack and heap workspace areas are
shown below :

-- stack and heap workspaces to be fine tuned
[S12]INT stack.ws :
[SOOOO]INT heap.ws :

PRoe init.vec ([]INT vector, VAL INT pattern)
SEQ i = 0 FOR SIZE vector

vector[i] := pattern

PRoe used.in.stack ([]INT stack.ws, VAL INT pattern,
INT used)

-- stacks fa11 down so scan upwards from e1ement 0
BOOL found :
INT 100p :
SEQ

found := FALSE
100p' :=.0
WHILE (NOT found) AND (100p < (SIZE stack.ws»

IF
stack.ws[100p] = pattern

100p := 100p + 1
TRUE

found := TRUE
used := (SIZE stack.ws) - 100p

PRoe used.in.heap ([]INT heap.ws, VAL INT pattern,
INT used)

-- heap grows upards so scan from top e1ement downwards
BOOL found
INT 100p :
SEQ

found := FALSE
100p := (SIZE heap.ws) - 1
WHILE (NOT found) AND (100p >=0)

IF
heap.ws[100p] = pattern

100p := 100p - 1
TRUE

found := TRUE
used := 100p



11 Using the 07058 occam toolset with non-OCCam applications 337

One would then structure one's top-level harness like this :

PROC app1ication(CHAN OF SP fs, ts)
VAL INT pattern IS #55555555
INT heap.used, stack. used :
WHILE TRUE

SEQ
-- initia1ize workspaces
init.vec(stack.ws, pattern)
init.vec(heap.ws, pattern)

PAR
Execute a11 app1ication

preset stack vector
preset heap vector

-- determine stack and heap usage
used.in.stack (stack.ws, pattern, stack.used)
used.in.heap (heap.ws, pattern, heap.used)

. .. report findings and terminate

Obviously, to have significant meaning, this methodology would have to be repeated many times to
thoroughly exercise the EOP. One would then leave a suitable (large) safety margin. Each EOP in
a system would be tuned in this way, one at a time.

• If the D7058 is inVOlved, the same technique can be easily used for EOPs on any transputer be
cause the debugger can be used to examine the workspace vectors after run-time. Use of the
debugger in this technique only requires that all elements are pre-initialized to some identifiable
value. Section 11.6 explains how the sizing data can be accessed using a general-purpose storage
technique.

• If one suspects that an EOP is running out of stack space during execution, it is sufficient to pre
initialize only the lowest few elements in the stack vector, and examine these after a failure.

Terminating the host file server

The host server is a slave process running on the host system, at the same time as the transputer application
runs. The top-level process on the root transputer must tell the server when to terminate, and thereby return
control to the host operating system. This can be done to the iserver as follows:

#INCLUDE "hostio.inc"
lOSE "hostio.1ib"

so.exit(fs, ts, sps.success)

Note: sps. success is declared in the hostio. inc file.

Re-running the application without reloading

In most cases, it is convenient to be able to re-run a transputer network application without having to reboot
the network. This is achieved by using an occam WHILE TRUE loop in top-level process on each transputer
node in the network. Re-run is achieved by invoking the host server without specifying a boot file to load, but
retaining all other command-line options.

For example, an outline of the top-level transputer process on the system's root transputer is :

WHILE TRUE
SEQ

PAR
run app1ication

. .. terminate host server



338 3 Applications

When the server terminate command is sent to the host, the user is aware of return of control to the host
operating system. But the transputer network has entered a state of readiness to be re-run.

Only the root transputer in the system requires to terminate the host server.

Process priorities

It is possible to run an EOP at either high or low priority, in exactly the same way as an occam process.
Exactly the same constraints and guidelines apply to non-OCCam processes as for occam processes, in
selecting the priority of execution. So, for example, it would be perfectly reasonable to execute a non-OCCam
process at high priority if it performed a lot of communication to other transputers.

The default priority should be to execute at low priority.

While on the subject of process priorities, it should be observed that it is not obvious how best to obtain
performance timing information from processes at high priority. For example, supposing one wished to time
the interval between two events in an EOP running. at high priority. To obtain a good timing resolution, the
high priority clock is to be used.

As a kick-oft, to read the high priority timer from a low-priority occam process, the following occam code
can be used:

PRI PAR
c10ck ? before
SKIP

This assumes a suitably declared TIMER for the c1ock. This fragment can be used anywhere within a
low-priority occam process to read the high priority timer, and allow meaningful timing measurements to be
made.

To signal to the timing measurement mechanism the start and stop for the event under investigation, one
method would be for the non-OCCam process to send a message on a channel, and to use the receipt of
the message as a timing reference. For a GEOP,_ the arrangement might look like this:

#define SIGNAL 1
{

_outword(SIGNAL, out[2]); /** signa1 before event **/

do the event to be t~ed

_outword(SIGNAL, out[2]); /** signa1 after event **/

The word SIGNAL is sent as an indication of the start and stop of the event within the process. Some
corresponding occam for this arrangement would be :

PRI PAR
PAR -- high

run non-occam process being timed at high priority
SEQ

signa1 ? any
c10ck ? before ~ediate1y before event

signa1 ? any
c10ck ? after -- immediate1y after event

run rest of code at 10w priority

The problem with this arrangement is one of scheduling. Once the high priority EOP has sent its signal
message, and the occam has read the message using signa1? any, the occam will deschedule
(due to a communication) and the EOP will re-schedule until it sends the terminate signal. Only at this point,
will the clock be read corresponding to the first signalling. If the EOP happens to signal the event completion
at the end of the EOP process itself, the before and after timings will be read almost immediately



11 Using the 07058 occam toolset with non-OCCam applications 339

consecutively, giving results of 1 or 2 microseconds regardless of the event one intended to time. This is
clearly not robust.

The correct way to make timings of involving high-priority processes in this way is to force a lock-step
synchronization between the event being timed and the timing process. This can easily be achieved by
incorporating a simple acknowledge protocol between the occam and the C. The occam now uses an ack
channel, which can be read by the EOP.

PRI PAR
PAR -- high

run non-occam process being timed at high priority
SEQ

signaJ. ? any
cJ.ock ? started
ack ! frig

immediateJ.y after startup
essentiaJ. acknowJ.edge

signaJ. ? any
cJ.ock ? stopping -- immediateJ.y before stopping
ack ! frig -- essentiaJ. acknowJ.edge

run rest of code at J.ow priority

The C fragment (run at high priority) then becomes:

#define SIGNAL 1
{

int ack;
outword(SIGNAL, out[2]);

:inmess(in[2], &ack, 4);

do the event to be timed

outword(SIGNAL, out[2]);
:inmess(in[2], &ack, 4);

/** signaJ. before event **/
/** ack J.ockstep sync **/

/** signaJ. after event **/
/** ack J.ockstep sync **/

Another way to force lock-step, but without using an extra acknowledge channel, is to have the EOP send a
pair of signals for each event to be recorded. The occam process reads the timer between the two signals
from the EOP, thereby forcing lock-step.

11.6 07058 debugging guidelines

This section discusses some concepts which are useful in connection with using the toolset debugger supplied
with the D7058.

11.6.1 Problems with conventional debugging techniques

In a parallel system, one cannot use conventional debugging techniques. For example, the traditional strategy
of causing screen or file output to represent the passing of a specific point in the program cannot be used
with reliability. This is because other processes executing in parallel may cause processor resource to be
deflected from causing the anticipated output.

Furthermore, in a multiple process system, there is generally only one (user) process (the root process) which
is directly connected to the host file server. This is true in systems containing one or several transputers, and
in mixed-language systems too. This can often present problems when one is attempting to debug a system
of processes, because of the hassle of having time-stepped status information routed from processes deep
in a network to the screen or to a file for later perusal.



340

11.6.2 Error mode considerations

3 Applications

The error mode employed in compilation of harnesses is important. The scientific-language compilers have
no concept of the occam compiler's error modes. With the 07058, however, the error mode adopted by
an EOP is that of its harness (the EOP). The following discussion concerns debugging opportunities in a
customer's software development and production phases.

• Development phase

To debug correctly and effectively, one requires three things; the HALT error mode harness, a halt
on-error bootstrap, and the host file server's / se error test directive.

For the development environment, the use 'of error mode HALT is advised. This will cause a halt-on
error bootstrap to be employed automatically by the bootstrap tool, and will allow the debugger to
be used for post-mortem debugging and correct location to the source line causing the error. This
error mode must be used in conjunction with a halt-on-error bootstrap and the host server's / se
error test directive to allow correct and effective debugging of scientific-language systems.

Note that the requirement of HALT mode for debugging purposes requires that all occam referenced
in the system must be compiled in HALT mode.

• Production phase

For a customer's production software, the use of error modes UNDEFINED and UNIVERSAL is
recommended. This will allow the fastest execution due to the minimal run-time checking of the
occam parts in the system, and also avoid unnecesary termination due to the transputer's error
flag becoming set. All the scientific-language compiler range can cause the transputer's error flag to
be set during exceptional circumstances in normal processing (a performance-driven feature). Only
by adopting these error modes will a non halt-on-error bootstrap be prepended automatically to the
linked object file by the bootstrap tool.

However, such conditions do not permit correct error-location by the debugger. This is because
running a system with the server invoked with the / se option is not sufficient to stop the actual
transputer process, even although the iserver will terminate immediately. The transputer process
will continue to execute until it has to communicate with the server - and then stop of necessity
because the server has. This would cause the debugger to locate to the wrong line of source.

11.6.3 Run-time debugging aids

When debugging a scientific-language system, it is frequently useful to be able to halt the transputer if a
specific assertion is found to be true at run-time. One way to achieve this is to use a simple function, written
using the C compiler's assembler-insert mode, to set the transputer's error flag depending on the value of a
parameter passed to the function. For example,

void assert (test)
int *test;
{

if (*test)
asm {

sethaJ.terr;
testerr;
seterr;

} ;

The function first selects the processors's halt-on-error mode, using the sethaJ.terr instruction. This
allows the function to be used in systems that have not been used with a halt-on-error bootstrap. It then
tests the error flag, with a view to clearing it. The seterr instruction sets the error flag unconditionally. It is
necessary to clear the error flag and then set it for the halt-on-error mode to cause the transputer to halt. If
the error flag was already set then the introduction of the halt-on-error mode would not halt the processor if



11 Using the 07058 occam toolset with non-OCCam applications 341

the halt-on-error mode was not indigenous to the current execution. Although the error flag is not preserved
during normal process descheduling, there are no deschedulable instructions in this function, so if the test is
true then the transputer will halt. (The error flag is preserved when a high priority process interrupts a low
priority process) [5].

This binary object of this function can be linked in with any scientific-language system compilation units,
as shown previously in this document. It is called with a single integer reference parameter. A reference
parameter has been used to accommodate the FORTRAN reference parameter passing mechanism. A C
caller would use the reference & operator for the assertion test parameter. A Pascal caller would require
visibility of the function using this technique :

IMPORT procedure assert ALIAS 'assert' (VAR test: INTEGER);

If the parameter references a value that is not zero, the transputer will halt dead, allowing the debugger to
locate to this line of source. The procedure call invocation trace-back facility can be used to find out where
the function was called from in that specific instance, and thereby determine the current state of the program
under examination.

11.6.4 Debugging processes that are not connected to the host server

This section discusses a simple-to-implement post-mortem technique for debugging and examining the status
of any or all processes in a multiple processor environment, and is equally effective for any of the supported
transputer source languages. It allows strategic information capture and storage, which the debugger can
examine following program execution.

Overview of technique

The technique relies upon the use of a circular buffer, preferably one per transputer in the system, which
is connected to each process on the same transputer that one wishes to monitor. The technique is for the
user to embed debug information in each process required, and to have this information captured in time
sequence from all active processes. The programmer can then use the' D7058 toolset's debugger to examine
the contents of the circular buffer. Providing one outputs sensible messages to the buffer, one can gain an
overview of the status of not only each individual process in the system, but also of all the processes on that
transputer as they synchronize and interact together. An implementation of this is shown in Figure 11.12.
The EOPs in the diagram consist of the EOP plus supporting occam processes.

One could have a monitor process for each EOP, or one that accepted input from many EOPs. 80th cases
are illustrated. Monitor 1 is shown as handling EOPs 1, 2, and 3 (EOP 3 is the root process). This monitor is
being used to examine the timing interactions between the EOPs on transputer 1. Unless a timing interaction
was being investigated, it would not normally be useful to have the root process (EOP 3) contributing to a
message buffer because of the ease of accessing the host's display or filestore.

Monitors 2 and 3 (for EOPs 4 and 5) are shown as servicing debug data from only one EOP each. In this
case, it's because the EOPs in question are on different transputers. But it's also useful for examining lots of
trace points within an EOP but without concern as to how the execution of the EOP is related to the rest of the
system. The debug data in question is received on a channel allocated and controlled by the programmer's
message preparation routines in the EOP.

Implementation detail

There are two parts to consider in the implementation. First, the data storage buffer, of which one is required
per transputer. Secondly, the debug message preparation code, used by each process in the system.

• The data storage buffer

Each transputer in a network will possess a top-level occam harness which describes how all
processes on that transputer interact with each other (and with those on other transputers). To
implement the debug monitor system, an additional process called circ. buff is added to the
occam. The process defines and manages a circular BYTE buffer, and accepts input messages
from any number of connected processes. Each message from any process has the same format,



342 3 Applications

Figure 11 .12 General purpose information capture and storage for post-mortem debugging

allowing the buffer to be general-purpose. An occam protocol called p. MESSAGE is used to
enforce the communication format. The format consists of an integer identifying the number of bytes
of message about to be received from that process, followed by a byte vector of that size.



11 Using the 07058 occam toolset with non-OCcam applications

One possible implementation of the buffer manager is shown below:

PROC eire.buff (CHAN OF INT RootHasTerminated,
[]CHAN OF p.MESSAGE UserDebug)

VAL INT BUFFSIZE IS 2000: -- BYTES of buffer
[BUFFSIZE]BYTE buffer :
[100]BYTE 1ast.message :
INT pointer, process, mess.1ength :
BOOL going :

PROC insert.message (VAL []BYTE message)
SEQ i = 0 FOR SIZE message

SEQ
buffer [pointer] := message[i]
pointer :=' «pointer + 1) REM BUFFSIZE)

SEQ
pointer := 0
going := TRUE
WHILE going

PRI ALT
-- Terminate input command
INT any :
RootHasTerminated ? any

SEQ
goi'ng := FALSE
insert . message ("!! Norma1 termination !! ")
STOP
Norma1 message storage

ALT i = 0 FOR SIZE UserDebug
UserDebug[i] ?

mess.1ength:: [1ast.message,
FROM 0 FOR mess.1ength]

SEQ

343

insert ID number of process into buffer
insert.message ([1ast.message

FROM 0 FOR mess. 1ength] )

The parameters to the eire.buffer consist of a channel which is used to terminate the buffer
manager, and an array of channels which are used to receive debug input messages in the correct
format from an arbitrary number of processes. The termination of the buffer manager is considered
next.

• Termination cons iderations

In a multiple process system, the user's design will provide for one process that should terminate
last. For example, on the root transputer, the root process communicating with the host file server
should terminate last, because there should be nothing useful happening afterwards. But here, the
buffer manager should never terminate, although it can be signalled of the root process's shut-down.



344 3 Applications

This is so that the debugger can easily examine the workspace it used.

WHILE TRUE
SEQ

CHAN OF ANY RootStopped :
[2]CHAN OF ANY UserDebug :

other channe1 definitions
PAR

SEQ
run root non-occam process

RootStopped ! 1 -- stop debug buffer manager
... terminate iserver

run second non-occam process
run third non-occam process

circ.buff(RootStopped, UserDebug)

• Message preparation code

Each process requiring debugging must have the capability to prepare meaningful messages in the
correct format; an integer length followed by a byte vector. This is simple to achieve in occam.
Also, because all the INMOS scientific-language systems provide message-passing functions, this
can be easily achieved in other languages too.

Without going into too much detail, some general principles should be expounded. Firstly, the
channel used for the outputting of debug messages should be exclusively used for that purpose.
Secondly, a designated group of functions I procedures should have exclusive use of this channel,
ensuring that all output is of the correct format.

As an example of this, consider a C process that one wishes to debug using the circular buffer
technique. The following C function can be used to output a message in the correct format to the
circular buffer manager process. This function conforms to the p .MESSAGE protocol used by the
occam buffer manager.

debug (message)
char *message;
{

int 1en;

1en = str1en(message);
outword(1en, out[DEBUG OUT CHAN]);

:outmess(out[DEBUG_OUT_CHANl, message, 1en);
}

Once can write a simple suite of functions to package integers and floating point data into strings
for outputting to the buffer in the correct format. Once written, these routines can be used from
processes written in other languages, in any system one can mention.

• Using the debugger

The debugger is run on the transputer network after running the memory dumper program. It can
express the address at which the message buffer is stored in memory, and the current value of the
buffer pointer. Returning to the debugger's monitor page allows one to do an ASCII dump of the
memory map starting at this address. One can then read out all the debug messages that were
captured during the program's running.

This technique can be used to perform post-mortem debugging on an arbitrarily complex trans
puter network. The technique and its component tools are universally applicable and totally general
purpose once written.



11 Using the 07058 occam toolset with non-OCcam applications

WJ1at to do if you don't have a debugger

8uy the 07058!

345

Alternatively, for use in environments such as the 0705A or Parallel C/FORTRAN where no debugger is
provided, the above technique is still important. Instead of having the debugger investigate the contents of
the data storage buffers, the application itself dumps the buffer contents to the screen. For transputers other
than the root transputer, the buffer contents must be routed back to the host using a simple protocol like the
one used to place messages in the buffer in the first place.

If you happen to own additional PC's and transputer boards or link adapter cards, then it is possible to have
more than one non-OCCam process linked with the full run-time library. This would permit "probing" of a
troublesome process not directly connected to the host server on the main host computer, because auxiliary
output can be observed using the other PC. It's a long shot but it might just work ! Try it ....

11.7 Using the 07058 OCCam-2 toolset

This chapter describes some worked examples using the 07058 occam toolset. It is presented in a tutorial
fashion, and can be read in front of a computer while doing the examples. Following an overview of makefiles,
a twin EOP system using one, then two transputers is shown. Use of the 07058 libraries is also explored.
A technique for sharing code modules amongst EOPs is demonstrated, in the context of the debugging
monitoring buffer.

Refer to section 11.8 for a checklist on what has to be set-up to allow the 07058 to be used correctly.

This chapter discusses topics in the context of the PC-based 07058. Toolset operation would be exactly
the same in any of the toolset platforms (but it should be remembered that the switch-character is a ' - ' in
UNIX-based toolsets). The EOPs can be compiled and linked on a PC, then transferred to a Sun-3 or VAX
for integration with a toolset on that machine. There would be no change in tool operation or procedure.

11.7.1 About makefiles

Makefiles specify how all the different parts of a system depend on each other. A makefile allows a tool,
called make, to perform the minimum number of operations to correctly update a system following changes
in any number of parts of that system. The 07058 toolset uses makefiles in this way.

The format of commands in a makefile is significant, in terms of spaces and tab characters. So, for example,
the following two lines in a makefile

dualharn.c4x: dualharn.14x dualharn.t4x
$ (LiNK) If dualharn.14x $(LiNKOPT)

indicate that the file dualharn. c4x depends on two files called dualharn .14x and dualharn. t4x.
When the make tool processes the makefile, if any of the files to the right of the colon are more recent than
the one to the left of the colon, then it will execute the following command $ (LiNK) If dualharn .14x
$ (LiNKOPT) . The directives involving dollar signs and round braces are macros, which are defined at the
top of the makefile. These are optional, but have been used here to allow the programmer to easily change
the boot commands and options to all the toolset tools. In this example, the command will run the Iinker if the
compiled occam (. t 4x) or the Iinker command input file (.14x) is more recent than the output file from
the Iinker ( . c4x).

The 07058 tool imakef generates makefile descriptions of a systems' interdependencies. This will be
shown in the examples.

11.7.2 Two communicating EOPs on one transputer

Suppose we have two EOPs and we wish them to execute concurrently on the same transputer. Using the
07058 occam toolset, each EOP can be enclosed by a simple harness, with a top-level harness describing



346 3 Applications

how the EOPs interconnect.

In order not to obscure the details of operating the toolset and of constructing the supporting occam, the
EOPs will be deliberately trivial. Of the two processes, the "root" process will display messages on the screen,
consisting of data sent to it from the "remote" process which has a Type 2 interface. The remote process is
only remote in the sense that it is not directly communicating with the host file server, and consequently is
linked with the standalone run-time libraries - it has a Type 3 procedure interface.

Operations overview

Firstly, the non-OCCam source is compiled and linked with the necessary run-time library support. At the
same time, occam development can proceed. The occam harness will reference each EOP using the
#IMPORT directive. The HALT execution mode is used to facilitate debugging during development. A
makefile description of the system is built using the imakef tool. Once the non-OCCam code has been
linked, the system can be built.

Consider in turn the two EOPs.

The root EOP

This process outputs messages to the screen, representing data sent to it from the remote process. A tagged
protocol is used, allowing firstly a sequence of integer numbers to be received, followed by a sequence of
character information. In C, this could be implemented as follows.

• The source

#inc1ude <chanio.h>

#define OUT CHAN 2
#define IN CHAN 2

#define STOP 0
#define NUMBERS 1
#define LETTERS 2

typedef int CHAN;

main (argc, argv, envp, in, in1en, out, out1en)
char *argv[], *envp[];
int argc, in1en, out1en;
CHAN *in[], *out[];

int va1ue, count, size, tota1, tag = 0;

printf("\nHow many items in the first group? ");
scanf("%d",&tota1);
_outword(tota1, out[OUT_CHAN]);

printf("\nSTARTED\n");
inmess(in[IN CHAN], &tag, 1);

whi1e (tag !=-STOP)
{

if (tag == NUMBERS)
{

inmess(in[IN CHAN], &va1ue, 4);
printf ("%d\n"; va1ue) ;

}
e1se if (tag == LETTERS)

{
inmess(in[IN CHAN], &size, 4);

for (count = 0; count < size; count++)



11 Using the 0705B occam toolset with non-OCCam applications

inmess(in[IN CHAN], &va1ue, 4);
printf(n%c\nn-; va1ue);

}
_inmess(in[IN_CHAN], &tag, 1);

}
printf(nFINISHED\nn);

347

Notice that this process is expecting to receive its messages on channel two (see pre-processor
definition for channe1) of the previously-described input vector of channels to the process. This
communication is facilitated by the additional arguments shown to main (). When we write the
supporting occam, we must ensure the remote process and this process are correctly connected
up together - this is not a compile-time issue for the scientific-language process.

• Building it

For an IMS T414, assuming this source is stored in a file called cprog1. c, this is compiled using
the command t4c cprog1. The object binary must then be linked with the full standard run-time
library and the Type 2 interface:

i1ink NonOcc1=procent.c4h cprog1.bin crt1t4.bin /0
nonocc1.c4h

This creates a linked file called nonocc1 . c4h, which is #IMPORTed into the occam EOP har
ness, and instanced using the identifier NonOcc1. From this stage onwards, the linked compilation
unit is treated as a normal occam PROe, and the reference to "nonocc" is simply intended as a re
minder of where the mixed-language components fit into the scenario. The c4h filename extension
indicates that the file contains linked object code, compiled for a T414 in HALT error mode.

Notice the EOP run-time library crt1t4 .bin does not have a directory path specified, even although it is
not in the same directory. This is due to the library path-searching mechanism in the 070583 , which uses a
DOS environment variable I SEARCH, and could be set up as follows:

ISEARCH=c:\ito01s\1ibs\;
c:\ito01s\interf\;
c:\tc1v3\;
c:\tp1v2\;
c:\tf1v1\;

The directories specified in ISEARCH are searched to locate files that are not in the directory in which the
tool was invoked.

3The ISEARCH is not a true DOS path specification, because it is textually prepended to filenames while searching the list of
directories. Notice the trailing backslashes, for instance.



348

The remote EOP

This process sends messages to the root EOP described above. The tagged protocol used in this process
must conform to that expected by the recipient process. Again in C, one possible implementation is as
follows:

• The source

#include <chanio.h>

#define OUT CHAN 2
#define IN CHAN 2

#define STOP 0
#define NUMBERS 1
#define LETTERS 2

typedef int CHAN;

main (argc, argv, envp, in, inlen, out, outlen)
char *argv[], *envp[];
int argc, inlen, outlen;
CHAN *in[], *out[];

int current, total;
inmess(in[IN CHAN], &total, 4);

for (current ~ 1; current <= total; current++)
{

outbyte(NUMBERS, out[OUT CHAN]);
:outword(current, out[OUT:CHAN]);

outbyte(LETTERS, out[OUT CHAN]);
-outword(3, out [OUT CHAN]);
for (current = 65; current <= 67; current++)

_outword(current, out[OUT_CHAN]);

_outbyte(STOP, out[OUT_CHAN]);

Notice that this C source has a main () body - every separate C process has main () as its
entry point, regardless of its position ,within a transputer network. Again, this process will send its
data on word two of the output vector of channel pointers supplied to the process. The occam to
be described is responsible for ensuring the channel connections intended by the user are in fact
correctly established.

• Building it

If this source is stored in file cprog2 . c, then it can be compiled for the T414 using the command
t4c cprog2. Since this process uses only channel message passing to communicate (ie, it
doesn't use printf), it will be linked with the reduced standalone run-time library and a Type 3
interface:

ilink NonOcc2=procentc.t4h cprog2.bin sacrtlt4.bin /0
nonocc2.c4h

This creates a linked file nonocc2 . c4h which is #IMPORTed into the occam EOP harness, and
instanced using the identifier NonOcc2.



11 Using the 0705B occam toolset with non-OCCam applications 349

• Building both EOPs with a makefile

It is advisable to write a separate makefile for the non-OCCam software. It is impractical for the
D705B to create a makefile for non-OCCam software, because of the required information concerning
module compilation and link requirements etc.

A suitable makefile for the two EOPs in this example would be as follows :

# makefi1e for non-occam software

a11: nonoccl.c4h nonocc2.c4h

nonoccl. c4h: cprogl.bin
i1ink NonOccl=procent.c4h cprogl.bin

crt1t4.bin /0 nonoccl.c4h
nonocc2 . c4h : cprog2 .bin

i1ink NonOcc2=procentc.t4h cprog2.bin
sacrt1t4.bin /0 nonocc2.c4h

cprogl .bin: cprogl . c
t4c cprogl

cprog2.bin: cprog2.c
t4c cprog2

If this makefile was called nonocc, then to build the non-OCCam components of the system auto
matically, type make -f nonocc.

In the above two C routines, it is important that the communications protocol used by the two partners is
consistent. In other words, the protocol tags used must correspond at each end of the communications
channel. The best way to guarantee this is to place the communication tag constants into a #inc1ude file,
and reference this file in both C sources. This technique is also appropriate for communicating Pascal partners.
Unfortunately, the V1.1 FORTRAN compiler does not support a source textual file inclusion mechansim,
because this is not part of the ANSI standard. Parallel FORTRAN does support source file inclusion.

It is not advised that the actual communications channel indexes (OUT_CBAN and :IN_CHAN above) are
placed in a #inc1ude file shared between the EOPs, because in most cases the communications channel
indexes for both EOPS, and indeed, in either direction, will be different. But all source components of any
one EOP should share this data.

The occam bits

The occam required consists of a harness for each EOP, and a top-level interconnection. Assume the
source is stored in the file dua1harn. occ :

• The source

#:INCLUDE "hostio.inc"
PROC NonOcc.entry (CHAN OF SP from.1ink, to.1ink, []:INT free.memory)

-- :IMPORTS are nonoccl.c4h, nonocc2.c4h
#USE "hostio.1ib"

PROC p.NonOccl (CHAN OF SP fs, ts,
CHAN OF ANY from.outside, to. outside)

[3]:INT in.NonOcc
[3]:INT out.NonOcc
SEQ

LOAD.:INPUT.CHANNEL (in.NonOcc [2], from. outside)
LOAD.OUTPUT.CHANNEL(out.NonOcc[2], to. outside)



350 3 Applications

#IMPORT "nonocc1.c4h"
[l]INT dummy.ws :
[SOOO]INT work. space :
-- type 2 interface
NonOcc1(fs, ts, 1, work. space, dummy.ws,

in.NonOcc, out.NonOcc)

PROC p.NonOcc2 (CHAN OF ANY from. outside, to. outside)

[3]INT in.NonOcc
[3]INT out.NonOcc
SEQ

LOAD.INPUT.CHANNEL (in.NonOcc [2], from. outside)
LOAD.OUTPUT.CHANNEL(out.NonOcc[2], to. outside)

#IMPORT "nonocc2.c4h"
[l]INT dummy.ws :
[SOOO]INT work. space :
-- type 3 interface
NonOcc2(1, work. space, dummy.ws, in.NonOcc, out.NonOcc)

WHILE TRUE
SEQ

CHAN OF ANY OneToTwo, TwoToOne :
PAR

p.NonOcc1 (from.1ink, to.1ink, TwoToOne, OneToTwo)

p.NonOcc2 (OneToTwo, TwoToOne)

so. exit (from.1ink, to.1ink, sps.success)

• Building it

The 07058 imakef utility controls the sequence of commands required to create your executable
application. In this case, it will control the occam compiler, the Iinker, and the bootstrap tool. To
run the imakef utility, specify the type of file you want to build. Here, we want to build a bootable
file for a T414, in HALT mode. This implies a .b4h file extension. So, we issue the command:

imakef dua1harn.b4h /i

This creates a file called dua1harn, which lists the file dependencies and tool invocation com
mands, and a file called dua1harn .14h, which is a control file for the linker.



11 Using the 07058 occam toolset with non-Occam applications

The dua1harn file contains the following:

LIBRARIAN=i1ibr
OCCAM=occam
LINK=i1ink
CONFIG=iconf
ADDBOOT=iboot
LIBOPT=
OCCOPT=
LINKOPT=
CONFOPT=
BOOTOPT=

dua1harn.b4h: dua1harn.c4h
$ (ADDBOOT) dua1harn.c4h $(BOOTOPT)

dua1harn.c4h: dua1harn.14h dua1harn.t4h
$ (LINK) If dua1harn.14h $(LINKOPT)

dua1harn.t4h: dua1harn.occ nonoccl.c4h nonocc2.c4h
\itoo1s\1ibs\process.1ib
\itoo1s\1ibs\hostio.1ib

$ (OCCAM) dua1harn It4 Ih $ (OCCOPT)

This file is a makefile.

351

The Iinker command input file created, dua1harn .14h, contains this:

dua1harn.t4h
c:\itoo1s\1ibs\hostio.1ib
c:\itoo1s\1ibs\convert.1ib
nonoccl.c4h
nonocc2.c4h
OCCAMBH.LIB

This file indicates the list of binary objects to be linked. The OCCAMBH. LIB file is the oc
cam compiler library, which is automatically included by the makefile generator. The reference
to convert. 1ib exists because the hostio library has a library usage file associated with it. The
programmer need not be aware of this, except when manually linking components together.

To initiate the build, type make -f dua1harn. This results in the following commands being run
automatically :

Command Takes as input Makes as output
occam dua1harn It4/h .occ .t4h
i1ink If dua1harn.14h Files listed in .14h .c4h
iboot dua1harn.c4h .c4h .b4h

This results in dua1harn. b4h, a bootable file. The table does not show the creation of supple
mental files.

Running the program

To boot the program, use the iserver :

iserver Isb dua1harn.b4h Ise

The result will be a short sequence of numbers and characters on the screen, depending on the user input.
The server will then terminate and control will return to the host operating system prompt. The following
display is observed when the number "3" is specified at run-time :



352

STARTED
1
2
3
A
B
C
FINISHED

3 Applications

The application can be re-run without reloading by calling the iserver directly with only the "serve link"
/ ss option. This is a direct consequence of the WHILE TRUE construct in the occam harness.

Rebuilding

To rebuild the system, following editing changes, is simple. If changes were made to any of the non-OCCam
programs, then the makefile for them must be used to re-generate new . c%% linked files. Then, all the
necessary occam components are updated using the makefile produced by the 07058 imakef tool. For
example, following changes to a system that did not affect or introduce more file dependencies, the following
two commands are sufficient to reconstruct the system :

make -f nonocc
make - f dual.harn

It is only necessary to alter the makefiles or re-run the imakef tool if there is any alteration to the file
dependencies of the system.

Re-implementation of the EOPs

Suppose one wished to re-implement the root EOP, referenced with the identifier NonOcc1, in a different
language. Previously, a C implementation was shown. To implement a functional equivalent in Pascal, for
example, to slot into the existing framework, one could do the following:

program root (input, output);

$incl.ude '\tp1v2\channel.s.inc'

const
OutChannel. = 2;
InChannel. = 2;

Stop
Numbers
Letters

= 0;
= 1;
= 2;

var
tag : char;
val.ue, count, total. integer;

begin
write ('How many items in the first group? ');
readl.n (total.) ;
outmess(OutChannel., total., 4);
writel.n('STARTED');
inmess(InChannel., tag, 1);
whil.e (tag <> chr(Stop» do

begin
if (tag = chr(Numbers» then

begin
inmess(InChannel., val.ue, 4);
writel.n(val.ue);

end



11 Using the 07058 occam toolset with non-OCCam applications

e1se if (tag = chr(Letters» then
begin

inmess(InChanne1, va1ue, 4);
for count := 1 to va1ue do

begin
inmess(InChanne1, va1ue, 4);
write1n(chr(va1ue»;

end;
end;

inmess(InChanne1, tag, 1);
end;

write1n('FINISHED');
end.

353

This Pascal source is functionally equivalent to the C function described in earlier sections. Place this source
in the file called pasprogl.pas, and adjust the nonocc makefile as follows:

nonoccl.c4h: pasprogl.bin
i1ink NonOccl=procent.c4h pasprogl.bin

prt1t4.bin 10 pasprogl.c4h

pasprogl.bin: pasprogl.pas
t4p pasprogl Ix

The I x option permits the Pascal compiler to make use of the message-passing extensions to the standard
language definition to which the compiler confirms.

Run make on both system makefiles, and reload the program as before. It's as simple as that. No changes
are necessary to the occam.

Similarly, to re-implement the remote EOP in FORTRAN :

PARAMETER (IOUTCHAN=2, INCHAN=2)
PARAMETER (ISTOP=O, NUMBERS=l, LETTERS=2)
INTEGER VALUE, TOTAL

VALUE = 1
CALL CHANINMESSAGE (2, TOTAL, 4)
DO 10 I = 1, TOTAL

CALL CHANOUTBYTE (NUMBERS, IOUTCHAN)
CALL CHANOUTWORD (VALUE, IOUTCHAN)

10 VALUE = VALUE + 1
CALL CHANOUTBYTE (LETTERS, IOUTCHAN)
CALL CHANOUTWORD (3, IOUTCHAN)
VALUE = 65
DO 20 I = 1, 3

CALL CHANOUTWORD (VALUE, IOUTCHAN)
20 VALUE = VALUE + 1

CALL CHANOUTBYTE (ISTOP, IOUTCHAN)
STOP
END

Place the source in file fprog2 . f77, and adjust the nonocc makefile as follows:

nonocc2.c4h: fprog2.bin
i1ink NonOcc2=procentf.t4h fprog2.bin safrt1t4.bin

10 fprog2.c4h
fprog2.bin: fprog2.f77

t4f fprog2

The reduced run-time library is used for this FORTRAN process, in the same way as for the C and Pascal
examples. Again, there is no need to alter or re-compile the other non-OCCam process. To rebuild the



354

system, simply make the two makefiles. The program behaviour is exactly the same.

11.7.3 Two communicating EOPs on two transputers

3 Applications

This section describes how to use the D7058 to build a multi-processor system, using the EOPS of the
previous examples. The EOPS will be used unchanged, one on each transputer. The EOP harnesses
p . NonOccl and p. NonOcc2 will be used unchanged - total portabilityl Each transputer will require a
top-level occam process to connect to the EOPs. In addition, a network configuration description will be
required.

Let the top-level occam processes for each transputer be called mainharn. occ and auxharn. occ :

Source of mainharn .occ :

#J:NCLUDE "hostio.inc"
PROC NonOcc.root (CHAN OF SP from.1ink, to.1ink,

CHAN OF ANY OneToTwo, TwoToOne)

#USE "hostio.1ib"

... PROC p.NonOccl from previous examp1e

WHILE TRUE
SEQ

p.NonOccl (from.1ink, to.1ink, TwoToOne, OneToTwo)

so.exit (from.1ink, to.1ink, sps.success)

The source of auxharn. occ :

PROC NonOcc.remote (CHAN OF ANY OneToTwo, TwoToOne)

... PROC p.NonOcc2 from previous examp1e

WHJ:LE TRUE

p.NonOcc2 (OneToTwo, TwoToOne)



11 Using the 07058 occam toolset with non-OCCam applications

The network configuration description is stored in a file with a . pgm extension, say muJ.tcon . pgm :

#USE "mainharn.c4h"
#USE "auxharn.c4h"

VAL J.inks.out IS [0, 1, 2, 3] :
VAL J.inks.in IS [4, 5, 6, 7] :

CHAN OF ANY main.to.aux, aux.to.main

PLACED PAR
PROCESSOR 0 T4

CHAN OF SP from.J.ink, to.J.ink :
PLACE from.J.ink AT J.inks.in [0]
PLACE to.J.ink AT J.inks.out[O]
PLACE aux.to.main AT J.inks.in [2]
PLACE main.to.aux AT J.inks.out[2]
NonOcc.root (from.J.ink, to.J.ink,

main.to.aux, aux.to.main)

PROCESSOR 1 T4
PLACE main.to.aux AT J.inks.in [1] :
PLACE aux.to.main AT J.inks.out[l] :
NonOcc.remote (main.to.aux, aux.to.main)

355

Assuming that the nonocc makefile is used to create the linked . c%% EOPs, then all that has to be done
is to use the imakef tool to construct dependency information. This is done (only once) as follows:

imakef muJ.tcon.btJ. /i

A makefile muJ.tcon is created, and Iinker control files for each processor, mainharn. J.4h and
auxharn . J.4h. To build and re-build the system, the two makefiles are used in sequence :

make -f nonocc
make -f muJ.tcon

If the entire system has to be built, the operations invoked by the second make are as follows:

Command Takes as input Makes as output
occam mainharn /t4/h .occ .t4h
iJ.ink /f mainharn.J.4h Files listed in .J.4h .c4h
occam auxharn /t4/h .occ .t4h
iJ.ink /f auxharn.J.4h Files listed in . J.4h .c4h
iconf muJ.tcon muJ.tcon.pgm .btJ.

This results in a file called muJ.tcon .btJ., suitable for booting a transputer network down a link:

iserver /sb muJ.tcon.btJ. /se

The program behaviour is exactly the same as before, except it now runs on two transputers. Neither the
EOPs or their occam harnesses had to be altered. And it can still be re-run without reloading.

Note that because vanilla occam can be used at configuration level, it would have been possible to dispense
with the NonOcc. remote procedure, and directly called p. NonOcc2 frc;11 configuration level:

rest of configuration fiJ.e
PROCESSOR 1 T4

PLACE main.to.aux AT J.inks.in [1] :
PLACE aux.to.main AT J.inks.out[l] :
WHILE TRUE

p.NonOcc2 (main.to.aux, aux.to.main)



356

There's always more than one way to do anything!

3 Applications

11.7.4 Using the debugger with the twin EOP twin transputer system

Supposing an error occurs during the execution of the twin transputer system, described above. The trans
puters will stop dead because HALT mode has been used. The iserver will stop if the / se option was
used at run-time. In this situation, it is necessary to make a "coredump" of the root processor so that the
debugger can load onto it. The command to make the coredump (of, say, 100000 bytes into a file called
mu1tcon. dmp) and load the debugger, are:

coredump mu1tcon 100000 mu1tcon.bt1

This command makes use of the coredumper and the debugger, in the following way:

idump mu1tcon 100000
idebug mu1tcon.bt1 /r mu1tcon

The debugger will then locate to the line causing the error; even if this occurred during execution of a non
occam process. To be fully effective, the EOP harnesses should all be compiled in HALT mode, and the
server would be run with the / se error test option.

11.7.5 Placing the EOPs in a library

It is possible to place EOPs in libraries, which can then be used by occam processes. For example, the
compiled and linked EOPs in the previous section can be placed in a library. The library mechanism is
very flexible, because libraries can refer to items in other libraries, and the different modules in a library are
all selectively loadable by the linker depending on the satisfaction of outstanding external references, the
processor type, and error modes.

It is not reccommended to use the imakef tool to generate a makefile for libraries containing non-OCCam
components. This is because the imakef tool assumes the existence of occam source for all binary object
components, and it would create a lot of un-necessary make information if it were used.

As an example, both nonocc1. c4h and nonocc2 . c4h will be placed in a library called EOP1ib .1ib.
Both mainharn. occ and auxharn. occ will reference EOP1ib, but because mainharn only references
the EOP called NonOcc1, then only the module containing that item will be linked with mainharn. The
same is true of auxharn, but for NonOcc2.

The procedure here is to call the librarian directly:

i1ibr nonocc1.c4h nonocc2.c4h /0 EOP1ib.1ib

Using the i1ist binary lister tool, you can check the library contents :

i1ist EOP1ib.1ib /e

This will give the following display:

Entry Pt
NonOcc1
NonOcc2

Modu1e Name
i11:nonocc1.c4h
i11:nonocc2.c4h

No TT EM
o 414 H
1 414 H

Offset
508

o

Wspace
143

21

Vspace
1474

o

This indicates that the library EOP1ib .1ib contains two modules (either of which can be independently
loaded into an application), both suitable for execution on a T414. Module 0 has an entry point name of
NonOcc1, derived from the contents of file nonocc1. c4h, and Module 1 has an entry point name of
NonOcc2, derived from the contents of file nonocc2 . c4h. The occam source of mainharn. occ and
auxharn.occ is modified to reference the library by using the command fUSE "EOP1ib .1ib".



11 Using the 07058 occam toolset with non-Occam applications 357

11.7.6 Sharing code amongst EOPs in a system

Share and Enjoy. It is possible for the EOPs in a transputer system to Share and Enjoy some common code
in certain circumstances. The requirements are that the EOPs reside on the same transputer, and the code
that they share is implemented in occam. This provision allows for the standard occam libraries to be
shared between any number of EOPs, in addition to the programmer's own OCCamPROCs.

The example to be given is that of the circular buffer debugging technique, shown in C in Section 11 .6.4.
Three EOPs run on the root transputer. They all require to contribute messages to the buffer to examine
timing relationships during execution. The buffer manager is implemented in occam and uses occam library
procedures; and the code is to be shared by all EOPs.

Consider firstly the non-OCCam components in the system.

The EOPs

Each C EOP would have the following stub called debug, which would reference a shared occam procedure
called debugocc. To avoid passing more parameters than necessary, the debugocc procedure will be
compiled without separate vectorspace (by using the Iv option). However, the size of the message being
passed must be included as an explicit parameter in the C (it's a hidden parameter in the occam). Each
EOP could use a different channel for outputting the diagnostic debug messages on.

#define DEBUG_OUT_CHAN 3

debug (message)
char *message;
{

debugocc (out[DEBUG_OUT_CBAN], message, str1en(message»;

Because each EOP has to share the occam PROC called debugocc, the makefile for the EOPs must
allow the linker to leave unresolved external references (the lu option). For example, an extract from the
makefile used to generate the EOP interface for the C program cprogl :

a11.c8x: cprogl.bin
i1ink EOP1=procent.c8x cprogl.bin crt1t8.bin

10 a11.c8x lu

cprogl.bin: cprogl.c
t8c cprogl

The shared occam code

The debugocc PROC is filed in or. occ, perhaps like this :

PROC debugocc (INT dummy, CHAN OF ANY debug.chan,
[] BYTE string)

-- There is a hidden parm for the size of string
SEQ

debug.chan ! SIZE string
debug.chan ! [string FROM 0 FOR SIZE string]

The relevant part of a makefile to generate the compiled. t8x output is :

or.t8x: or.occ
occam or It8/e/i/v/x

Notice it's compiled without separate vectorspace, in UNIVERSAL error mode. However, the main occam
harness for the processor is to be compiled in HALT mode. Code compiled for HALT mode can call code
compiled for UNIVERSAL mode, but not the other way round. It could have been compiled in HALT mode.



358 3 Applications

If the main occam harness for the whole processor is called debugv. occ, then the Iinker control file
debugv. 18h might look like this:

debugv.t8h
c:\itoo1s\1ibs\hostio.1ib
c:\itoo1s\1ibs\convert.1ib
or.t8x
a11.c8x
a12.c8x
a13.c8x
OeCAM8H.LIB

To show that only one copy of the occam procedure debugocc has been linked in to the system, the Iinker
generates a link map automatically. This is filed in debugv. m8h, and looks like this :

se debugv.t8h 0 643
se a13.c8x 644 3875
se a12.c8x 3876 7303
se a11.c8x 7304 45955
se or.t8x 45956 45999
LIB c:\itoo1s\1ibs\convert.1ib (3) 46000 46131
LIB c:\itoo1s\1ibs\hostio.1ib (18) 46132 46207

The link map shows that the placement of compilation units is not related to the ordering of items in the Iinker
control file debugv. 18h. The Iinker is free to arbitrarily re-order items. If it is especially important to have
certain compilation units placed low down in memory (in the hope of placing them on-chip), then the Iinker
symbol optimization facility can be used.

Linker symbol optimization

To use the Iinker symbol optimization facility, the programmer specifies the symbol names which have to be
"optimized". The optimization takes the form of placing the specified symbols at the start of the items to be
linked. The hope is that the modules at the start of the list will be placed on on-chip RAM, and thereby execute
the most rapidly - effective use of on-chip RAM is what symbol optimization is all about. If the modules
happen not to fall on-chip, then there is no tangible benefit in having them optimized using this technique.
See Section 11.7.6 for guidelines on calculating where the tools place specific modules.

The Iinker's Iq parameter specifies the symbols to be optimized, all of which are taken as equal priority for
optimization. The Iq directive can be placed inside the linker control file debugv. 18h, or on the command
line. So, including the directive

Iq (debugocc, EOP1)

in the Iinker control file debugv .18h would place or. t8x (entrypoint symbol debugocc) at the head of
the link map, and a11. c8x (entrypoint symbol EOP1) immediately after it. The rest of the modules to be
linked will follow in the same order as before. Check them by examining the debugv. m8h link map:

se or.t8h 0 43
se a11.c8x 44 38695
se debugv.t8h 38696 39339
se a13.c8x 39340 42571
se a12.c8x 42572 45999
LIB c:\itoo1s\1ibs\convert.1ib (3) 46000 46131
LIB c:\ito~1s\1ibs\hostio.1ib (18) 46132 46207

The default is for the linker to optimize the symbols REAL320P and REAL320PERR, if they are used by the
program.

With respect to the treatment of symbol optimization, the ordering of module placement is the same as the
order in which the component objects are listed in the Iinker input specification (the debugv .18h file). So,
if it were vital that the a11. c8x module were placed before the or. t 8x module, the correct approach



11 Using the 07058 occam toolset with non-OCcam applications 359

would be to edit the Iinker control file debugv. J.8h and ensure that aJ.1 . c8x is placed before or. t 8x.
Re-ordering the symbol entrypoints in the Iq directive would have no effect.

If one of the library modules had to be "optimized", and only the module number (shown in parentheses in
the debugv. J.8h link map) is known, then the iJ.ist utility should be used on the library in question. The
specific module numbers can be listed with the iJ.ist's Is () option, and the use of le ensures that the
entrypoint symbols are listed. One can then have the required module optimized by the Iinker.

Calculating where specific modules are placed

It can be useful to be able to calculate where specific code modules are placed on a transputer. For example,
by careful use of the linker symbol optimization facility, one can endeavour to place critical modules in on-chip
RAM. In some transputer boards, the external memory is stratified in performance terms (eg, the INMOS
8404 TRAM module) with a certain amount of low-down fast static RAM, topped up with slower dynamic
RAM. Even in these situations, code module placement can affect execution speed.

It is possible to calculate where any specific module is placed in the transputer's memory map. This breaks
down into two parts. The first task is to determine where the start of the code area is. The second task is to
determine the offset of the module of interest from the code start area. Consider each in turn :

• Calculating the code block start

The code start area is most easily calculated by not calculating anything at all - if you see what I
mean. Use the debugger to find out where the code start area is, on any transputer in your network.

Assuming you have just run your single processor application, say debugv .bh8, then the debugger
would be used like this:

idump debugv 100000
idebuq debugv.b8h Ir debugv

This causes the core dumper to store 100000 bytes of data from the root processor to a file called
debugv. c1mp. The debugger then loads into the root processor, and refers to the debugv core
dump file for information about the root processor.

Alternatively, the program descriptor (with reference to the previous examples its debugv. d8h)
can be used. Here's the descriptor debugv . d8h from the previous example :

Occam TooJ.set Make BootabJ.e V1.0
PROCESSOR 0 0 T800 1
SC 0 46208
SCNAME debugv.c8h
CODE 20 0 1164 6812( 46208 0

The relevant line is the line beginning with the word CODE. Without going into too much detail, this
descriptor says there is one T800 transputer in the system, and that there is one linked SC filed as
debugv. c8h. The relevant fields in the CODE specification are the first one, 20, which indicates
the number of bytes used for configuration information, and the third field, 1164, which indicates the
number of bytes used by the occam scalar workspace. Recall from earlier sections and diagrams
that the code block (mixed occam and otherwise) is placed immediately after the scalar workspace
block.

In fact, to be strictly accurate at this point, the code block begins above the configuration code, which
is above the scalar workspace, which is above MemStart. MemStart takes the value 112 (#70)
on a T800 or T425, 72 (#48) on a T414, and 36 (#24) on the T2 family. So, the actual calculation
for the position of the start of code is MemStart plus scalar workspace plus configuration code.
In this example, 112 + 1164 + 20 = 1196, or #510. This is the same answer as the debugger would



360 3 Applications

give in its memory map display:

1164 )
20 )
46k)
67k)

Memory Map
#80000070 - #800004BF
#800004FC - #8000050F
#80000510 - #8000B98F
#8000B990 - #8001C3AB

Workspace
Configuration code
Program Body
Vectorspace

Tota1 memory usage 115628 bytes (113k)

Notice that the total memory usage shown by the debugger tells you how large a core dump file you
should have used!

As an aside, the other numbers in the descriptor identify the vectorspace requirements (68124 bytes,
or 17031 words), and the code size of the debugv.c8h linked module, 46208 bytes.

If the information option had been used on the bootstrap tool, the vectorspace size is shown in
words (17031). The scalar workspace requirement is also shown in words, 282. The i1ist
utility will confirm these two numbers. However, an "extra" nine words are included in the scalar
workspace by the configuration operation, as far as the descriptor and debugger are concerned4 .

Hence, 282 + 9 =291 words (or 1164 bytes on a T800) are reserved for scalar workspace once the
code has been rendered bootable.

• Calculating the module offset position

This is simply a matter of tracing backwards, starting with the module requiring position location, and
finding out all the things that are linked in with it. Each time the module is linked with other object
code, the Iinker will produce a link map (in a . m%% file). The position of the module in that particular
linked unit' can be observed from the byte position addresses shown in the link map. Simply add
together the module offsets shown in each . m%% file, to determine the total offset of the module
from the start of the code.

Alternatively, one can trace the module position forwards from the top-level linked unit which has the
bootstrap prepended, through all the intermediate Iinkings to the module under investigation.

The absolute module position is then determined by adding the module offset address (from code start) to
the code start address.

Using on-chip RAM effectively

Knowing the start and end addresses of critical modules, (the byte sizes of each module can be derived from
the . m%% files), it is apparent whether part or all of the module is in on-chip RAM.

For performance reasons, it may be important to to fit a particular combination of modules in on-chip RAM.
With reference to the above example, the size of the scalar workspace is such that the program body starts
at 1296 (#510), but the T800 on-chip RAM extends to only 4095 (#FFF). This leaves 4095 - 1296 = 2799
bytes (#AEF) of on-chip RAM for the code.

Following the use of the linker symbol optimization in the previous example, the first two items loaded are:

SC or.t8h 0 43
SC a11.c8x 44 38695

The or. t8x is an indivisibly loadable unit. However, the a11. c8x comprizes other parts. There is a

4This information is highly specific to the current 07058 implementation, and is not guaranteed to remain the same for all releases
of the 07058 tools. The appropriate product documentation should always be consulted.



11 Using the 07058 occam toolset with non-OCCam applications 361

corresponding linker map file for this, called a11 . m8x. The first parts of this file are listed below:

SC proeent.e8x O· 9571
LiB ert1t8.bin (59) 9572 11467
LiB ert1t8.bin (39) 11468 12327
LiB ert1t8.bin (77) 12328 14255

The actual C object file eproq1 .bin appears much further down the list. Since only 2799 bytes of code
are available on-chip, clearly the actual user-code is not placed on-chip. If it were vital that cprog1 . bin
was on-chip, it must be brou,ght to the head of the link list. To force eproq1. bin to the head of the link
list, the Iq (EOP1) directive would be included in the Iinker control specification for building a11. c8x.

This is clearly a trivial example, but the methodology is applicable to any size of problem. You can make
programs execute faster. What a great plan! I'm excited to be a part of it ! Let's do it I!!

11.7.7 Hints and tips

This section includes a few tips on how to get the best out of the D7058 toolset. These sections are also
relevant to any other toolset platform.

Library usage guidelines

These notes address some library useage issues.

• Many complete EOPs can be put into a library, and access to all of them is available with only one
#USE directive. However, the makefile generator tool imakef will generate incorrect makefiles if
it finds a .1bb library build file for non-OCCam material. This is because it will assume occam
source exists for for everything, which is not true for EOPs.

• It is not possible to mix source and object code in the same file. A consequence of this is that
files of occam source VAL declarations and PROTOCOL specifications cannot be put into a library.
Rather, they must be filed separately and accessed by #iNCLUDE, with a recommended filename
extension of . ine.

• Object hex output from the scientific-language compilers cannot be placed in libraries. Convert it to
binary using the scientific-language linker, and then put this in a D7058 library.

• Separately compiled functions / procedures belonging to an EOP can be placed in a library. The
object fragments of an EOP cannot be linked until all the component binary objects are available.

• Use of the generic processor classes in libraries allows compact libraries to be created from occam
source that support a range of processors. If it is necessary to produce a library supporting all
32-bit processor types, then attempt to compile for a processor class TA. If tHis is not possible due
to the nature of the code, then class T8 and TB together, or class TC and T4 together, cover all
processor types. Failing this, the library must contain T4, T5, and TB compilation units to offer the
same support.

Remember though, that use of generic processor classes causes restrictions in the instructions that
can be used. For example, TA cannot do floating point.

• Careful use of the occam compiler's error modes can contribute towards compact libraries. In
totally occam systems, the HALT mode is advised for testing and debugging purposes. If a routine
is known to be correct, or has severe performance contraints, the UNIVERSAL error mode in a
library allows any type of compilation unit to access the routine. A corollary of this item and the
previous one is that . tax compilation units can be used by the greatest range of processor types
and error modes.

• Most libraries are built from compiled. t%% components. In situations where it is required to reduce
the number of entry-points to a library, or the number of unresolved external references, linked . c%%
components could be used as an alternative to inserting the other necessary . t %% files.



362 3 Applications

If occam source to be placed in a library uses only textual references to other occam files (using
#INCLUDE), then there are no external references from the compiled unit. Therefore, the compiled
output (. t%%) would be placed in a library.

If occam source references compiled items with #USE or #IMPORT, then this means that the
compilation unit . t%% possesses unresolved external references. If the . t%% file were inserted ·to
a library, any programs using the library would also have to use the libraries that satisfy the external
references of this one. To remove this condition, the compilation unit can be linked to resolve its
external references, and the resultant . c%% unit placed in the library. This makes the unit more
"portable", in the sense that it can now be used without the other libraries. An equivalent approach
would involve inserting the other. t%% units in the same library, and not using linked . c%% units at
all - this is the approach used to build the 0705B toolset libraries.

One cannot place compiled occam that references object code with the #SC directive in a library.

• Don't use the occam compiler's #SC directive! It is only supported for compatibility reasons with
the TOS compiler. The restrictions with #SC on linking position and the impossibility of inclusion in
a library are easily avoided. Instead, use the #USE directive - and compile as normal. This makes
the compiler treat the item as a library. Remember that a library can be a single object file, so it
is simply a case of changing occurrences of #SC to #USE, for advantage to be taken of the library
features available. The advantages of using the #USE directive over the #SC are numerous, and
include selective loading, arbitrary placement opportunity at link-time, and only one copy of the code
is linked in no matter how often it is #USEd (on one processor).

General usage guidelines

This section contains generally useful advice for using the 0705B toolset.

• In general, don't explicitly specify absolute or relative directory locations in occam directives to
access other files. This compromizes the occam source-level portability amongst the other toolset
platforms. The ISEARCH path mechanism should be used instead, as it essentially offers a machine
independent "logical naming" facility as in the INMOS TOS. If it is necessary to use a machine
dependent form of file specification, then stick firmly to either relative directories or absolute direc
tories - don't mix or your source becomes very confusing and non-portable.

• Because the Iinker cannot create directly a bootable file, there is the overhead of having to store a
• c%% file which represents the entire process for the transputer, but which is not bootable. If you are
running low on disk space, and building large applications, you can delete the auxiliary symbol maps
for each linked compilation uniL (. s%%) and also the. c%% files after adding the bootstrap. This is
because the . c%% files are no longer required (unless you ask the debugger for a code/memory
comparison). Oon't delete any. t%% and .m%% files because the debugger uses these. Better still,
use the Iinkers' Is symbol table disable option.

• The 0705B Iinker attempts to resolve external references unless given a lu option to disable this.
It also requires that an entry point for the binary object be provided. The practical implication of
this is that using the 0705B Iinker, non-OCCam code can only be pre-Iinked as a complete entity,
with the compiled occam interface code included in the specification of files to be linked (such as
procent% • t%%).

• Because each #IMPORTed EOP has always been linked with the same standard occam interface
code, then a means of speeding up system re-generation time is possible (assuming that the occam
interface code is not altered). If changes have been made to non-OCCam components in a system,
but not to occam components, then it is not strictly necessary to recompile any occam. It is,
however, necessary to link and bootstrap the code as before.

The i.makef tool would arrange for an occam recompilation if it detected the linked . c%% file
referenced in a #IMPORT were more recent than the occam source referencing it. To prevent
this, it is necessary to tweak the system makefile. Manually remove the dependency information for
the occam concerning the #IMPORTed . c%% files. Then, arrange that the makefile for the non
occam parts will delete the . c%% files which comprize the compiled occam and the #IMPORTed



11 Using the 07058 occam toolset with non-OCcam applications 363

stuff. This ensures that once the non-OCcam parts have been rebuilt as necessary, the occam
compiler will not be invoked on account of the procent interfacing routines - but it will still be
invoked if any occam has changed. Remember, it is always necessary to re-link and bootstrap the
application following an editing change.

• If the debugger's Network Dump option is used with a single transputer system, then if the application
happened to use the free. memory buffer (for run-time stack and heap storage, or for other occam
buffer allocations), this memory will not be saved to disk. Only memory allocated from within the
occam harnesses is stored in this case.

• To use the debugger with a (single transputer) application which uses free. memory, then to
ensure the used portion of this memory is core-dumped for the debugger to use, two approaches
can be taken. Either set :IBOARDS:IZE smaller than it is (to 200000 bytes, say, instead of ten times
that). This means that used memory is lower down in the memory map, so a single core-dump
of reasonable size can be taken. Alternatively, use the core-dump tool to dump several blocks of
memory. The idump can accommodate a list of up to ten start / size byte pairs.

11.8 Some useful checklists

11.8.1 Setting things up for the 07058

There are a few things to set up before you proceed :

• Ensure the 07058 toolset search path :ISEARCB is set up for the toolset and non-occam compiler
directories, and ensure it has trailing backslashes for each component path.

Reminder: With MS-DOS, spaces in setting up environment variables are significant. It is very easy
(and not obvious what's happened if you do it) to set up an environment variable called "space"
:ISEARCBI

• Ensure that the DOS environment variable :IBOARDS:IZE is set to the size of the transputer board,
eg, #200000 for a 2 Mbyte board. If you think you've set up this environment variable, and the
iserver terminates with a fatal error, then you may have set up an environment variable called
"spaCe"-:IBOARDS:IZE (which is not useful).

• The :ITERM environment variable is used by the debugger, and must point to a valid .ITM file, such
as 18MPC.ITM in the appropriate directory.

• The CONFIG.SYS file must install the ANSI.SYS device driver, otherwise the debugger and simulator
will not correctly draw the screen.

• You may need to increase the number of FILES and 8UFFERS in your CONFIG.SYS file, to some
thing like 20 or 30. This requirement may arise if a tool making use of a lot of files / buffers (such as
imakef) is unable to proceed for any obvious reason (like disk space exhausted, file write-protected,
file doesn't exist, search paths not correct etc).

11.8.2 What to do if a multiple EOP system won't run (on one transputer)

This section is a checklist for when a multiple EOP system doesn't execute correctly. It assumes that the
multi-EOP system compiles,links, and loads OK, but won't run. The checklist is applicable to any mUlti-process
07058 application, and is listed in order of check-ability.

• Ensure that each EOP has been linked with the correct type of occam interface code. Generally,
there will be one type 2 EOP and the remainder will be Type 3 EOPs. Remember the interfaces are
different depending on the language of implementation of the EOP.

• Check that the (Type 2) root EOP has been linked with the full run-time library. All other (Type 3)
EOPs should be linked with the standalone libraries (unless they use the Type 3 stub interface).



364 3 Applications

• Are the message-passing functions being given the correct type of arguments? In particular, note
that the C functions -inmess and _outmess take addresses as the second parameter! (Not
constants) .

• Ensure the EOP occam harness has the correct LOAD. :INPUT. CHANNEL and LOAD. OUTPUT.
CHANNEL commands, and isn't using any of the reserved scientific-language communications chan
nels. In summary, elements 0 and 1 of both channel vectors in and out are reserved for an EOP
using the full run-time libraries, and element 0 of both vectors is reserved for an EOP linked with the
standalone run-time library.

• Has sufficient workspace been reserved in the occam instantiation of each EOP?

If an EOP uses two workspaces (£1a9 is 0), thfn a minimum of 400 words for wsl stack, and 4000
words for ws2 heap is reccommended.

If an EOP uses one workspaces (£1a9 is 1), then a minimum of 4000 words for wsl (all workspace)
is reccommended. In this case, ws2 can be of size 1.

• Do the channels used within the EOP source actually correspond to the ones the programmer has
used in the occam used to interconnect the channels? In other words, does the EOP harness
expect a C EOP to send data on channel out [2] , but the C source sends the data on a different
channel ?

• Ensure that the EOP source does not explicitly attempt to use hard link addresses with the message
passing functions. C EOPs must use the elements of the in and out vectors passed as arguments
to main () , rather than using #de£ine to place channels onto the hardware.

• Ensure that each channel communication pair send and receive the same number of bytes, otherwise
partner will jam.

What do you mean it still won't run? .

DON'T PANIC II!

11.8.3 What to do if a multiple EOP system won't run (on many transputers)

Clearly, the first stage is to get the system to run on a single transputer first. Don't be too ambitious initially
and dive into a multi-processor implementation - make it work with one transputer first.

If you have a system that works on one transputer, but fails to run when configured for several, then following
checklist is useful :

• The first thing to check is that all the channels are correctly PLACEd onto the hard links.

• Have you declared the root processor first in the configuration description file?

• Is it necessary to establish link connections before booting the application (for example, by using
the Module Motherboard Software to set up the INMOS C004 link switch on a B008 motherboard).

• Are your processor types in correspondance with those declared in the configuration file ?

• Do you have enough memory on each processor node ? (Check this by getting the configurer to
produce a boot map for you. This also lists the code requirements for each processor).

• Are all the link speeds compatible between adjacent processors? Check the DI.P switches on your
motherboards.

• Check that all processors are being correctly reset, especially where a hierarchical reset control
strategy is being employed, eg, one involving the SubSystem ports.



11 Using the 07058 occam toolset with non-OCCam applications 365

11.8.4 A summary of performance maximization techniques

This section lists the main three areas for increasing a system's performance, without going into total detail
of how to drive all the tools to achieve this.

• Use the tools effectively.

• Use the on-chip RAM effectively.

• Write your software correctly.

There is some obvious overlap between these categories.

Examples of all three categories follow:

• Use the tools effectively

The C / Pascal/FORTRAN compiler's /PCn option allows the programmer to change the number
of bytes allocated for a call to an extern function, which is to be patched by the Iinker. The default
is to save 6 bytes, allowing a maximum code image of 16 MBytes. Often, values like /PC4 (giving
64KBytes) and /PC5 (giving 1 MByte) can be used to make code smaller and execute faster. The
Iinker will warn if too small a patch size is used, and also informs the programmer of the maximum
patch size it used. Legal values are /PC2 to /PC8.

The C compiler's / S option can be used to prevent the C compiler converting all floating point
operations to doubJ.e precision before evaluating expressions. This is not reccommended for
applications where high numerical accuracy is required, but is faster.

The D705B toolset Iinker iJ.ink can also be used effectively to minimize code size by sharing
occam code, even between parallel EOP processes running on the same processor.

The Iinker can also assist with the effective use of on-chip RAM for critical parts of the code.

• Use the on-chip RAM effectively

Ensure that the stack space of compute-intensive parts of the application is placed on-chip.

Use the Iinker correctly to ensure that the most frequently used functions are loaded on-chip (if
possible) - the Iinker provides maps showing the loading order of component binaries in the final
executable image - use them to find out where the code is loaded, allowing for Memstart (#70
bytes (112 decimal) on T800 and T425; #48 (decimal 72) on T414), the occam workspace (convert
to bytes I), and around 20 bytes of reserved configuration info, preceeding the code.

It is possible to use KERNEL. RUN techniques in association with those discussed previously to
guarantee certain code will reside on-chip. This is discussed in another technical note.

• Write your software "correctly"

Distribute compute-intensive parts across multiple processors.

Always overlap slow i/o (such as communication to the server) with computation.

Use lots of buffers to decouple communication and computation - especially software talking to
inter-processor links.

Communicate in one large "chunks" at a time, rather than in several smaller quantities.



366

Don't use arithmetic that is explicitly not 32-bit (on the 32-bit transputers). For example, in occam,
the INT16 data type is manipulated much more slowly that 32-bit INTs (especially when part of
a vector). Pay the storage penalty and reap the benefits of performance! Try to use machine
native-wordlength computation.

What more can I say? Contact Central Applications group with your personal favourites.

11.9 Summary and Conclusions

This document has described some issues connected with developing transputer software using the INMOS
scientific-language development systems and the 0705B occam toolset. Most of the examples shown can
be copied verbatim and used as templates in the reader's own projects5 , using any occam toolset on any
supported platform.

In addition to fulfilling the requirements of new projects, in any language, these development systems allow
existing applications to be ported to transputers.

The development systems are thorough and flexible. All support a range of transputers. The 0705B offers
multiple programmer support, and application compatibility at source and binary levels across a range of
development platforms. Transputer software is fast, incrementally upgradable, and portable. Can you afford
to be without it ? Inject some life into your application ! Use the Toolset.

11.10 References

The Transputer Databook, INMOS Limited

2 OCCam-2 Reference Manual, INMOS Limited, Prentice "Hall

3 Some Issues in Scientific-language Application Porting and Farming using transputers, INMOS Tech-
nical Note 53, Andy Hamilton, INMOS Limited, Bristol

4 IMMOS Spectrum, (contains a brief description of INMOS products), INMOS Limited, Bristol

5 Transputer instruction set - A compiler writer's guide, INMOS Limited, Prentice-Hall.

6 INMOS Parallel C User Guide (V2.00 software), INMOS Limited, Bristol

7 INMOS Parallel FORTRAN User Guide (V2.00 software), INMOS Limited, Bristol

8 Porting SPICE to the INMOS IMS TBOO transputer, INMOS Technical Note 52, Andy Hamilton and
Clive Oyson, INMOS Limited, Bristol

9 Performance Maximization, INMOS Technical Note 17, Phil Atkin, INMOS Limited, Bristol

5Some small print: A set of unsupported example programs discussed in this Technical Note, are available from INMOS by contacting
a Field Applications Engineer. Send a disk and we'll send you the examples.



urumos Appendix A 367

- Quality and
Reliability



368

A Quality and Reliability
~i

Systems products are embraced within the INMOS Quality Policy which incorporates specific programmes in
I the following areas:
I

• Design in quality

• New product verification phase

• Document Control

• Quality control monitors

• Production soak testing

• Environmental stress cycle

• Reliability testing

All systems products are designed in house using CAD facilities specific to PCS manufacture. These facil
ities incorporate design simulation and provide production data which helps to reduce design to production
problems.

During the product verification phase, the new product is evaluated and its build/test specifications are en
dorsed.

All system products are assembled and tested at INMOS approved assembly houses which conform to the
INMOS Quality Program. Quality procedures detail the build specification, production testing and final product
status. These procedures are all monitored and controlled by the Document Control Department (DCD).

In circuit automatic testing provides assembly and component analysis. This coupled with an environmental
stress cycle and a repeated automatic test procedure provides an effective monitor to the production phase.

An INMOS Quality Assurance sample test evaluates all production batches. At this stage the conformance
of the product is confirmed and the test data logged for reference.

Reliability testing is carried out on the major product lines. Samples are taken from standard stock and
subjected to life testing.



A Quality and Reliability

PRODUCT FLOW

369

PCS components

PCS clean

Mask

Solder cream

Place SMT components

QC inspection

Reflow

Glue

Place SMT components

QC inspection

Cure glue

Insert through hole components

Wave solder

QC inspection

ATE in circuit test - first pass

Environmental stress cycling

ATE in circuit test - second pass

Functional elevated soak test

QC inspection

Pack and deliver to INMOS

INMOS QA sample test and inspection

\l Raw Material Procurement

o Manufacturing Process

D QAGate



370 A Quality and Reliability



WUlII~ 371

48 Cables for
Board
Products



372

B Cables for board products

The following cable sets are available to complement the INMOS range of board products. Sufficient cables
are included with each of the INMOS board products to build the most common configurations. However,
where more sophisticated systems are required, it will sometimes be necessary to use additional cables. The
table below indicates the number of each cable type included in each of the available cable sets.

Part Number Cable Reference Code

A B C D E F G H I J K L M N 0 P a R

IMS CA01 10 2 1 1

IMS CA02 a 2

IMS CA03 10 10 1 1

IMS CA04 3 1

IMS CAOS 3

IMS CA06 1

IMS CA07 1

IMS CAoa 1

IMS CA09 3 10 10

IMS CA10 1

Table B.1 Cable sets

Code Description

A Short link cable (approx. 0.1 m)
B Standard link cable (approx. O.Sm)
C Long link cable (approx. 1.0m)
D Very long link cable (approx. 2.0m)
E Link jumper (yellow wires)
F Short reset cable (approx. 0.1 m)
G Standard reset cable (approx. O.Sm)
H . Long reset cable (approx. 1.0m)
I Very long reset cable (approx. 2.0m)
J Reset jumper (black wires)
K DIN 41612 socket to wire wrap tails (with no 'row b' pins)
L DIN 41612 socket to wire wrap tails (with 'row b' pins)
M DIN 41612 socket to INMOS link connections
N DIN 41612 to BNC (video) connectors
o 3-way SIL subsystem pin strip
P a-way SIL TRAM pin extender strips
a a-way SIL TRAM slot pipe jumper
R Pixel bus terminator module

Table B.2 Cable descriptions



B Cables for board products 373

The table below shows how many of each cable type are shipped as standard with INMOS board products.
This table is only included to show which items are required should it be necessary to replace the cables
for a particular product. Only the cable sets shown in table 8.1 are available separately from INMOS. The
table below is for reference purposes only. (The cable reference codes below refer to the cables described
in table 8.2).

Board Product Cable Reference Code
A 8 C D E F G H I J K L M N 0 P Q R

IMS 8001 2 1 1

IMS 8003 4 4 2 1 1 1

IMS 8004 2 1 1 1

(MS 8005 1 1

IMS 8006 8 4 2 2 1 2 1 1

IMS 8007 2 1 1 1

IMS 8008 2 1 1 10

IMS 8009 3 1 1 1

IMS 8010 2 2 1 1 1 8

IMS 8011 4 1 1

IMS 8012 4 4 2 1 1 1 1 1 1 1 16

IMS 8014 4 2 1 1 1

IMS 8409 1

Table 8.3 80ard product cables


	Contents overview
	Contents
	Preface
	1 Systems Products overview
	1.1 Introduction
	1.2 Innovation and Quality
	1.3 TRAMS (TRAnsputer Modules)
	1.4 Quality and Reliability

	Part I - Boards
	2 TRAnsputer Modules (TRAMS)
	2.1 IMS B416 TRAM 16bit 64KB
	2.2 IMS B401 TRAM 32bit 32KB
	2.3 IMS B411 TRAM 32bit 1MB
	2.4 IMS B404 TRAM 32bit 2MB
	2.5 IMS B417 TRAM 32bit 4MB
	2.6 IMS B405 TRAM 32bit 8MB
	2.7 IMS B410 TRAM 32bit 160KB
	2.8 IMS B415 Differential link buffer TRAM
	2.9 IMS B418 Flash ROM TRAM
	2.10 IMS B407 Ethernet TRAM
	2.11 IMS B421 IEEE 488 GPIB TRAM
	2.12 IMS B422 SCSI TRAM
	2.13 IMS B408 Frame store TRAM
	2.14 IMS B409 Display TRAM
	2.15 IMS B419 Integrated graphics TRAM
	2.16 IMS B420 Vector processor TRAM

	3 Standard Interface Boards
	3.1 IMS B008 IBM PC Motherboard
	3.2 IMS B011 VMEbus master card
	3.3 IMS B014 VMEbus slave card
	3.4 IMS B016 VMEbus master slave
	3.5 IMS B015 NEC 9800 series PC Board
	3.6 IMS B012 Double extended eurocard

	4 Evaluation Boards
	4.1 IMS B005 Disk board
	4.2 IMS B009 Signal processing board

	Part II - Development systems
	5 Software Development Tools
	5.1 IMS D705, IMS D605, IMS D505 occam 2 Toolset
	5.2 IMS D711, IMS D611, IMS D511 Parallel C
	5.3 IMS D713, IMS D613, IMS D513 Parallel FORTRAN
	5.4 IMS D712 Pascal
	5.5 Ada Compilers
	5.6 IMS D700 Transputer Development System

	6 Board Support Software
	6.1 IMS S708, IMS S514 Motherboard Support Software
	6.2 IMS S607, IMS S507 Ethernet Support Software

	7 Transputer Development Kits
	7.1 Transputer Introduction Kit
	7.2 Transputer Performance Evaluation Kit
	7.3 Custom Development Kits
	7.4 IMS B211 INMOS Transputer Evaluation Module (ITEM)

	Part III - Applications
	8 Dual Inline Transputer Modules (TRAMs)
	8.1 Background
	8.2 Introduction
	8.3 Functional description
	8.4 Electrical description
	8.5 Mechanical description
	8.6 TRAM pins and sockets
	8.7 Mechanical retention of TRAMs
	8.8 Profile drawings

	9 Module Motherboard Architecture
	9.1 Introduction
	9.2 Module motherboard architecture
	9.3 Link configuration
	9.4 System control
	9.5 Interface to a separate host
	9.6 Mechanical considerations
	9.7 Edge connectors

	10 Scientific language application porting and farming using transputers
	10.1 Introduction
	10.2 Preliminary information
	10.3 Altering the application as little as possible
	10.4 Parallelizing the application
	10.5 Implementing modules
	10.6 Using transputers with other processors
	10.7 Farming an application
	10.8 Planning the structure of a new application
	10.9 Summary and Conclusions
	10.10 References

	11 Using the D705B occam toolset with non-occam applications
	11.1 Introduction
	11.2 Background information
	11.3 The INMOS scientific-language compilers
	11.4 The INMOS D705B occam-2 toolset
	11.5 Handling non-occam processes
	11.6 D705B debugging guidelines
	11.7 Using the D705B occam-2 toolset
	11.8 Some useful checklists
	11.9 Summary and Conclusions
	11.10 References

	A Quality andReliability
	B Cables for Board Products



