
CR)

XGA
SOFTWARE
PROGRAMMER'S
GUIDE
First Edition 1991

The information contained in this 1st edition of the XGA Software Programmer's Guide (document
revision 00) is preliminary information A 2nd edition is in preparation.

L'ffffL SGS-THOMSON
.. J, ® ~D~~@rn[brn~u~@~D~~

INMOS IS a member of the SGS-THOMSON Microelectronics Group

72 OEK 25800 September 1991

Other XGA documents

IMS G190 XGA serializer palette DAC, Preliminary information,
INMOS document number 42 1526 01

IMS G200 XGA display controller, Preliminary information,
INMOS document number 42 1525 01

Copyright © INMOS Limited 1991

INMOS reserves the right to make changes in specifications at any time and without notice.
The information furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights of
third parties resulting from its use. No licence is granted under any patents, trademarks or oth
er rights of INMOS.

_,OUUmos, IMS and occam are trademarks of INMOS Limited.

~~~~@m~:,~~©~ is a registered trademark of SGS-THOMSON Microelectronics Group.

IBM, PS/2, and Micro Channel are registered trademarks of IBM.

XGA is a trademark of IBM licensed to SGS-THOMSON.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 OEK 258 00

ORDER CODE: PMXGASOFT/1

Printed in Italy

72 OEK 258 00 September 1991



I Contents overview

Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xiii

XGA function 1

XGA Overview 3

2 VGA............ 8

3 132 Column Text .. " .. 9

4 Extended Graphics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10

5 XGA System Interface 83

XGA programming considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Adapter Co-existence 95

7 Locating the XGA SUbsystem 96

8 VGA Primary Adapter Considerations .. " 100

9 General Systems Considerations 102

10 Extended Graphics Modes Selection 103

11 Mode Setting the XGA Subsystem . , 105

12 Upwards Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

13 Programming the XGA Subsystem in Extended Graphics Mode. .. 116

14 Other Programming Considerations 131

15 Sample Code 134



iv Contents overview



~------------ 

~~ntents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xiii

XGA function 1

1 XGA Overview 3

1.1 Major Components . . . . . . . . . . . . . . . . . . . . . . . . .. 4

1.1 .1 System Bus Interface 5
1.1.2 Memory and CRT Controller . . . . . . . . .. . 5

1.2 Coprocessor . . . . . . . . . . . . . . . . . . . . . .. . 5

1.2.1 Video Memory . . . .. 5
1.3 Attribute Controller . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Sprite Controller 6

1.5 The Serializer, Palette and DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 A/N Font and Sprite Buffer . . . . . . . . . . . . . . . . . . . . . . . . . .. 6

1.7 Modes Of Operation. . .. .. . . . . . . . . . . . . . . . . . .. 6

1.8 Compatibility. . . . . .. . . . . . . . . . . . . . . . . . . .. 6

1.8.1 8514/A .. . . . . . . . . .. .. 6
1.8.2 L1M EMS Drivers. . . .. . . . . . . . . . .. . 7

2 VGA...................................................... 8

3 132 Column Text 9

4 Extended Graphics 10

4.1 Display Controller Description . . . . . . . . . . .. 10

4.1 .1 Video Memory Format . . . . . . . . .. .. . . .. 10
4.1 2 Pixel Color Mapping . . . . . . . . . . . . . . . . . . . . . .. 11
4.1 3 Border Color Mapping. .. . .. 11
4.1.4 Direct Access to the Video Memory. . . . . . . . . . . . .. . 11

System Apertures Into Video Memory .. 11
4.1 .5 CRT Controller . . . . . . . . . . . . . .. .. 12

CRTC Register Interpretations . . .. '" 12
Scrolling. .. .. . . . . . . " . 13

4.1 6 Sprite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14
Sprite Color Mapping 14
Sprite Buffer Accesses 14
Sprite Positioning . . . . . . . . . . .. . 15

4.1 7 Palette. . . . . . . . . . . . . . .. . 16
Palette Accesses. . . . . . . . . . . . . . . . . . . . . . . . . .. .. 16

4.2 Direct Color Mode . . .. .. 17

Coprocessor Functions .. 18
4.3 Display Controller Registers . . . . . . . . . . . . . . . . . . . . . . 18

4 3.1 Register Usage Guidelines . 19
4.3 2 Direct Access I/O Registers , 19

Operating Mode Register (Address: 21 xO) . . . . .. 19
Aperture Control Register (Address: 21x1) . . . . . .. 20
Interrupt Enable Register (Address: 21 x4) 21
Interrupt Status Register (Address: 21 x5) . . .. 21

72 OEK 258 00 September 1991



vi Contents

Virtual Memory Control Register (Address: 21 x6) 21
Virtual Memory Interrupt Status Register (Address: 21 x7) 21
Aperture Index Register (Address: 21 x8) 22
Memory Access Mode Register (Address: 21 x9) . . . . . . . . . . . . . . . . . . . . 22
Index Register (Address: 21 xA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Data Registers (Addresses: 21 xB to 21 xF) . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.3 Indexed Access I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Auto-Configuration Register (Index: 04) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Coprocessor Save/Restore Data Registers (Index: DC & OD) . . . . . . . . . . 24
Horizontal Total Registers (Index: 10 & 11) . . . . . . . . . . . . . . . . . . . . . . . . . 24
Horizontal Display End Registers (Index: 12 & 13) 25
Horizontal Blanking Start Registers (Index: 14 & 15) . . . . . . . . . . . . . . . . . 25
Horizontal Blanking End Registers (Index: 16 & 17) 26
Horizontal Sync Pulse Start Registers (Index: 18 & 19) . . . . . . . . . . . . . . . 26
Horizontal Sync Pulse End Registers (Index: 1A & 1B) . . . . . . . . . . . . . . . 27
Horizontal Sync Pulse Position Registers (Index: 1C & 1E) 27
Vertical Total Registers (Index: 20 & 21) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Vertical Display End Registers (Index: 22 & 23) . . . . . . . . . . . . . . . . . . . . . 28
Vertical Blanking Start Registers (Index: 24 & 25) 29
Vertical Blanking End Registers (Index: 26 & 27) . . . . . . . . . . . . . . . . . . . . 29
Vertical Sync Pulse Start Registers (Index: 28 & 29) 30
Vertical Sync Pulse End Register (Index: 2A) . . . . . . . . . . . . . . . . . . . . . . . 30
Vertical Line Compare Registers (Index: 2C & 2D) 31
Sprite Horizontal Start Registers (Index: 30 &31) 31
Sprite Horizontal Preset (Index: 32) 32
Sprite Vertical Start Registers (Index: 33 &34) . . . . . . . . . . . . . . . . . . . . . . 32
Sprite Vertical Preset (Index: 35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Sprite Control Register (Index: 36) 33
Sprite Color Registers (Index: 38 - 3D) 33
Display Pixel Map Offset Registers (Index: 40 - 42) 34
Display Pixel Map Width Registers (Index: 43 & 44) 34
Display Control 1 Register (Index: 50) .. . 35
Display Control 2 Register (Index. 51) 36
Display ID and Comparator (Index: 52) 37
Clock Frequency Select Register (Index: 54) . . . . . . . . . . . . . . . . . . . . . . . 37
Border Color Register (Index: 55) 37
Sprite/Palette Index Registers (Index: 60 & 61) . 38
Sprite/Palette Index Registers with Prefetch (Index: 62 & 63) 38
Palette Mask Register (Index: 64) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Palette Data Register (Index: 65) 39
Palette Sequence Register (Bits 2:0 only) (Index: 66) 39
Palette Red Prefetch Register (Index: 67) .. 39
Palette Green Prefetch Register (Index: 68) 40
Palette Blue Prefetch Register (Index: 69) 40
Sprite Data Register (Index: 6A) 40
Sprite Prefetch Register (Index: 6B) 40
External Clock Select Register (Index: 70) 41

4.4 Coprocessor Description 42

4.5 Programmer's View. . . . . . . . . . . . . . . . . . .. .. 43

4.6 Pixel Formats . . . . . . . . . . . . .. 44

4.6.1 Pixel Data . . . . . . . . . . .. 44
Fixed And Variable Data 44
XGA Function . . . . . . . . . . . . . . . . . . . . . . . . . 44

72 OEK 25800 September 1991



Contents vii

4.6.2 The Coprocessor View of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.3 XGA Pixel Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Pixel Maps A, B, And C (General Maps) 44
Pixel Map M (Mask Map) 45
Map Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
X and Y Pointers 46
Scissoring With The Mask Map1 48

4.6.4 Drawing Operations 51
Draw and Step: 51
Line Draw: 53
Pixel Block Transfer (PxBlt): 56
Area Fill: . . . . . . . . . . .. 58

4.6.5 Logical And Arithmetic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Mixes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Breaking the ALU Carry Chain:3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Generating The Pattern From The Source: . . . . . . . . . . . . . . . . . . . . . . . . . 62
Color Expansion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Pixel Bit Masking:4 62
Color Compare:5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.6 Controlling Coprocessor Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Starting a Coprocessor Operation: 63
Suspending a Coprocessor Operation: . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Terminating a Coprocessor Operation: 63

4.6.7 Coprocessor Operation Completion 63
Accesses To The Coprocessor During An Operation:3 . . . . . . . . . . . . . . . 64

4.6.8 Coprocessor State Save/Restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Suspending Coprocessor Operations:4. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.9 Save/Restore Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Coprocessor Registers 65

4.7.1 Register Usage Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7.2 Virtual Memory Registers 68

Page Directory Base Address Register (Coprocessor Registers, OffsetO) 68
Current Virtual Address Register (Coprocessor Registers, Offset 4) . . . . 68

4.7.3 State Save/Restore Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Coprocessor Control Register (Offset 11) . . . . . . . . . . . . . . . . . . . . . . . . . 69
State Length Registers (Offset: C & D) 69
Save/Restore Data Ports (I/O Index: C & D) 69

4.7.4 Pixel Interface Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Pixel Map Index Register (Offset: 12) . .. .. 70
Pixel Map n Base Pointer (Offset 14) 71
Pixel Map n Width (Offset 18) 71
Pixel Map n Height (Offset: 1A) 71
Pixel Map n Format (Offset 1C) . . . . . . . . . . . . .. 72
Pixel Maps A, Band C 72
Mask Map.................................................. 72
Bresenham Error Term E (Offset: 20) 73
Bresenham Constant K1 (Offset 24) 73
Bresenham Constant K2 (Offset 28) 73
Direction Steps Register (Offset: 2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Foreground Mix Register (Offset 48) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Background Mix Register (Offset 49) 74
Destination Color Compare Condition (Offset 4A) . . . . . . . . . . . . . . . . . . 75
Destination Color Compare Value (Offset 4C) 75

72 OEK258 00 September 1991



viii Contents

Pixel Bit Mask (Plane Mask) (Offset: 50) .. 75
Carry Chain Mask (Offset: 54). .. 76
Foreground Color Register (Offset: 58). .. .. . . . . . . . 76
Background Color Register (Offset: 5C) . . . . .. 76
Operation Dimension 1 (Offset 60) . 77
Operation Dimension 2 (Offset: 62) .. 77
Mask Map Origin X Offset (Offset: 6C) . . . . . . .. .. 77
Mask Map Origin Y Offset (Offset: 6E) 77
Source X Address (Offset: 70) . . .. .. 78
Source Y Address (Offset· 72). .. . .. 78
Pattern X Address (Offset· 74) . . . . . . . . . . . . . . . . . .. 78
Pattern Y Address (Offset: 76) . . . . . . . . . . . . . . . . . .. 78
Destination X Address (Offset: 78) .. . . . .. .. 79
Destination Y Address (Offset 7A) .. .. 79
Pixel Operations Register (Offset· 7C) .. . . . .. 79

5 XGA System Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Multiple Instances . . . . . . . . . . . . . . . . . . . . . . .. .. 83

5 1.1 Multiple XGA SUbsystems in VGA Mode 83
5 1.2 Multiple XGA Subsystems in 132 Column Text Mode .. 83
5.1 .3 Multiple XGA SUbsystems in Extended Graphics Mode .. 83

5 2 XGA POS Registers .. 83

5 2.1 Register Usage Guidelines .. .. 83
5 2.2 SUbsystem Identification Low Byte (Base + 0) 84
5.2.3 SUbsystem Identification High Byte (Base + 1) 84
5 2.4 POS Register 2 (Base + 2) .. . .. 84

XGA Enable (EN, Bit 0) . .. 84
I/O Device Address (IODA, Bits 1-3). .. .. .. .. 84
ROM Address (ROM Addr, Bits 4-7) . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.5 POS Register 4 (Base + 4). .. .. . . . .. . 85
Video Memory Base Address (Bits 7-1) . .. 85
Video Memory Enable (VE, Bit 0) 85

5.3 POS register 5 (Base + 5) . .. .. 86

1 Mbyte Aperture Base Address (1 Mbyte Base, Bits 3-0) .. . . .. 86
5.4 Virtual Memory Description. . .. . . . . . . . . . . . . . . . . . . . . . .. 86

5 4.1 Address Translation . . . . . .. . . . . . .. . .. 86
Page Directory and Page Table Entries . . 87

5.4.2 The XGA Implementation of Virtual Memory . 88
The TLB . . . . . . . . . . . . . . . . . . .. 88
TLB Misses. . . .. . 88
System Coherency. .. . 89
VM Page Not Present Interrupts .. 89
VM Protection Violation Interrupts . . . . . .. .. 90
The XGA in Segmented Systems 90

5.5 Virtual Memory Registers .. 90

5.5.1 Page Directory Base Address Register (Coprocessor Registers, OffsetO) 90
5.5.2 Current Virtual Address Register (Coprocessor Registers, Offset: 4) . .. 91
5.5.3 Virtual Memory Control Register (I/O Address: 21x6) .. . .. .. 91
5 5.4 Virtual Memory Interrupt Status Register (I/O Address: 21 x7) .. 92

72 OEK 25800 September 1991



Contents ix

XGA programming considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Adapter Co-existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Co-existence with VGA " 95

6.2 Co-existence with Other XGA Subsystems 95

7 Locating the XGA Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1 Reading POS Data. . . . . . . .. . 96

7.2 Address Calculations . . . . . . . . .. .. 97

7.2 1 ROM address 97
7 2 2 Coprocessor Registers . . . . . . . .. . .. 97
7.2.3 I/O Registers. . . .. . '" " 97
7.24 The Video Memory Base Address . .. .. 97

4 Mbyte System Video Memory Aperture ..... .. .... .. 98
Video Memory Location in Coprocessor Address Space.. '" 98

7.2.5 1 Mbyte Aperture Base Address. . . . . . . . . " 99
7.3 Display Type and Video Memory Size .. '" " . 99

8 VGA Primary Adapter Considerations . . . . . . . . . . . . . . . . . . . . . . . . .. 100

8.1 Chaining the Int 10h Video BIOS Handler . . . , . . . . .. 100

8.2 Int 24h, Critical Error Handler . . . . . . . . . . . . . " 100

8.3 Int 23h Ctrl-Break Exit Address . . . . . . . . .. 101

8 4 Int 21 h Function 4Ch Program Terminate function '" " . .. 4 ••••• 101

9 General Systems Considerations 102

9.1 Co-existing with L1M Expanded Memory Managers " .. . . .. 102

9 2 Screen Switch Notification, Int 2Fh .. .., " .. 102

10 Extended Graphics Modes Selection

10 1 Modes Available. . .. . . . . . . . . .. ..

103

103

11 Mode Setting the XGA Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 105

11 .1 Individual Mode Setting Procedures . . . . . .. '" .. 105

11 .1 .1 Extended Graphics Mode . . . .. .. . . . . .. .. .. 105
111.2 VGA Mode............. .. . " . 107
11 .1 .3 132 Column Text Mode . ... .. " .. ... .. .. . . . . . . . 107

11 .2 System Video Memory Apertures . '" . .. . . . . .. 109

11 2.1 64K System Video Memory Aperture " . 109
11 2.2 1 Mbyte System Video Memory Aperture 109
11 .2.3 4 Mbyte System Video Memory Aperture . . . . . . . . . .. 109

11.3 Physical Addressability to System Memory .. . . . . . .. .. . 110

11 3.1 Real Mode DOS Environments. . . . . . . . . .. . . . . . . .. . ., 110
Extended Memory . . .. . .. .. " . '" 110
L1M EMS Managers '" " " .. 110

11 3.2 32 bit DOS Extended Environments .. 111
11 .3.3 Multiple Virtual DOS Machine Environments . . 111

72 OEK 258 00 September 1991



x

11.3.4

11.3.5

11.3.6
11.3.7

Contents

Protect Mode 16 Bit Segmented Environments 112
64K Segment Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 112
Segment Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 112
System Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 112
Access to XGA Registers and System Memory Apertures 112
Suggested Design Model 112
Paged Virtual Memory (VM) Environments . . . . . . . . . . . . . . . . . . . . . . . .. 113
4K Discontiguous Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113
Page Table Coherency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113
System Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113
Access to XGA Registers and System Memory Apertures 113
Suggested Design Model 113
Video Memory Addressability in VM Mode 113
System Memory Access Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 114

12 Upwards Compatibility 115

12.1 XGA Subsystem POS ID Allocations 115
12.1 .1 General Register Usage 115
12.1.2 Video BIOS Mode 14h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 115
12.1.3 PS/2 Video Memory Apertures 115

13 Programming the XGA Subsystem in Extended Graphics Mode 116

13.1 XGA Coprocessor Pixel Interface Registers 116

13.1.1 Pixel Map Index Register (OFFSET 12h) " 116
13.1.2 Pixel Map Base Address Register (OFFSET 14h) 116
13.1.3 Pixel Map Width Register (OFFSET 18h) 116
13.1.4 Pixel Map Height Register (OFFSET 20h) . . . . . . . . . . . . . . . . . . . . . . . . .. 117
13.1.5 Pixel Map Format Register (OFFSET 1Ch) 117
13.1.6 Other Registers 117

13.2 Using the Coprocessorto Perform a Pixel Blit (PxBlt) 118

13.2.1 Mixes and Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 118
Foreground and Background Mix Registers . . . . . . . . . . . . . . . . . . . . . . .. 119
Foreground & Background Color Registers . . . . . . . . . . . . . . .. 119

13.2.2 PxBlt Dimensions " 119
13.2.3 Pixel Map, Source & Destination 119

Source Map X and Y Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 119
Destination Map X and Y Registers 119
Pattern Map X and Y Registers 119
Mask Map Origin X and Y Offset Registers 120

13.2.4 Pixel Operations Register 120
Background Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 120
Foreground Source 121
Step Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 121
Source Pixel Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 121
Destination Pixel Map 121
Pattern Pixel Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 122
Mask Pixel Map 122
Drawing Mode 122
Direction Octant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 122
Conclusion . . . . . . . . . . . . . . . .. 123

13.3 Using the Coprocessor to Perform a Bresenham Line Draw 123

13.3.1 Mixes and Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 124

72 OEK 258 00 September 1991



Contents xi

Foreground and Background Mix Registers 124
Foreground and Background Color Registers . . . . . . . . . . . . . . . . . . . . .. 124

13.3.2 Bresenham Line Draw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Bresenham Error Term Register 125
Bresenham Constant K1 Register .. 125
Bresenham Constant K2. Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 126
Operation Dimension Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

13.3.3 Pixel Map, Source and Destination 126
Source Map X and Y Registers. . . . . . . . . . . . . . .. 126
Destination Map X and Y Registers ... . . . . . . . . . . . . . . . . . . . . . . . . . .. 126
Pattern Map X and Y Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Mask Map Origin X and Y Offset Registers . . . . . . . . . . . . . . . . . . . . . . .. 126

13.3.4 Pixel Operations Register. 127
Background Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Foreground Source 127
Step Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Source Pixel Map 128
Destination Pixel Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Pattern Pixel Map 128
Mask Pixel Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Drawing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Direction Octant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 130

13.4 Memory Access Modes (Reg. 21x9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 130

13.5 Motorolajlntel Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

13.5.1 System Processor Access 130
13.5.2 XGA Coprocessor Accesses 130
13.5.3 Exploitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 130

14 Other Programming Considerations 131

14.1 Overlapping BitBlits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131

14.1.1 Pixel Block Transfer (PxBlt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
14.1 .2 Inverting PxBlt 131

14.2 Sprite Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131

14.2.1 Sprite Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131
14.2.2 Sprite Positioning 131

14.3 Waiting for Hardware Not Busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131

14.4 Destination Bitmap Width Restriction 132

14.5 Line Length Restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 133

14.6 System Register Usage . . . . . . . . . . . . . . . . . .. 133

14.7 Direct Color Mode 133

14.7.1 Palette Loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 133
14.7.2 Coprocessor Support 133

15 Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 134

15.1 Putting the XGA SUbsystem into Extended Graphics Mode 134

15.1.1 Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 134
15.1 .2 Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Main C Program 136
Assembler Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 149

72 OEK 258 00 September 1991



xii Contents

15.2 Putting the XGA Subsystem into 132 Column Text Mode . . . . . .. 151

15.2.1 Pseudo Code . .. .. .. . . . .. . . . . . . . . . .. 151
15.2.2 Code Example 152

Main C Program . . . . . . . . . . . . .. . 152
Assembler Subroutines .. 160

72 OEK 258 00 September 1991



xiii

Preface

The XGA Software Programmer's Guide is intended to provide information for programming the XGA sub
system which is implemented in the IMS G190 XGA serializer palette DAC and the IMS G200 XGA display
controller.

This guide contains an overview of the XGA architecture, a description of the XGA subsystem function, and
information on programming XGA device registers with programming examples. It should be used in
conjunction with the following documents:

IMS G190 XGA serializer palette DAC, Preliminary information,
INMOS document number 42 152601

IMS G200 XGA display controller, Preliminary information,
INMOS document number 42 1525 01

This 1st edition of the XGA Software Programmer's Guide (document revision 00) will be superseded by
the 2nd edition which is in preparation.



xiv



o eR)

oOlJmOS

•

72 OEK 258 00

XGA function

September 1991



2

72 OEK 25800 September 1991



1 XGA Overview

The following features summarize the capabilities of the XGA sUbsystem.

VGA: When in VGA mode, the XGA sUbsystem is VGA register compatible as defined in the 'VGA Function'
chapter of the 'Video Subsystem' section in the 'PS/2 Hardware Interface Technical Reference'.

132 Column Text: In this mode, text is displayed in 132 vertical columns using 200, 350 or 400 scan lines.
Each character is 8 Pixels wide

Extended Graphics: The extended graphics mode provides the following software and hardware support:

8514/A Adapter Interface Compatibility Compatibility is provided through the XGA Adapter Inter
face, which is a device dnver supplied with the SUbsystem as programming support for applica
tions operating in the DOS environment.

High Resolution Support Depending on the display attached and the amount of memory installed,
the image on a screen can be defined using 1024 Pixels and 768 scan lines with 256 colors.

Direct Color (16 bit True Color) Mode In this mode, each 16-bit Pixel in video memory directly speci
fies the calor of the Pixel, rather than using the palette.

Packed Pixel Format In the packed-format, reads and writes to the video memory can access all of
the data that defines a pixel (or plxels) in a single operation

Hardware Sprite The sprite is a 64 by 64 pixel image. When enabled, it overlays the picture that is
being displayed. It can positioned anywhere on the display without affecting the contents of video
memory

Display Identification Signals dnven by the display identify characteristics of the attached display.
Applications can use the IDs to determine the maximum resolution and whether the display is cal
or or mono.

Coprocessor A Coprocessor provides hardware drawing-assist functions throughout real or virtual
memory. These functions can be used with the XGA Adapter Interface.

• Plxel-block and bit-block transfers (PxBlt)

• Line drawing

• Area filling

• Logical and arithmetic mixing

• Map masking

• Scissoring

• X,Y axis addressing.

72 OEK 25800 September 1991



4

1.1 Major Components

The subsystem components providing extended graphics function are:

• System-bus interface

• Memory and CRT controller

• Coprocessor

• Video memory

• Attribute controller

• Sprite controller

• A/N font and sprite buffer

• Serial izer

• Palette

• Digital-to-analog convertor (DAC).

Note: Major subsystem components are implemented in a 2-chip set: the IMS G200 XGA display controller;
and the IMS G190 XGA serializer palette DAC. Their boundaries are shown in Figure 1.1 .

,0"

,""
"I r

rc---'-------.Control
Memory
and CRTC
Controller

System
Bus

Coprocessor

A/N Font, Sprite
Buffer

.-------- IMS G200

~IMSG190

I-

Adaptor
ROM1

Video .~
Memory Pix; co

.~

Data Cl)

() Red- >-« co

~
0 Green Cl.
0 Cl)
Q)

Blue (5
(ij "0
Cl.. :>

Auxiliary Video
Extension

72 OEK258 00

1 ROM Only present on Adaptors

Figure 1.1 XGA Function Block Diagram

September 1991



5

1.1.1 System Bus Interface

This component provides control of the interface between the video sUbsystem and the system micropro
cessor. It decodes the addresses for VGA and Extended Graphics I/O registers and the memory addresses
for the coprocessor memory-mapped registers and video memory.

It also provides the bus-master function and determines whether the system data bus is 16- or 32-bits wide.

1.1.2 Memory and CRT Controller

This component controls accesses to video memory by the system microprocessor, displays the contents
of video memory on the display, and provides support for the VGA and 132-column text modes.

1.2 Coprocessor

The coprocessor provides hardware drawing-assist functions. These functions can be performed on
graphics data in both video memory and system memory.

The coprocessor updates memory independent of the system microprocessor. The instructions are written
to a set of memory-mapped registers; the coprocessor then executes the drawing function.

The coprocessor functions are:

Pixel-Block or Bit-Block Transfers This function transfers an entire bit map, or part of a bit map,
from one location to another. This transfer can be:

• Within video memory

• Within system memory

• Between system and video memory.

Line Drawing This function draws lines, with a programmable style and thickness, into a bit map in
video memory or system memory.

Area Fill This function fills an outlined area with a programmable pattern. This function can be per
formed on an area outl ine in video or system memory.

Logical and Arithmetic Mixing These functions provide logical and arithmetic operators that can be
used against data in video and system memory.

Map Masking This function provides control over updates to each Pixel for all drawing functions.

Scissoring This function provides a rectangular-mask function, which can be used instead of the
mask map.

X,Y Axis Addressing This function allows a Pixel to be specified by its X and Y coordinates within
a pixel map, instead of its linear address in memory.

1.2.1 Video Memory

The video sUbsystem uses a dual-port video memory to store on-screen data. Because this memory is
dual port, video memory can be read serially to display its contents at the same time the data is being
updated.

1.3 Attribute Controller

The attribute controller works together with the memory and CRT controller to control the color selection
and character generation in the 132-column text mode and VGA text modes.

72 OEK 258 00 September 1991



6

1.4 Sprite Controller

This component is used to display and control the position and image of the sprite, which is used as the
cursor. The sprite is not available in 132-column text mode or VGA modes.

1.5 The Serializer, Palette and DAC

The serializer takes data from the serial port of video memory in 16- or 32--bit widths (depending on the
amount of video memory installed) and converts it to a serial stream of Pixel data. The Pixel data is used
to address a palette location, which contains the color value. The color value is then passed to the DAC,
which converts the digital information into analog red, green, and blue signals to the display

1.6 A/N Font and Sprite Buffer

This buffer holds the character fonts while in 132-column text mode and VGA modes. It also stores the sprite
image while in Extended Graphics modes.

1.7 Modes Of Operation

The 132 Column Text Mode and all VGA modes are available on the XGA subsystem regardless of the
amount of video memory installed.

However, when in Extended Graphics Mode, the amount of Video Memory installed determines the screen
resolutions and number of colors that are supported The following table summarises this relationship:

Video Memory Installed Resolution Maximum Colors

512 Kbytes 640 X 480 256

1024 X 768 16

I Mbyte 640x480 65, 536

1024 X 768 256

1.8 Compatibility

1.8.1 8514/A

The Extended Graphics Function is not hardware register compatible with the 8514/A adapter. Applications
written directly to the register level interface of the 8514/A will not run.

The Extended Graphics Function is 8514/A Adapter Interface (AI) compatible in the DOS environment
through a DOS AI driver supplied with the the video SUbsystem.

Applications written to the 8514/A DOS AI should continue to run unchanged with the XGA AI-. The following
differences should be noted:

OS/2 Protect Mode AI. An XGA AI driver is not available for OS/2 Protect Mode.

640x480 4+ 4 Mode with 512k Display Buffer. This is not an Extended Graphics Mode. However
applications which use this mode and which are written to the rules in the 8514/A Technical Refer
ence wi II run

Dual Display Buffer Applications. 8514/A applications that use VGA and Advanced Function modes
on a single display configuration, and rely upon two separate Video display buffers, will not run
However such applications should run correctly with two video SUbsystems (one of which is an
XGA) each with a display attached.

72 OEK 25800 September 1991



7

Non-Display Memory. The XGA and 8514/A non-display (or offscreen) memory are mapped differ
ently. Applications which use areas of the off screen memory for their own storage may not run.

Adapter Interface Code Size. TheXGAAI code size is largerthanthatforthe 8514/A. Thiswill reduce
the amount of system memory available to applications.

Adapter Interface Enhancements. The XGA AI is a superset of that provided with the 8514/A. 8514/A
applications which use invalid specification of parameter blocks could trigger some of the addi
tional function provided by the XGA AI.

Use of LIM EMS drivers. Applications written to the 8514/A AI which locate resources such as blt
maps or font definitions in L1M memory, and pass addresses of such a resource, located in L1M
memory, to the AI will need a L1M driver which has implemented the Physical Address Services
Interface for DMA busmasters.

Time dependent applications. Certain XGA and 8514/A functions run at different speeds. Applica
tions which rely on a fixed performance may be affected by these differences.

XGA AI module name and directory. The module name and directory of the XGA AI
(\XGAPCDOS\XGAAIDOS. SYS) is different from that of the 8514/A (\HDIPCDOS\HDILOAD. EXE)
Applications written to rely onthe existence of either the specific 8514/A module name or directory
will not run on the XGA AI.

8514/A and XGA AI code type. The XGA AI has been implemented as a SYS device driver, whereas
the 8514/A AI was a TSR ('Terminate and Stay Resident' executable program). Applications writ
ten to rely on the AI as a TSR will not run on the XGA AI

1.8.2 LIM EMS Drivers.

The XGA coprocessor memory mapped registers are located in system memory address space. They re
side in the top 1 Kbyte of an 8 Kbyte block of memory assigned to the XGA SUbsystem. The lower 7 Kbyte
of this block is used to address ROM on an XGA SUbsystem implemented on an adapter card. Despite the
fact that an XGA subsystem integrated on the system board does not have a SUbsystem ROM, an 8 Kbyte
block of memory is still allocated to it in order to support the coprocessor memory mapped registers. In
this case the first 7 Kbytes of this block does not contain any memory. However the memory mapped regis
ters are still accessed in the top 1 Kbyte.

Applications or drivers [e.g. L1M EMS (Lotus Intel Microsoft Expanded Memory Services Managers) drivers]
that scan memory addresses looking for RAM or ROM signatures can incorrectly assume that the entire
8 Kbytes or memory space is available for use.

The location of the 8 Kbyte block of memory assigned to the XGA SUbsystem can be determined using the
System Unit Reference Diskette. The L1M driver installation instructions should be consulted for details on
how to avoid address conflicts.

72 OEK 258 00 September 1991



8

2 VGA

The XGA sUbsystem is register compatible with the VGA as defined in the VGA Function chapter of the Video
SUbsystem, in the PS/2 Hardware Interface Technical Reference. Section 11 should be consulted for
switching between the different XGA modes.

72 QEK 25800 September 1991



9

3 132 Column Text

In this mode the XGA is capable of displaying 132, 8 pixel wide alphanumeric characters on the display.
It is register compatible with the VGA except for ,certain VGA CRTe registers detailed below.

The following VGA CRTC register meanings are altered:

Horizontal Total Register: VGA requires that this register holds a value that is five less than the num
ber of characters on a scan line. In 132 column text mode this register requires a value that is one
less than the number of characters on a scan line.

The End Horizontal Retrace Register: In 132 Column Text Mode the VGA End Horizontal Retrace
Register (bits 0 to 4) have no effect. The Extended Graphics Mode Horizontal Sync Pulse End Reg
ister (Index: 1A) is used instead. This allows a larger horizontal count.

The Sync Pulse Delay Bits (bits 5 and 6) and the End Horizontal Blanking Bit 5 (bit 7) continueto be effective.
However the Sync Pulse Delay bits are now defined as follows:

bit 6 bit 5 No. of pixels Delay

0 0 oPixels Delay.

0 1 2 Pixels Delay.

1 0 4 Pixels Delay.

1 1 6 Pixels Delay.

See Section 11 for details on invoking 132 Column Text mode.

72 OEK 258 00 September 1991



10

4 Extended Graphics

The Extended Graphics Modes provide applications with high resolution, a large color range, and high per
formance The XGA coprocessor provides hardware assistance in drawing and moving data in video
memory and in system memory. The Extended Graphics Modes are controlled uSing a bank of 161/0 regis
ters and the coprocessor is controlled by a bank of 128 memory mapped registers. Section 7.2 gives details
of register address calculations.

4.1 Display Controller Description

4.1.1 Video Memory Format

The XGA Video Memory appears to the system as a byte addressable, packed array of pixels The pixels
may be 1,2,4,8, or 16 bits long The first pixel in memory is displayed at the top left hand corner of the
screen, the next pixel is immediately to its right and so on. Addressing is not necessarily contiguous going
from one horizontal line to the next. ThiS depends on the values in the Display Pixel Map Width registers
as discussed in 4.1 5

There are two orders of pixels supported, Intel order and Motorola order.

The Memory Access Mode Register (for Display Controller accesses), and the Plxel Map n Format Register
(for coprocessor accesses) l should be used to make the pixels appear in the required order to the system.

These two formats are descnbed by the following tables:

Byten+2 Byten+1 Byten+O

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Pixel size = 1bpp

Pixel number 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit significance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pixel size = 2bpp

Pixel number 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0

Bit significance 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Pixel size = 4bpp

Plxel number 5 5 5 5 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0

Bit significance 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

Pixel size = 8bpp

Plxel number 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Bit significance 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Pixel size = 16bpp

Pixel number 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit significance 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The tables represent the first three bytes of the memory map in Intel Order, and shows the layout
of the pixels within them for all pixel sizes (bpp = blts-per-pixel).

Table 4.1 Memory map - Intel Order

72 OEK 25800 September 1991



11
--------------._--_.----- - ._-------

Byten+O Byte n+ 1 Byten+2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Pixel size = 1bpp

Pixel number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2~

Bit significance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pixel size = 2bpp

Pixel number 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11

Bit significance 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
- --------------- --------1--------- --------

Pixel size = 4bpp

Pixel number 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
Bit significance 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

c_____
--- -- .- - --- ---------- ---

Pixel size = 8bpp

Pixel number 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

Bit significance 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Pixel size = 16bpp

Pixel number 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Bit significance 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

The tables represent the first three bytes of the memory map in Motorola Order, and shows the layout
of the pixels within them for all pixel sizes (bpp = bits-per-pixel)

_.

Table 4.2 Memory map - Motorola Order

4.1.2 Pixel Color Mapping

In 1,2,4, or 8 bits-per-pixel modes the Palette address is the numerical value of the pixel.

In 16 bits-per-pixel (Direct Color) mode, the color mapping is 5 bits red. 6 bits green 5 bits blue. See Sec
tion 4 2

4.1.3 Border Color Mapping

In the border area of the display, the palette is addressed by the Border Color Register (Index: 55). The
Border Area is defined in 4 1 5.

4.1.4 Direct Access to the Video Memory

An application can use normal memory accesses to read or \Nrite pixels in the Video Memory. All the bits
of one or more pixels can be accessed In a single memory cycle

System Apertures Into Video Memory

The XGA sUbsystem Video Memory is accessed in system memory address space through three possible
'apertures'. These are'

The 4 Mbyte Aperture: ThiS aperture allows all of Video Memory to be addressed consecutively. If
an access is made at an offset higher than the amount of memory installed, no memory is written
and undefined values are returned when read.

The 1 Mbyte Aperture: This aperture allows up to 1 Mbyte ofVideo Memory to be addressed consecu
tively. If an access is made at an offset higher than the amount of memory installed, no memory
is written and undefined values are returned when read.

Note: To use the 1 Mbyte window, the Aperture Index Register (Address: 21 x8) must be set to zero.

72 OEK 258 00 September 1991



12

The 64 Kbyte Apenure: This aperture allows up to 64 Kbytes of Video Memory to be addressed con
secutively.

This aperture can be be located at any 64 Kbyte section of the Video Memory using the Aperture
Index Register (Address: 21x8).

See Section 11.2 for details on locating and using these apertures.

4.1.5 CRT Controller

This controller generates all the timing signals required to drive the serializer and the display. It consists
of two counters, one for horizontal parameters, and one for vertical parameters, and a series of registers.
The counters run continuously, and when the count value reaches that specified in one of the associated
registers, the event controlled by that register occurs.

See Section 11 for mode tables including CRTC register values.

CRTC Register Interpretations

A pictorial representation of what function each of the CRTC registers can be seen in Figure 4.1.

HSPS=' HSP~

HDE-~ HB~ HBEl HTl

Active
Picture
Area al al al

0 0;- 0
Cl. ::l Cl.
!!l '" !!lS'

co

Border

Blanking

Border

Horizontal Sync

o
o

VBE

L-
VT

L-

VBS

L-

VDE

L-

--VSPS

__ VSPE

Figure 4.1 CRTC Register Definitions

72 OEK 258 00 September 1991



13

The registers which control a horizontal scan of the display are:

HT:

HOE:

HBS:

HBE:

HSPS:

HSPE:

Horizontal Total Register.

Horizontal Display End Register.

Horizontal Blanking Start Register.

Horizontal Blanking End Register.

Horizontal Sync Pulse Start Register.

Horizontal Sync Pulse End Register.

The registers which control a vertical scan of the display are:

VT:

VOE:

VBS:

VBE:

VSPS:

VSPE:

Vertical Total Register.

Vertical Display End Register.

Vertical Blanking Start Register.

Vertical Blanking End Register.

Vertical Sync Pulse Start Register

Vertical Sync Pulse End Register.

The XGA can be programmed to to inform the host processor of the start and the end of the Active Picture
Area using a system interrupt. An enable and a status bit exist for each interrupt. See 'Interrupt Enable Reg
ister (Address: 21 x4)' and 'Interrupt Status Register (Address: 21 x5)' .

Scrolling

Some, or all, of the displayed picture can be made to scroll. The first pixel displayed on the screen is con
trolled by the Display Pixel Map Offset registers. These can be altered to a granularity of 8 bytes giving
coarse horizontal scrolling. Vertical scrolling is achieved by altering the Display Pixel Map Offset registers
in units of 1 line length. The line length is stored in the Display Pixel Map Width registers. The value stored
in the width registers is the amount of memory allocated to each line, not necessarily the physical length
of the line being displayed. See Figure 4.2.

Video Memory Base

Display Pixel Map Offset
(8 Byte Units)

Visible Picture Area

,....-

'....-

Horizontal Display En\oot-d------.
(8 Pixel Units)

Display Pixel Map Width
(8 Byte Units)

72 OEK 25800

Figure 4.2 Display Pixel Map Offset &Width Definitions

September 1991



14

The Display Pixel Map Width Registers should be loaded with a value greater than or equal to the length
of line being displayed The most efficient use of Video Memory is achieved when the width value is made
equal to the length of the line being displayed. However, it is often more convenient to load a width value
that specifies the start of each line to be on a suitable address boundary.

An area at the bottom of the display can be prevented from scrolling using the Vertical Line Compare Regis
ters (Index: 2C and 20).

4.1.6 Sprite

The sprite is a 64 x 64 pixel image stored in the XGA Alpha/Sprite buffer. When active, it overlays the picture
that is being displayed. Each pixel in the Sprite can take on four values, that can be used to achieve the
effect of a colored marker of arbitrary shape.

Sprite Color Mapping

The Sprite is stored as 2 bit packed pixels, using Intel format, in the Sprite Buffer. Address zero is at the
top left corner of the Sprite.

These 2 bit pixels determine the sprite appearance as shown in the table below:

Bits(1 :0) Sprite Effect

00 Sprite Color 0

01 Sprite Color 1

10 Transparent

11 Complement

Sprite Colors 0 and 1: These colors are set by writing to the Sprite Color Registers
(Index: 38 - 3D).
Transparent: The underlying pixel color is displayed.
Complement: The ones complement of the underlying pixel color is displayed.

Sprite Buffer Accesses

The sprite buffer is written to by loading a number into the non-prefetch Sprite Index Hi and Sprite/Palette
Index Lo registers which indicates the location of the first group of four sprite pixels to be updated (2 bits
per-plxel implies 4 pixels per byte) Then the first four pixels are written to the Sprite Data register. This
stores the sprite pixels in the sprite buffer and automatically increments the Index registers A second write
to the Sprite Data regIster then loads the next four Sprite pixels and so on.

When reading from the Sprite buffer, the prefetch function is used. The index or address of the first sprite
buffer location to be read is loaded into the Index registers. Note however that writing to either the Sprite
Index Hi, or the Sprite/Palette Index Lo register with prefetch will Increment both registers as a single value.
As a result, the first byte of the index should be written to an non-prefetch Index register, and the second
byte to the other Index register with prefetch. For example: Sprite Index Hi (no prefetch) then Sprite/Palette
Index Lo (With prefetch).

The action of writing to an Index register with prefetch, causes the Sprite data stored at the location speci
fied in the index registers to be stored in the a holding register and SUbsequently increments the index regis
ters as a single value. The action of reading the Sprite Data Register returns the four Sprite pixels which
were prefetched, and causes the holding register to be loaded with the next four Sprite Pixels. Another read
from the Sprite Data register then returns the next 4 sprite pixels, and so on.

72 OEK 258 00 September 1991



15

The sprite and the palette are written and read using the same hardware registers, so any task updating
either of these on an Interrupt thread must save and restore the following registers:

• Sprite/Palette Index Lo Register (Index: 60)

• Sprite Index Hi Register (Index: 61)

• Palette Sequence Register (Index: 66)

• Palette Red Prefetch Register (Index: 67)

• Palette Green Prefetch Register (Index: 68)

• Palette Blue Prefetch Register (Index' 69)

• Sprite Prefetch Register (Index: 6B)

Note: The Sprite/Palette Index Lo With Prefetch (Index' 62) and Sprite Index Hi With Prefetch (Index: 63)
should not be saved and restored.

Sprite Positioning

,-------------~----~~----------~--------~---

Display Screen

VS

Sprite Outline

HS

HS - Horizontal Sprite Start
HP - Horizontal Sprite Preset

VS - Vertical Sprite Start
VP - Vertical Sprite Preset

'--------------------------

Figure 4.3 Sprite Positioning

The sprite position is controlled by two types of registers: Start and Preset. The start registers control where
the first displayed sprite pixel appears on the screen, and the preset registers control which sprite pixel
is first displayed within the 64x 64 Sprite definition. Using these registers, the sprite can be made to appear
at any point in the picture area. If the sprite overlaps any edge, the part of the sprite outside the picture area
is not visible (does not wrap). See Section 142

The XGA can be programmed to to inform the host processor when the last line of the sprite has been dis
played on each frame using a system interrupt. This interrupt is called Sprite Display Complete. An enable
and a status bit exist for this interrupt See 'Interrupt Enable Register (Address: 21x4)' and 'Interrupt Status
Register (Address: 21x5).

72 OEK258 00 September 1991



16

4.1 .7 Palette

The palette has 256 locations. Each location contains 3 fields, one each for red, green and blue. It is used
to translate the pixel value to a displayed color.

Before the pixel value is used to address the palette, it is masked by the palette mask register, thus all bits
in the pixel corresponding to zeros in the palette mask register are forced to zero before reaching the pal
ette.

Palette Accesses

The Palette Data register is one byte wide. However each palette location is made up of three fields (Red,
Green and Blue). As a result three writes to the Palette data register are required for each palette location.
The data written is held in a three field holding register, the contents of which is loaded into the palette RAM
when all three fields have been filled. The Palette Sequence register controls which of the three holding
register fields (Red, Green or Blue) is selected for access with each write to the Palette Data register.

There are two update sequences possible:

• Red,Green,Blue

• Red,Blue,Green,No access

The Palette is written to by loading a number into the non-prefetch Sprite/Palette Index Lo Register which
indicates the index, or address, of the first group of three palette color locations to be updated (Red, Green
and Blue). As the palette has only 256 locations, the Sprite Index Hi Register is not used. The first color
byte can then be written to the Palette Data Register. This stores the color byte in the holding register field
indicated by the Palette Sequence Register. The sequence register then increments to point to the next field
as determined by the update order. A second write to the Palette Data Register loads the next holding regis
ter field, and the sequence register increments again. A third write to the Palette Data Register loads the
remaining holding register field. If update sequence 1 is selected the palette location is then loaded from
the holding register and the sequence register increments again, returning to its starting value. However,
if the update sequence 2 is selected, a fourth write to the Palette Data Register is necessary before the
palette location is loaded; the No-access data is ignored.

When reading from the Palette, the prefetch function is used. The index or address of the first Palette loca
tion to be read is loaded into the Sprite/Palette Index Lo Register (with prefetch).

The action of writing to the Index register with prefetch causes the Palette holding register to be loaded
with the three color fields from Palette location pointed to by the value in the Index register and causes the
index to increment. A subsequent read from the Palette Data Register returns the data from the holding reg
ister colorfield pointed to by the Palette Sequence Register and causes the sequence registerto be increm
ented to point to the next color field. When the last color field, indicated by the Palette Sequence Register
has been read, the holding register is loaded with the next palette location data and the index is increm
ented as before.

The sprite and the palette are written and read using the same hardware registers, so any task updating
either of these on an interrupt thread must save and restore the following registers:

• Sprite/Palette Index Lo Register (Index: 60)

• Sprite Index Hi Register (Index: 61)

• Palette Sequence Register (Index: 66)

• Palette Red Prefetch Register (Index: 67)

• Palette Green Prefetch Register (Index: 68)

• Palette Blue Prefetch Register (Index: 69)

• Sprite Prefetch Register (Index: 6B)

Note: The Sprite/Palette Index Lo With Prefetch (Index: 62) and Sprite Index Hi With Prefetch (Index: 63)
should not be saved and restored.

Note: All of the palette Red and Blue locations must be loaded with '0' if the sUbsystem has a monochrome
monitor attached.

72 OEK 25800 September 1991



17

4.2 Direct Color Mode

Direct Color is a mode whereby the pixel values in the video memory directly specify the displayed color.

The XGA sUbsystem can display direct color as a 16 bit pixel where the colorfields are shown below. These
fields provide the most significant bits of the inputs to the DACs with the color value. Any missing lower
order bits are always specified to be '0'

The bits in the 16-bit direct color data word are allocated to the DAC bits as follows.

Word bit

(5R, 6G, 58)

When selecting this mode, the palette must be loaded with data shown in Figure 4.4. Only half of the palette
should be loaded. Bit 7 ofthe Border Color Register specifies which half to load. If the Border Color Register
bit 7 = 0, load the upper half of the palette (locations '80' hex to 'FF' hex). If the Border Color Register
bit 7 = 1, load the lower half (locations 0 to '7F' hex).

Location (hex) Red Green 81ue
8.C = (hex) (hex) (hex)

0 : 1

80 :0 0 0 0

81 : 1 0 0 2

82 :2 0 0 4

83 :3 0 0 6

9E : 1E 0 0 3C

9F : 1F 0 0 3E

AO : 20 0 0 0

A1 : 21 0 0 2

BE : 3E 0 0 3C

BF : 3F 0 0 3E

CO :40 0 0 0

C1 : 41 0 0 2

DE : 5E 0 0 3C

DF : 5F 0 0 3E

EO : 60 0 0 0

E1 : 61 0 0 2

FE : 7E 0 0 3C

FF : 7F 0 0 3E

Figure 4.4 XGA Direct Color Palette Load

The values in the table above should be written as a byte to the Palette Data Register and have been chosen
to ensure future compatibility.

See Sections 11.1.1 and 14.7 for details on this mode.

72 OEK 258 00 September 1991



18

Coprocessor Functions

The XGA sUbsystem coprocessor functions do not function in 16 bits-per-pixel mode. However the copro
cessor can function in 8 bits-per-pixel mode while data is being displayed in 16 bits per pixel As a result
the coprocessor can be used to move data (PxBlt) from one area of memory to another.

Care should be taken however when attempting to use any of the logical or arithmetic functions as each
operation will be performed on only one byte of data at a time and not the full 16 bit pixel.

If using the coprocessor to move data into the Video Display Buffer in 8 bits-per-pixel format, while display
ing in 16 bits per pixel mode the width of the destination map should be doubled. See Section 14.7

4.3 Display Controller Registers

The Display Controller Registers occupy sixteen I/O addresses, and they are referred to subsequently in
the text as (Base + 0) to (Base + F). Chapter 7 provides details of locating and using these registers.

An indexed addressing scheme is used in which an index number selecting a register is written to at ad
dress (Base + A) and then the register can be read or written at addresses (Base + B) to (Base + F). The
multiple addresses for the data port mean that writes to a single register can be achieved in a single 16
bit instruction, the low byte containing the address, and the high byte the data, while registers which need
to be accessed repeatedly (that is, the Sprite Data, the Palette Data, and the Coprocessor Save/Restore
Data) can be accessed by setting the index correctly, and then executing REP INS or REP OUTS instruc
tions, either 2 or 4 bytes at al~e, to minimize the amount of PS/2 bus bandwidth used. Certain registers
which are used often can be read or written directly.

The sixteen I/O addresses are assigned as follows:

Base + 0 Operating Mode Register

Base + 1 Aperture Control Register

Base + 2 Reserved

Base + 3 Reserved

Base + 4 Interrupt Enable Register

Base + 5 Interrupt Status Register

Base + 6 Virtual Memory Control Register

Base + 7 Virtual Memory Interrupt Status Register

Base + 8 Aperture Index Register

Base + 9 Memory Access Mode

Base + A Index

Base + B Data

Base +C Data

Base + D Data

Base + E Data

Base + F Data

72 OEK 258 00 September 1991



19

4.3.1 Register Usage Guidelines

Unless stated otherwise:

All registers are eight bits long.

May be both read and written at the same address or index.

When read they return the data last written for all implemented bits.

Registers are NOT initialized by reset.

Reserved Register Bits -

• Register Bits marked with a '-' are reserved and must be masked out if a test is to be per
formed on the register contents. If non reserved bits of the same register are being updated,
these bits must be written to with '0'.

• Register Bits marked with a '#' are reserved and must be masked out if a test is to be per
formed on the register contents. If non reserved bits of the same register are being updated,
these bits must be preserved. Therefore a Read-Modify-Write operation is recommended.

Reserved Registers. Unspecified Registers, or registers marked as Reserved, in the XGA I/O ad
dress space are reserved. They must not be written to or read from.

Write Only Registers. On a read, the values returned from these registers are Reserved and Un
specified.

Read Only Registers. The contents of these registers must not be modified.

Counters should not be relied upon to wrap from the high value to the low value.

Register fields defined with valid ranges must not be loaded with a value outside the specified
range.

Register field values defined as reserved must not be written

The function that all Extended Graphics Mode registers imply IS only operative In Extended Graph
ics Mode even though the registers themselves are still readable and writable in VGA modes.

Writing to the Extended Graphics Mode registers when in VGA mode may cause VGA registers
to be corrupted.

4.3.2 Direct Access I/O Registers

Operating Mode Register (Address: 21 xO)

76543 2 1 0

CC._D_M__

This register can be both written and read.

The fields are defined as follows:

72 OEK 258 00 September 1991



o

20

Coprocessor Register Interface Format

RF 0 Intel Layout

1 Motorola Layout

Display Mode

DM 000 VGA Mode (Address Decode Disabled)

001 VGA Mode (Address Decode Enabled)

010 132 Column Text Mode (Address Decode Disabled)

011 132 Column Text Mode (Address Decode Enabled)

100 Extended Graphics Modes

101 Reserved

110 Reserved

111 Reserved

Coprocessor Register Interface Format (RF): This bit selects whether the coprocessor registers are
arranged in Intel or Motorola order. See Section 4.7.

Display Mode (OM): These bits are used to select between the display modes available. Both VGA
and 132 Column Text modes respond to VGA I/O and memory addresses. When the XGA subsys
tem is in either of these modes addressing of the I/O registers and the video memory can be
inhibited.

Aperture Control Register (Address: 21 x1)

7 6 543 2 1

='---_A_SL__

This register can be both written and read.

It controls a 64 Kbyte Aperture through which the XGA memory can be accessed in system address space.
This window gives real mode applications and operating systems a means' of accessing the XGA video
memory. The 64 Kbyte area of the XGA memory accessed by this window is selected using the Aperture
Index Register. By varying the value of the index register, the 64 Kbyte aperture can be used to access the
entire memory contents of the subsystem.

The aperture is controlled as described in the following table:

Aperture Size and Location

i SL Ir0 No 64 Kbyte Aperture

01 64 Kbytes at address 'OOOAOOOO'x

10 64 Kbytes at address 'OOOBOOOO'x

I I 11 IReserved

This 64 Kbyte Aperture and a 1 Mbyte Aperture are both paged using the Aperture Index Register. As a result
these two apertures cannot be used together. See System Apertures Into Video Memory on page11 .

72 OEK 258 00 September 1991



21

Interrupt Enable Register (Address: 21 x4)

o
B

This register can be written and read.

It contains bits to enable and disable individually the interrupt conditions that can be generated by the sub
system. When a bit is '1', the corresponding interrupt is enabled. When it is '0', the interrupt is disabled.
The bits of this register have no effect on the interrupt status bits as defined In the Interrupt Status register
below, but prevent the corresponding interrupt condition from causing a system interrupt. The bit definitions
are detailed in the Interrupt Status register following.

Interrupt Status Register (Address: 21 x5)

7 654 3 2 1 0

~ [~]~]

This register can be written and read.

It indicates the interrupt status bits that can be generated by the sUbsystem and is used to reset the corre
sponding interrupt. On a read a '1' indicates that the corresponding interrupt condition has occurred, and
a '0' that it has not. Writing a '1' to any defined bit clears the corresponding interrupt condition, while writing
a '0' has no effect. The bits are assigned and defined as follows:

Bit name Interrupt Assignment

CC Coprocessor Operation Complete (4.5)

CR Coprocessor Access Rejected (page 64)

SC Sprite Display Complete (1.4)

P Picture (Figure 4.1.5) (End of blanking)

B End of Picture (Figure 4.1 .5) (Start of blanking)

Virtual Memory Control Register (Address: 21 x6)

Full details of this register are given in Section 5.5.3.

Virtual Memory Interrupt Status Register (Address: 21 x7)

Full details of this register are given in Section 5.5.4.

72 OEK 25800 September 1991



22

Aperture Index Register (Address: 21 xS)

7 6 5 4 3 2 1 0

CCC__Aperture Index '

This register can be written and read.

It is used to provide address bits to the video memory when the aperture in system address space being
used is smaller than the amount of video memory installed. It is used to move both the 64 Kbyte aperture
and the 1 Mbyte aperture All six bits are used to move the 64 Kbyte aperture in the video memory, with
a granularity of 64 Kbytes. When moving the 1 Mbyte aperture the granularity is restricted to 1 Mbyte and
only bits 5 and 4 are used The lower order bits should be written to '0' in this case.

See Section 4.1 4 for details on the use of video memory apertures. The bits used are described in the
following table'

I Aperture Size

I
64 Kbytes

1 Mbyte

Memory Access Mode Register (Address: 21x9)

7 654 3 2 1 0

C~~_I

This register can be written and read.

Index bits used

It controls pixel ordering when the video memory is being accessed by the system (not the coprocessor).
Intel or Motorola order can be selected. The pixel size must also be declared, as this register is controlling
a 'pixel swapper' which converts from the external format specified, to the internal format used by the adapt
er when the plxels are written, and converts back when they are read. Note that it IS important always to
set this register correctly when accessing video memory with the system processor. Values are assigned
as follows.

PixelOrder

PO 0 IntelOrder

1 Motorola Order

Pixel Size

PS 000 1 bit

001 2 bits

010 4 bits

011 8 bits

100 16 bits

101 Reserved

110 Reserved

111 Reserved

72 OEK 25800 September 1991



23

Index Register (Address: 21 xA)

7 6 5 4 3 2 o
Register Index

This register can be written and read.

It selects which indexed Extended Graphics Mode register is accessed when any address (Base + B) to
(Base + F) is read or written. Index values are assigned as follows:

Index Register Index Register

04 Auto-Configuration Register 30 Sprite Honzontal Start Lo

OC Coprocessor Save/Restore Data A 31 Sprite Horizontal Start Hi

OD Coprocessor Save/Restore Data B 32 Sprite Horizontal Preset

33 Sprite Vertical Start Lo

I

34 ISprite Vertical Start Hi

10 Horizontal Total Lo 35 Sprite Vertical Preset

11 Horizontal Total Hi 36 Sprite Control

1
12 Horizontal Display End Lo 38 Sprite Color 0 Red

13 Horizontal Display End Hi 39 Sprite Color 0 Green

14 Horizontal Blanking Start Lo

1

3A Sprite Color 0 Blue

15 Horizontal Blanking Start Hi 3B Sprite Color 1 Red

16 Horizontal Blanking End Lo 3C Sprite Color 1 Green

17 Horizontal Blanking End HI 3D Sprite Color 1 Blue

18 Horizontal Sync Pulse Start Lo 40 Display Pixel Map Offset Lo

19 Horizontal Sync Pulse Start Hi

1

41 Display Pixel Map Offset Mi

1A Horizontal Sync Pulse End Lo 42 Display Pixel Map Offset Hi

1B Horizontal Sync Pulse End Hi

11

43 Display Pixel Map Width Lo

1C Horizontal Sync Position 44 Display Plxel Map Width Hi

1E Horizontal Sync Position

11

50 Display Control 1

51 Display Control 2

11
52 Display Id and Comparator

20 Vertical Total Lo
11

54 Clock Frequency Select

21 Vertical Total Hi
11

55 Border Color

22 Vertical Display End Enable Lo

11

60 Sprite/Palette Index Lo

23 Vertical Display End Enable Hi 61 Sprite Index Hi

24 Vertical BlankIng Start Lo

11

62 Spnte/Palette Index Lo with Prefetch

25 Vertical Blanking Start Hi 63 Sprite Index Hi with Prefetch

26 Vertical Blanking End Lo

11

64 Palette Mask

27 Vertical Blanking End Hi 65 Palette Data

28 Vertical Sync Pulse Start Lo

11

66 Palette Sequence

29 Vertical Sync Pulse Start Hi 67 Palette Red Prefetch Register

2A Vertical Sync Pulse End 68 Palette Green Prefetch Register

2C Vertical Line Compare Lo

1

69 Palette Blue Prefetch Register

2D Vertical Line Compare Hi 6A Sprite Data

11

6B Sprite Prefetch Register

70 External Clock Select Register

Note: Undefined Index Values are Reserved.

Figure 4.5 XGA Index Register Assignments

72 OEK 25800 September 1991



24

Data Registers (Addresses: 21xB to 21xF)

These data registers are used when reading and writing to the register indexed by the Index Register (21 xA).
The read/write operation can be of byte, word, or double-word size using these data registers.

To perform a byte write to an indexed register, a single 16 bit cycle to address 21 xA can be used with the
index in the lower byte and the data to be written in the upper byte. For indexed registers which require
successive writes, the index can be loaded using a byte write to address 21xA, followed by either a word
or a double-word access to address 21xC. Only the byte wide register selected by the index is updated.
Word or double-word accesses result in two or four byte wide accesses to the same indexed register

4.3.3 Indexed Access I/O Registers

See 'Index Register (Address: 21xA)' for a table of the indexed registers.

Auto-Configuration Register (Index: 04)

7 6 5 4 3 2 1 0

This is a read only register.

Bus Size (BS, Bit 0): This bit indicates whether the sUbsystem is interfaced to a 16 or a 32 bit
system interface. When set to '0' the the system interface is 16 bit, and when set to '1' the system
interface is 32 bit.

Coprocessor Save/Restore Data Registers (Index: OC & OD)

These registers are an image of a port in the Coprocessor. See 4.6.8 for a description of their use.

D

Hi (Index: 11)

543 267o67

Horizontal Total Registers (Index: 10 & 11)

Lo (Index: 10)

5 4 3 2

Horizontal Total La Horizontal Total Hi

These registers can be written and read.

They define the total length of a scan line in units of eight pixels. They must be loaded as a 16 bit value
in the range 0000 to OOFF hex. Values are assigned as follows:

Value (hex) Horiz Total (pixels)

0000 8

0001 16

0002 24

and so on unti I

DOFF I 2048

72 OEK 258 00 September 1991



25

o
Hi (Index: 13)

543 267o67

Horizontal Display End Registers (Index: 12 & 13)

Lo (Index: 12)

543 2

Horizontal Display End Lo Horizontal Display End Hi

These registers can be written and read.

They define the position of the end of the active picture area relative to (after) the start of the active picture
area in units of eight pixels. They must be loaded as a 16 bit value in the range 0000 to OOFF hex. Values
are assigned as follows:

Value (hex) Display End (pixels)

0000 8

0001 16

0002 24

and so on unti I

OOFF I 2048

o
Hi (Index: 15)

543 267o67

Horizontal Blanking Start Registers (Index: 14 & 15)

Lo (Index: 14)

543 2

Horizontal Blanking Start Lo C Horizontal Blanking Start Hi

These registers can be written and read.

They define the position of the end of the picture border area relative to (after) the start of the active picture
area in units of eight pixels. They must be loaded as a 16 bit value in the range 0000 to OOFF hex. Values
are assigned as follows:

Value (hex) Blanking Start (pixels)

0000 8

0001 16

0002 24

and so on unti I

OOFF I 2048

72 OEK 25800 September 1991



26

Horizontal Blanking End Registers (Index: 16 &17)

Lo (Index: 16)

7 654 3 2

L Horizontal Blanking End Lo

These registers can be written or read.

o

~

Hi (Index: 17)

7 6 543 2

L Horizontal Blanking End HI

o

~

They define the position of the start of the picture border area relative to (after) the start of the active picture
area In umts of eight pixels. They must be loaded as a 16 bit value in the range 0000 to OOFF hex Values
are assigned as follows:

Value (hex)

0000

0001

0002

DOFF

Blanking End (pixels)

8

16

24

and so on unti I

2048

I

Horizontal Sync Pulse Start Registers (Index: 18 & 19)

Lo (Index: 18)

7 6 5 4 3 2 1 0

I HSYNC Pulse Start Lo 1

These registers can be written and read.

Hi (Index: 19)

7 6 543 2 1 0

1 HSYNC Pulse Start Hi I

They define the position of the start of horizontal sync pulse rE?lative to (after) the start of the active picture
area in units of eight pixels. They must be loaded as a 16 bit value In the range 0000 to OOFF hex. Values
are assigned as follows:

Value (hex) HSYNC Pulse Start
(pixels)

72 OEK 25800

0000

0001

0002

OOFF

I
and so on until

I

8

16

24

2048

September 1991



27

Horizontal Sync Pulse End Registers (Index: 1A &1B)

o
Lo (Index: 1A)

7 654 3 2

C HSYNC Pulse End La

o
Hi (Index: 1B)

7 6 5 432

L HSYNC Pulse End Hi _

These registers can be written and read

They define the position of the end of horizontal sync pulse relative to (after) the start of the active picture
area In units of eight pixels. They must be loaded as a 16 bit value in the range 0000 to GOFF hex.

This Extended Graphics Mode register is also used in 132 Column Text Mode in place of the VGA "End
Horizontal Retrace" register. In that mode each eight plxel unit is equivalent to one eight pixel character
Values are assigned as follows:

Value (hex) HSYNC Pulse End
(pixels)

0000 8

0001 16

0002 24

and so on until

OOFF I 2048

Horizontal Sync Pulse Position Registers (Index: 1C &1E)

Index: 1C Index: 1E

7 6 5 4 3 2 1 0

CCCCCI_Po_CI
o2347 6 5

CI_Po_CCCCCI

These regIsters are WRITE ONLY

They allow the HSYNC signal to be delayed by up to 6 pixels. The required value must be written to both
registers.

Sync Pulse Delay

PO 00 10 pixels delay

01 2 pixels delay

1 10 14 pixels delay I
11 16 pixels delay

72 OEK 258 00 September 1991



28

o
Hi (Index: 21)

5 4 13 267o67

Vertical Total Registers (Index: 20 &21)

Lo (Index: 20)

5 4 3 2

Vertical Total Lo Vertical Total Hi
/

These registers can be written and read.

They define the total length of a frame in units of one scan line. They must be written as a 16 bit value in
the range 0000 to 07FF hex. Values are assigned as follows:

Value (hex) Total Length
(Scan Lines)

0000 1

0001 2

0002 3

and so on unti I

07FF I 2048

o
Hi (Index: 23)

543 267o67

Vertical Display End Registers (Index: 22 &23)

Lo (Index: 22)

5 4 3 2

Vertical Disp End La Vertical Disp End Hi

These registers can be written and read.

They define the position of the end of the active picture area relative to (after) the start of the active picture
area in one scan line units. They must be written as a 16 bit value in the range 0000 to 07FF hex. Values
are assigned as follows:

Value (hex) Display End
(Scan Lines)

0000 1

0001 2

0002 3

and so on unti I

07FF I 2048

72 OEK258 00 September 1991



29

o
Hi (Index: 25)

6 543 27o7

Vertical Blanking Start Registers (Index: 24 &25)

Lo (Index: 24)

65432

Vertical Blank Start Lo Vertical Blank Start Hi

These registers can be written and read.

They define the position of the end of the picture border area relative to (after) the start of the active picture
area in units of one scan line. They must be loaded as a 16 bit value in the range 0000 to 07FF hex. Values
are assigned as follows:

Value (hex) Border End (Scan Lines)
(Blanking Start)

0000 1

0001 2

0002 3

and so on unti I

07FF I 2048

o
Hi (Index: 27)

543 267o67

Vertical Blanking End Registers (Index: 26 &27)

Lo (Index: 26)

5 4 3 2

Vertical Blank End Lo Vertical Blank End Hi

These registers can be written and read.

They define the position of the start of the picture border area relative to (after) the start of the active picture
area in units of one scan line. They must be loaded as a 16 bit value in the range 0000 to 07FF hex. Values
are assigned as follows:

Value (hex) Border Start (Scan Lines)
(Blanking End)

0000 1

0001 2

0002 3

and so on unti I

07FF I 2048

72 OEK 25800 September 1991



30

o
Hi (Index: 29)

654327o7

Vertical Sync Pulse Start Registers (Index: 28 & 29)

Lo (Index: 28)

65432

VSYNC Pulse Start Lo VSYNC Pulse Start Hi

These registers can be written and read

They define the position of the start of the vertical sync pulse relative to (after) the start of the active picture
area In units of one scan line. They must be loaded as a 16 bit value in the range 0000 to 07FF hex. Values
are assigned as follows:

Value (hex) Sync Pulse Start
(Scan Lines)

0000

0001

0002

1

2

3

and so on unti I

07FF 2048

Vertical Sync Pulse End Register (Index: 2A)

7 6 5 4 3 2 o
VSYNC Pulse End

This register can be written and read

It defines the position of the end of vertical sync pulse. The value loaded IS the Least Significant (LS) byte
of a 16 bit value which defines the end of the vertical sync pulse relative to (after) the start of the active
picture area in units of one scan line. The vertical sync end position must be within 31 scan lines of the
vertical sync start position.

Note: Before setting the Operating Mode Register (Address: 21xO) into VGA or 132 Column Text Mode, bit
5 of this register must be set to '1'.

This register may not return the value written. However the returned value is valid for Save/Restore opera
tions.

72 OEK 25800 September 1991



31

o
Hi (Index: 20)

543 2

Vertical Line Compare Hi

67

C
o67

Vertical Line Compare Registers (Index: 2C &20)

Lo (Index: 2C)

543 2

C Vertical Line Compare Lo

These registers can be written and read.

They define the position of the end of the scrollable picture area relative to (after) the start of the active
picture area in units of one scan line. They must be loaded as a 16 bit value in the range 0000 to 07FF hex.
Values are assigned as follows:

Value (hex) Scrollable End
(Scan Lines)

0000 1

0001 2

0002 3

and so on until

07FF I 2048

Sprite Horizontal Start Registers (Index: 30 &31)

7

Lo (Index: 30)

65432

Sprite Horiz Start Lo

o
Hi (Index: 31)

7 6 543 210

C Sprite Horiz Start Hi I
--------------

/

These registers can be written and read.

They define the position of the start of the Sprite relative to (after) the start of the active picture area in pixels
They must be loaded with a 16 bit value in the range 0000 to 07FF hex Values are assigned as follows:

Value (hex) Sprite Start (pixels)

0000 0

0001 1

0002 2

and so on until

07FF I 2047

72 OEK 258 00 September 1991



32

Sprite Horizontal Preset (Index: 32)

765 4 3 2 o
Sprite H Preset

This register can be written and read.

It defines the horizontal position within the 64 by 64 sprite area at which the sprite starts. The sprite always
ends at position 63 (that is, it does not wrap). Values are assigned as follows:

Value (hex) Sprite Start (pixels)

00

01

02

o
1

2

and so on unti I

3F 63

o
Hi (Index: 34)

543 267o67

Sprite Vertical Start Registers (Index: 33 & 34)

Lo (Index: 33)

543 2

Sprite Vert Start Lo Sprite Vert Start Hi

These registers can be written and read.

They define the position of the start of the Sprite relative to (after) the start of the active picture area in units
of one scan line. They must be loaded with a 16 bit value in the range 0000 to 07FF hex. Values are assigned
as follows:

Value (hex) Sprite Start (Scan Lines)

0000 0

0001 1

0002 2

and so on unti I

07FF I 2047

72 OEK 258 00 September 1991



33

Sprite Vertical Preset (Index: 35)

7 6 5 4 3 2 0

CD Sprite V Preset

This register can be written and read.

It defines the vertical position within the 64 by 64 sprite area at which the Sprite starts. The sprite always
ends at position 63 (that is, it does not wrap). Values are assigned as follows:

Value (hex) Sprite Start (Scan Lines)

00 0

01 1

02 2

and so on until

3F I 63

Sprite Control Register (Index: 36)

765 4 3 2

This register can be written and read.

It controls whether the Sprite is visible or invisible. When set to '1', the Sprite appears on the screen at the
location controlled by the Sprite position registers. When set to '0', no Sprite is displayed. This bit should
be set to '0' before any attempt is made to access the Sprite image in the Sprite Buffer otherwise the Sprite
buffer contents will be corrupted.

Sprite Calor Registers (Index: 38 - 3D)

Sprite Color 0

Red (Index: 38) Green (Index: 39) Blue (Index: 3A)

7 6 5 4 3 2 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Sprite Color 0 Red ~rite Calor 0 Green ~ I Sprite Calor 0 Blue

Sprite Calor 1

Red (Index: 3B) Green (Index: 3C) Blue (Index: 3D)

7 6 5 4 3 2 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Sprite Calor 1 Red I I Sprite Color 1 Green I I Sprite Calor 1 Blue

These registers can be written and read.

They define the red, green and blue components of the pixels displayed when the sprite data for those
pixels selects Color 0 or Calor 1. These colors are passed directly to the DACs and not through the palette,
so should be programmed to give the actual calor required.

Note: Only the 6 most significant bits of these registers are used.

72 OEK 258 00 September 1991



34

Display Pixel Map Offset Registers (Index: 40 - 42)

La (Index: 40)

7 6 543 2 1 0

C DPM Offset La I
-------

Mi (Index: 41)

7 6 5 4 3 2 1 0

C DPM Offset Middle I
---------

Hi (Index: 42)

7 6 5 4 3 2 1 0

C DPM Offset Hi I
-------

These registers can be written and read

They define the address of the start of the visible portion of the video buffer in units of 8 BYTES They must
be loaded as a single value in the range 00000 to 1FFFF hex. Values are assigned as follows:

Value (hex)

00000

00001

00002

1FFFF

DPM Offset (bytes)

o
8

16

and so on until

1048658

~ DPM Width HiL-_

7 6

Display Pixel Map Width Registers (Index: 43 & 44)

La (Index: 43)

7 6 5 4 3 2 1 0

L DPM Width L_o 1

These registers can be written and read.

Hi (Index: 44)

543 2 o

They define the width of the Display Pixel Map in units of 8 bytes. They must be loaded as a single value
In the range 000 to 3FF hex. Values are assigned as follows:

Value (hex) I DPM Width (bytes)

000

I

0

001 8

002 I 16

and so on unti I

7FF I 16376

72 OEK 258 00 September 1991



2

35

Display Control 1 Register (Index: 50)

1 0

"---__L-----L_-'---------'---*_,QO

This register can be written and read.

Note: Bit 2 above (marked with a *) must be masked out if a test is being performed on the contents of
this register. Also it must only be written to a '1'.

Bit 5 above (marked with a #) is ReseNed. The rules specified in 4.3.1 for such bits must be obseNed.

Values are assigned as follows:

I

Sync Polarity

Vertical Horizontal (No. Lines)

00 + + (768 Lines)

SP 01 + - (400 Lines)

10 - + (350 Lines)

11 - - (480 Lines)

Video Extension

VE 0 Video Extension Disabled

1 Video Extension Enabled

Display Scan Order

SO 0 Non Interlaced

1 Interlaced

Display Blanking

DB 00 IDisplay Blanked, CRTC reset

01 IDisplay Bianked, Prepare for reset

10 ReseNed

11 INormai operation

The Video Extension Bit (VE) should be set to '1' when the SUbsystem is In VGA Mode. Note that It must
be be set to '0' (Disabled) If the subsystem IS in Extended Graphics or 132 Column Text Mode.

When resetting the CRTC, the DB bits above should be set to '01' (prepare for reset) first, followed by '00'
(CRTC reset)

72 OEK258 00 September 1991



36

Display Control 2 Register (Index: 51)

7654321

'---_Vs_F'---L£i~c=J__p_S_,

This register can be written and read.

o

It contains fields defining the pixel size (for the serializer, palette and DAC) and the display scale factors
(horizontal and vertical). The horizontal scale factor controls how many times each pixel is replicated hori
zontally, and the vertical scale factor controls how many times each line IS replicated.

Values are assigned as follows:

i--=- Vertical Scale Factor

00 x1

01 x2

10 x4

11 Reserved

Horizontal Scale Factor

HSF 00 x1

01 x2

10 x4

11 Reserved

Pixel Size

PS 000 1 bit

001 2 bits

010 4 bits

011 8 bits

100 16 bits (Direct Color Mode)

101 Reserved

110 Reserved

111 Reserved

72 OEK258 00 September 1991



o

37

Display ID and Comparator (Index: 52)

7 6 5 4 3 2

~ O_T _

This register is a READ ONLY register.

It contains fields indicating the type of display attached and the state of three diagnostic status bits asso
ciated with the DAC Values are assigned as follows:

Blue DAC Comparator Status

BD 0 Blue DAC output high

1 Blue DAC output low

Green DAC Comparator Status

GD 0 Green DAC output high

1 Green OAC output low

Red DAC Comparator Status

RD 0 Red DAC output high

1 Red DAC output low

Display Type

OT 0000 As defined by displays.

to See table 10.1.

1111

Clock Frequency Select Register (Index: 54)

7 654 3 2 1 0

I - I C~,---_V_CS_

This register can be written and read.

This register must be used in conjunction with the "External Clock Select" register. It is therefore defined
under'External Clock Select Register (Index:70)'

Border Color Register (Index: 55)

7 6 5 4 3 2 o
Border Colour

This register can be written and read.

This register holds the Border Color palette index. That is, the index of the palette location selected to be
displayed in the picture border area of the display.

The inverse of bit 7 is used for palette address bit 7 when in Direct Color mode. See Section 4 2.

72 OEK 258 00 September 1991



38

o
Hi (Index: 61)

543 267o67

Sprite/Palette Index Registers (Index: 60 &61)

La (Index: 60)

5 4 3 2

Sprite/Palette Index Lo Sprite Index Hi

These registers can be written and read

They are used for specifying the index when reading from the Sprite or the Palette. See Sections 4 1.6 and
4.1.7 for details on using these registers.

The Palette has 256 locations available and so only (Index:60) is used for the palette. It can be loaded
with any palette index value in the range 0 to FF hex.

The Sprite has more than 256 locations available and so both (Index:60) and (Index:61) are used. They can
be loaded with any Sprite Index value in the range 0 to 3FFF hex.

Accessing these registers does not cause any action other than loading or returning the value of the index
to occur.

They must be saved and sUbsequently restored by any interrupting task that uses the palette or sprite regis
ters.

o
Hi (Index: 63)

543 267o67

Sprite/Palette Index Registers with Prefetch (Index: 62 & 63)

La (Index: 62)

543 2

Sprite/Palette Prefetch Index Hi

These registers can be written and read.

They are used for specifying the index when reading from the Sprite or the Palette See Sections 4.1.6 and
4.1.7 for details on using these registers.

When reading from the Palette, only (Index:62) should be used. In addition to loading the register, writing
(Index:62) also causes the Palette prefetch registers to be loaded, and the Index value to be Incremented.

When reading from the Sprite, either (Index:62) or (Index:63) can be used. Writing to either register also
causes the Sprite prefetch registers to be loaded, and the Index value to be incremented as a single value.

These registers should NOT be saved and SUbsequently restored in hardware task sWitches.

Palette Mask Register (Index: 64)

7 654 3 2 1 0

_I palette~ 1

This register can be written and read.

The contents are ANDed with each Display Memory Pixel Value and the result IS used to Index the palette

72 OEK 25800 September 1991



39

Palette Data Register (Index: 65)

7 6 5 4 3 2 o
Palette Data

This register can be written and read.

It is an image of the currently selected Palette RAM location The data returned on read may not be that
last written because of the selection mechanism described in Section 4.1.7.

For Mono Displays, all of the Palette Red and Blue locations must be loaded with '0'.

Only the 6 most significant bits of this register are used.

Palette Sequence Register (Bits 2:0 only) (Index: 66)

7 654 3 2 0

C:=CC:=CCI~::L:~O

This register can be written and read.

It contains two fields, one defining which of the R,G or B elements of the currently selected palette location
is the current one for the Palette Data Register, the other defining the sequence to be followed for selecting
the R,G and B elements for successive Palette Data Register accesses.

See Section 4 1.7.

Color Order

CO 0 R, G, B, R, G, B, ....

1 R, G, B, x, R, G, B, x, ....

Palette Color

PC 00 R

I
01 G

10 B

11 I_X _

Note: x = discarded data

Palette Red Prefetch Register (Index: 67)

7 6 5 4 3 2 o
Palette Red Prefetch

This register can be wntten and read.

It is not used for any normal function but must be saved and subsequently restored by any interrupting code
that uses the sprite or palette registers

72 OEK258 00 September 1991



40

Palette Green Prefetch Register (Index: 68)

7 6 5 4 3 2 o
Palette Green Prefetch

This register can be written and read.

It is not used for any normal function but must be saved and sUbsequently restored by any interrupting code
that uses the sprite or palette registers.

Palette Blue Prefetch Register (Index: 69)

7 6 5 4 3 2 o
Palette Blue Prefetch

This register can be written and read.

It is not used for any normal function but must be saved and sUbsequently restored by any interrupting code
that uses the sprite or palette registers.

Sprite Data Register (Index: 6A)

7 6 5 4 3 2

Sprite Data

o

This register can be written and read.

It is an image of the currently selected Sprite buffer location. The data returned on read may not be that
last written because of the selection mechanism described in Section 4.1.6.

When used for writing sprite data, the sprite pixels are Intel format packed pixels.

Sprite Prefetch Register (Index: 6B)

7 6 5 4 3 2 o
Sprite Prefetch

This register can be written and read.

It is not used for any normal function but must be saved and sUbsequently restored by any interrupting code
that uses the sprite or palette registers.

72 OEK258 00 September 1991



41

External Clock Select Register (Index: 70)

This register can be written and read.

It must be used in conjunction with the Clock Frequency Select Register (Index 54) shown below:

7 6 5 4 3 2 1 0

'---_C_S_I..---_VC_S_

The combined function of these register fields is detailed in the table below:

Clock Selected

C CS Selected Clock

C and CS 0 00 VGA 8 pixel Character Mode and 640 X 480 Graphics Mode Clock.

X 01 VGA 9 pixel Character Modes clock.

X 10 Clock sourced from Video Extension Interface.

X 11 1024X 768 Graphics Mode Clock.

1 00 132 Column Mode Clock.

Video Clock Scale Fac- Mode
tor

VCS 00 x1 VGA and 640 x 480 Graphics Modes.

01 x2

10 Reserved

11 Reserved

Clock Selection- The 'C' and 'CS' fields of index 70 and 54 must be used together. Setting each field to
the values shown in the table above will select the specified clock. Note: If the 132 Column Text Mode Clock
is selected, then 'C' must be returned to '0' before any VGA or 640 X 480 graphics is selected. See Section
11 for details on mode switching.

The video clock scale factor controls the divide ratio of the selected video clock before it is used by the
CRTC. The operation of the video clock scale factor is invisible to the programmer, but it must be set as
shown to allow correct operation of the hardware.

72 OEK 258 00 September 1991



42

4.4 Coprocessor Description

The XGA coprocessor provides autonomous drawing functions for the video sub-system. "Autonomous
drawing functions" means that the coprocessor draws into memory (either video memory or system
memory) independently of the host system processor, while the host processor is performing some other
operation.

The coprocessor supports 1,2,4 or 8 bits bits per pixel. See Section 14 7 for detai Is of using the coprocessor
when displaying in 16 bits-per-pixel (Direct Color) mode.

Typically, the execution of an operation using the coprocessor involves the following steps:

• The host system processor sets up the coprocessor registers to perform a particular operation

• The host system processor writes to the Pixel Operations register to start the coprocessor opera
tion

• The coprocessor performs the drawing operation The host system processor can be performing
some other function at this time.

• The coprocessor completes the drawing operation, informs the host system processor, and be
comes idle

• The process repeats . . .

The coprocessor operates on pixels within pixel maps. A pixel map is an area of memory at a given address
with a defined height, width, and pixel format; see Section 4.6.3

Pixels from a Source are combined with pixels from a Destination under the control of a Pattern and Mask,
and the result is written back to the Destination.

After each access the Source, Destination, Pattern and Mask addresses are updated according to the func
tion being performed, and the operation is repeated until a programmed limit is encountered.

The drawing operation can be one of Pixel Block Transfer (PxBlt) , Bresenham Line Draw, or Draw and Step.

The function performed to combine the Source and Destination data can be a logical or arithmetic opera
tion. One of two possible operations is selected for each pixel by the value of the corresponding Pattern
pixel. In addition,a Mask pixel for each pixel allows the Destination to be protected from update.

Pattern data can be generated automatically from Source data ThiS is done by detecting pixels with a value
of "0".

A color compare function is provided. This allows the modifying of the destination pixelto be dependent
on the value of the destination pixel compared to a programmable value.

Three general purpose pixel maps can be defined in memory Each map has a defined start address, pixel
width and height, and number of bits-per-pixel. Source, Pattern and Destination data can reside In any com
bination of these maps. There is also a mask map that has its own defined start address, width, height and
format. Mask data is always taken from this map.

Source, Pattern and Destination data are each addressed by unique X,Y pointers. Mask data is addressed
by the Destination X,Y pointers; see Figure 4.7. Should the Source or Pattern X,Y pointers move outside
the defined extremities of their pixel maps, they are automatically reset so as to wrap round to the opposite
side of the pixel map. If the Destination X,Y pointers move outside the extremities of the Destination map,
update of the Destination map is inhibited until the X,Y pointers move back inside the map.

Figure 4.6 shows a representation of the coprocessor graphics data flow. The diagram indicates the pas
sage of one pixel through the data flow. In reality, multiple pixels are processed in one cycle.

72 OEK 258 00 September 1991



43

Fgd mix reg

Bgd mix reg ------
mux

'New'
Dest
map

Fgd = Foreground
Bgd = Background
Src = Source
Dest = Destination
mux = multiplexor
ALU = Arithmetic
and Logic Unit

ALU
Carry chain mask and Pixel

Bit Mask Registers

--------'====~-_J combine 1- ---'
masks

Fgd Color __+-_+1
reg

'Old'
Destination ------,--

map

Pattern map

Source map

Color Compare
reg --I

Mask map

Pixel Bit Mask -------------+1
reg '------'

Figure 4.6 Coprocessor data flow.

4.5 Programmer's View

An 'operation' IS defined as the execution of a single PxBlt, Line Draw or Draw and Step function

An operation is set up by first loading the coprocessor's registers with appropriate data, such as X,Y coordi
nates, function mixes, dimensions, and so on. The operation is then Initiated by writing to the Pixel Opera
tion Register. This defines the flow of data in the operation and also starts the operation. The coprocessor
then executes and completes the operation when some programmed limit has been reached.

There is one exception to the above sequence of Initiating operations. This IS the Draw and Step function,
described in the section 'Draw and Step' on page 51.

The XGA can be programmed to inform the host processor ofthe completion of an operation using a system
interrupt. This interrupt is called the Coprocessor Operation Complete Interrupt. An enable bit and status
bit existfor this interrupt in the the 'Interrupt Enable Register (Address: 21 x4)' on page 21 and 'Interrupt Sta
tus Register (Address: 21x5)' on page 21

A mechanism is provided to allow the host processor to either suspend or terminate an operation before
it has completed. The suspension of operations is required to allow task switches, while termination of
operations can be used to recover from errors.

72 OEK258 00 September 1991



44

4.6 Pixel Formats

The Coprocessor can manipulate images with 1,2,4 or 8 bits per pixel. It manipulates packed-pixel data,
so each data double-word (32 bits) contains 32, 16, 8 or 4 pixels respectively.

The pixels can be in one of two different formats, 'Motorola' or 'Intel' . See Intel Order on page 10 and Moto
rola Order on page 11.

Each pixel map manipulated by the Coprocessor can be defined as either Motorola or Intel format. If the
Destination Map has a different format to that of the Source, Pattern or Mask Maps, the Coprocessor auto
matically translates between the two formats.

Motorola or Intel format is controlled by a bit in the Pixel Map Format Register.

4.6.1 Pixel Data

Fixed And Variable Data

In the course of executing an operation, the Coprocessor reads in Source, Pattern and Mask data, and
reads and writes Destination data. The Source, Pattern and Mask data can either be fixed throughout the
operation, or vary from pixel to pixel.

XGA Function

If fixed data is to be used, the data is written to the relevant fixed data register in the Coprocessor before
the operation is started (Foreground and Background Color Registers).

If variable data is required, the data is read from memory by the Coprocessor during the course of the
operation. The Coprocessor only allows variable data to be provided from memory, and does not allow
the system unit host processor to supply variable data.

4.6.2 The Coprocessor View of Memory

To the programmer, the Coprocessortreats video memory and system memory in the same manner. Thus
data can be moved between system memory and video memory by defining pixel maps at the appropriate
addresses.

Accesses to the XGA video memory are faster than accesses to system memory.

The Coprocessor can address all the video memory.

The Video Memory Base Address Registers hold a value that indicates the base address at which the Video
Memory appears in system address space. This base address is on a 4 Mbyte address boundary. The
Coprocessor assumes that the whole 4 Mbytes of address space above this boundary is reserved for its
own video memory. All addresses outside this 4 Mbyte block are treated as system memory.

Section 4.1.4 further describes video memory addressing.

4.6.3 XGA Pixel Maps

Pixel Maps A, B, And C (General Maps)

The Coprocessor defines three general purpose pixel maps in memory, called Pixel Maps A, Band C. Each
map is defined by four registers:

Pixel Map Base Pointer This specifies the linear start address of the map in memory.

Pixel Map Width This specifies the width of the map in pixels. The value programmed should be 1
less than the required width.

Pixel Map Height This specifies the height of the map in pixels. The value programmed should be
1 less than the required height.

72 OEK 258 00 September 1991



45

Pixel Map Format This specifies the number of bits-per-pixel of the map, and whether the pixels are
stored in Motorola or Intel format.

The Source, Pattern and Destination data can each reside in any of Pixel Maps A, B or C, determined by
the contents of the Pixel Operations Register.

These maps may be defined to be any arbitrary size up to 4096 by 4096 pixels. Individual pixels within the
maps are addressed using X,V pointers. See 'X and V Pointers' on page 46.

Pixel Maps can be located in video memory and in system memory.

There are two restrictions on map usage: the Source and Destination maps must have the same number
of bits-per-pixel, and the Pattern map must be 1 bit-per-pixel.

Pixel Map M (Mask Map)

In addition to the three general purpose maps, the Coprocessor also defines a Mask Map. This map is
closely related to the Destination map. It allows the Destination to be protected from update on a pixel-by
pixel basis, and can be used to provide a scissoring-type function on any arbitrary shaped area. See'Scis
soring with the Mask Map' on page 48.

The Mask Map is described by a similar set of registers to the general purpose pixel maps A, Band C, but
it is fixed at 1 bit-per-pixel.

The Mask Map differs from the Source, Pattern and Destination maps in that:

• The Mask Map uses the Destination X and V pointers.

• The position of the Mask Map origin relative to the Destination is defined by the Mask Map Origin
X and V Offsets.

See 'X and V Pointers' on page 46.

Map Origin

The origin of a pixel map is the point where X =°and V =0.

The Coprocessor defines the origin of all its pixel maps as being at the top left corner of the map. The direc
tion of increasing X is to the right; the direction of increasing V is downwards. Figure 4.7 illustrates the X
V addressing of an XGA map.

Map origin
(0,0)

increasing
V

increasing X

The XGA
Pixel
Map

Figure 4.7 The XGA Pixel Map Origin

In storage, pixels to the right of and belowthe origin are stored in ascending, contiguous memory locations.

72 OEK258 00 September 1991



X and Y Pointers

Source And Pattern Maps: These maps each have X and Y pointers that determine the pixel to be
accessed for that map. The two sets of pointers are completely independent and are modified
as the operation proceeds.

If, in the course of an operation, the Source or Pattern pointers are moved beyond the extremities of the
Pixel Map containing the Source or Pattern data, they are reset to the opposite edge of the pixel map.
Source and Pattern maps can thus be regarded as continuous in that they wrap round at their extremities.
This allows a small pattern to be repeated or 'tiled' over a large area in the destination map, in a single
operation; see Figure 4.8.

D E D E D E D

F F F F

A B e A B e A B e A

D E D E D E D

F F F F

A B e A B e A B e A

D E D E D E D

OBe
D E
F

Pattern
Map

F

PxBlt Area

Destination Map

F F F

Figure 4.8 Repeating Pattern ('Tiling')

Destination Map: If a Destination X or Y pointer is moved beyond the extremity of the Pixel Map con
taining the Destination, the pointers are not wrapped, but updates to the Destination are disabled
until the pointers are moved to within the defined Pixel Map This mechanism is effectively a fixed
scissor window around the Destination pixel map.

72 OEK 258 00 September 1991



47

A "guardband" exists around the Destination Map that ensures that the Destination X and
Y pointers do not wrap when they move outside the limits of the map The guardband is
2048 pixels deep on all sides of the largest definable Destination Map. The guardband is
illustrated in Figure 4.9

(0,0)

Guardband

Destination Map

up to 4096 ----------

up to 4096

(6143,6143)

~----------------------------------

Figure 4.9 Destination Map Guardband

The Guardband allows the Destination X and Y addresses to range from -2048 to +6143.
All pixels within the Destination Map can be updated, but updates to pixels that lie within
the guardband are inhibited. The size of the Destination Map is determined by the Map
Width and Height, so pixels that lie within the range (0,0) to (width-1 , height-1) can be up
dated The Guardband occupies pixel X addresses -2048 to -1 and 'Width' to 6143, and
Y addresses -2048 to -1 and 'Height' to 6143

In order to correctly address the Destination Map and take advantage of the Coprocessor' s
Destination Boundary Scissor capability, programmers can calculate Destination X and Y
addresses using 16-bit two's-complement numbers. They should ensure that all X and Y
addresses generated by the operation they program lie within the range -2048 to 6143, and
bear in mind that all plxels that they want drawn should lie inside the bounds of the Destina
tion Map. Any X and Y addresses generated that lie outside the range -2048 to 6143 cause
the XGA X and Y pointers to wrap and can produce erroneous results.

Mask Map: The Mask Map width and height can be any size less than or equal to the dimenSions of
the Destination map. The Mask Map can therefore be smaller in size than the Destination Map.
If this is the case, the hardware needs to know where the Mask Map is positioned relative to the
Destination Map. Two pointers, the Mask Map Origin X Offset and Mask Map Origin YOffset spec
ify the X,Y position in the Destination at which the Mask Map origin is located. Figure 4.10 illus
trates the use of these pointers.

72 OEK 258 00 September 1991



48

(0,0) IY Offset

------~...

Destination Map

Mask Map

X Offset

~~::s ~~~
********* --------' *****

Figure 4.10 Mask Map Origin X and Y Offsets

The Mask Map takes its X and Y pointers from the Destination X and Y pointers. For every
pixel in the Destination, the corresponding pixel in the Mask Map is read and update of the
Destination enabled or disabled depending on the value of the Mask pixel.

Scissoring With The Mask Map

Hardware scissoring is provided in the Coprocessor using the Mask Map. There are three ways that the
Mask Map can be used for any operation, as follows:

Disabled The Mask Map contents and boundary position are ignored.

Boundary Enabled The contents of the Mask Map are disabled, but the boundary of the Mask Map
acts as a rectangular scissor window on the Destination map. No memory is required to store
the map contents in this mode.

Enabled The contents of the Mask Map can be used to provide a possibly non-rectangular scissor
window. The boundary of the Mask Map also provides a rectangular scissor window at the extre
mities of the Mask Map.

The Mask Map mode is controlled by a field in the Pixel Operation Register. The modes are described in
detail below. Throughout the description below, pixels that are located on a scissor boundary are treated
as if they are inside it.

Mask Map Disabled: When the Mask Map is disabled, any updates to the Destination are always
performed regardless of the position or contents of the Mask Map. No memory need be reserved
for the Mask Map, and the contents of the Mask Map Base, Width, Height, Format and Origin Off
set registers are ignored.

However, should the operation being performed attempt to draw outside the boundary of the Des
tination Map, the update is automatically inhibited. The Destination X and Y pointers are increm
ented as normal, but update of the Destination is not enabled unti I the pointers move back inside
the bounds of the Destination Map. Thus a fixed hardware scissor window exists around the
boundary of the Destination Map. This Destination Boundary Scissor is always enabled regard
less of the Mask Map Mode.

Figure 4.11 illustrates the Destination Boundary Scissor operation when the Mask Map is dis
abled.

72 OEK 258 00 September 1991



49

Destination Map

000

000 000

000 000

) 000

000

000

000

0 000

000

"0" indicates a pixel drawn
,,." indicates a scissored (not drawn) pixel

Figure 4.11 Destination Boundary Scissor.

Mask Map Boundary Enabled: Mask Map Boundary Enabled mode provides a single rectangular
scissor window within the Destination map. The contents of the Mask Map are ignored, and thus
no memory need be reserved for the Mask Map in this mode.

In Boundary Enabled mode, the size and position of the Mask Map must be specified. Thus the
Mask Map Width, Height, and Origin Offset registers must be defined. These four registers togeth
er define a rectangular boundary within the Destination Map. Updates to the Destination Map that
lie inside this boundary take place as normal. Updates outside this boundary are inhibited.

Figure 4.12 illustrates a Mask Map Boundary Enabled scissoring operation.

Destination Map

Mask Map Boundary

000

000

000

. (

"0" indicates a pixel drawn
,,." indicates a scissored (not drawn) pixel

Figure 4.12 Mask Map Boundary Scissor.

Mask Map Enabled: When the Mask Map mode is enabled, both the Mask Map boundary and con
tents provide scissoring action. Memory must be reserved to hold the Mask Map pixels and the

72 OEK 258 00 September 1991



50

Mask Map Base, Width, Height, Format, and Origin Offset registers must be set up to point to the
mask data and describe its size and position relative to the Destination Map.

For any pixel in the Destination that is about to be updated, the corresponding Mask Map pixel
is examined.

If the Mask pixel is inactive (its value is '0'), the Destination pixel update are inhibited. If the Mask
pixel is active (its value is '1 '), the Destination pixel is updated as normal.

This mode allows the user to draw non-rectangular scissor windows in the Mask Map prior to an
operation, and then, in a single execution of an operation, to apply a non-rectangular scissor win
dow to that operation.

Memory must be reserved to hold the Mask Map contents in this mode. The Mask data is fixed
at 1 bit-per-pixel, so for a full screen Mask Map for a 1024 x 768 screen, 96 Kbytes are required.
If, however the operation to be scissored does not cover the whole Destination Map, a Mask Map
smaller than the Destination Map can be used in order to save memory. For applications with no
memory available for the Mask Map contents, the Mask Map Boundary Enabled mode should be
used.

Figure 4.13 illustrates a Mask Map Enabled scissor operation.

Destination Map

Mask Map Boundary

:~*Iooo
. . **

*********** ~
******

****
****
****

'---- ******

, '0" indicates a pixel drawn
, ,." indicates a scissored (not drawn) plxel

"*" indicates a "0" in the Mask Map

Figure 4.13 Mask Map Enabled SCissor

Before performing an operation that requires a non-rectangular scissor, the user must first draw
the non-rectangular mask into the Mask Map. Typically, windowing systems only permit rectan
gular windows, so the mask can be drawn using a sequence of PxBlt operations that have fixed
source data. For more complex shapes, the Line Draw and Draw Step functions can be used to
draw area outlines that can then be filled.

Typically, a large number of operations can be performed, all using the same mask, so the over
head per operation in setting up the mask is small. Overall, the use of the mask to perform non-rec
tangUlar scissors greatly improves the performance of a given drawing operation over that when
a single rectangular scissor IS provided by the hardware.

72 OEK 258 00 September 1991



51

4.6.4 Drawing Operations

There are four drawing operations provided by the Coprocessor. They are:

• Draw and Step

• line Draw

• Plxel Block Transfer (PxBlt)

• Area Fill

These operations are descnbed In detail In the following sections

The operations can be either one-dimensional or two-dimensional Draw and Step and line Draw are one
dimensional while the PxBlts are two-dimensional. Draw and Step and line Draw are collectively descnbed
as 'draw' operations In the following text

Either of the draw operations can be either 'read' or 'wnte'. These qualifiers to the operation are described
in 'Line Draw' on page 53.

Draw and Step:

The Draw and Step operation draws a pixel at the Destination and then updates the X Y pOinters to one
of the pixel's 8 neighbors according to a 3-bit code.

A run of up to 15 address steps can be specified in a fixed direction by each Draw and Step code. An 8--bit
code descnbes the vector, as shown in Figure 4.14

7 6 5 4 3 210

IQirectlon Code I MiDTN-;~f Steps -------l
I__~ l ~ ~

Figure 4.14 Draw and Step code

No. Of Steps: This field indicates how many steps should be taken, from 0 to 15. The X Y pOinters
are updated after the plxel is drawn, so a Draw and Step function always attempts to draw at least
one pixel

The number of steps to be taken In the Draw and Step operation IS one less than tne number of
pixels that the hardware attempts to draw. Thus when the number of steps is programmed to 5,
6 pixels are drawn; when 0 steps are specified, 1 pixel is drawn" After the Draw and Step operation,
the X and Y pOinters point to the last pixel that the operation attempted to draw (this pixel may
not actually be drawn if the 'Last Pel Null' Drawing Mode is active).

For example, a Draw and Step code of hex '35' moves X,Y pOinters starting at coordinates (17,10)
to coordinates (22,5), as shown in Figure 4.15.

72 OEK 258 00 September 1991



52

,-... _-_._._.... _._._. _.. __ ._._._._----- ..- -_...- _... - . __._---- ..- _. __ ._- _._.._- -_..__._------ _.. _.- .._.._---_._._._--_.,

End Point
'" XY = (22,5)

/

*
/

'"

Start Point *
X,Y = (17,10)

/
*

/
'"

/ step code = hex '35'

( Draw In direction
of upper right pixel
taking 5 steps)

"*" indicates a plxel drawn

"/" represents the address step
to the next pixel

Figure 4.15 Example of Draw and Step

MjD:Thls field specifies If the operation Is a move operation or draw a draw operation. When set to
a '1' this bit indicates that pixels should be drawn. When cleared to '0', it indicates that X and Y
pointers should be modified as normal. but no pixels should be drawn.

Direction Code: This field indicates the direction of drawing relative to the current pixel, as shown in
Figure 4.16.

2

3

4

5

o

6
7

o

Figure 4.16 Draw and Step direction codes

Draw and Step codes should be written to the Direction Step Register. Each write to the register can load
up to four Draw and Step codes In one access. The Draw and Step codes are executed starting with that
in the least significant byte. Each group of up to four codes written to the Direction Step register Is treated

72 OEK 25800 September 1991



53

as being ONE operation In that all codes are executed before the coprocessor Indicates that the operation
has completed However, for the purposes of first pixel null and last pixel null drawing (descnbed below),
each code describes a distinct line.

The Draw and Step operation differs from other operations in that It is not Initiated through the Plxel Opera
tion Register The action of writing a Draw and Step code to the most significant byte of the Direction Step
Register Initiates the Draw and Step operation.

The Pixel Operation Register still needs to be loaded In order to specify the particular Draw and Step func
tion and the data flow for the operation This must be done before any data IS written to the Direction Step
Register Writing the Plxel Operation register with a function of Draw and Step does NOT Initiate a Draw
and Step operation, but sets up the parameters for the operation It is the action of writing steps to the Direc
tion Step register that Initiates the Draw and Step operation If the Plxel Operation register specifies a func
tion other that Draw and Step when the Direction Step register IS wntten, no operation takes place

A Draw and Step code of '00' is treated by XGA as a 'Stop' code If a Stop code IS encountered as one
of the (up to) four cndes In the Direction Step register, the Draw and Step operation completes after that
code has been executed The r.ompletlon of the operation is indicated in the normal way through the Copro
cessor Control register, and. in addition, a flag hit in the Coprocessor Control register Indicates that the
operation completed because a Stop code was encountered. This mechanism allows software to load se
quencesof Draw and Step codes to the Coprocessor without needing to keep track of the number of codes
that make up the figure being drawn

If It IS reqUired to program less than four codes to the Direction Step register, two possible approaches can
be taken. Either the first unwanted step code can be set to '00' (Stop), and all 32 bits of the register written,
or only the required number of codes can be written to the Direction Step register However, In the latter
case, the codes must be written to the most significant bytes of the register The two methods are shown
in Figure 4.17

Writing 32-blts and using the Stop Code:

31

[ Don't care stop code 'OO'x code 2

o
.- ._--~--------,

code 1 '

31

Writing only those codes required:

o
code 2 -----~-d;1--T--~;t~ritten I-~otwritt;;1

'-- .L ... .__1 L.. ....__J

This figure shows the case when only two Step codes are required

Note that the second method requires the I/O address programmed to change depending

'-- on the n~=b:~of Step::~tten._________ .....-J
Figure 4.17 Programming less than four Step codes

Line Draw:

The Line Draw function uses the Bresenham line drawing algorithm to draw a line of plxels into the destina
tion. The Bresenham line draWing algorithm operates with all parameters normalized to the first octant (oc
tant 0). The octant code for the actual octant in which the line lies must be specified In the octant field of
the Plxel Operation Register This contains a 3 bit code that is made up of three 1 bit flags called DX, DY
and DZ.

72 OEK258 00 September 1991



54

DX is 1 for negative X direction, 0 for positive X
DY is 1 for negative Y direction, 0 for positive Y
DZ is 1 for IX I < IY I, 0 for IX I > IY I (' IXI' is the magnitude of X, the value ignoring the sign)

The octant value is formed by concatenating DX, DY and DZ.

Figure 4.18 shows the encoding of Octants.

6

4

7

5

start

3

2

o

Figure 4 18 Bresenham Line Draw Octant encoding

The length of the line (delta X when normalized) must be specified In the Dimension 1 Register

The Coprocessor provides the following registers to control the Draw Line address stepping:

• Bresenham Error Term, ET = 2*deltaY - deltaX

• Bresenham Constant, K1 = 2*deltaY

• Bresenham Constant, K2 = 2*(deltaY - deltaX)

On completion of the drawing operation, X and Y pointers point at the last plxel of the line.

The Coprocessor draw operations that take Source data from a Pixel Map apply the specified address up
date to only one of either the Source or Destination Map. The XYaddress in the other Map is always increm
ented in X only. There are two possibilities, called Read Draw and Write Draw.

Write Draw After every pixel drawn, the Source X Ypolnters are incremented In X only. The Destination
X Y pointers are updated according to the current function specified (either Bresenham Line Draw,
or Draw and Step).

Read Draw After every pixel drawn, the Source X Y pointers are updated according to the current func
tion specified (either Bresenham Line Draw, or Draw and Step). The Destination X Y pointers are
incremented In X only.

The 'read' and 'write' in the terms Read Draw and Write Draw refer to the direction of data transfer of the
Map that is having its addresses updated by the specified function. So, during a Read Line Draw, the Map
from which data is read (the Source) has its addresses updated by the Bresenham Line Draw function. Dur
ing a Write Draw and Step, the map to which data is written (the Destination) has its addresses updated
by the Draw and Step function.

Note, in particular, that to draw a fixed color line (by taking the source from the Foreground and/or Back
ground Registers) a write draw function should be used.

Figure 4 19 illustrates the stepping of X and Y pointers during a Read Line Draw and Write Line Draw

72 OEK258 00 September 1991



Write Line Draw

Source (and Pattern) map

123456789

Read Line Draw

Source (and Pattern) map

9
678

345
.12

Destination (and Mask) map

9
678

345
.12

Destination (and Mask) map

,123456789

55

(Numbers 1 to 9 denote each pixel In order of drawing)

Figure 4.19 Memory to memory Line Draw address stepping.

Note that in the map that is not having the current addressing function applied, the X pointer is always in
cremented regardless of the direction of X in the current addressing function. The Y pOinter for the same
map is not updated at all during the operation.

The above description refers only to the Source and Destination maps The Pattern map X and Y pointers
are updated in the same manner as the Source pointers, and the Mask map X and Y pOinters (that are not
directly accessible by the user) are updated in the same manner as the Destination pointers.

If an attempt is made to move any of the map pointers outside the bounds of their current map then the
rules set out in 'X and Y Pointers' on page 46 apply as normal; the Source and Pattern pointers wrap, and
the Mask and Destination scissor. Thus if it IS required to draw a line with a repeating calor scheme and
pattern, the Source Map Width and Pattern Map Width should be set to the required run length of the repeat
ing colors and pattern respectively. The coprocessor automatically draws the repeating run of colors and
pattern. Conversely, if a line with a long non-repeating calor scheme or pattern is required, the Source and
Pattern Map Widths must be set to equal or exceed the line length, or wrapping occurs.

Drawing with Null Endpoint Pixels: It is common when drawing lines to draw a series of lines one after the
other with the endpoint of one line being the starting point of the next line. Such composite lines are called
'polylines'. A problem can arise in that the common endpoint of the two abutting lines is drawn twice, once
as the last pixel of the first line, and once as the first pixel of the second line. If, say, a mix of XOR is active,
then the common pixel IS first drawn and then removed, and similar problems arise with different mixes

In order to avoid drawing the endpoints of polylines twice, the Coprocessor provides functions that Inhibit
the drawing of the end pixel of lines. Depending on the function selected, either the first pixel or the last
pixel of individual lines is not drawn (drawn 'NUll'). The choice of whether to draw first or last plxel null IS

72 OEK 258 00 September 1991



56

arbitrary as long as one or the other is used for the whole figure being drawn. It is usually a convention of
the graphics application as to whether first or last pixel null is used.

First and Last pixel null drawing functions are provided for both the Bresenham Line Draw function, and
the Draw and Step function In all cases the programming of parameters is the same as for normal Line
Draw and Draw and Step. Only the contents of the Drawing Mode field in the Pixel Operations register are
different.

Area Boundary Drawing: The outline of an object is drawn using either Bresenham Line Draw or Draw and
Step functions, or a combination of both. The outline is created by observing a number of rules that are
detailed below.

The rules for area-boundary Iine drawing are:

• If a line is drawn from screen top-to-bottom, then draw with Last Pixel Null and draw only the Last
Pixel in every horizontal run of pixels.

• If a line is drawn from screen bottom-to-top, then draw with First Pixel Null and draw only the First
Pixel in every horizontal run of pixels.

• If a line is Horizontal, then draw none of the pixels.

• Always draw with a mix of XOR.

The Coprocessor implements the above drawing rules in hardware In order to draw a shape as an area
outline, it should be drawn as for a normal Line Draw or Draw and Step operation, but with the 'draw area
boundary' Drawing Mode selected in the Pixel Operation Register and a mix of XOR.

Area Outline Scissoring: It is important during area outline drawing to ensure that the correct outline is
drawn when the outline intersects the scissor boundary. In particular, when the outline is sCissored by a
vertical boundary at the left of a map (an XMIN boundary), a pixel is drawn in the outline to activate filling
at that boundary.

Using the XGA's combination of Mask Map and fixed Destination Boundary scissoring, area outlines are
incorrectly scissored by the Mask Map, but correctly scissored by Destination Map boundary scissoring.
The correct area can be filled by ensuring that the Mask Map scissoring is disabled when the outline is
drawn and enabled or boundary enabled when the scan/fill part of the area fill is drawn This results in
the correct, scissored figure being drawn. See 'Scissoring with the Mask Map' on page 48.

Pixel Block Transfer (PxBlt):

The PxBlt function transfers a rectangular block of pixels from the Source to the Destination The width and
height of the rectangle are specified in the Dimension 1 and Dimension 2 registers. The transfer can be
programmed to start at any of the four corners of the rectangle and proceeds towards the diagonally oppo
site corner. The address IS stepped in the X direction until the edge of the rectangle is encountered where
upon X is reset and the Y direction is stepped This process is repeated until the entire rectangle has been
transferred.

PxBlt's can be implemented in normal WRITE mode or in READ/MODIFY/WRITE mode. This is dependent
on the number of bits per pixel and the mix being used.

If the PxBlt is being implemented in READ/MODIFY/WRITE mode (that is, 1,2 or 4 bits per pixel with ANY
mix or 8 bits per pixel with a READ/MODIFY/WRITE mix) then either:

• Ensure that the destination map has a base address that is on a double-word (four byte) address
boundary, and is an exact number of double-words wide.

• If the destination map is not double-word aligned, ensure that the destination map boundary is
not crossed during the PxBlt operation.

PxBlt Direction.The PxBlt direction indicates the direction in which the X, Y address is stepped across the
rectangle. It also defines the starting corner of the transf~r. This is significant if the destination rectangle

72 OEK 25800 September 1991



57

overlaps the source rectangle, and care must be taken to ensure that the PxBlt direction is correctly pro
grammed in such cases to achieve the desired result

This field, when concerned with PxBlts determine the direction that the PxBlt is drawn in

The encoding is as follows'

'OOO'b or '001'b
,1OO'b or '001'b
'010'b or '011'b
'110'b or '111'b

Start at Top LH corner of Area increasing right and down.
Start at Top RH corner of Area increasing left and down
Start at Bottom LH corner of Area Increasing right and up.
Start at Bottom RH corner of Area Increasing left and up.

('OOO'b or '001 'b)

('01 O'b or '011 'b)

PxBIt'ing AREA

('100'b or '101'b)

('110'b or '111'b)

Figure 4.20 PxBlt Direction Codes

After a PxBlt operation has completed, the X and Y pointers are set so that the X pointer contains its original
value at the start of the PxBIt, and the Y pointer points to its value on the last line of the PxBlt plus or minus 1,
depending on the Y direction that the PxBlt was programmed.

See Section 14 1 for details on PxBlts where the Source and Destinations overlap

Inverting PxBlt: As detailed in 'Map Origin' on page 45, the Coprocessor assumes that the origin of a pixel
map is at the top left corner of the map, with Y increasing downwards Applications which use an origin
at the bottom left of the map (Y increasing upwards) use either of the following'

• Modify all Y coordinates by SUbtracting the map height from them before passing the modified
coordinates to the display hardware.

• Use the coprocessor Inverting PxBlt operation.

The Inverting PxBlt use reqUires the application to draw into an off-screen pixel map without any Y coordi
nate modification, and then use the Inverting PxBlt operation to move the data to the destination rnap

Figure 4.21 Illustrates the X,Y addressing of the Inverting PxBlt operation, and shows how the result of the
Inverting PxBlt appears the same as the original when displayed as an Inverted pixel map (i.e with the origin
at the bottom left).

72 OEK 258 00 S.eptember 1991



58

---~-------I

Xd,Yd--

increas
ingY

Map origin increasing X

(0,0), --.=~-==-~==-- --l
,-----------

* * I
* *

* ** *

I~ _~ ~__

Map origin ~~~~a~~~g_~ _

(0,0)i- xs,~~---~~--=-=------l

1

1 1 * *increas-
* ** *

ing Y * *

I * * I

I J
a. Source b. Destination

PxBlt direction = 0 or 1 (Source: DX + ve., DY + vel
(Destination: DX +ve., DY -vel

--~===-l-l
1
1

* * I
* ** *

__I--=L:: _I j

c. Destination displayed as

(0,0)
Map origin

increasing Y

,

______________________________________ ~~_i:~erted Pi:l_~~ J

The destination, when displayed
as an inverted pixel map, ap
pears the same way up as the
original.

Figure 4.21 Inverting PxBlt

An Inverting PxBlt is set up in the same manner as a standard PxBlt with the following notes:

• The PxBlt direction set by the user applies to the updating of the Source X and Y addresses.

• The Destination Y pointer should be programmed to the opposite (in Y) corner of the Destination
rectangle.

• The function field in the Pixel Operation register should be set to Inverting PxBlt as opposed to
PxBIt.

See Section 14.1 for details on PxBlts where the Source and Destinations overlap.

Area Fill:

The following steps are required to perform an Area Fill operation without a 'user' pattern:

Draw the closed outline of the area to be filled using the A~ea Boundary Drawing Mode. Typically
a unique, off-screen pixel map would be defined into which the area boundary would be drawn.
This pixel map should be initialized to contain '0' valued plxels before the boundary is drawn.
This pixel map must be in a 1 bit-per-pixel format.

2 Designate the pixel map in which the area boundary was drawn to be the Pattern Map.

72 OEK258 00 September 1991



59

3 Specify the desired Destination.

4 Select the desired Foreground Mix and Source.

5 Specify the Background Mix to be 'Destination (code 5)'.

6 Specify the operation direction to be any direction with X increasing (Codes 0 or 1,2 or 3). This
IS because the pattern data is scanned from left to right. Selection of a negative X direction code
for Area Fill operations results in fill errors.

7 Initiate the Area Fill operation.

During the Area Fill operation, the Coprocessor applies a 'filling' function to the Pattern pixels before they
are used to select Background and Foreground Sources and Mixes in the usual way. The filling function
modifies the Pattern pixels horizontally line by line. It scans the Pattern from left to right, and on encounter
ing the first Foreground (1) pixel, sets all sUbsequent pixels to Foreground (1) until the next Foreground pixel
is encountered. This process is illustrated in Figure 4.22

Pattern scanned to the right -------~

original pattern

filled pattern

000010000000010010100
+ filling function

00001 1 1 1 1 1 1 1 1 000 1 1 000

Figure 4 22 Pattern Filling

The 'filled' Pattern is generated internally to the coprocessor It is then used exactly as the Pattern In any
normal operation, With Foreground (1) pixels selecting Foreground Source and Mix, and Background (0)
pixels selecting Background Source and MIx Dunng Area Fill operations, it IS desired to fill the specified
area and leave all other pixels unchanged. This IS why the Background Mix was specified to be 'Destina
tion' in the list above Figure 4.6 shows the position of the Pattern-filling circuitry In the coprocessor data
flow

Area fill operations that do require a pattern fill must be performed in two stages. This is because Area Fill
PxBlt operations use the Pattern Map to perform the area fill function and thus cannot Include a 'user' pattern
in a single operation However, by first combining the contents of the Mask Map with a mask of the filled
area, a full pattern PxBlt of an area can be achieved as follows'

Both the Pattern Map and the Destination Map should be defined as the map containing the pre
viously-drawn area boundary. The Source map should be defined as the map that would normally
supply the Mask map for the operation. The Mask Map facility Itself should be disabled An Area
Fill PxBlt should be performed with the following conditions:

• Foreground Source = Source pixel map

• Foreground Mix= source (code 3)

• Background Source = Background Color

• Background Color = 0

• Background Mix = source (code 3)

Note that all the maps in this operation should be 1 bit-per-pixel.

This operation combines the Mask data for the pattern Area Fill with a mask of the filled area

72 OEK 25800 September 1991



60

2 A second non area fill PxBlt should be performed with the combined mask generated in stage 1
defined as the Mask Map. All other maps can be utilized as normal with no restrictions

4.6.5 Logical And Arithmetic Functions

During an operation in the Coprocessor, Source data is combined with Destination data, under the control
of Pattern data, and the result is written back to the Destination. In addition Mask data can be included in
the operation to selectively inhibit updating of Destination data

"Source data" can be either Foreground Source or Background Source on a pixel-by-pixel basis. The Fore
ground Source is combined with the Destination using the Foreground Mix, the Background Source is com
bined with the Destination using the Background Mix. It is the Pattern that determines whether the Source
and Mix are Foreground or Background for a particular pixel. If the Pattern pixel is "1", Source and Mix are
Foreground, if it is "0", they are Background.

The Foreground and Background Sources can each be either a fixed color over the whole operation, or
pixel data taken from the Source Pixel Map. Two fields in the Pixel Operation Register determine whether
fixed colors or Source Pixel Map data is used in an operation. The fixed colorthat can be used as the Fore
ground Source is called the Foreground Color and is stored in the Foreground Color Register. The fixed
color that can be used as the Background Source is called the Background Color and is stored in the Back
ground Color Register.

The possible combinations of Source, Destination and Pattern are shown below'

. Pattern Pixel = 1 (Foreground Source)

- New Destination Pixel = Old Destination Pixel Fgd OP Foreground color

- New Destination Pixel = Old Destination Pixel Fgd OP Pixel Map Source

. Pattern Pixel = 0 (Background Source)

- New Destination Pixel = Old Destination Pixel BgdOP Background color

- New Destination Pixel = Old Destination Pixel Bgd OP Pixel Map Source

In the above, Fgd OP means the logical or arithmetic function specified in the Foreground Mix Register.
Bgd OP means the logical or arithmetic function specified in the Background Mix Register.

The above operations can be overridden by the contents of the Mask map. If the Mask pixel is 0, the Desti
nation pixel is not modified. If the Mask pixel is 1, the selected operation is applied to the Destination pixel.

Mixes:

The Foreground and Background mixes provided by the XGA are independent. The XGA provides all logical
mixes of two operands and six arithmetic mixes. The arithmetic-mixes are the ones available through the
Adapter Interface The mixes provided are shown in Table 4.3

72 OEK 25800 September 1991



61

Code(hex) Function

00 zeros

01 source AND dest

02 source AND NOT dest

03 source

04 NOT source AND dest

05 dest

06 source XOR dest

07 source OR dest

08 NOT source AND NOT dest

09 source XOR NOT dest

OA NOT dest

OB source OR NOT dest

OC NOT source

OD NOT source OR dest

OE NOT source OR NOT dest

OF ones

10 maximum

11 minimum

12 add with saturate

13 subtract (dest-source) with saturate

14 subtract (source-dest) with saturate

15 average

Table 4.3 Mixes provided by XGA

Mix Codes 16 hex to FF hex are Reserved.

The term 'saturate' implies that if the result of an arithmetic operation is greater than all' 1's, the final result
under saturate remains all' 1'so Similarly if the result of an arithmetic operation is less than '0', the final
result under saturate remains at '0'.

Breaking the ALU Carry Chain:

It may be required to limit the operation of the ALU to certain bits In a plxel (for example to perform an opera
tion on both the upper and lower four bits of an 8 bit pixel independently). In this case the user would not
want arithmetic operations to propagate a carry from one group of bits in the pixel to the next. One solution
is to use the XGA Pixel Bit Mask to ensure that only one component of the pixel is processed at a time.
The disadvantage of this technique is that the operation must be repeated once for each component in the
pixel.

The Carry Chain Mask: The XGA provides an alternative mechanism that allows pixels with component
fields to be correctly processed in one pass. The user can specify a mask that determines how carry bits
are propagated in the ALU (Arithmetic and Logic Unit). By loading the appropriate mask in the Carry Chain
Mask Register before performing an operation involving either or bo~h an arithmetic operation or color com
pare, the user effectively divides-the pixel into independent fields The mask prevents the ALU carry being
propagated across the field boundaries.

Each bit in the mask enables or disables the propagation of the carry from the corresponding bit In the ALU
to its more significant neighbor. The mask i's N-1 bits wide for a pixel N bits wide as the carry from the most
significant bit of the ALU is not propagated.

72 OEK 25800 September 1991



62

An example Carry Chain Mask for an 8-bit pixel with two 4 bit fields could be:

7 6 5 4 3 2 1 o

'---------------------- ----J

Figure 4 23 Example Carry Chain Mask for an 8 bit pixel

Bits outside the required mask size for a given pixel size need not be written In the register.

Generating The Pattern From The Source:

Pattern data for an operation can be supplied by anyone of Pixel Maps A, B or C, or can be fixed to '1 '
(Foreground Source) throughout the operation. In addition to these four possibilities, Pattern data can also
be internally generated by the coprocessor from Source Pixel Map data A comparison operation is per
formed on each Source pixel and the Pattern data is generated depending on the result.

The comparison operation compares the Source pixel to '0' For any Source pixel with a value of '0', a '0'
(Background) Pattern pixel is generated. For any non-zero Source pixel, a '1 ' (Foreground) Pattern pixel
is generated. The internally-generated Pattern is then used to select between Foreground and Background
Sources and Mixes in the usual way. When the Pattern IS internally generated, the coprocessor ignores
the Pattern Pixel map contents.

This capability allows the Background Source data and Mixto be forced for all '0' value pixels in the Source.
In particular it allows a 'transparency' function to provided, whereby, for example, a multi-bit character can
be drawn onto a Destination with the Destination data 'showing through' any '0' (black) pixel in the Source
character definition

Color Expansion:

If the Source pixels for an operation have fewer bits-per-pixel than the Destination pixels, the Source pixels
must be 'expanded' to be the same size as those In the Destination before they are combined The process
is referred to as 'color expansion'

The major use of Color Expansion is to draw 1 bit-per-pixel character sets on 'n' bit-per-pixel Destinations
The Coprocessor performs thiS function in hardware, but does not have a Color Expansion Look-Up-Table
(LUT). Instead, the 1 blt-per-plxel character map should be defined as the Pattern map. The Pixel Opera
tions Register should be programmed to use Foreground and Background Color Registers and not the
Source Map. The Foreground and Background Color registers act as a two-entry Calor Expansion LUT in
this case, and the character map is correctly expanded to the number of bits-per-pixelln the Destination

Pixel Bit Masking:

The Pixel Bit Mask allows any combination of bits in a plxel in the Destination to be protected from update
, (being written). A mask value should be loaded to the Pixel Bit Mask register to selectively enable or disable
updating of Pixel bits as required.

This mask IS entirely analogous to the Plane Mask in SUbsystems which are plane as opposed to packed
pixel oriented

When the Destination bits-per-pixel is less than 8 bits, only the low order bits of the Pixel Bit Mask register
are significant.

A bit that is not write enabled is prevented from affecting either anthmetic operations or the underpaint com
parison. In effect, masked bits are completely excluded from the operation or comparison

Color Compare:

The value that the Destination pixels are compared with is stored in the Calor Compare Value Register. The
Color Compare Condition Register Indicates the condition under which the Destination update is Inhibited.
The possible conditions are shown In Table 4.4.

72 OEK 25800 September 1991



63

Condition Code Condition

0 always true(disable update)

1 Destination data > Color compare value

2 Destination data = Color compare value

3 Destination data < Color compare value

4 always false (enable update)

5 Destination data > = Color compare value

6 Destination data < > Color compare value

7 Destination data < = Color compare value

A comparison result of 'true' prevents update to the Destination.

Table 4.4 Color compare conditions.

4.6.6 Controlling Coprocessor Operations

Starting a Coprocessor Operation:

Coprocessor operations are started by writing the most significant byte of the Pixel Operations register
An exception to this is the Draw and Step function, for details see 'Draw and Step' on page 51.

Suspending a Coprocessor Operation:

Coprocessor operations can be suspended before they have completed The state of the Coprocessor,
including internal register contents, can then be rapidly read to allow task state saving. A previous task
can be restored through the same data port, and the restored operation restarted.

A field in the Coprocessor Control register is used to suspend and restart Coprocessor operations

Terminating a Coprocessor Operation:

Operations can be terminated before they have completed. The state of the Coprocessor registers that are
updated as the operation proceeds is undefined after the operation is terminated, and their contents should
thus not be rei ied upon Section 4.7 detai Is which registers are updated as an operation proceeds

A field in the Coprocessor Control register is used to terminate operations

4.6.7 Coprocessor Operation Completion

There are two methods by which the host can detect the completion of a Coprocessor operation:

Receive an Operation Complete interrupt from the XGA

2 Poll the Coprocessor Busy bit in the Coprocessor Control Register

These methods are described below:

Coprocessor Operation Complete Interrupt: The coprocessor provides an Operation Complete Interrupt
that can interrupt the system on completion of an operation. The interrupt is enabled by a bit in the' Interrupt
Enable Register (Address: 21 x4)' on page 21 and its status is indicated by a bit in the' Interrupt Status Regis
ter (Address: 21 x5)' on page 21 .

Regardless of the state of the Operation Complete interrupt enable bit, the status bit is always set to '1'
on completion of an operation. The application should ensure that this bit is reset before starting an opera
tion This is done by writing a '1 ' back to the status bit

If the interrupt enable bit is '1 ' then the completion of an operation not only sets the interrupt status bit, but
also causes an interrupt to be raised. Again, the host processor should reset the interrupt by writing a '1'
back to the status bit after servicing the interrupt.

72 OEK 258 00 September 1991



64

CoprocessorBusy Bit: The Coprocessor Busy bit in the Coprocessor Control register indicates if the copro
cessor is executing an operation. It is set to '1' by the hardware when the Coprocessor is executing an
operation and reset to '0' when the operation completes. Applications can poll this bit to determine if the
Coprocessor is busy. See Section 14.3

Accesses To The Coprocessor During An Operation:

When the coprocessor IS executing an operation. the system processor can only perform read accesses
to the coprocessor registers Write accesses can corrupt operation data and are therefore not permitted.

If the system processor attempts to write data to the coprocessor registers during an operation, the copro
cessor allows the access to complete, and the currently executing operation can be corrupted. The copro
cessor raises an Interrupt to the host system to Indicate that a write access occurred during an active opera
tion and that the operation may have been corrupted. This interrupt is called the CoprOCt~sor Access
Rejected Interrupt. An enable bit and status bit exist in the the 'Interrupt Enable Register (Address: 21x4)'
on page 21 and 'Interrupt Status Register (Address' 21x5)' on page 21 for this interrupt.

There IS one exception to this rule. The Coprocessor Control register can be wntten dunng an operation.
See 'Coprocessor Control Register (Offset: 11)' on page 69.

4.6.8 Coprocessor State Save/Restore

When operating in a multitasking environment it IS necessary to save and restore the state of the display
hardware when sWitching tasks

It is possible that a task switch IS required when the Coprocessor is in the course of executing an operation.
Thus not only the contents of registers visible to the host system but also contents of internal registers (the
'state' of the Coprocessor) must be saved/restored. The Coprocessor has special hardware that allows
it to suspend the execution of an operation and efficiently save and restore task states

Suspending Coprocessor Operations:

At any time during the execution of a Coprocessor operation, the operation can be suspended by writing
to a bit in the Coprocessor Control Register. Any currently executing memory cycle is completed, after
which the Coprocessor suspends the operation. The system can then save and restore the Coprocessor
contents as described below, and restart the restored operation by clearing the bit in the Coprocessor Con
trol Register.

4.6.9 Save/Restore Mechanism

The Coprocessor provides two special 32-bit Save/Restore Data Ports through which all the coprocessor
state data passes when the state is being saved or restored. The number of double-words that should be
read or written is determined by two read only registers: the State Length registers, A and B. The amount
of data to be saved/restored is less than 1 Kbyte. State saving software should perform string I/O read in
structions, reading data from the two Save/Restore Data Ports in turn into memory. The coprocessor hard
ware automatically provides successive double-words of data on successive reads. After the state has
been saved, the Coprocessor is in a reset state.

Restoring the state of the Coprocessor IS performed uSing a similar process. State data should be moved
back into the Coprocessor using string I/O write instructions. The state data should be written back into
the Coprocessor in the same order to that in which it was read (that is, first out should be first in).

Note that the exact number of double-words specified in the State Length Registers must be read/written
when saving/restoring the Coprocessor state. Failure to do this leaves the Coprocessor in an indeterminate
state

72 OEK 258 00 September 1991



65

4.7 Coprocessor Registers

The XGA Coprocessor supports two register Interface formats. The type of interface required (Intel or Moto
rola) is set when selecting the XGA Extended Graphics Mode in the Operating Mode Register.

The difference between Intel and Motorola formats is that. With two exceptions. the bytes WIthin each four
bytes of register space are reversed Thus byte 0 becomes byte 3. The two exceptions are the Direction
Steps register and the Pixel Operation register. The bytes Within these registers are not reversed because
the byte order is Important to the operation being performed

The majority of the registers are not directly readable by the host system All of those that cannot be read
directly can be indirectly read using the Coprocessor State Save/Restore mechanism See Section 4.6 9.
Only the following registers are directly readable by the host system:

• State Save/Restore Data Port

• State Length Registers

• Coprocessor Control register

• Virtual Memory Control register

• Virtual Memory Interrupt Status register

• Current Virtual Address register

• Bresenham Error Term

• Source Map X and Y Pointers

• Pattern Map X and Y Pointers

• Destination Map X and Y POInters

The contents of most Coprocessor registers are not changed dUring a Coprocessor operation. Most regis
ters therefore do not need to have their contents reloaded before starting another SImilar operation The
list below indicates which registers' contents change during an operation.

Bresenham Error Term The Error Term is updated throughout Line Draw operations.

Source Map X and Y The Source map X and Y pointers are updated for any operation that speci
fies Source Pixel Map as either or both Foreground or Background second operands in the Func
tion 0 or 1 fields in the Pixel Operations register (that is, any operation that uses the Source Pixel
Map updates these pointers).

Pattern Map X and Y The Pattern Map X and Y pointers are updated during any operation that
uses a Pattern Pixel Map (that is, any operation that does not have the Pattern field in the Plxel
Operation register set to 'Foreground').

Destination Map X and Y The Destination Map X and Y pointers are updated during all opera
tions.

The following tables show the Coprocessor register space in both Intel and Motorola formats:

72 OEK 25800 September 1991



66

XGA Coprocessor Registers- !nte! Register Format

Coprocessor Address Space

Byte 3 I Byte 2 Byte 1 I Byte 0

Page Directory Base Address 0

Current Virtual Address 4

8

State B len I State A len C

I Pixel Map Index Coprocessor Control I 10

Pixel Map n Base Pointer 14

Pixel Map n Height Pixel Map n Width 18

I Pixel Map n Format 1C

Bresenham Error Term 20

I Bresenham K1 24

Bresenham K2 28

Direction Steps 2C

30

34

38

3C

40

44

I
Dest Color Comp Bgd Mix

I
Fgd Mix 48

Cond.

Destination Color Compare Value 4C

Pixel Bit Mask 50

Carry Chain Mask 54

Foreground Color Register 58

Background Color Register 5C

Operation Dimension 2 Operation Dimension 1 60

64

68

Mask Map Origin Y Offset Mask Map Origin X Offset 6C

Source Map Y Adr Source Map X Adr 70

Pattern Map Y Adr Pattern Map X Adr 74

Dest. Map Y Adr Dest. Map X Adr 78

Pixel Operation 7C

Table 4.5

72 OEK258 00 September 1991



67
-----

XGA Coprocessor Registers- Motorola Register Format

Coprocessor Address Space

Byte 0 I Byte 1 I Byte 2 I Byte 03

Page Directory Base Address 0

Current Virtual Address 4

8

I State B len I State A len C

I Pixel Map Index ICoprocessor Control I 10

Pixel Map n Base Pointer 14

Plxel Map n Height I Pixel Map n Width 18

I Pixel Map n Format 1C

I Bresenham Error Term 20

I Bresenham K1 24

I Bresenham K2 28

Direction Steps 2C

30

34

38

3C

40

________-'---D_e_s_t_C_o_lo_r_C_o_m_p_·--!.-I B_9_d_M_i_X__--'--__F_9_d_M_iX 1 :: ICond.

Destination Color Compare Value 4C

Pixel Bit Mask rsol
-------------c-a-rry-c-h-a-in-M-as-k-------------154l

Foreground Color Register f58l
I Background Color Register 5C

I Operation Dimension 2 I Operation Dimension 1 60

I 64

I
68

I
Mask Map Origin Y,Offset I Mask Map Origin X Offset 6C

I Source Map Y Adr I Source Map X Adr 70

I Pattern Map Y Adr I Pattern Map X Adr 74

I Dest Map Y Adr Dest. Map X Adr j78l
L------------p-i-xe-I-o-p"'--e-r-at-Io-n-------------I~

Table 4.6

72 OEK 25800 September 1991



68

4.7.1 Register Usage Guidelines

Table 4.5 and Table 4.6 are summaries of the Coprocessor registers for Intel and Motorola format registers
respectively.

The following points should be noted when accessing registers detailed in this chapter:

Reserved Register Bits-

• Register Bits marked with a '-' are reserved and must be masked out if a test is to be per
formed on the register contents. If non reserved bits of the same register are being updated,
these bits must be written to with '0'.

• Register Bits marked with a 'I' are reserved and must be masked out if a test is to be per
formed on the register contents. If non reserved bits of the same register are being updated,
these bits must be preserved. Therefore a Read-Modify-Write operation is recommended.

Reserved Registers. Unspecified Registers, or registers marked as Reserved, in the XGA copro
cessor address space are reserved. They must not be written to or read from.

Write Only Registers. On a read, the values returned from these registers are Reserved and Un
specified.

Read Only Registers. The contents of these registers must not be modified.

Counters should not be relied upon to wrap from the high value to the low value.

Register fields defined with valid ranges must not be loaded with a value outside the specified
range.

Register field values defined as reserved must not be written.

The following sections describe the Coprocessor registers in detail. Unless stated otherwise, the register
definitions are in Intel Format.

4.7.2 Virtual Memory Registers

The XGA Coprocessor Virtual Memory Implementation is detailed in Section 5.4.

Page Directory Base Address Register (Coprocessor Registers, Offset: 0)

This register is detailed in Section 5.5.1.

Current Virtual Address Register (Coprocessor Registers, Offset: 4)

This register is detailed in Section 5.5.2.

72 OEK 258 00 September 1991



69

4.7.3 State Save/Restore Registers

The following registers allow the internal state of the Coprocessor to be efficiently saved and restored. Sec
tion 4.6.9 describes this mechanism.

Coprocessor Control Register (Offset: 11)

This register indicates if the coprocessor is currently executing an operation. In addition, the current Copro
cessor operation can be terminated or suspended by writing to this register.

The format of this register when writing is as follows:

7 6 543 2 1 0

CCITOP D

The format of this register when reading IS as follows:

7 654 3 2 1 0

~ITOP D

Coprocessor Busy (BSy, bit 7): Reading this bit indicates whether the coprocessor is currently ex
ecuting an operation. If the Busy bit is '1', the coprocessor is currently executing an operation.
If it is '0', the Coprocessor is idle

Terminate Operation (TOp, bit 5): Coprocessor Operations can be terminated by writing a '1 ' to the
Terminate Operation bit. The application should then ensure that the operation has terminated be
fore proceeding. It can do this either by waiting for the Operation Complete interrupt (if enabled),
or it can poll the Coprocessor Busy bit until the coprocessor goes 'Not Busy' (bit = '0').

After the Coprocessor has terminated the operation it automatically clears the Terminate Opera
tion bit to '0'.

The Coprocessor is returned to its initial power-on state, with Coprocessor interrupts masked off,
and certain other register bits reset. All registers should be assumed invalid and reprogrammed
before another operation is initiated.

Suspend Operation (OpS, SOp, bits 4,3): Coprocessor Operations can be suspended by writing
a '1' to the Suspend Operation bit. The Operation Suspended bit is then set to '1 ' by the Coproces
sorwhen it has suspended the operation. The OpS bit should therefore be polled by the host sys
tem processor to ensure that an operation has been suspended before saving/restoring is started.

Writing a '0' to the SOp bit restarts a suspended Coprocessor operation This should be done
to restart a restored operation after a task switch. When the operation restarts, the Coprocessor
resets OpS to '0'.

The action of suspending an operation causes the TLB (Translate Look-aside Buffer,
Section 5.4.2) to be flushed.

State Save/Restore (SR, bit 1): This bit selects whether to save or restore the Coprocessor state.
When set to a '0', a state restore can be performed, when set to a '1', a state save can be per
formed. The Coprocessor Control Register must be written, with the Suspend Operation bit set
and the Save/Restore bit set appropriately before each State Save or State Restore.

State Length Registers (Offset: C & D)

These read-only registers return the length, in double-words, of the two parts, A and B, of the Coprocessor
State for save and restore.

72 OEK 258 00 September 1991



70

Save/Restore Data Ports (I/O Index: C &D)

These registers are directly mapped to I/O address space and do not appear in the Coprocessor register
summary. However they are Coprocessor registers and are described here.

These registers are used to save and restore the two parts, A and B, of the internal state of the Coprocessor.
After a state save/restore is initiated, string I/O reads/writes should be executed from/to these registers.
The data can be read/written using any combination of byte, word or dword accesses, provided that the
exact number of dwords specified in the State Length registers is read/written. Failure to read/write the cor
rect amount of data leaves the Coprocessor in an indeterminate state

Data should be written back to this port in the same order as it was read (I.e. first out, first In).

4.7.4 Pixel Interface Registers

The following is a detailed description of the Coprocessor PI registers.

Pixel Map Index Register (Offset: 12)

7 6 5 4 3 2 0

CCCr-=-CC~~1

This is a WRITE ONLY register

Each Pixel Map used in the XGA is described by four registers, as follows:

• The Pixel Map Base Address register

• The Pixel Map Width register

• The Pixel Map HeIght register

• The Pixel Map Format register

Each Pixel Map has its own copy of these registers, so there are four copies of these registers in the XGA,
one for each of:

• The Mask Map

• Pixel Map A

• Pixel Map B

• Pixel Map C

Only one of these banks of Pixel Map registers is visible to the host system at any time, and the Pixel Map
Index register is used to select to which of the Maps the registers apply. The encoding of the 4-bit Pixel
Map Index register is shown in Table 4 7.

Pixel Map Index

00 IMask Map

01 IPixel Map A

10 IPixel Map B

11 IPixel Map C

Table 4.7 Pixel Map Index register encoding

Before loading the Pixel Map Base Address, Width, Height, and Format for a particular Map, the program
mer must set up the Pixel Map Index register to point to the required Map's registers For example, to set
up Map B's registers, the Pixel Map Index should first be loaded With '10'b

72 OEK 258 00 September 1991



Pixel Map n Base Pointer (Offset: 14)

31

L
This is a WRITE ONLY register

Address

o

71

It specifies the byte address in memory of the start of a Pixel Map. If virtual address mode is enabled, this
address is a virtual address, otherwise It IS a phYSical address.

Pixel Map n Width (Offset: 18)

Pixel Map n Width

15

L
14 13 12 11 10 9 8 7 6 5 4 3 2 o

This is a WRITE ONLY register and can be loaded with any value in the range 0 to 4095.

It specifies the width of a Pixel Map The width is measured in pixels, that is, independent of the number
of bits/pixel

Widths are used during address stepping to specify the width of the pixel map Steps with a Y direction
component are achieved by the hardware adding/subtracting the width ±O or 1.

The plxel map width is also used for wrapping the Source and Pattern maps, or to implement the fixed scis
sor boundary around the Destination map

The value loaded in the width register should be 1 less than the bitmap width For a bitmap that IS 1024
plxels wide, the width register should be loaded with 1023 (hex 03FF)

Pixel Map n Height (Offset: 1A)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
_1 PixeIMapnHe~ 1

This is a WRITE ONLY register and can be loaded with any value in the range 0 to 4095.

It specifies the height of a Pixel Map The height IS measured in pixels, that is, Independent of the number
of bits/pixel.

The pixel map height is used for wrapping the Source and Pattern maps, or to implement the fixed scissor
boundary around the Destination map.

The value loaded in the height register should be 1 less than the plxel map height. For a bltmap that is 768
pixels high, the height register should be loaded with 767 (hex 02FF).

72 OEK 258 00 September 1991



72

Pixel Map n Format (Offset: 1C)

7 6 5 4 3 2 1 0

C~,--_P_S~

This register is a WRITE ONLY register.

It specifies the format of a Pixel Map as detailed in the table below:

PixelOrder

PO 0 IntelOrder

1 Motorola Order

Pixel Size

PS 000 1 bit

001 2 bits

010 4 bits

011 8 bits

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Motorola/lntel Format (PO, Bit 3): This bit selects the format for the memory-to-screen mapping.
When set to '0', the pixel map is Intel-ordered; when set to '1', the pixel map is Motorola-ordered.
Section 4.6 describes the difference in formats.

Pixel Size (PS, Bits 2-0): This field specifies the number of bits/pixel in the pixel map. Pixel maps
occupied by the Source or Destination map can be 1, 2, 4, or 8 bits-per-pixel. The Pixel map occu
pied by the Pattern map must be 1 bit-per-pixel. Programming the Pattern to be taken from a Pixel
Map that does not contain 1-bit pixels produces undefined results.

Pixel Maps A, Band C

Pixel Maps A, Band C are all described by similar registers. The different maps are merely 3 instances
of pixel maps that can have different locations in memory, sizes and formats.

It should be remembered that the Pattern map used by the XGA must be 1 bit-per-pixel. It is the responsibil
ity of the user to ensure that the Pattern map resides in a Pixel Map that is 1 bit-per-pixel. Failure to do this
produces undefined results.

Mask Map

The Mask Map has a Base Pointer, Width, and Height that are similar to those of Pixel Maps A, B, and C.

The Mask Map Format register differs from Maps A, B, and C in that only the Motorola/lntel format bit of
the Mask Map is programmable by the user. This acts in the same way as the bit for Maps A, Band C. The
number of bits-per-pixel is assumed to be 1 bit-per-pixel. However, the bits-per-pixel should always be
programmed to 1 bit-per-pixel to ensure future compatibility.

72 OEK 258 00 September 1991



73

Bresenham Error Term E (Offset: 20)

13

Bresenham Error Term

15 14

L __.
12 11 10 9 8 7 6 5 4 3 2 o

This register can be written and read.

It specifies the Bresenham Error Term for the Draw Line function. The value is a signed quantity, calculated
as «2*deltaY) - deltaX) after normalization to first octant.

This register must be written as a 16-bit sign extended two's complement number in the range -8192 to
+8191.

Bresenham Constant K1 (Offset: 24)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Bresenham Constant K1

This register is a WRITE ONLY register.

It specifies the Bresenham Constant, K1, for the Draw Line function. The value is a signed quantity, calcu
lated as 2*deltaY after normalization to first octant.

This register must be written as a 16-bit sign extended two's complement number in the range -8192 to
+8191.

Bresenham Constant K2 (Offset: 28)

Bresenham Constant K2

15

L
14 13 12 11 10 9 8 7 6 5 4 3 2 o

This register is a WRITE ONLY register

It specifies the Bresenham Constant, K2, for the Draw Line function. The value is a signed quantity, calcu
lated as 2*(deltaY - deltaX) after normalization to first octant.

This register must be written as a 16-bit sign extended two's complement number in the range -8192 to
+8191.

72 OEK 258 00 September 1991



74

Direction Steps Register (Offset: 2C)

This is a WRITE ONLY register.

The byte order of this register is independent of whether the Intel or Motorola register interface is enabled.
For convenience, this register is also shown as it would appear in a 32 bit register in a Motorola style pro
cessor.

Intel View of Register

byte 3 byte 2 byte 1 byte 0

31 0

L step code 4 L step code 3 I step code 2 I step code 1 I
------ ----------------------

Motorola View of Register

byte 0 byte 1 byte 2 byte 3

Lstep code 4__Lstep code 3__Lstep code 2__Lstep code 1__1

This register is be used to specify up to 4 Draw and Step codes to the coprocessor and to initiate a Draw
and Step operation.

The action of writing data to byte 3 of this register initiates a Draw and Step operation. Therefore a Draw
and Step operation can be initiated by a single 32 bit access, by two 16 bit accesses where bytes 2 & 3
are written last, or by four byte accesses where byte 3 is written last. If multiple Draw and Step operations
are required with the same Draw and Step codes, the operation can be initiated by simply writing to byte 3.

Before Initiating a Draw and Step operation, the Pixel Operation Register must be configured to set up the
data path and flags for the Draw and Step operation See Figure 4.14 for full details

FO,reground Mix Register (Offset: 48)

7 6 5 4 3 2 1 0

L Foreground Mi_X 1

This is a WRITE ONLY register

It holds the foreground mix value that specifies a logic or arithmetic function to be performed between the
Destination and Function 1 second operand pixels during an operation where the Pattern pixel value is 1.

See Section 4.6.5 for details and mix functions available.

Background Mix Register (Offset: 49)

7 654 3 2 1 0

L Background M_iX ~

This is a WRITE ONLY register.

It holds the background mix value that specifies a logic or arithmetic function to be performed between the
Destination and Function 0 second operand pixels during an operation where the Pattern plxel value is O.

See Section 4.6.5 for details and mix functions available.

72 OEK 258 00 September 1991



75

Destination Color Compare Condition (Offset: 4A)

7 654 3 2 0

er -- C-C =-__I --- Qonditio_n_1

ThiS is a WRITE ONLY register.

Condition (Bits 2-0): ThiS three bit field specifies the Destination Color Compare Condition under which
Destination update is inhibited. The Condition IS encoded as follows

Destination Color Compare Condition
----

000 Always true (disable update)

001 Dest > col comp value

010 Dest = col comp value

011 Dest < col camp value

100 Always false (enable update)

101 Dest > = col camp value

110 Dest < > col comp value

111 Dest < = col comp value

Destination Calor Compare Value (Offset: 4C)

31

Destination Calor Compare Value

o

ThiS register IS a WRITE ONLY register.

It contains the comparison value with which the Destination pixels are cornpared when Color Compare is
enabled. Only the corresponding number of bits-per-pixel in the Destination are required In this register (for
example, if the Destination is 4 bits-per-pixel, only the 4 low order bits of this register are used). Therefore
the bits of this register more significant than the number of bits per pixel need not be written.

See page 62 for details of the Color Compare function.

Pixel Bit Mask (Plane Mask) (Offset: 50)

31

Pixel Bit Mask

o

ThiS register is a WRITE ONLY register.

It determines which bits within each pixel are subject to update by the coprocessor. A l1 ' means the corre
sponding bit is enabled for updates A '0' means the corresponding bit is not updated

A bit that is not write enabled is prevented from affecting either arithmetic operations or the Destination
Calor Compare comparison. In effect, masked bits are completely excluded from the operation or compari
son. Only the corresponding number of bits-per-pixel in the Destination are required in this register (for ex
ample, if the Destination is 4 bits-per-pixel, only the 4 low order bits of this register are used) Therefore
the bits of this register more significant than the number of bits per pixel need not be written.

See page 62 for details of the Pixel Bit Mask Function.

72 OEK 25800 September 1991



76

Carry Chain Mask (Offset: 54)

31 o
Carry Chain Mask

____________....J

This register is a WRITE ONLY register

It contains a mask up to 31 bits wide. The mask used to specify howthe carry chain ofthe ALU is propagated
when performing arithmetic update mixes and color compare operations

'0' in the mask means that the carry out of this bit position of the ALU is not to be propagated to the next
significant bit position. A '1' in the mask means that propagation is to take place. Therefore the pixel value
can be 'split' into sections within the pixel.

Only the corresponding number of bits-per-pixel in the Destination are required in this register (for example,
if the Destination is 4 bits-per-plxel, only the 4 low order bits of this register are used). Therefore the bits
of this register more significant than the number of bits per pixel need not be written. Note that there is no
carry out of the most-significant bit of the Pixel irrespective of the setting of the corresponding Carry Chain
mask bit.

See page 61 for details on the Carry Chain function.

Foreground Color Register (Offset: 58)

31 o
~ Foreground ColorL- _

This register is a WRITE ONLY register.

It holds the foreground colorto be used during Coprocessor operations. The foreground color can be speci
fied as the Foreground Source by setting up the appropriate field in the Pixel Operation Register.

Only the corresponding number of bits-per-pixel in the Destination are required in this register (for example,
if the Destination is 4 bits-per-pixei, only the 4 low order bits of this register are used) Therefore the bits
of this register more significant than the number of bits per pixel need not be written

o
Background Color ~
-------------

Background Color Register (Offset: 5C)

31

c
This register IS a WRITE ONLY register.

It holds the background color to be used during Coprocessor operations. The background color can be
specified as the Background Source by setting up the appropriate field in the Pixel Operation Register.

Oniythe corresponding number of blts-per-plxel in the Destination are required in this register (for example,
if the Destination is 4 bits-per-pixel, only the 4 low order bits of this register are used) Therefore the bits
of this register more significant than the number of bits per pixel need not be written.

72 OEK 258 00 September 1991



Operation Dimension 1 (Offset: 60)

31

Operation Dimension 1

This register is a WRITE ONLY register.

o

77

It specifies the width of the rectangle to be drawn by the PxBlt function, or the length of line in a line draw
operation. The value IS an unsigned quantity, and should be 1 less than the required width. Thus to draw
a line 10 pixels long, the value 9 should be written to this register

The value written to this register must be within the range 0 to 4095.

Operation Dimension 2 (Offset: 62)

31 0

L operat,on Dimension 2 1

This register is a WRITE ONLY register

It specifies the height of the rectangle to be drawn by the PxBIt function The value is an unsigned quantity,
and should be 1 less than the required height Thus to draw a rectangle 10 pixels high. the value 9 should
be written to this register.

The value written to this register must be within the range 0 to 4095.

Mask Map Origin X Offset (Offset: 6C)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L Mask Map Origin X offse_t 1

This register is a WRITE ONLY register

It specifies the X offset of the Mask Map ongln relative to the origin of the Destination Map

The value written to this register must be within the range 0 to 4095.

Mask Map Origin Y Offset (Offset: 6E)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
Mask Map Origin Y Offset

This register is a WRITE ONLY register

It specifies the Y offset of the Mask Map origin relative to the ongin ~f the Destination Map.

The value written to this register must be within the range 0 to 4095.

72 OEK 25800 September 1991



78C--- _

Source X Address (Offset: 70)

15 14 13 12 11 10

L __
9 8 7 6

Source X Address

5 4 3 2 o

This register can be written and read.

It specifies the X coordinate of the Coprocessor operation Source pixel.

The value written to this register must be within the range 0 to 4095.

Source Y Address (Offset: 72)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0c= -----S-o-u-rC-e-Y-A-dd-r-e-s-s----------------1

This register can be written and read.

It specifies the Y coordinate of the Coprocessor operation Source pixel.

The value written to this register must be within the range 0 to 4095.

Pattern X Address (Offset: 74)

15 14 13 12 11 10

L __

This register can be written and read.

9 8 7 6

Pattern X Address

5 4 3 2 o

J

It specifies the X coordinate of the Coprocessor operation Pattern pixel.

The value written to this register must be within the range 0 to 4095.

Pattern Y Address (Offset: 76)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 . p_att__e_r_n_Y_A_d_d_r_e__ss I

This register can be written and read

It specifies the Y coordinate of the Coprocessor operation Pattern pixel.

The value written to this register must be within the range 0 to 4095.

72 OEK258 00 September 1991



79

Destination X Address (Offset: 78)

Destination X Address

15

L
14 13 12 11 10 9 8 7 6 5 4 3 2

This register can be wntten and read.

It specifies the X coordinate of the Coprocessor operation Destination pixel The Destination X coordinate
can be negative if required.

This register must be written as a 16 bit sign extended two's complement number In the range -2048 to
+6143

Destination Y Address (Offset: 7A)

2345 o------1
------------

6789

Destination Y Address

1011121315 14

L--
----

This register can be wntten and read.

It speCifies the Y coordinate of the Coprocessor operation Destination pixel. The Destination Y coordinate
can be negative If required

This register must be written as a 16 bit sign extended two's complement number in the range -2048 to
+6143

Pixel Operations Register (Offset: 7C)

This register is a WRITE ONLY register.

It is used to define the flow of data during an operation, specifies the address update function that is to
be performed, and initiates PxBlt and Line Draw operations

The byte order of this register IS Independent of whether the Intel or Motorola register interface is enabled
For convenience, this register is also shown as it would appear in a 32 bit register in a Motorola style pro
cessor.

byte 0

byte 3byte 2

byte 1byte 2

byte 1

o
e .. ._.__ L_s__o~r~~-~~~~{~J==~~1t"I=-=~=T_~~~~~I~~I~~l

byte 0

Motorola view of register

1----------------------------------.-----------------.-.----------,

I Intel view of register
I I

I byte 3 !

I
!

I

Figure 4.24 Plxel Operation Register fields

72 OEK258 00 September 1991



80

The Pixel Operation Register is a 32-bit register that controls the function of the Coprocessor Its contents
define address update operation to be performed and the path of data during the operation,

All operations. with the exception of Draw and Step, are initiated by writing to the most significant byte
of the Pixel Operations register. Therefore an operation can be initiated by a single 32 bit write. two 16 bIt
writes where bytes 2 and 3 are written last, or 4 byte writes where byte 3 IS written last The contents of the
Plxel Operation register are preseNed throughout an operation.

The field in the Pixel Operation Register are coded as follows.

Background Source (85, bits 31-30): These bits determine the Background Source that is to be
combined with the Destination when the Pattern pixel equals 0 (Background ITIIX used).

I~~:~gro-u~~~~urc~"r 00 rBackground calor

I 01 I reseNed

I

10 I Source pixel map

11 reseNed
I- L • ••__._._.__ .• ."

Foreground Source (FS, bits 29-28): These bits determine the F8reground Source that IS to be com
bined with the DestinatIon when the Pattern pixel equals 1 (Foreground mix used).

IForeground-Source----· I
rO-O--rForegro~nd col-ill'- --------- ---------------,

l :: _~::~:~xel map __ J
Step function (Step, bits 27 -24): These 4 bits determine how the Coprocessor address is modified

as pixel data are manipulated. These bits could be regarded as the Coprocessor function code.
It is writing to these bits that starts the Coprocessor operation, except for Draw and Step functions.
Draw and Step operations are started by vvriting to the Direction Steps register.

0000

0001

0010 Draw and Step Read

0011 Line Draw Read

0100 Draw and Step Write

0101 Une Draw Wnte

0110 ReseNed

0111 Reserved

1000 PxBlt

1001 InvertIng PxBlt

1010 Area Fill PxBlt

1011 Reserved

1111

72 OEK 25800 September 1991



81

Source Pixel Map (Source, bits 23-20): These 4 bits determine the location of pixel map Source
data. The combination of these bits and the Foreground and Background Source fields determine
the data that IS to be used as the Source data for ALU functions.

Source

0000 Reserved

0001 Plxel Map A

0010 Plxel Map B

0011 Pixel Map C

0100 Reserverl

1111 Reserveci

Destination Pixel Map (Dest, bits 19-16): These 4 bits determIne the location of DestInation data
to be modified dUring an operation

----------- ---------------,
Destination

0000 Reserved

0001 Plxel Map A

0010 Pixel Map B

0011 Plxel Map C

0100 Reserved

1111 Reserved_______L . _

Pattern Pixel Map (Patt, bits 15-12): These 4 bits determine the Pattern data to be used during an
operation Code 1000 causes the Coprocessor to assume that the Pattern IS 1 across the whole
operation and therefore to use the Foreground function on all pixels This effectively turns off the
use of the Pattern Code 1001 causes the Pattern to be generated from Source data Every "0"

pixel in the Source generates a Background Pattern pixel, every non-zero plxel in the Source gen
erates a Foreground Pattern pixel.

rsteP- I
~IReserved-----------i

I

0001 I Pixel Map A I
0010 I Pixel Map B

i 0011 iPixel Map C I

I 0100 I Reserved I
I 0101 I Reserved

i 011 0 Reserved I
I 0111 I Reserved I
I 1000 I Foreground (fixed) I
I 1001 IGenerated from Source I
I 1010 I Reserved I

I I- I
I 1111 ! Reserved .---J

72 OEK 258 00 September 1991



Mask Pixel Map (Mask, bits 7-6): These bits determine how the Mask Map is used. See page 48
for details of Mask Map modes.

Mask

00 Mask Map Disabled

01 Mask Map Boundary Enabled

10 Mask Map Enabled

11 Reserved

Drawing Mode 'Register (OM, bits 5-4): This 2-bit field determines the attributes of Line Draw and
Draw and Step operations.

I~~wing Mode I

r
00 ~raw all pixels

01 draw first pixel null

10 draw last pixel null

l__~__Ldraw area boundary J

Direction Octant (Oct, bits 2-0): This 3-bit field specifies the Octant for Line Draw and PxBlt opera
tions. The coding of the octant is illustrated for Line Draw in Figure 4.18, and for PxBlt in Figure
4.20.

IDirection Octant Bit Definition

I 0 /DZ

I 1 I DY

~'L-ID_X -'

72 OEK 258 00 September 1991



83

5 XGA System Interface

5. 1 Multiple Instances

Up to eight instances of an XGA subsystem can be Installed in a system. The addressing of the I/O regis
ters, Memory Mapped Registers, and video memory for each instance IS controlled by the contents of the
XGA POS registers. See Section 5 2.

5.1.1 Multiple XGA Subsystems in VGA Mode

The VGA has only one set of addresses allocated to it Therefore it IS not possible to have multiple XGA
subsystems In VGA mode, responding to update requests, simultaneously. However, more than one XGA
sUbsystem may be in VGA mode as long as only one has VGA address decoding enabled using the Operat
ing Mode Register (Address' 21 xO) SUbsystems with VGA address decoding disabled continue to display
the correct picture. See Section 6 for further Information

Note: At no time should the XGA be disabled using the card enable bit in the XGA POS registers.

5.1.2 Multiple XGA Subsystems in 132 Column Text Mode.

When in 132 Column Text Mode, the XGA responds to VGA address decodes Therefore, the same rules
apply as for Multiple XGA Subsystems in VGA mode See Section 6 for further Information.

5.1.3 Multiple XGA Subsystems in Extended Graphics Mode

The Extended Graphics Modes are controlled by a bank of 16 I/O registers These registers are located
in one of eight possible locations As a result up to eight XGA subsystems can be installed In a system.
Each 'instance' of XGA installed is pOSitioned at a unique I/O and memory location and so each can be
used independently in the system See Section 6 for details on controlling multiple XGAs.

Similarly the XGA Coprocessor memory-mapped registers occupy a bank of 128 contiguous register ad
dresses that are mapped in memory space. These registers can also be relocated allowing up to 8 in
stances of the XGA coprocessor to coexist In a system.

The locations of these registers are controlled by the XGA POS registers See Section 5.2 for the register
detai Is and see Section 7 for programming considerations on reading and using the data contained in them

5.2 XGA P~S Registers

The XGA subsystem has movable I/O addresses for the display controller, allOWing more than one XGA
SUbsystem to be installed In a system.

All the POS registers detailed in this section are set-up during system configuration and must never be
written. All the registers are specified relative to a 'Base' address. Details of how to locate the base address
and read the registers are given In Section 7

5.2.1 Register Usage Guidelines

• All registers are 8 bits long.

• All registers are READ ONLY

• All undefined register bits (marked with '-') should be masked out if the register contents are being
tested.

• All Reserved register bits (marked with '#') should be masked out if the register contents are being
tested.

72 OEK 258 00 September 1991



84

5.2.2 Subsystem Identification Low Byte (Base + 0)

When read this register returns 'DB' hex as data.

5.2.3 Subsystem Identification High Byte (Base + 1)

When read this register returns '8F' hex as data.

5.2.4 POS Register 2 (Base + 2)

The fields in this register are as follows:

7 6 543 2 1 0

C ROM Addr __C 10DA_~I

XGA Enable (EN, Bit 0)

This bit when' 1' identified that the sUbsystem is enabled for address decoding for all non POS addresses
When '0', only POS registers can be accessed, all other accesses to the sUbsystem have no effect.

I/O Device Address (IODA, Bits 1-3)

This field specifies which set of I/O addresses has been allocated to the Display Controller Registers. The
lowest address of each set of addresses is referred to as the 'I/O Base Address'.

10DA I I/O Base Address (hex) I
000 2100

001 2110

010 2120

011 2130

100 2140

101 2150

~-----~_:~-~-----
Table 5.1

ROM Address (ROM Addr, Bits 4-7)

This field specifies which of sixteen possible 8 Kbyte memory locations has been assigned to the XGA
ROM. The ROM occupies the first 7 Kbytes of this 8 Kbyte block, the other 1 Kbyte being occupied by the
coprocessor memory-mapped registers.

The 'IODA' field above, specifies which 128 byte section within this 1 Kbyte block IS allocated to the sub
system. For example XGA instance 2 has its coprocessor registers located in the third 128 byte section
of the 1 Kbyte block. See Table 5.2.

72 OEK 258 00 September 1991



~~_~_~ ~ _'8'__'5

ROM Address ROM Address Coprocessor Register Base Address (hex)

Field Range (hex) Instance:

1 2 3 4 5 6

0000 COOOO C1BFF C1C80 C1000 C1080 C1EOO C1E80 C1FOO

0001 C2000 C3BFF C3C80 C3000 C3080 C3EOO C3E80 C3FOO

0010 C4000 C5BFF C5C80 C5000 C5080 C5EOO C5E80 C5FOO

I 0011 C6000 C7BFF C7C80 C7000 C7080 C7EOO C7E80 C7FOO

I
0100 C8000 C9BFF C9C80 C9000 C9080 C9EOO C9E80 C9FOO

0101 CAOOO CBBFF CBC80 CBOOO CB080 CBEOO CBE80 CBFOO

0110 CCOOO COBFF COC80 COOOO COD80 COEOO COE80 COFOO

0111 CEOOO CFBFF CFC80 CFOOO CF080 CFEOO CFE80 CFFOO

1000 00000 01BFF 01C80 01000 01080 01EOO 01E80 01FOO

1001 02000 03BFF 03C80 03000 03080 03EOO 03E80 03FOO

1010 04000 05BFF 05C80 05000 05080 05EOO 05E80 05FOO

1011 06000 07BFF 07C80 07000 07080 07EOO 07E80 07FOO

1100 08000 09BFF 09C80 09000 09080 09EOO 09E80 09FOO

1101 OAOOO OBBFF OBC80 OBOOO OB080 OBEOO OBE80 OBFOO

1110 OCOOO OOBFF 00C80 00000 00080 OOEOO 00E80 OOFOO

1111 oEOOO OFBFF OFC80 OFOOO OF080 OFEOO OFE80 OFFOO

Table 5.2 XGA ROM, Memory Mapped Register ASSignments

Video Memory Base

POS Register 4 (Base + 4)

6 543 2 1 0

~----~---------

5.2.5

7

Video Memory Base Address (Bits 7-1 )

ThiS register contains the most significant 7 bits of the address at which the XGA memory is located. Three
more bits are provided by the I/O Device Address in POS byte 1 This gives a Video Memory Base address
on a 4 Mbyte boundary.

Video Memory 4 Mbytes of Addressable Memory
Base

Instance
0-7

Figure 5 1 XGA Video Memory Base Address.

For example, if the Video Memory Base address is set to 1 and I/O Device Address 6 (instance 6) has been
selected, the XGA Video Memory is located, starting at '03800000'h (see diagram above).

Video Memory Enable (VE, Bit 0)

ThiS bit signifies whether the 4 Mbyte Aperture is available for use When thiS bit is set to 'O'b the 4 Mbyte
Aperture IS disabled, and when set to '1 'b the 4 Mbyte Aperture is enabled.

72 OEK 258 00 September 1991



86

5.3 P~S register 5 (Base + 5)

765 4 3 2 1 0

~~L-_1_M_b_yt_e_B_a_s_e_---,

1 Mbyte Aperture Base Address (1 Mbyte Base, Bits 3-0)

This field specifies where the 1 Mbyte Aperture has been positioned in system address space or if the aper
ture has been disabled. The following table describes the use of this field.

1 Mbyte Base 1 Mbyte Aperture Locn.(hex)

0000

I
Disabled

0001 00100000

0010 00200000

0011

I
00300000

0100 00400000

0101 I 00500000 I
0110 00600000

0111 00700000

1000 00800000

1001 00900000

1010

1011

1100

1101

1110

1111

OOAOOOoo
OOBOOOOO
OOCOOOOO
00000000

OOEOOOOO
OOFOOOOO

5.4 Virtual Memory Description

The XGA Coprocessor can address either real or virtual memory. When addreSSing real memory, the linear
address calculated by the Coprocessor is passed directly to the host system or local video memory. When
addressing virtual memory, the linear address from the Coprocessor is translated by on-chip Virtual
Memory Translation logic before the translated address is passed to the host system, or local Video
Memory. Virtual Address Translation is enabled or disabled by a control bit in the XGA

The Coprocessor uses two levels of tables to translate the linear address from the Coprocessor to a physI
cal address. Addresses are translated through a Page Directory and Page Table to generate a physical
address to memory pages that are 4 Kbytes in size The Page Directory and Page Tables are of the same
form as those used by the 80386 processor Paging Unit.

5.4.1 Address Translation

The linear address from the Coprocessor is divided into 3 fields that are used to look-up the corresponding
physical address. The fields are called the Directory Index, the Tabie Index and the Offset, and are illus
trated In Figure 5.2

31 22 21 12 11 o
Directory Index Table Index Offset I

--------------------------

Figure 5 2 Linear Address Fields

72 OEK258 00 September 1991



87

The location of the Page Directory is at a fixed physical address in memory that must be on apage (4 Kbyte)
address boundary. The Coprocessor has a Page Directory Base Address register that should be loaded
with the address of the Page Directory Base.

The translation process is illustrated in Figure 5.3.

_.._._-----------
Linear Address

[~~~Cl~y]--i1I~-.J~---~~}----
. ··l ---- l.fDm'l

[.--.-----~=l-+--]--J-J Pag,Page Directory~ Page Table

Page Directory
'---------------------------_._--------------'

Figure 5.3 Linear to Physical Address Translation

The Directory Index field of the linear address is used to index into the Page Directory. The entry read from
the Page Directory contains a 20-bit Page Table address and some statistical information in the low order
bits.

The 20-bit Page Table address points to the base of a Page Table in memory. The Table Index field In the
Linear address is used to index into the Page Table. The entry read from the Page Table contains a 20 bit
Page Address and some statistical information in the low order bits.

The 20-bit Page address pOints to the base of a 4 Kbyte page in memory. The Offset field in the Linear ad
dress is use to index into the Page. The entry read from the Page contains the actual data required by the
memory access.

Page Directory and Page Table Entries

The entries of the Page Directory and Page Table are very Similar. The format of an entry is shown below.

1231

~ Page Table/Page AddrL- _

o

~0'---------'

Figure 5.4 Page Directory and Page Table Entry

The top 20 bits of the entry are either the Page Table address or the Page address. The low order bits are
as follows:

Dirty Bit (D, bit 6). This bit is set before a write to an address covered by that Page Table entry occurs. The
o bit is undefined for Page Directory entries.

Accessed Bit (A, bit 5) .This bit is set for both types of entry before a read or write access occurs to an ad
dress covered by the entry.

User/Supervisor andRead/Write (U/S, R/Wbits 2,3). These bits prevent unauthorized use of Page Directory
and Page Table entries. Accesses by the Coprocessor can be defined as a Supervisor or User access de
pending on the status of the application using the Coprocessor. The access type is defined by a bit in the
VM Control Register. If the access is defined as Supervisor, no protection is prOVided and all accesses to
the Page Directory and Page Tables are permitted.

72 OEK 258 00 September 1991



88

If the access is a User access, the U/S and R/W bits are checked to ensure that access to that entry is
permitted. The meaning of these bits is shown below.

U/S R/W Access rights of User

0 0 Access not permitted

0 1 Access not permitted

1 0 Reads permitted, Writes not permitted

1 1 Reads and Writes permitted

Table 5.3 Page Directory and Page Table access rights in User mode

Present bit (P, bit 0). The Present bit indicates whether a Page Directory or Page Table entry can be used
in translation. If the bit is set it indicates that the Page Table or Page to which the entry refers is present
in memory

5.4.2 The XGA Implementation of Virtual Memory

The XGA Coprocessor operates with a Page Directory and Page Tables in the format described above. The
Coprocessor contains its own internal cache of translated addresses that avoids it having to perform the
two-stage translation process on every Coprocessor access. In the follOWing text this cache is referred to
as a Translate Look-aside Buffer or TLB.

The TLB

The TLB is shown in the following figure.

Source, Pattern & Mask entry

Destination entry

31

Linear Address Tag

Linear Address Tag

12 31 12

Real Page Address

Real Page Address

Figure 5.5 Translate Look-aside Buffer (TLB). The 'V' bits are the entry Valid bits.

The TLB has two entries, one entry for the Source, Pattern and Mask Pixel Maps and another forthe Destina
tion Pixel Map. Each entry is specifically reserved for use by one of these Maps. Each entry in the TLB con
tains the top 20 bits of a Linear address (the 'Address Tag'), an 'Entry Valid' flag bit, and the top 20 bits
of the Physical address (the 'Real Page address') corresponding to that linear address. When a Linear ad
dress is passed from the Coprocessor to the Virtual Address hardware, the top 20 bits of the Linear address
are first compared against the appropriate TLB entry Address Tag. If they match and the TLB entry flag bit
is 'Valid', the Real Page Address in that TLB entry is used as the top 20 bits of the Physical address for
that access. The bottom 12 bits of the Physical address are provided from the bottom 12 bits of the linear
address (the Offset).

If the Linear address from the Coprocessor matches the Address Tag in the TLB for the particular map in
use, the access is said to have caused a TLB "hit". If the Tag does not matCh, a TLB 'miss' occurs.

Actions that Flush the TLB. The TLB contents are flushed by the hardware under the following circum
stances:

• Whenever the Page Directory Base Address Register is written

• Whenever a Coprocessor operation is suspended (by setting the Suspend Operation bit in the
Coprocessor Control Register. (See page 69) ).

TLB Misses

If a TLB miss occurs, the Coprocessor automatically performs the two-level translation required to form the
required Page Address. The contents of the XGA Page Directory Base Address Register are used to access

72 OEK 258 00 September 1991



89

the appropriate Page Directory entry, that is in turn used to access the appropriate Page Table entry. The
Real Page Address that results from the translation process is stored in the TLB for use by sUbsequent ac
cesses that address the same Page

Memory access performed by the Coprocessor can be categorized as follows:

Read accesses Performed on the Source, Pattern, Mask, and Destination Maps

Write accesses Performed only on the Destination Map

When the Virtual Memory hardware accesses the Page Directory and Page Tables for a TLB miss, it ex
amines and updates the flags in the low order bits of the entries, as follows:

Accessed bit. Any access (read or write) sets this bit in both the Page Directory and Page Table entries.

Dirty bit. Write accesses set the Dirty bit in the Page Table entry. The Dirty bit is undefined in Page Directory
entries.

User/Supervisor and Read/Write bits. These bits are examined by the Coprocessor. The Coprocessor has
a bit programmed by the host operating system that indicates whether it is being used by a Supervisor or
User. If in User mode, the Coprocessor determines whether access is permitted depending on the state
of the User/Supervisor and Read/Write bits In the Page Directory and Page Table entries. Table 5.3 indicates
the meaning of these bits. If access is not permitted, the Coprocessor raises a VM Protection Violation
interrupt to the host system and terminates the access cycle. It is up to the host operating system to then'
take appropriate action to recover from the Protection Violation Interrupt.

Present bit. The Coprocessor examines the Present bit of both the Page Directory and Page Table entries.
If this bit is not set, it indicates that the Page Table or Page corresponding to that entry may not be resident
in memory Should this be the case, the XGA raises a VM Page Not Present interrupt to the host system.
The host operating system should then fetch the Page Table or Page and place it in memory. The access
then completes.

Remaining Page Directory or Page Table entry bits. All the other bits in the Page Directory or Page Table
entry are ignored by the Coprocessor. The Coprocessor does not modify these bits in any way, and they
can therefore be used by the operating system. Note however that it may be desirable to keep entries in
the same format as 80386 Page Directory and Page Table entry formats, and so the Intel rules on use of
the remaining bits should be followed.

System Coherency

In any Virtual Memory system where more than one device is accessing Virtual Memory contents, problems
arise over coherency. It is vital that one device does not corrupt the other's tables or Pages, and that the
tables and TLBs are kept coherent (in step) with the physical allocation of storage. The hardware mecha
nism provided by the Coprocessor is sufficient to implement coherent Virtual Memory systems. However,
system designers should take care to avoid coherency problems.

In particular, it is recommended that the 80386 and the Coprocessor do not share Page Directories or Page
Tables. Pages should not be marked as present unless they are locked in place in memory. This maintains
coherency between TLB entries in the Coprocessor and the true current allocation of real memory. It pre
vents the Operating System from moving these Pages out of memory while the Coprocessor is accessing
them.

VM Page Not Present Interrupts

When the Coprocessor detects that a Page Table or Page is not present, it raises a Page Not Present inter
rupt to the host system. The host operating system then fetches the required Page Table or Page (usually
from disk) and places it in memory. The host system can determine the faulting address by reading the
Current Virtual Address register. After the required Page Table and/or Page has been fetched, the operating
system restarts the faulting memory access by clearing the Page Not Present interrupt bit in the XGA. This
action causes the hardware to retry the access to the faulted entry.

72 OEK 258 00 September 1991



90

It is probable that the host operating system will want to switch tasks on receiving a Page Not Present inter
rupt. In this case it should suspend the Coprocessor operation in the normal way (see page 63) before
clearing the Page Not Present interrupt. The Coprocessor state should then be saved. When the task in
which the Page Not Present interrupt occurred is restarted, the Coprocessor state should be restored, the
required Page Table or Page should be placed in memory, the interrupt cleared and the Coprocessor opera
tion restarted. The interrupt must be cleared before the Coprocessor operation is restarted, otherwise fur
ther interrupts can be lost.

VM Protection Violation Interrupts

If the Coprocessor is told to access Tables or Pages that it is not permitted to (as defined by the User/Super
visor and Read/Write entry bits), the Coprocessor generates a Protection Violation Interrupt This IS general
ly indicative that something major is wrong with either the Virtual Memory system (as set up by operating
system software), or that the Coprocessor has been incorrectly programmed.

In either case the most likely course of action required is for the operating system to terminate the Copro
cessor operation and possibly terminate the faulting task. The Coprocessor operation can be terminated
by writing to a control bit in the Coprocessor Control Register. The Coprocessor behaves in a similar man
ner for Protection Violation Interrupts as it does for Page Not Present Interrupts in that clearing the interrupt
causes the hardware to retry the memory access. To avoid a repeated interrupt, the Coprocessor operation
should be terminated before the Protection Violation Interrupt is cleared.

The XGA in Segmented Systems

In a segmented system design all memory is allocated in blocks called segments. Memory within a seg
ment is guaranteed to be contiguous, and can therefore be addressed directly by the Coprocessor using
physical addresses (that is, VM is turned off). The segment must be locked in place before any Coproces
sor operation to ensure that the operating system does not reuse the memory during the operation.

When using 16 bit addressing in the 80386 (for example, under OS/2) it is not possible to define a segment
of more than 64 Kbytes. Provided that the Coprocessor data in system memory is restricted to being no
more than 64 Kbytes in length, then a single segment can be used and the Coprocessor can directly ad
dress the data using physical addresses.

Under OS/2 larger areas of memory can be requested, but are given in blocks of 64 Kbytes maximum that
are unlikely to be contiguous in real memory. If larger areas in system memory are required it is possible
for the driving software to turn on the Coprocessor VM address translation and perform ItS own memory
management using memory allocated to it.

5.5 Virtual Memory Registers

The following registers provide virtual memory support for the Pixel Interface.

5.5.1 Page Directory Base Address Register (Coprocessor Registers, Offset: 0)

31 12 0

C ~ter I - 1

This register is a WRITE ONLY register.

It contains a 20-bit pointer to the page in physical memory containing the current Page Directory for the
current task. Bits 31-12 are used, bits 11-0 are reserved and should be set to 0 when writing.

Loading this register causes the TLB to be cleared.

Note: this register can only be loaded after the XGA has been put into 'Supervisor' mode.

72 OEK 25800 September 1991



91

5.5.2 Current Virtual Address Register (Coprocessor Registers, Offset: 4)

31

L Faulting Page Address

12

L
o

This register is a READ ONLY register.

In the event of the VM hardware raising a Not Present or Protection Interrupt, the faulting page address can
be read from this register. Only bits 31-12 are significant Bits 11-0 should be masked out when read.

5.5.3 Virtual Memory Control Register (I/O Address: 21x6)

This register is directly mapped to I/O address space. It can be written and read.

7 654 3 2 1 0

I NP ~CI - I - ~I - I EV I

The fields in the Virtual Memory Control Register are shown in Figure 5.6.

Page Not Present Interrupt Enable

NP 0 Interrupt not raised on VM Page Not Present

1 Interrupt raised on VM Page Not Present

Protection Violation Interrupt Enable

PV 0 Interrupt not raised on VM Protection Violation

1 Interrupt raised on VM Protection

Protection Level

US 0 Supervisor controls XGA

1 User controls XGA

Virtual Address Lookup

EV 0 Disable Lookup

1 Enable Lookup

Figure 5.6 Virtual Memory Control Register Fields

VM Page Not Present Interrupt Enable (N~ bit 7): This bit controls the raising of an Interrupt when
a VM Page Not Present condition is detected. When this bit is set to '1 " an Interrupt is raised to
the host system when the Not Present condition is detected. When this bit IS set to '0', the Not
Present condition does not cause an interrupt to be raised. In both cases the contents of the ap
propriate VM Interrupt Status Register status bit are updated when the Not Present condition is
detected.

VM Protection Violation Interrupt Enable (PV, bit 6) This bit controls the raising of an interrupt when
a VM Protection Violation condition is detected. When this bit is set to '1', an interrupt is raised
to the host system when the Protection Violation condition is detected. When this bit is set to '0',
the Protection Violation condition does not cause an interrupt to be raised In both cases the con
tents of the appropriate VM Interrupt Status Register status bit are updated when the Protection
Violation condition is detected.

U/S bit (US, Bit 2) This bit should be set to '0' if the executing task is at privilege levels 0, 1, or 2,
(a Supervisor task) or set to '1' if the executing task is at privilege level 3 (a User task). If set to
Supervisor (0), then no protection checking is performed by the coprocessor on Page Directory

72 OEK 258 00 September 1991



92

and Page Table protection bits. If set to User (1), checking is performed, and a Protection interrupt
raised If permitted access rights are violated. The user access rights are shown in table 5.3.

Enable Virtual Address Lookup (EV, Bit 0) Setting this bit turns on the virtual address translation,
and sUbsequent addresses generated by the Pixel Interface hardware are looked up in page
tables. If this bit is not set:

• Bitmaps must be resident and contiguous

• The Pixel Map Base Addresses are physical addresses

• All addresses generated by the Coprocessor are physical addresses

• Non-paged operating systems are supported

5.5.4 Virtual Memory Interrupt Status Register (I/O Address: 21x7)

This register is directly mapped to I/O address space. It can be written and read.

7 654 3 2 0

I NP I PV I - I - I - I - CCI

The fields in the Virtual Memory Interrupt Status Register are shown below.

~
Page Not Present Interrupt

Interrupt not caused by VM Page Not Present

Interrupt caused by VM Page Not Present

~ 0

Protection Violation Interrupt

Interrupt not caused by VM Protection Violation

I 1 Interrupt caused by VM Protection Violation

Figure 5.7 Virtual Memory Interrupt Status Register Fields

VM Page Not Present Interrupt (N~ Bit 7): When a VM Page Not Present condition occurs, this bit
is automatically set to '1'. This bit can be reset to '0' by writing a '1 ' to it. This allows the value
just read to be written back to clear the bits that were set. Writing a '0' to this bit has no effect

The act of resetting this bit (by writing a '1' to it) causes the VM hardware to retry page translation.
If this bit is to be reset before the Not Present condition has been repaired, the Coprocessor opera
tion should first be suspended or terminated, otherwise a further Not Present Interrupt is generated
by the same Not Present condition.

VM Protection Violation Interrupt (PV, Bit 6): When a VM Protection Violation condition occurs, this
bit is automatically set to '1'. This bit can be reset to '0' by writing a '1' to it. This allows the value
just read to be written back to clear the bits that were set. Writing a '0' to this bit has no effect.

The act of resetting this bit (by writing a '1 ' to it) causes the VM hardware to retry page translation.
If this bit is to be reset before the Protection Violation condition has been repaired, the Coproces
sor operation should first be suspended or terminated, otherwise a further Protection Violation In
terrupt is generated by the same Protection Violation condition. Most operating systems do not
attempt to recover from a Protection Violation condition, and the gUilty Coprocessor operation is
terminated.

72 OEK 258 00 September 1991



o (R)

DmJmoS

•

72 OEK 258 00

XGA .
programming
considerations

93

September 1991



94

72 OEK 258 00 September 1991



95

6 Adapter Co-existence

6.1 Co-existence with VGA

As the VGA traditionally uses fixed register and mapped memory address spaces, it is characteristic of
the VGA adapter that only one VGA may "exist" at anyone time without a system failure. When the XGA
sUbsystem is installed alongside either a VGA or another XGA sUbsystem, this condition is fulfilled by only
enabling one of the VGA capable subsystems as an active VGA

An application can be written to use multiple coexisting VGA or XGA sUbsystems in VGA mode only by
alternately disabling and re-enabling the various VGA's Never enable more than 1 VGA concurrently. A
disabled or inactive VGA retains its visible displayed data, and the overall effect is that of a multiple VGA
application.

To successively enable and disable multiple coexisting XGA sUbsystems in VGA mode, use the Operating
Mode Register (21xO).

6.2 Co-existence with Other XGA Subsystems

Up to 8 XGA sUbsystems may be installed in a system.

Multiple XGA subsystems can co-exist in extended graphics mode, each occupying its own separate
ranges of 10 and memory space. An application written to exploit multiple XGA sUbsystems in this mode
can access each instance of the sUbsystem without enabling and disabling the sUbsystem(s) between ac
cesses.

To comply With the restriction on VGA co-existence, such a multiple display subsystem application should
record, on initialisation, which XGA sUbsystem (if any) was originally in VGA mode. On termination only
that sUbsystem should be returned to VGA mode.

72 OEK 258 00 September 1991



96

7 Locating the XGA Subsystem

Before using the sUbsystem, it is first necessary to locate the sUbsystem in I/O and memory space. This
is done by interrogating and interpreting the POS data for the subsystem.

7.1 Reading POS Data

To do this, selectively enable for setup each adapter in the system, including the system board video sub
system, and examine the POS ID. Do this using the System Services BIOS call1NT 15h, AH = C4h Program
mable Option Select as documented in the IBM Personal System/2 and Personal Computer BIOS Interface
Technical Reference The following calls are relevant, and are used as follows:

AL = OOh Return Base POS card register address Use this call once only to determine the base
10 register address for reading POS data from all adapters in the system

AL = 01 h Enable Slot for Setup Used to selectively enable each adapter to enable the POS data
to be read for that adapter.

If this call is used for adapter 0 (the system board), the POS data returned using the I/O ports is
that for the system board itself, rather than that for the system board Video sUbsystem. To access
the system board Video sUbsystem POS data do not use this call, but instead write ODFh to Port
94h using the OUT instruction.

The POS data bytes forthe selected adapter may then be read by r,sading (IN) from the 6 consecu
tive I/O port addresses starting with the Base register address returned by the "Return Base POS
card register address" subfunction.

Base, Base + 1 POS ID

Base + 2 - 5 POS data bytes 0 - 3

Interrupts should be disabled while each card is Enabled for Setup

AL = 02h Card Enable Used to restore each adapter to its normal Enabled state immediately after
POS data has been read for that adapter.

To re-enable the system board video adapter, do not use this call, but instead write OFFh to Port
94h using the OUT instruction.

Interrupts should remain disabled until each adapter has been "Enabled" in this way.

If the POS ID matches one of the list of POS IDs allocated to the XGA, and future register compatible sub
systems, then the search is complete. The POS IDs a'IIocated to the XGA subsystems are as follows:

8FD8h
8FD9h
8FDAh
8FDBh

On successfully matching POS ID's read the remainder of the POS data bytes for that sUbsystem as de
scribed above. This data can then be used to calculate the location of the XGA subsystem's registers and
display buffers in 10 and physical system memory address space. Detailed descriptions of the POS Data
bit assignments are available in Section 5.2. As also discussed in Section 12, it is important for reasons
of future compatibility to mask out all reserved and unused POS data bits before using the data for these
calculations.

72 OEK 25800 September 1991



97

7.2 Address Calculations

See also Section 5.2 for the technical background to the following register and address space calculations.

7.2.1 ROM address

Calculate the ROM Address from POS data as follows:

ROM Address = (ROM address field * 2000h) + OCOOOOh

The ROM address field is READ from POS Register 2 bits 4 to 7.

7.2.2 Coprocessor Registers

The coprocessor registers are referenced from a base address. This address depends on the 'Instance'
(0-7) of the XGA subsystem and the 'ROM address' calculated as shown in Section 7.2 1. The coprocessor
register base address is calculated as follows:

Coprocessor Register Base Address = «((128 * Instance) + 1COOh) + ROM address)

The Instance is Read from POS Register 2 bits 1 to 3.

For example:

Assuming Instance = 6 and ROM address = OCOOOOh
then the Coprocessor Base Address is OC1FOOh.

7.2.3 I/O Registers.

The XGA I/O registers are referenced from a base I/O address. The I/O address IS calculated as follows:

I/O Base Address = 21xOh (where x is the Instance)

The Instance is Read from POS Register 2 bits 1 to 3

7.2.4 The Video Memory Base Address

The video memory base address is calculated from the video memory base address field in POS Register
4 bits 1 to 7 and the 'Instance'.

Figures 7.1 and 7.2 show how these two values combine to give the video memory base address.

31 25 24 22 21 0

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
Video Memory Instance

4MB of Addressable MemoryBase 0-7

Figure 7.1 The XGA Video Memory Base Address

72 OEK258 00 September 1991



98

o

ADDRESS VMem Base Address

FFFFFFFFh 127

( (
04800000h 2

04400000h 2

04000000h 2

03COOOOOh

03800000h

03400000h

03000000h

02COOOOOh

02800000h

02400000h

02000000h

0

OOOOOOOOh

4096MB

16MB

72MB

68MB

64MB

60MB

56MB

52MB

48MB

44MB

40MB

36MB

32MB

1MB

OMB

; ;
INSTANCE 1

INSTANCE 0

INSTANCE 7

INSTANCE 6

INSTANCE 5

INSTANCE 4

INSTANCE 3

INSTANCE 2

INSTANCE 1

INSTANCE 0

ROM

AOOO/BOOO

SYSTEM RAM

Figure 7.2 The XGA Video Memory Base Address Diagram

The video memory base address field defines a 32 Mbyte address range and the' Instance' defines a 4
Mbyte address range within the 32 Mbyte range.

For example:

Assuming the Instance = 6
and the Video Memory Base Address field = 1

then the Video Memory Base Address is 03800000h.

The Video Memory Base Address, once calculated serves 2 totally separate purposes

4 Mbyte System Video Memory Aperture

If enabled (Read from bit 0 In POS Register 4 to ascertain if the Aperture IS enabled), the 4 Mbyte System
Video Memory Aperture is located at this address in physical system address space. Provided virtual ad
dressability to this range of physical address space can be achieved, the entire video memory may be
accessed through this Aperture at this address.

Video Memory Location in Coprocessor Address Space

The Video Memory Base Address has a special significance to the XGA coprocessor It defines the location
of the video memory, including the display plxel map, in the XGA coprocessor's view of system address

72 OEK 25800 September 1991



99

space. The significance of this is that the XGA coprocessor recognizes addresses in this range to be ad
dresses in local video memory ratherthan general system memory. This is howthe XGA coprocessor differ
entiates video memory from system memory. If an address passed to the XGA coprocessor is in this range,
the XGA coprocessor knows that it is operating on a bitmap in video memory. If the address is outside this
range, the coprocessor assumes It IS operating on a bltmap In normal system memory, and attempts to
use DMA busmastership to access it.

As the XGA subsystem operates internally on a 32 bit bus, this address will be a 32 bit address irrespective
of whether the XGA sUbsystem is installed in a 16 or 32 bit slot or system, or whether the 4 Mbyte system
video memory aperture is enabled or disabled. This will therefore be a 32 bit address even on systems
where such addresses are not otherwise possible.

7.2.5 1 Mbyte Aperture Base Address

The 1 Mbyte Aperture base address is calculated from the 1 Mbyte Base address field in POS Register
5 bits 0 to 3.

If (1Mb Base Field ~ 0)
1Mb Aperture Base Address = 1Mb Base Field * 100000h

If (1Mb Base Field = 0) 1Mb Aperture is disabled

7.3 Display Type and Video Memory Size

The attached display type is determined by reading the Display ID register - Index 52h. The list of display
lDs, including the returned value indicating no attached display, is listed in Section 10. It may also be nec
essary (depending on the application) to determine the video memory size to ensure that the required mode
is available. The method for doing this is also described in Section 10

If looking for multiple coexistent XGA sUbsystems, (for instance for a multiple display adapter application)
continue until sufficient instances of the XGA have been located.

72 OEK 25800 September 1991



100

8 VGA Primary Adapter Considerations

In situations where a single XGA subsystem is providing both VGA and Extended Graphics functions, par
ticularly on a system with single display subsystem/monitor, an application using the sUbsystem in Ex
tended Graphics Mode takes on a number of additional systems responsibilities.

Having found an instance of the XGA sUbsystem, and before switching the subsystem into Extended Graph
ics Mode, examine the Operating mode register (Address 21 xOh) bits 0 and 2to determine if the XGA sub
system is in VGA mode and enabled as such.

If the XGA sUbsystem is not enabled in VGA mode, the sUbsystem is operating an 'auxiliary video subsys
tem' and systems messages, etc., may safely be left to the primary VGA source. In this case the XGA sub
system must notbe put intoVGAmode unlessthe currentVGA is disabled.lftheXGAsubsystem is enabled
in VGA mode then the subsystem is the system primary video sUbsystem, and a number of special consid
erations apply.

8.1 Chaining the Int 10h Video BIOS Handler

The application should chain the Int 10h Video interrupt handler, and monitor calls to the Int 10h handler
while the application is using the XGA sUbsystem in Extended Graphics Mode.

There are a number of hot key and error handlers that may attempt to communicate with the VGA while the
XGA sUbsystem is in Extended Graphics Mode, and code must be written to handle such calls.

The majority of calls to the Int 1Oh handler can be ignored (simply return to the caller) while the XGA subsys
tem is in Extended Graphics Mode, but a small number of calls require correct handling.

(Ah) =OOh Set Mode Any attempt to reset the subsystem into VGA mode while in Extended Graphics
Mode should be complied with.

As the application should be in control of the sUbsystem, any attempt to set the sUbsystem into
a VGA mode can only be as a result of a catastrophic error situation, and failure to restore VGA
mode will ineVitably result in the loss of critical data, and the result will be a blank, or at best un
meaningful, display.

The Int 10h handler should immediately restore the subsystem to VGA mode, and chain on to the
saved Int 10h interrupt vector to allow the VGA set mode to be processed.

The Non Maskable Interrupt (NMI) handler traditionally issues a Get Mode followed by a Set Mode
to the mode returned by the Get Mode. If the application's Int 1Oh Video interrupt handler detects
an attempt to Set Mode 7Fh, then mode 03h should be substituted, and the Set Mode allowed
to proceed, after putting the sUbsystem in VGA mode as described above.

(Ah) =OFh Return current video state While in Extended Graphics Mode, the application's Int 10h
interrupt handler should return a current mode of 7Fh in AL, to indicate that the sUbsystem is in
a non-VGA mode.

This is an special mode number assigned for this purpose.

8.2 Int 24h, Critical Error Handler

The application should trap and re-vector the DOS Critical Error Handler Interrupt Vector (Int 24h) , as de
scribed in the DOS Technical Reference Manual. The application will then be notified on DOS Critical errors.

The application's critical error handler should save the subsystem's video state (as far as necessary), and
put the XGA subsystem into VGA mode before chaining on uSing the saved vector to the original Critical
Error Handler. This will allow the Critical Error Handler's dialogue with the user to proceed normally.

On returning from the chained Critical Error handler, the application's Critical Error handler should examine
the return code in AL to determine the appropriate action.

72 OEK 25800 September 1991



101

0, 1, 3 Control will be returned to the application. Put the XGA subsystem back into extended
graphics mode, and restore the video state as necessary.

2 The program will be aborted by the system. Leave the XGA sUbsystem in VGA mode and return.

Alternatively the application can take over the entire Critical Error handling dialogue while remaining in Ex
tended Graphics Mode.

Note: The C language signal function may (in some implementations) be used to intercept the Critical Error
handler for this purpose.

8.3 Int 23h Ctrl-Break Exit Address

The application should trap and re-vector the DOS Ctrl-Break Exit Address, as described in the DOS Tech
nical Reference Manual. The application will then be notified on when the Ctrl-Break key combination is
entered.

If the application is not otherwise intercepting Ctrl-Breaks, the XGA sUbsystem should be put back into
VGA mode before chaining on using the saved vector to the original Ctrl-Break handler. This will allow the
normal Ctrl-Break handler to proceed.

Alternatively the application can take over the entire Ctrl-Break handling while remaining in Extended
Graphics Mode.

Note: The C language signal function may be used to intercept the Ctrl-Break handler for this purpose.

8.4 Int 21 h Function 4Ch Program Terminate function

The subsystem must be left in VGA mode on program termination, irrespective of the howthe program termi
nates, or IS terminated.

To ensure that this is done, the application should trap and re-vector the normal DOS program terminate
function DOS Int 21h function 4Ch, as described in the DOS Technical Reference Manual. On receiving
notice of program termination, the application should put the sUbsystem back into VGA mode, and unhook
all other hooked interrupt vectors before chaining on for the remainder of program termination handling.

DOS Int 21 h function 4Ch is the conventional method used by all programs to terminate. By trapping the
DOS function interrupt (Int 21 h) and monitoring calls to the Program terminate function (4Ch), all routes by
which a program may terminate normally should be covered.

Note: There are other Program Terminate functions, including:

• Int 20h

• Int 27h

• Int 21 h Function OOh

• Int 21 h Function 31 h

For complete cover, these calls may be similarly re-vectored and trapped, but they are not as com
monly used as the Int 21 h Function 4Ch.

All other function calls should be passed on to the previous DOS function handler using the saved interrupt
vector.

On detecting a call to function 4Ch, put the XGA subsystem into VGA mode before chaining on using the
saved vector to the original DOS function Handler. This will allow the DOS Program Terminate function to
proceed normally.

Note: The C language atexit function may be used for this purpose.

72 OEK 258 00 September 1991



102

9 General Systems Considerations

9.1 Co-existing with LIM Expanded Memory Managers

The XGA sUbsystem uses memory mapped registers located in the COOOO/DOOOO region of physical ad
dress space, as descnbed in Section 5.2. Unfortunately this area is now heavily used by Expanded Memory
Managers to provide Expanded Memory Services to applications

Once the location of the XGA sUbsystem's memory mapped register space in the COOOO/DOOOO region has
been determined, the application should interrogate any Expanded Memory Manager to ensure that there
is no contention for this range of physical address space.

This should be done as described in the Lotus/lntel/Microsoft Expanded Memory Specification Version 4.0,
under Function 25 (Ah) = 58h Get Physical Address Array. If the application detects a clash between the
XGA sUbsystem's use of physical address space and that claimed by the Expanded Memory Manager,
a warning should be issued advising the user to resolve this contention by use of the Expanded Memory
Manager call parameters, usually on the 'DEVICE=' statement In CONFIG.SYS.

9.2 Screen Switch Notification, Int 2Fh

For the application to work successfully in MVDM (Multiple Virtual DOS Machine) environments, or in the
DOS compatibility box of OS/2, it should trap and re-vector the DOS Multiplex vector, looking for (Ah) = 40h.
Any other values should be immediately passed to the chained Int 2fh handler.

This multiplex interrupt is used with (Ah) = 40h to notify DOS applications of Screen Switches.

(AI) =01 h DOS Mode application being switched to the background

The application should save its Video state and put the display back into VGA mode
(if applicable).

(AI) =02h DOS Mode application being switched to the foreground.

The application can sWitch the SUbsystem back into Extended Graphics Mode, and restore the
saved video state.

The range of operations permitted within Int 2Fh processing is limited For instance it is not permissible
to issue Disk I/O operations, which therefore precludes an entire save and restore of video memory and
state. The onlyway of using this call isforthe Int2Fh interrupt handlerto notify or semaphore the application
that a re-draw is required (if application program structure permits).

72 OEK 25800 September 1991



10 Extended Graphics Modes Selection

10.1 Modes Available

The following table shows the list of modes available according to display type and amount of video
memory configured on the XGA sUbsystem.

Display Example Size Color Maximum 512K memory 1Meg memory
ID Displays address-

ability

1111 b None None None

1101b 8503 12in. mono 640x480 640x480x64 grays 640x480x64 grays

1110b 8513 12in. color 640x480 640x480x256 colors 640x480x256 colors
8512 14in 640x480x65536 colors

1011b 8515 14in. color 1024x768 640x480x256 colors 640x480x256 colors
1024x768x16 colors 640x480x65536 colors

1024x768x16 colors
1024x768x256 colors

1001b 8604 151n mono 1024x768 640x480x64 grays 640x480x64 grays
8507 19in 1024x768x16 grays 1024x768x16 grays

1024x768x64 grays

1010b 8514 16in. color 1024x768 640x480x256 colors 640x480x256 colors
1024x768x16 colors 640x480x65536 colors

1024x768x16 colors
1024x768x256 colors

Table 10.1 Availability of Extended Graphics Modes

To ascertain the display type read the XGA SUbsystem register index 52h, 'Display ID' and examine the
Display ID bits returned.

To ascertain the amount of video memory installed, there are two options Both options rely on a 'write read
back check', whereby a particular value is written to a key location, which is SUbsequently read to ascertain
whether the written value has persisted.

Use the system processor to write a value through an aperture to the word at offset 768K into video
memory. This technique assumes that the system video memory real mode aperture is available.
Sample code to do this is shown In figure 10.1 .

2 Use the XGA subsystem's PxBlt capability to perform a similar test to the previous example; PxBlt
a constant color to the location in video memory, then PxBlt that value back from video memory
to system memory using DMA busmastership.

This technique works irrespective of the availability of a system video memory aperture, but it
does reqUire physical addressability to a location in system memory for the DMA busmastership
operation.

72 OEK 258 00 September 1991



104

;* Assume GS points to start of AOOOO Real mode aperture
;* Where registers are shown as (for instance 21xOh), this should
;* be filled in with the appropriate 10 port address after
;* determining the location of the XGA subsystem in 10 space
;*
;* First put the adapter PARTIALLY in extended graphics mode
;* to allow use of the system video memory Aperture

mov al,O
mov dx,21x4h ; disable XGA interrupts
out dx,al

mov
mov
out

mov
mov
out

mov
mov
out

mov
mov
out

ax,0064h
dx,21xAh
dx,ax

ax,04h
dx,21xOh
dX,al

al,Olh
dx,21x1h
dX,al

dx,21x8h
al,Och
dx,al

Blank palette
indexed XGA register 64h

Set adapter in Extended Graphics Mode

Locate video memory Aperture at AOOOO

System video memory indx reg.
Offset 768K

mov
mov

cmp
jne

mov
mov

byte ptr gs: [0] ,OA5h Set byte to A5h
byte ptr gs:[l],Oh Avoid shadows on data lines

byte ptr gs: [0] ,OA5h Test against value written
vram 512k ; 512K video memory only

byte ptr gs: [0] ,5Ah Set byte to 5Ah
byte ptr gs:[l],Oh Avoid shadows on data lines

cmp byte ptr gs: [0] ,OA5h Test against value written
je vram 1Meg 1 Meg if still matches
jmp vram_512k ; Otherwise 1/2 meg found

Figure 10.1 Video Memory Size Determination

Having ascertained the monitor type and the video memory configuration available, the modes available
can be read from the table above.

72 OEK 258 00 September 1991



105

11 Mode Setting the XGA Subsystem

The following points should be observed by all software when switching between modes.

• All data in the Video Memory is preserved during a mode switch, provided that the CRTC is halted
at the time, using the Display Control 1 register (if switching out of Extended Graphics Mode), or
the Reset register (if switching out of VGA mode). The CRTC is discussed in Section 4.1.5.

• When switching between VGA modes, the mapping of the VGA memory maps to the Video
Memory is controlled by two bits in VGA registers:

• Word/Byte Mode (CRTC Mode Control Register, bit 6)

• Double-Word Mode (CRTC Underline Location Register, bit 6)

VGA modes can thus be split into three groups: byte modes, word modes and double-word modes.

All switches between modes in the same group are indistinguishable from the same mode switches on
VGA.

Switches between modes in different groups produce different effects from those observed on the VGA,
but since the bits controlling the mapping are used for display purposes, the picture is scrambled in both
cases

Partial mode switches (for example, to load fonts in a text mode) are also possible. As the bits used to
control the mapping of the data in the Video Memory are those used to control the displaying of the picture,
all partial mode switches to update the Video Memory which don't destroy the picture (and many that do)
work correctly.

11 .1 Individual Mode Setting Procedures

This section gives the register settings necessary to set the sUbsystem into the various modes available,
sUbject to the rules described elsewhere in this chapter. It is important to follow the order of register setting
as shown here.

11 .1.1 Extended Graphics Mode

To set the XGA sUbsystem into extended graphics mode (subject to the configuration being capable of sup
porting the required mode as listed in Section 10), write the register values in the sequence shown to the
XGA subsystem's registers.

XGA register name XGA Oper 1024x 1024x 640x 640x Comments
reg. 768x 768x 480x 480x
id 256 16 256 65536

color color color color
mode mode mode mode
values values values values

Interrupt Enable 21x4 = OOh OOh OOh OOh Initial Value

Interrupt Status 21x5 = FFh FFh FFh FFh

Operating Mode 21xO = 04h 04h 04h 04h Set Extended
Graphics Mode

Palette Mask 64 = OOh OOh OOh OOh Blank Display

Video memory Aperture Ctl 21x1 = OOh OOh OOh OOh Initial Value

Video memory Aperture Index 21x8 = OOh OOh OOh OOh Initial Value

Virt Mem Ctl 21x6 = OOh OOh OOh OOh Initial Value

Memory Access Mode 21x9 = 03h 02h 03h 04h Initial Value

Disp Mode 1 50 = 01h 01h 01h 01h Prepare for reset

Disp Mode 1 50 = OOh OOh OOh OOh Reset CRTC

Horiz Total Lo. 10 = 9Dh 9Dh 63h 63h )

Horiz Total Hi. 11 = OOh OOh OOh OOh )

72 OEK258 00 September 1991



106

XGA register name XGA Oper 1024x 1024x 640x 640x Comments
reg. 768x 768x 480x 480x
id 256 16 256 65536

calor calor calor calor
mode mode mode mode
values values values values

I Horiz Display End Lo 12 = 7Fh 7Fh 4Fh 4Fh )

Horiz Display End HI I 13 = OOh OOh OOh OOh )

Honz Blank Start Lo 14 = 7Fh 7Fh 4Fh 4Fh )

Horiz Blank Start Hi 15 = OOh OOh OOh OOh )

Horiz Blank End Lo 16 = I 9Dh 9Dh 63h 63h )

Horiz Blank End Hi 17 = OOh OOh OOh OOh )

Horiz Sync Start Lo 18 = 87h 87h 55h 55h )

Horiz Sync Start Hi 19 = OOh OOh OOh OOh )

Horiz Sync End Lo 1A = 9Ch 9Ch 61h 61h )

Horiz Sync End Hi 1B = OOh OOh OOh OOh )

Horiz Sync Posn 1C = 40h 40h OOh OOh )

Horiz Sync Posn 1E = 04h 04h OOh OOh )

Vert Total Lo 20 = 30h 30h OCh OCh )

Vert TotaI Hi 21 = 03h 03h 02h 02h ) XGA CRTC

Vert Disp End Lo 22 = FFh FFH DFh DFh ) parameters

Vert Disp End Hi 23 = 02h 02h 01h 01h )

Vert Blank Start Lo 24 = FFh FFh DFh DFh )

Vert Blank Start Hi 25 = 02h 02h 01h 01h )

Vert Blank End Lo 26 = 30h 30h OCh OCh )

Vert Blank End Hi 27 = 03h 03h 02h 02h )

Vert Sync Start Lo 28 = OOh OOh EAh EAh )

Vert Sync Start Hi 29 = 03h 03h 01h 01h )

I Vert Sync End 2A = 08h 08h ECh I ECh )

Vert Line Comp Lo 2C = FFh FFh FFh FFh )

Vert Line Comp Hi 20 = FFh FFh FFh FFh )

Sprite Control 36 = OOh OOh OOh OOh Initial Value

Start Addr Lo 40 = OOh OOh OOh OOh Initial Value

Start Addr Me 41 = OOh OOh OOh OOh Initial Value

Start Addr Hi 42 I = OOh OOh I OOh OOh Imtial Value

Buffer Pitch Lo I 43 = 80h

I

40h 50h AOh

Buffer Pitch Hi 44 = OOh OOh OOh OOh

Clock Sel 54 = Odh Odh OOh OOh

Display Mode 2 51 = 03h 02h 03h 04h

Ext Clock Sel 70 = OOh OOh OOh OOh

Display Mode 1 50 = OFh OFh C7h C7h

Note: Initial Palette loading should be done at this point, by writing to the appropriate XGA SUbsystem
palette/sprite registers.
The video memory should also be initialised at this point, to avoid random data appearing when the pal-
ette mask is set to make the current display pixel map contents visible.

Border Color~ OOh OOh OOh OOh Initial Value

Palette Mask 64 = FFh FFh FFh FFh Make visible

72 OEK 258 00 September 1991



107

11.1.2 VGA Mode

To put the XGA sUbsystem into VGA mode (subject to the rules for so doing as discussed in Section 8),
perform in sequence the operations described here:

Clear first 256K of video memory contents to avoid screen flash caused by random data being
present on switching into VGA mode.

2 Write data to the registers in the sequence as shown'

Value Oper XGA VGA Comments
reg reg

OOh = 21x1 Aperture ControI

OOh = 21x4 Interrupt disable

FFh = 21x5 Clear Interrupts

FFh = 64 Palette Mask

15h = 50 Enable VFB, Prepare for reset

14h = 50 Enable VFB, Reset CRTC

OOh = 51 Normal scale factors

04h = 54 Select VGA Oscillator

OOh = 70 Ext Oscillator 0JGA) I
20h

~
2A Ensure No VSync interrupts

01h 21xO Switch to VGA mode

01h 3C3 Enable VGA address decode

3 Set no. lines in VGA mode (if required) using Video BIOS Int 10h Ah = 12h

4 Set required VGA mode using Video BIOS Int 10h Ah = OOh - Set mode.

Figure 11 1 Setting VGA Mode

The XGA sUbsystem will now be in VGA mode.

11.1.3 132 Column Text Mode

The 132 column text mode should eventually appear as Video BIOS Mode 14h on XGA sUbsystems and
systems units Before directly setting the mode as descnbed below, issue a Video BIOS Int 10h Return
Functionality State Information call, and examine the list of BIOS supported modes for the existence of
mode 14h.

If Mode 14h is supported in BIOS, the appropriate Video BIOS Set Mode should be issued in preference
to the method described here.

72 OEK 25800 September 1991



108

Where Video BIOS mode 14h is not supported in BIOS, the following sequence of operations will put the
sUbsystem into 132 column text mode:

1 If necessary put the XGA sUbsystem into VGA mode as described in Section 11.1 .2.

2 Write data to registers in the sequence shown:

Value Oper XGA VGA VGA Other Comments
reg 304/5 3C4/5 VGA

15h = 50 Prepare CRTC for reset

14h = 50 Reset CRTC

04h = I 54 Select VGA Oscillator

3 Set No. Iines in VGA mode using Int 10h Ah = 12h (200, 350 or 400)

4 Set VGA mode 3 using Int 10h Ax = 0003h. The 132 column text mode is a variation on the VGA
text mode, and the table below is the variations from the standard mode.

5 Write data to registers in the sequence as shown:

Value Oper XGA VGA VGA Other Comments
reg 304/5 3C4/5 VGA

01h 1= 50 )

FDh &= 50 ) Prepare CRTC for reset

FCh &= 50 Reset CRTC

03h = 21xO 132 column text mode

01h = 54 132 column clock frequency select

80h = 70 Select internal 132 col clock

EFh &= 50 Disable VFB

7Fh &= 11 Enable VGA CRTC reg update

A4h = 0 )

83h = 1 )

84h = 2 )

83h = 3 )

90h = 4 ) Variations on VGA CRTC syncs

80h = 5 )

A3h = 1A )

OOh = 1B )

42h = 13 )

80h 1= 11 Disable VGA CRTC reg update

03h 1= 50 Remove CRTC Reset

01h 1= 01 8 bit characters

** INP 3DA Read sets Attr Ctlr flip flop

13h = 3CO ) Sets Attr Ctlr

OOh = 3CO ) Reg 13h to OOh

20h = 3CO Restore Palette

6 MOVe 84h to 40:4Ah in BIOS data area to force Video BIOS recognition of 132 column text
mode

Figure 11.2 Setting 132 column text mode

72 OEK 258 00 September 1991



109

Having set the mode, it is programmed similarly to any other VGA tex1 mode, with a coded tex1 buffer lo
cated at B8000 in system address space. Obviously the coded tex1 buffer is nO\Jv 132 columns wide.

If it is necessary to invoke a mode change using Video BIOS (Int 1Oh) while in 132 column tex1 mode (for
instance to vary the number of lines), the steps shown above from 2 to 6 should be followed.

11.2 System Video Memory Apertures

There are three possible apertures in the system's physical address space. If present, any of them may
be used by the system processor to directly access the packed pixel display buffer mapped into system
memory. Each aperture has its own rules for existence, advantages and drawbacks as described below.
The XGA coprocessor may make the use of an aperture unnecessary.

The precise location of each aperture, including whether it is enabled, may be determined by decoding
the XGA SUbsystem's POS data as described In Section 7.

11.2.1 64K System Video Memory Aperture

This aperture IS at either AOOOO or BOOOO in physical address space. The 64K aperture is insufficient to ac
cess the entire SUbsystem display buffer at a time, so the aperture position over the display buffer is con
trolled using the Aperture Index register (21x8).

This is the only aperture in 8086 real mode address space.

Other Video adapters, such as an another adapter or subsystem in either VGA or Ex1ended Graphics mode
may contend for the use of thiS aperture. Only one video subsystem may have this aperture enabled at any
one time. Provided there is no contention for the AOOOO or BOOOO address spaces, this aperture is the only
aperture that may be 'enabled' at will by the application.

11.2.2 1 Mbyte System Video Memory Aperture

This aperture may appear at a whole number of megabytes below 16 Mbytes, depending on the hardware
configuration Its position, and whether it is enabled, must be determined by decoding the POS data as
described in Section 7.

In the case of multiple coexisting XGA SUbsystems, each may have its own such aperture. Dependent on
hardware configuration it is possible for some but not all coexisting XGA SUbsystems to have their 1 Mbyte
System Video Memory Apertures enabled

This aperture is sufficiently large that the entire video memory is accessible without using the Aperture Index
register (21x8) to move the aperture. The Aperture Index register must be set to zero when using this aper
ture.

This aperture is only easily accessible in protect mode environments. The operating system must provide
addressability to the address range occupied by the aperture. Some operating systems attempt to restrict
such addressability to protect or kernel device drivers only. It may be necessary to write a small kernel
device driver to prOVide addressability. For instance, in a 16 bit segmented system such as OS/2, the fol
lowing steps may be necessary to build GOT addressability to an aperture.

Allocate a GOT selector

2 Modify the GOT entry directly to alter the permission bits to allow user mode (Ring 3) access.

3 Alter the GOT segment length to be a 1 Megabyte segment. The entire 1 Mbyte video memory
display buffers can be then accessed as a single segment.

Always check that the aperture is enabled before assuming its existence. If this aperture is found to be dis
abled, it cannot be enabled by the application The application should then try to use the 4 Mbyte aperture.

11.2.3 4 Mbyte System Video Memory Aperture

This aperture appears at a multiple of 4 Mbytes at or above 16 Mbytes, depending on the hardware configu
ration. Its position, and whether it is enabled, must be determined by decoding the POS data as described
in Section 7.

72 OEK 258 00 September 1991



In the case of multiple coexisting XGA sUbsystems, each will have its own such aperture.

This aperture is not available In 16 bit systems based on the 80386SX. Neither does this aperture exist when
the XGA sUbsystem adapter card is plugged into a 16 bit (short) slot on a 32 bit system. Always check that
the aperture IS enabled before assuming its existence. Also, check the Auto-Configuration register as de
scribed in 'Auto-Configuration Register (Index: 04)' on page 24 to determine the Bus width

While this aperture is always present when the XGA subsystem is plugged into a 32 bit slot on a 32 bit sys
tem, it may not be easily accessible in either real mode DOS or 16 bit protect mode operating systems.

11.3 Physical Addressability to System Memory

The XGA SUbsystem coprocessor is able to operate as a DMA busmaster. Using this, the coprocessor is
capable of bitmap operations on bitmaps up to 4K by 4K pixels anywhere in system address space, includ
ing video memory. A PxBlt operation can be defined as a function of 4 separate bitmaps, D' = f(S;D;BM)
That is, the modified destination pel (D ') is a function of the source (S), the current destination pel (D), the
pattern (P) and the mask (M) Any or all of these bitmaps can be anywhere in memory. The XGA coprocessor
handles all bltmaps alike, no special handling of a bitmap in video memory is required.

This flexibility is very powerful, but requires support from the operating system to fully realize the benefits.

DMA busmastership is of necessity on i386 physical address space while applications run on the system
processor in virtual or linear address space. The system processor automatically converts such addresses
to physical addresses internally via the page tables or segment descriptor tables. An adapter such as the
XGA coprocessor has no physical access to either the segment descriptors orthe page tables. To use DMA
busmastership, the application (or its device drivers) must provide the XGA coprocessor with the physical
address of all the bitmaps on which it requires the XGA coprocessorto operate. Methods for providing the'
XGA coprocessorwith physical addressabilityto all such resources, and the tasks necessary, vary accord
ing to the operating system, and mode of the system processor.

11.3.1 Real Mode DOS Environments

The real mode DOS environment is the simplest and easiest in terms of memory management. The applica
tion is limited to 640K of real mode DOS memory. Conversion from virtual to physical memory addresses
is by means of a simple Shift left 4 and add One problem may be that the application written to run in the
real mode DOS environment will be expected to migrate compatibly'to Multiple Virtual DOS Machine
(MVDM) environments. The simple Shift left 4 and add has now merely produced a linear, but not a physical
address. Hopefully the MVDM hypervisor 'Virtualisation Display Driver' will cope with this, but applications
must be tested in individual MVDM environments before full real mode DOS compatibility can be claimed.

Extended Memory

A DOS application can allocate large areas of Extended memory as working bitmaps for the application.
It is unnecessary to have system processor addressability to such bitmaps, as the XGA coprocessor can
do all the necessary accesses, and Extended memory is ideal for this purpose.

The techniques required to allocate and use Extended memory in a DOS application are not covered here.

LIM EMS Managers

The commonest memory management technique that gives extra memory in the DOS environment is the
Lotus-Intel-Microsoft Expanded Memory Services Manager. Such memory managers jmplement the L1M
4.0 specification for a software interrupt driven memory management interface via software interrupt 67h.
On 80386 and above processors, all the memory is physically allocated as Extended memory, and the L1M
EMS manager maps this into Expanded memory via the 80386 page tables.

The drawback to this technique is that a simple Shift left 4 and add will only yield the linear, but not the
physical address of the L1M frame. To determine the physical address, it is necessary to call the Operating
System DMA Services interface of the L1M EMS driver to convert linear addresses to physical. This inter-

72 OEK 258 00 September 1991



111

face, based on Software Interrupt 4Bh, is described in the IBM Personal System/2 and Personal Computer
BIOS Interface Technical Reference manual.

This interface is of recent ongin, and early L1M drivers may be encountered that have not yet implemented
it The application has 2 choices:

Do not locate resources in L1M rnemory on which the XGA coprocessor is requested to operate

2 Specify a dependency in the application documentation on L1M EMS drivers that have implem
ented this interface.

11.3.2 32 bit DOS Extended Environments

This IS the mode of the processor In which full exploitation of the power of the XGA coprocessor is easiest
The application can allocate huge memory bitmaps without needing to account for the behaviour of a
memory manager that might change the location of the memory. Calculation of physical addresses is easi Iy
accomplished without the system overheads of full blown protect mode operating systems Access to the
XGA sUbsystem's system video memory aperture and coprocessor register address space can be accom
plished easily.

11.3.3 Multiple Virtual DOS Machine Environments

This is a mode where multiple DOS applications can run concurrently (even windowed on the same
screen), each application appears internally to be running in the bottom Megabyte of physical address
space.

Full compatibility with real mode DOS for a DMA busmaster such as the XGA coprocessor IS only provided
if each such DOS application using the XGA sUbsystem in extended graphics mode IS locked In the bottom
1 Mbyte of physical address space

For the extended graphics mode DOS application to run successfully (even if not windowed), the MVDM
hypervlsor's Virtualisation Display Driver must include specific support functions.

A suggested technique is described here, although there may be others equally effective.

On switching to the foreground ("Resurrection") a VDM in which an XGA extended graphics mode DOS
application is running, the entire 640K of the VDM's linear address space be locked "discontiguous" by
the VDD The VDD will then use the foreground VDM's Page Directory Entry to provide physical addressabil
ity to the VDM's discontiguous linear address space. The XGA coprocessor's virtual address capability
can then be used, by giving the XGA coprocessor direct DMA access to the VDM's Page Tables. As the
entire 640K DOS region IS locked, (except for L1M which will be discussed below), a DOS application will
not supply addresses outside the locked 640K linear address range

The technique relies on the XGA coprocessor Page Directory Base Address, once set by the VDD on resur
rection, remaining unmodified by the application. Inadvertant updates to this field can be prevented by
placing the XGA coprocessor into User Mode.

It is possible for an application to program the XGA coprocessorto access memory outside ofthe appl ica
tlons own storage. If this IS done, the Integnty of the entire system is compromised.

One complication is L1M, where the DOS application may locate a resource such as a font definition in L1M
memory, and subsequently give the XGA coprocessor the linear address of the L1M frame, rather than the
underlying address. This is normally handled in real mode DOS by calling the Operating System DMA Ser
vices interface of the L1M EMS driver to convert lInear addresses to physical. This will not be appropriate
In the MVDM environment, as the Linear address is now required byvirtue of the fact that XGA is in VM mode,
operating off the System Page Tables forthe VDM in question The obvious solution IS forthe VOD to monitor
the L1M software Interrupt (Int 67h), and ensure that any L1M 'logical16K pages' currently mapped into the
VDM's L1M frames or Windows are locked The VDM's page tables will then naturally reflect the correct
physical addresses for the L1M pages at the linear address of the L1M frame. Calls to the Operating System
DMA Services interface must also be filtered out

72 OEK 25800 Sep1ember 1991



112

11.3.4 Protect Mode 16 Bit Segmented Environments

An application written for this environments has a range of limitations imposed by the operating system.

64K Segment Limit

No memory object in this environment can be larger than 64K, unless allocated by a kernel device driver
on initialisation.

The application cannot assume that 2 adjacent segments are located adjacent in physical address space

Segment Motion

Segments are liable to be moved in physical system memory at any time Segments may even be
'swapped' out to disk when memory is overcommitted.

All segments must be 'locked' before the physical address is established.

Consideration must be given to the overall impact on system performance of long term locking of large
areas of memory It also Increases the minimum physical memory configuration that is required to run the
application.

System Overheads

Applications generally run at a low privilege level, and Video device drivers must be accessible easily and
frequently by the application without large system overheads

Applications using the XGA coprocessor typically need to make use of the operating system's memory
management services. These services (used for locking segments and determining physical address of
segments) are typically restricted to device drivers at operating at high privilege levels.

The system overhead in reaching these services in such operating systems may be so high as to make
the writing of high performance applications difficult.

Access to XGA Registers and System Memory Apertures

Considerable ingenuity is required to provide addressabllity to the XGA SUbsystem's I/O and memory
space. A technique for this is described in Section 11.2.

Suggested Design Model

A suggested design for an application in thIs environment is as follows:

Use a kernel or Ring 0 '.SYS' device driver to permanently allocate a range of physical memory (typically
128K) The device driver can then generate a GDT selector to this Kernel Work Space (KWS) that is valid
In User mode at Ring 3. Both the virtual and physical addresses are passed back to the application in User
mode The Kernel device driver also provides User mode addressability to the XGA coprocessor's register
address space.

The application can then operate totally in User mode, passing resources (for example, bitmaps, patterns,
etc.) by system processor block moves Into the KWS. The application can then drive the XGA coprocessor
to access the resources in the KWS without ever suffering the system overheads of switching into kernel
mode again. Bitmaps are effectively 'cached' via the KWS to the XGA coprocessor.

The pnnclpal feature of this technique is to minimize kernel or system overheads.

72 OEK 25800 September 1991



11.3.5 Paged Virtual Memory (VM) Environments

This environment shares many constraints with the 16 bit segmented environment. The principle difference
is that the unit of granularity of memory objects has dropped from 64K to 4K, the VM support in the XGA
coprocessor IS Intended to support this environment.

4K Discontiguous Pages

In this environment, memory is allocated to applications In 4K pages. The system memory manager looks
after all paging, and may swap pages in and out of physical memory transparently to the application. The
application can make no assumptions about the relationship between adjacent pages.

There are memory management calls available to the kernel or Ring 0 device driver that will allow such
a device driver to build a table containing the physical addresses of all the component pages of a large
bitmap. As with 16 bit segmented environments, described in Section 11.3 4, the overhead of the transition
to kernel mode to make such calls expensive It is, however, possible to bUild such a table, and to operate
the XGA coprocessor in vlftual memory mode. The overall impact on system performance and minimum
physical memory configurations should be considered, particularly as a bitmap in this case could theoreti
cally be 4Kx4Kx8bpp, a total of 16 Mbytes of locked physical memory

It is pOSSible to use the XGA coprocessor to interrupt to indicate a page fault, but this interrupt is a normal
shared adapter interrupt rather than a 1386 page fault interrupt. As such it is handled at a lower priority. A
further complication is that most such operating systems do not allow device drivers to call the Memory
Management services (to request the faulting pages) on an interrupt thread

Page Table Coherency

It would seem obvious that the XGA coprocessor should be able to operate off the system page tables,
as the XGA coprocessor uses i386 like page tables.

Unfortunately a typical VM operating system uses a set of page tables per task. In a multi tasking environ
ment, only the currently executing task's page tables remain coherent, while background task's page
tables are allowed to become outdated or incoherent.

This implies that the XGA coprocessor can be operating on a set of page tables belonging to what may
be a background task, and so it cannot assume that the page table remains coherent unless the component
pages have been locked by a call to the system memory management Interface by a kernel device dnver.

System Overheads

The overheads associated in switching from the applications privilege level to the kernel level have been
described earlier, see System Overheads in Section 11.3.4.

Access to XGA Registers and System Memory Apertures

Again it is necessary to provide addressabillty to these XGA subsystem's I/O spaces. The Operating sys
tem memory management services must be called to map these ranges of phYSical system memory Into
the applicatIon's task address space

Suggested Design Model

The optimum design model is one that minimizes kernel overhead at all cost A similar model to that sug
gested In Section 11.3.4 IS again appropnate for this envIronment.

11.3.6 Video Memory Addressability in VM Mode

In 'Video Memory Location in Coprocessor Address Space' on page 98 there is a description of how the
XGA coprocessor differentiates video memory from system memory When operating the XGA SUbsystem
in VM mode, this comparison is done post-translate, on physical address space, while all addresses
passed to the coprocessor are pre-translate, that is on linear address space When bUIlding VM addressa-

72 OEK 25800 September 1991



114

bility to system memory bltmaps for the XGA sUbsystem, it is also necessary to map local video memory
into the page directory structure to allow the XGA coprocessor to differentiate video memory from system
memory.

11.3.7 System Memory Access Limitation

The XGA sUbsystem can be plugged into any 16 or 32 bit slot in any i386SX, i386DX and i486 systems.
In a 16 bit slot, the address range is limited since there are only 24 address lines on 16 bit slots. The range
of physical addressability to system memory using DMA busmastership is limited to 24 bit physical ad
dress space (or 16 Megabytes) when the subsystem occupies a 16 bit slot.

Systems based on the i386SX are 16 bit throughout, and 16 Mbytes is the limit of addressability of the sys
tem processor in any case so there are no constraints.

The constraint applies when

• It is a 32 bit system based on the i386DX or i486

• There is more than 16 Megabytes of physical memory installed

• The XGA subsystem is plugged into a 16 bit slot.

In this case, the XGA coprocessor cannot access memory located above the 16 Mbyte line in physical
address space. To determine if the XGA subsystem is in a 16 bit slot, examine the Auto-Configuration regis
ter, as described in 'Auto-Configuration Register (Index: 04)' on page 24. The application must ensure (with
operating system assistance if necessary) that all memory bitmaps on which the XGA processor is asked
to operate are located below the 16 Mbyte line in physical address space.

The alternative is for the application to specify that the XGA subsystem is always plugged into 32 bit slots
on 32 bit systems.

72 OEK 258 00 September 1991



115
-----

12 Upwards Compatibility

Upwards compatibility problems can be minimized by sensible programming practices, and some specific
precautions

12.1 XGA Subsystem POS ID Allocations

A number of POS ID's have been pre-allocated to the XGA sUbsystem and follow-on XGA register compat
ible sUbsystems, as follows:

8FD8h
8FD9h
8FDAh
8FDBh

Application writers should check for all these POS ID's when determining the existence and location of the
XGA sUbsystem in the system.

12.1 .1 General Register Usage

To avoid conflicts with possible future changes in the use of registers or register fields, applications must
comply with the Register Usage Guidelines at the start of the various register definition sections.

12.1.2 Video BIOS Mode 14h

Video BIOS mode 14h has been reserved to support the 132 column text mode. Applications should plan
to use BIOS support for this mode as it becomes available, and should, therefore, query Video BIOS for
the existence of the mode, and in the case of a positive response, the Video BIOS Int 10h Set mode should
be used for mode setting. Only in the absence of Int 1Oh Video BIOS support should the direct mode setting
procedure descnbed in this chapter be used.

12.1.3 PS/2 Video Memory Apertures

As described In Section 11 .2 none of the apertures may always be relied upon to exist, depending on con
figurations, bus size, etc. For maximum flexibility, applications are recommended to avoid using the aper
tures, but if this is not possible, the following considerations apply'

Providing the XGA sUbsystem is not plugged into a 16 bit slot on a 32 bit system at least one of
the two potential protect mode apertures should always be available.

2 The user of the application should be instructed that the XGA sUbsystem must be installed in a
32 bit slot on a 32 bit system.

72 OEK 25800 September 1991



116

13 Programming the XGA Subsystem in Extended Graphics Mode

Having set the sUbsystem into the required mode as described in Section 11.1.1 this section describes
using the Extended Graphics Functions of the XGA coprocessor.

13.1 XGA Coprocessor Pixel Interface Registers

All extended graphics functions devolve down to graphics update operations involving up to 4 Pixel Maps.
A Pixel Map is defined by five registers:

Pixel Map Index Register

2 Pixel Map n Base Pointer Register

3 Pixel Map n Width Register

4 Pixel Map n Height Register

5 Pixel Map n Format Register

13.1.1 Pixel Map Index Register (OFFSET 12h)

The Pixel Map Index Register defines which of the 4 possible maps is to be defined. The encoding of this
4-bit register IS as follows:

Mask Map 0

Pixel Map A

Pixel Map B 2

Pixel Map C 3

Example'

To use Pixel Map A, WRITE 01h to copr_regs offset 12h.

13.1.2 Pixel Map Base Address Register (OFFSET 14h)

The Pixel Map Base Address Register defines the byte address in memory of the start of the Pixel Map
It is a 32-bit address register and can therefore address up to 4096 Mbytes of memory. A Pixel Map can
be defined to be in the XGA video memory or in system memory.

As described in 'Video Memory Location in Coprocessor Address Space' on page 97, to define a Pixel
Map as being in XGA video memory, the address put in this register must be in the range'

Video Memory Base Address ~ (Video Memory Base Address + Video Memory size)

If the Pixel map is in system memory and the Micro Channel interface is a 16 bit interface (for example,
if the XGA adapter is installed in a, 16 bit slot) then the address of the map must be below 16 Mbytes.

13.1.3 Pixel Map Width Register (OFFSET 18h)

The Pixel Map Width is measured in pixels and is defined as 1 less than the required width,

Examples:

To set the Width of a Pixel Map to 640 pixels,
WRITE 027Fh to copr_regs offset 18h

To set the Width of a Pixel Map to 1024 pixels,
WRITE 03FFh to copr_regs offset 18h

72 OEK 258 00 September 1991



117

13.i .4 Pixel Map Height Register (OFFSET 20h)

The Pixel Map Height is measured in pixels and is defined as 1 less than the required height.

Examples:

To set the Height of a Pixel Map to 480 pixels,
WRITE OlDFh to copr_regs

To set the Height of a Pixel Map to 768 pixels,
WRITE 02FFh to copr_regs

offset 20h

offset 20h

13.1.5 Pixel Map Format Register (OFFSET 1Ch)

This register specifies the bits/pixel of the Pixel Map. The encoding of the register is as follows:

1 bit/pixel Intel format
2 bits/pixel Intel format
4 bits/pixel Intel format
8 bits/pixel Intel format
1 bit/pixel Motorola format
2 bit/pixel Motorola format
4 bit/pixel Motorola format
8 bit/pixel Motorola format

Example:

(OOh)
(01h)
(02h)
(03h)
(08h)
(09h)
(OAh)
(OBh)

For an 8 bit/pixel Motorola format Pixel Map,
WRITE OBh to copr_regs offset leh

The relationship between Intel and Motorola format Pixel maps is discussed in Section 4.1.1 and
Section 13.5.

All four Pixel Maps (Maps A, Band C and the Mask map) can be initialized in this manner ready for later
use. Maps A, Band C can be used interchangeably as the source, destination or pattern in all sUbsequent
pixel operations.

13.1 .6 Other Registers

For simple operations the Pixel Interface Control register should be cleared.

Example:

WRITE OOh to copr_regs offset Ilh

For simple operations the Destination Color Compare Register should be set so that it has no effect on the
operation.

Example:

WRITE 04h to copr_regs offset 4Ah

To allow all planes of a Pixel Map to be updated, the Pixel Bit Mask should be turned on. That is set all
bits to a '1' that are required for the pixel size selected.

Example:

WRITE OOFFh to copr_regs offset 50h for 8 bits per pixel

For simple operations the Carry Chain Mask should be turned on. That is set all bits to a '1 ' that are required
for the pixel size selected.

Example:

WRITE FFh to copr_regs offset 54h for 8 bits per pixel

72 OEK 258 00 September 1991



118

13.2 Using the Coprocessor to Perform a Pixel Blit (PxBlt)

This section describes in detail the actions necessary to use the XGA coprocessor to perform a typical
simple PxBIt.

Various types of PxBlt can be performed but the sUbject of this example is for a PxBlt into video memory
using the Foreground Color Register as the Source Data. The effect achieved will be to draw a solid rectan
gle into the Display Pixel Map.

This section will detail the steps necessary to perform the PXBlt mentioned above with a foreground color
of 05h, 100 pixels wide and 60 pixels deep. This is positioned at screen coordinates X =200 and Y = 150.

The example is summarized in the table below and each value is explained in detail in the following sec
tions which also give useful information on the other forms of PxBlt available.

Value

03h

05h

0063h

003Bh

00C8h

0096h

08118000h

Copr_regs Offset

48h.

58h

60h

62h

78h

7Ah

7Ch

13.2.1 Mixes and Colors

Before a coprocessor operation can be performed, the background and foreground 'mixes' have to be set.
Mixes are logical or arithmetic functions performed on the source and destination data when performing
a coprocessor operation. The full range of mix functions available are as follows'

fCO(je,I-F_u_n_c_ti_o_n -----l

~zeros

I

1 I source AND destination

2 source AND NOT destination

I 3 Isource

4 NOT source AND destination

5 destination

6 source XOR destination

7 I source OR destination

8 NOT source AND NOT destination

9 source XOR NOT destination

A NOT destination

B source OR NOT destination

C I NOT source

D NOT source OR destination

E NOT source OR NOT destination

F ones

10 maximum

11 Iminimum

I 12 Iadd with saturate

I 13 I subtract (destination - source) with saturate

I 14 subtract (source - destination) with saturate

~average

72 OEK 258 00 September 1991



Foreground and Background Mix Registers

The mixes to be applied to foreground and background pixels are specified in these two registers. The
contents of the pattern map determine which pixels are foreground and which are background. For this sim
ple example the PxBlt is solid, and so contains only foreground pixels. The foreground mix register should
be set to 'SOURCE' to give a readily understandable result on the screen.

For our example:

WRITE 03h to copr_regs offset 48h (Foreground Mix Register)

Foreground & Background Color Registers

The colors to be used for foreground and background pixels are specified in these two registers. In this
simple example the PxBlt is solid and so only the Foreground Color Register needs to be set up.

For our example:

WRITE 05h to copr_regs offset 58h (Foreground Color Register)

Other forms of PxBlt (for example, video memory to video memory and so on) PxBlt from a Source Map
into a Destination Map and therefore do not use these color registers.

13.2.2 PxBlt Dimensions

The Operation Dimension 1 Register should be loaded with the WIDTH of PxBlt that is to be performed.
The value loaded into the register should be 1 pixelless than the required Width (in pixels).

For our example:

For a PxBlt 100 pixels wide, WRITE 0063h to copr_regs offset 60h

The Operation Dimension 2 Register should be loaded with the HEIGHT of PxBlt that is to be performed.
The value loaded into the register should be 1 pixelless than the required Height (in pixels).

For our example:

For a PxBlt 60 pixels High, WRITE 003Bh to copr_regs offset 62h

13.2.3 Pixel Map, Source & Destination

Source Map X and Y Registers

The Source Map IS initialized as detailed in the previous chapter. Two registers exist that contain the X &
Y offset positions within the Source map of the start of the source data for a PxBIt. These registers are used
if you are performing a PxBlt using a Source Map. In this example these registers are unused.

Destination Map X and Y Registers

The Destination Map is initialized as detailed in the previous chapter. Two registers exist that contain the
X & Y offset positions within the Destination map of the start of the PxBIt.

For our example:

To position the PxBLt at X=200 and Y=150 in the destination map
WRITE 00C8h to copr_regs offset 78h (Destination Map X position)
WRITE 0096h to copr_regs offset 7Ah (Destination Map Y position)

Pattern Map X and Y Registers

The Pattern Map is initialized as detailed In the prevIous chapter. Two registers exist that contain the X &
Yoffset positions within the Pattern map of the start of the pattern data for a PxBIt. These registers are used
if you are performing a PxBlt uSing a Pattern Map.

For this example these registers are unused.

72 OEK 25800 September 1991



120

Mask Map Origin X and Y Offset Registers

The Mask Map is initialized as detailed in the previous chapter. Two registers exist that contain the X & Y
offset positions of the start of the Mask Map relative to the top left corner of the Destination Map. These
registers are used if you are performing a PxBlt using a Mask Map.

For this example these registers are unused.

13.2.4 Pixel Operations Register

This is a 32-bit register which defines the operation that the coprocessor performs.

31 30 2928 27 24 23 20 19 16 15 12 11 8 7 6 5 4 3 2 0

I I I I I I I I I I I I I I xlxlxlx I I X I I
1 2 3 4 5 6 7 8 9

Figure 13.1 Bit Layout Pixel Operations Register

The bits 0:31 are shown on the top of the diagram above and fields 1-9 are shown on the bottom. The defini
tion of these fields are:

Background Source

2 Foreground Source

3 Step Function

4 Source Pixel Map

5 Destination Pixel Map

6 Pattern Pixel Map

7 Mask Pixel Map

8 Drawing Mode

9 Direction Octant

These fields will be described in turn until we have assembled the complete Pixel Operations Register con
tents.

Background Source

These bits determine the origin of the Background source pixels when an operation is performed.

The encoding for these bits is as follows:

Background Color 'OO'b (for example, for a fixed register value to video memory PXBlt).

Source Pixel Map '10'b (for example, for a video memory to video memory PXBlt).

For this example, there is no background color, and the field is ignored.

Background Source = /OO/b

72 OEK 258 00 September 1991



121

Foreground Source

These bits determine the origin of the Foreground Source pixels when an operation is performed.

The encoding for these bits is as follows.

Foreground Color 'OO'b (for example, for a fixed register value to video memory PXBlt).

Source Pixel Map '10'b (for example, for a video memory to video memory PXBlt).

For this example:

Foreground Source

Step Function

/OO/b (Solid Foreground Color)

These bits define the type of operation that the coprocessor is required to do

Draw & Step Read
Line Draw Read
Draw & Step Write
Line Draw Write
PxBlt
Inverting PxBlt
Area Fill PxBlt

For this example:

Step Function

Source Pixel Map

'0010'b
'0011'b
'0100'b
'0101'b
'1000'b
'1001'b
'1010'b

These bits define which Pixel Map is used as the Source Map in the operation. This enables different maps
to be setup in advance, and defined for use as this register is loaded.

The encoding for these bits IS as follows:

Pixel Map A
Pixel Map B
Pixel Map C

'0001 'b
'0010'b
'0011'b

For this example the contents of this field will be ignored.

Source Pixel Map = /OOOl/b (must not be a reserved value)

Destination Pixel Map

These bits define which Pixel Map is used as the Destination Map in the operation This enables different
maps to be setup in advance, and defined for use as this register is loaded.

The encoding for these bits is as follows:

Pixel Map A
Pixel Map B
Pixel Map C

For this example'

'0001 'b
'0010'b
'0011'b

Destination Pixel Map

72 OEK 25800 September 1991



122

Pattern Pixel Map

These bits define which Pixel Map is used as the Pattern Map in the operation. This enables different maps
to be setup in advance, and defined for use as this register is loaded.

The encoding for these b,its is as follows:

Pixel Map A '0001 'b
Pixel Map B '0010'b
Pixel Map C '0011 'b
Foreground (fixed) '1 OOO'b
Generated from Source '1001 'b

For this example:

Pattern Pixel Map /lOOO/b (Foreground (fixed), for a solid Pxblt)

Mask Pixel Map

These bits define whether the Mask Map is used, or not, in the operation.

The encoding for these bits is as follows:

Mask Map Disabled 'OO'b
Mask Map Boundary Enabled '01 'b
Mask Map Enabled '10'b

For this example:

Mask Pixel Map /OO/b (Mask Map disabled)

Drawing Mode

These bits only concern line drawing only and so are discussed else where. They are ignored during a
PxBIt.

For this example:

Drawing Mode /OO/b

Direction Octant

These bits, when concerned with PxBlts determine the direction that the PxBlt is drawn in.

The encoding for these bits is as follows:

'OOO'b or '001 'b Start at Top LH corner of Area increasing right and down.
'100'b or '101 'b Start at Top RH corner of Area increasing left and down.
'010'b or '011 'b Start at Bottom LH corner of Area increasing right and up.
'110'b or '111 'b Start at Bottom RH corner of Area increasing left and up

('OOO'b or '001 'b)

('010'b or '011 'b)

PxBIt'ing AREA

('100'b or '101 'b)

('110'b or '111 'b)

72 OEK 25800

Figure 13.2 Operation Direction Diagram

September 1991



123

These bits are normally set to 'OOO'b, but other values are necessary to avoid pixel corruption when Source
and Destination rectangles overlap.

For this example:

Direction Octant

Conclusion

'OOO'b (TOp Left)

Putting all these together, for our PxBlt the Pixel Operations Register should be set as:

Figure 133 Example Definition for Pixel Operations Register

For this example:

WRITE 08118000h to copr_regs offset 7Ch

13.3 Using the Coprocessor to Perform a Bresenham Line Draw

The next example is the detailed steps necessary to draw a line of palette color 05h from (20,15) to (80,35).

The example is summarized in the table below and each value is then explained in detail in the following
sections which also give useful Information on the other line drawing options available.

Value Copr regs Offset
03h 48h

05h 58h

-20d 20h

40d 24h

-80d 28h

59d 60h

20d 78h

15d 7Ah

05118000h 7Ch

72 OEK 258 00 September 1991



124

13.3.1 Mixes and Colors

Before a coprocessor operation can be performed, the Background and Foreground 'mixes' have to be
set Mixes are logical or arithmetic functions performed on the Source and Destination data when perform
ing a coprocessor operation The mix functions available are as follows:

Code IFunction
o zeros

1 source AND destination

2 source AND NOT destination

3 source

4 NOT source AND destination

5 destination

6 source XOR destination

7 source OR destination

8 NOT source AND NOT destination

9 source XOR NOT destination

A NOT destination

B source OR NOT destination

C NOT source

D NOT source OR destination

E NOT source OR NOT destination

F ones

10 maximum

11 minimum

12 add with saturate

li3 Isubtract (destination - source) with saturate

14 subtract (source - destination) with saturate

15 average

Foreground and Background Mix Registers

The Foreground and Background Mix registers allow a mix (as detailed in the table above) to be specified.
These Registers are discussed in the previous example in Section 13 2.

Forthe purposes ofthe simple example being followed here, the Foreground Mix Register should be loaded
with 'SOURCE' The Background Mix Regist~r is not used in this example.

For our example:

WRITE 03h to copr_regs offset 48h (Foreground Mix Register)

Foreground and Background Color Registers

The Foreground Color register should be set to the color required for the line.

For this example:

WRITE 05h to copr_regs offset 58h (Foreground Color Register)

72 OEK 258 00 September 1991



125

13.3.2 Bresenham Line Draw

The algorithm used to perform the linedraw function on the XGA is the Bresenham Line Draw Algorithm.
This algorithm operates with all parameters normalized to the first octant (Octant 0).

The first task is to calculate DeltaX and DeltaY as shown in the figure 13.4.

(0,0)

Y pixels

(20,15)

Line Start

deltaX=60

X pixels

-I
I

I
I deltaY=20
I

~ (80,35)

Line End

deltaX = 60 (decimal)

deltaY = 20 (decimal)

Figure 13.4 Line Draw Example in Octant °
A line in the first octant as shown above has deltaX greater than deltaY with both deltaX and deltaY positive
and deltaX greater than deltaY If a line is to be drawn in another octant, the octant information is specified
in the octant bits of the Pixel Operation Register and the line drawn as if it was in the first octant.

To normalize a line to the first octant the following rules should be followed:

• If deltaX is -ve , set OX in Octant bits of the Pixel Operation Register and make deltaX +ve.

• If deltaY is -ve , set DY In Octant bits of the Pixel Operation Register and make deltaY + ve

• If deltaY~ deltaX , set DZ in Octant bits of the Pixel Operation Register and exchange deltaX and
deltaY

The terms deltaX and deltaY referred to below are the lengths of the line after it has been normalized to
Octant 0. The algorithm requires several parameters to be calculated. These are.

Bresenham Error Term Register

Bresenham Error Term ET = (2*deltaY) - deltaX

For this example:

WRITE -20 decimal (FFECh) copr_regs offset 20h

Bresenham Constant K1 Register

Bresenham Constant K1 = 2*deltaY

For this example:

WRITE +40 decimal (0028h) copr_regs offset 24h

72 OEK 258 00 September 1991



126

Bresenham Constant K2. Register

Bresenham Constant K2 = 2*(deltaY - deltaX)

For this example:

WRITE -80 decimal (FFBOh) copr_regs offset 28h

Operation Dimension Registers

The Operation Dimension 1 Register should be loaded with (deltaX - 1) after normalization.

For this example'

WRITE +59 decimal (003Bh) to copr_regs offset 60h

The Operation Dimension 2 Register is not used for line draw.

13.3.3 Pixel Map, Source and Destination

Source Map X and Y Registers

The Source Map is defined as described in Section 13.1. Two registers exist that contain the X & Y offset
positions within the Source map of the start of the source data for a PxBIt. These registers are used if you
are drawing a line using a Source Map. In this example these registers are unused.

Destination Map X and Y Registers

The Destination Map is initialized as described in Section 13.1. Two registers exist that contain the X &Y
offset positions within the Destination map of the start of the Line.

In this example:

WRITE +20 decimal (0014h)
to copr_regs offset 78h (Destination Map X position)

WRITE +15 decimal (OOOFh)
to copr_regs offset 7Ah (Destination Map Y position)

Pattern Map X and Y Registers

The Pattern Map is initialized as described in Section 13.1 Two registers exist that contain the X &Y offset
positions within the Pattern map of the start of the pattern data for a Line. These registers are used if you
are drawing a line using a Pattern Map. In this example these registers are unused

Mask Map Origin X and Y Offset Registers

The Mask Map is initialized as described in Section 13.1 Two registers exist that contain the X &Y offset
positions of the start of the Mask Map relative to the top left corner of the Destination Map. These registers
are used If you are drawing a line using a Mask Map In this example these registers are unused.

72 OEK 25800 September 1991



127

13.3.4 Pixel Operations Register.

This is a 32-bit register which defines the operation that the coprocessor performs.

31 3C 2928 27 24 23 20 19 16 15 12 11 8 7 6 5 4 3 2 0

1 I 1 I I I I 1 111 I I 1 xlxlxlx 1 1 X 11

1 2 3 4 5 6 7 8 9

Figure 13.5 Bit Layout Plxel Operations Register

The bits 0:31 are shown on the top of the diagram above and fields 1-9 are shown on the bottom. The defini
tion of these fields are:

Background Source

2 Foreground Source

3 Step Function

4 Source Pixel Map

5 Destination Plxel Map

6 Pattern Pixel Map

7 Mask Pixel Map

8 Drawing Mode

9 Direction Octant

These fields will be described in turn until we have assembled the complete Pixel Operations Register con
tents.

Background Source

These bits determine the origin of the Background source pixels when an operation IS performed.

The encoding for these bits is as follows'

Background Color 'OO'b (for example, for a fixed pattern line draw using a fixed register value)

Source Pixel Map '1 O'b (for example, for a variable color data pattern held in video memory
to video memory draw).

In this example the contents of this field are ignored as the line is solid and so has no Background plxels:

Background Source = /OO/b

Foreground Source

These bits determine the' origin of the Foreground Source pixels when an operation is performed.

The encoding for these bits is as follows:

Foreground Color

Source Pixel Map

For this example:

'OO'b (for example, for a fixed pattern line draw uSing a fixed register value)

'1 O'b (for example, for a variable color data pattern held in video memory
to video memory draw).

, Foreground Source

72 OEK 258 00

/OO/b (Solid Foreground Color)

September 1991



128

Step Function

These bits define the type of operation that the coprocessor is required to do.

Draw &Step Read '0010'b

Line Draw Read '0011 'b

Draw & Step Write '0100'b

Line Draw Write '0101 'b

PxBlt '1000'b

Inverting PxBlt '1001 'b

Area Fill PxBlt '1010'b

For this example:

step Function /OlOlb/ (Line Draw Write)

Source Pixel Map

These bits define which Pixel Map is used as the Source Map in the operation. This enables different maps
to be setup in advance, and defined for use as this register is loaded.

The encoding for these bits is as follows'

Pixel Map A

Pixel Map B

Pixel Map C

'0001'b

'0010'b

'0011'b

In this example the contents of this field is ignored:

Source Pixel Map = /OOOl/b (must not be a reserved value)

Destination Pixel Map

These bits define which Pixel Map is used as the Destination Map in the operation This enables different
maps to be setup in advance, and defined for use as this register is loaded.

The encoding for these bits is as follows'

Pixel Map A '0001 'b

Pixel Map B '0010'b

Pixel Map C '0011 'b

For this example:

Destination Pixel Map

Pattern Pixel Map

These bits define which Pixel Map is used as the Pattern Map in the operation. This enables different maps
to be setup in advance, and defined for use as this register is loaded.

The encoding for these bits is as follows'

Pixel Map A '0001 'b

Pixel Map B '0010'b

Pixel Map C '0011 'b

Foreground (fixed) '1 OOO'b

Generated from Source '1001 'b

For this example:

Pattern Pixel Map = /lOOO/b
(Foreground (fixed), for a solid Line)

72 OEK 25800 September 1991



'OO'b

'01'b

'10'b

'OO'b (Mask Map disabled)

Mask Pixel Map

These bits define whether Mask Map is used, or not, in the operation.

The encoding for these bits is as follows:

Mask Map Disabled

Mask Map Boundary Enabled

Mask Map Enabled

For this example'

Mask Pixel Map

Drawing Mode

These bits determine the attributes of a Line Draw.

129

The encoding for these bits is as follows'

Draw All Pixels 'OO'b

Draw First Pixel Null '01 'b

Draw Last Pixel Null '11'b

Mask Area Boundary '11 'b

The first three of these options can be used when drawing a line The fourth option is for use when drawing
the outline of a shape to be filled using the AreaFil1 capability of the hardware.

For this example:

Drawing Mode = 'OO'b (Draw All Pixels)

Direction Octant

These bits, when concerned with Line Draws determine the direction that the Line is drawn in.

The encoding for these bits is as follows:

Bit 2(DX) '1'b if Negative X direction

Bit 2(DX) 'O'b if Positive X direction

Bit 1(DV) '1'b if Negative V direction

Bit 1(DV) 'O'b if Positive V direction

BitO(DZ) '1'b if IXI < IVI

Bit 0(D2) 'O'b if IX I > IV I, (magnitude)

X----.

V

For this example:

Direction Octant

72 OEK 258 00

'OOO'b (X +ve, Y +ve, Ixl > IYI)

September 1991



130

Conclusion

Putting all these together for our example Line Draw operation, the Pixel Operations Register should be
set as:

Figure 13.6 Example Definition for Pixel Operations Register

For this example:

WRITE 05118000h to copr_regs offset 7Ch

13.4 Memory Access Modes (Reg. 21x9)

This register IS used to control the format of the data supplied by the system processor through a system
video memory aperture. For conventional use, this register should be set to match the format of the data
as seen by the system processor (see Section 13.5), and the depth of the video memory bitmap.

It is possible to exploit the different formats available using this register to achieve useful and otherwise
difficult conversions.

13.5 Motorola/lntel Format

The internal organization of the video memory is Intel format. However images and bitmaps are traditionally
stored in Motorola format It is important and necessary to understand the format of the application's bit
maps in system memory to get the correct results. The different formats are described in Section 4.1.1

The internal organization of video memory as Intel format can be entirely hidden by appropriate use of the
Memory Access Mode register (Section 13.4) and the various Coprocessor Pixel Map format registers.

13.5.1 System Processor Access

When using the system processor to read or write data direct to or from video memory via a system video
memory aperture, it is necessary to specify the format of the data via the Memory Access Mode Register
(21x9).

13.5.2 XGA Coprocessor Accesses

The format of all bitmaps in system memory must be specified, via the Pixel Map format register. This pa
rameter IS ignored for bitmaps in video memory.

13.5.3 Exploitation

Writing data in one format, and reading it back in another is a technique that performs many useful and
otherwise difficult and/or expensive bitmap conversions.

72 OEK 258 00 September 1991



131

14 Other Programming Considerations

14.1 Overlapping BitBllts

14.1.1 Pixel Block Transfer (PxBlt)

The coprocessor PxBltfunction is used to transfer a rectangular block of pixels from the Source to the Desti
nation sUbject to a number of modifiers, in other words a standard BitBlit operation. Where the Source and
Destination rectangles do not overlap, the order of processing pixels is obviously immaterial. In cases
where the rectangles do overlap, it is important to pre-determine that this is the case, and to program the
PxBlt direction (via the Direction Octant) correctly to ensure the expected result.

14.1.2 Inverting PxBlt

The inverting PxBlt is intended to convert images from the traditional application format of Y increasing up
wards to the traditional display hardware format of Y increasing downwards. As such a PxBlt operates from
both ends towards the middle, an Inverting PxBlt involving overlapping Source and Target rectangles inevit
ably overwrites pixels. The lesson here is that Inverting Pxblts on overlapping rectangles should be
avoided, unless for carefully considered special effects.

14.2 Sprite Handling

14.2.1 Sprite Loading

The sprite is loaded as a 64 x 64 x 2bpp Intel format image definition. As the application's Sprite definition
is invariably held in 2 separate 1bpp Motorola format bitmaps it is necessary to merge and 'pixel swap'
the Sprite definition into 2bpp Intel format before loading the Sprite.

14.2.2 Sprite Positioning

The position of the sprite is then controlled by 2 separate controls, as follows:

Sprite Start Registers The sprite is positioned on the display surface by specifying the position of
the upper left corner of the sprite definition relative to the upper left corner of the visible bitmap
using the Horizontal and Vertical Start registers.

Sprite Preset Registers The Sprite Start registers only accept positive values, and cannot be used
to move the sprite partially off the display surface at the left and top edges. The Sprite Preset Reg
isters are used to offset the start of the displayed sprite definition horizontally and/or vertically
relative to the loaded definition.

For example, if it is desired to display a 64 x 64 sprite with the leftmost 32 pels outside the left
edge of the display surface, set the Horizontal Start Register to 0, and the Horizontal Preset Regis
ter to 32. The Start position has now been preset to the centre of the loaded definition, giving the
desired effect.

The Sprite Preset can also be used to display sprites smaller than 64x64.

14.3 Waiting for Hardware Not Busy

The XGA coprocessor operates asynchronously with the system processor. It is necessary to wait for the
previous operation to complete before issuing the next operation. There are 2 ways to do this, each with
its own drawbacks and advantages.

Polling the Busy bit There is a Coprocessor Busy bit provided in XGA coprocessor PI Control register
that may be polled to ascertain the completion of the previous operation prior to initiating the next
operation.

72 OEK 25800 September 1991



132

Continuous polling of this bit slows down the coprocessor which must pause in its current opera
tion to process the 'read' of the PI control register

If this method is chosen, it is advisable to code a double polling loop, only checking the Copro
cessor bUsy bit once for every 100 times around the loop, for example.

Advantages:

• Minimal overhead. For typical PxBlts used to display text, the previous PxBlt operation will be
almost complete before the system processor is ready to issue the next operation.

• Simplicity

Disadvantages:

• Frequent use delays the XGA coprocessor. This can be partially reduced by a double loop
algorithm.

• The processor is kept bUsy doing nothing, although it has to be 'doing nothing' for a long time
to exceed the interrupt response codepath.

Operation complete interrupt The coprocessor can be programmed to cause an interrupt to the sys
tem processor when an operation is completed.

This interrupt is a shared level, and interrupt response time therefore depends on other interrupt
handlers chained on this shared level. In protect mode operating systems, in particular, the over
heads and restrictions placed on interrupt handlers may make the performance of this technique
prohibitive.

Advantages:

• The XGA coprocessor is not slowed while waiting for completion.

• The system processor may be freed up for other tasks.

Disadvantages:

• Program complexity.

• Interrupt response time gives a threshold in size of operation that is only exceeded by large
PxBlt operations. The more complex the operating system, the higher the interrupt response
time, and the larger the operation must be to benefit from using interrupts to notify the applica
tion of operation complete.

14.4 Destination Bitmap Width Restriction

Incorrect results can be obtained if the XGA coprocessor is used to write over the edge of a destination
bitmap where the edge of the bltmap IS not four byte aligned. To avoid this, either:

• Ensure that all destination bitmaps have a base address that is on a four byte boundary, and are
an exact multiple of 4 bytes in width.

The visible display bitmap naturally complies with this restriction.

or

• Where bitmaps are not aligned, software clip all PxBlts in advance so that the destination bitmap
boundary is not crossed during the PxBIt.

72 OEK 258 00 September 1991



133

14.5 Line Length Restriction

The XGA coprocessor Destination XAddress and Destination YAddress register accept coordinates in the
range -2048 to + 6143. This gives a guardband effect, where it is possible to write coordinates anywhere
in this range, and the operation is hardware scissored to the edge of the destination bitmap. The limit on
bitmap size for coprocessor operations is 0 to 4095.

However, the Operation Dimension 1 register only accepts values in the range 0 to 4095. It is therefore not
possible to draw a line in a single operation across the entire guardband coordinate space.

A 2 stage line draw can be performed easily, since the line parameters (ET, K1, K2, Destination X &amp.
y, Pattern X etc.) are already set up in the hardware at the end of the previous line segment. It is necessary
merely to update the new line length in the Operation Dimension 1 register to draw the remainder of the
line.

14.6 System Register Usage

When programming the XGA subsystem, it is often necessary to maintain addressability to:

XGA coprocessor memory mapped address space.

2 XGA state data segment (application dependent) containing the 10 base address, in other words
the location of the XGA registers in 10 space.

3 The normal function dependent application data, such as parameter blocks.

4 Global application dependent data.

In addition, many of the XGA registers are 32 bit registers.

To program the XGA subsystem efficiently, it is helpful to use the full i386 register set, specifically the FS
and GS segment registers and the 32 bit extended data registers.

Use of the extra segment registers allows concurrent addressability to all the separate data areas to be
maintained without frequent segment register loading - a particularly expensive operation in protect
modes.

14.7 Direct Color Mode

This section deals with matters unique to the Direct Color mode of the XGA SUbsystem.

14.7.1 Palette Loading

It is necessary to load the palette with a fixed set of values. These are described in Section 4.2.

14.7.2 Coprocessor Support

The XGA coprocessor does not support the 16 bpp mode. This mode is a display mode only and must be
programmed using the system processor to access the video memory display buffer directly using one
of the system video memory apertures (See also Section 11.2 & Section 13.4).

The processor is not, however, disabled while in this mode. The restriction is rather that the pixel map for
mats available for coprocessor operations is restricted to 1, 2, 4 or 8 bpp. The graphics coprocessor can
be used while in this mode if this is allowed for. Some ingenuity is necessary to achieve useful results using
the coprocessor in this way, but the rewards could be justified.

BitBlt Operations By using the PxBlt operations on an 8 bpp bitmap, doubling the dimension width
of the bitmaps involved and avoiding arithmetic mixes, BitBlt operations are possible. Use of the
1bpp pattern and mask maps are possible if carefully considered and calculated.

Text Operations Text operations using the coprocessor PxBlt function rely on 1 bpp patterns. By doub
ling the width of the individual character bitmap patterns, (interspersing the active bits with zero
bits), and writing the high and low order bytes of the required color index separately, Text Opera
tions are possible.

72 OEK 258 00 September 1991



134

15 Sample Code

15.1 Putting the XGA Subsystem into Extended Graphics Mode

15.1.1 Pseudo Code

Main Program

• Locate first XGA sUbsystem with attached monitor

• If XGA is current system VGA sUbsystem
- Chain Int 10h Video handler
- Chain Int 21 h DOS Function handler
- Chain Int 23h Ctrl Break Exit Address
- Chain Int 24h Critical Error handler

• If L1M Expanded Memory Manager installed
- Call L1M Fn 25.Get Physical Address Array
- Examine returned list for Memory Contention
- If contention found

- Display Warning Message.
- Terminate Application

• Chain Int 2Fh Screen Switch Notification handler

• Put XGA in highest Extended Graphics Mode for attached monitor (see Section 11.1.1)

• Draw simple rectangle ( or Whatever)

• Exit

Int 10 Handler

• Examine value of (Ah)

OOh Set Mode
- Put XGA subsystem in VGA mode (see Section 11.1.2)
- Chain on to saved Int 10h Video Interrupt handler.

OFh Return current video state
- Set (AL) = 7Fh
- Interrupt return (IRET)

Any other value
- Interrupt return (IRET)

Int 21h DOS Function handler

• Examine value of (Ah)

4Ch Program Terminate
- Put XGA subsystem in VGA mode
- UnChain and restore original Int 10h Video handler
- UnChain and restore original Int 21 h DOS function handler

• Chain on to saved Int 21 h handler

72 OEK 258 00 September 1991



135

Int 23h Ctrl Break Exit Address

• Chain on to saved Int 23h handler, using a method that will ensure return of control via this function
handler.

• On return from chained handler, Examine Carry Flag (CF). If set
- Put XGA sUbsystem in VGA mode
- UnChain and restore original Int 10h Video handler
- UnChain and restore original Int 21 h DOS function handler

• Interrupt return (IRET)

Int 24h Critical Error handler

• Save video state (or as much as is corrupted by a temporary switch into VGA text mode).

• Put XGA subsystem in VGA mode

• Chain on to saved Int 24h handler, using a method that will ensure return of control via this function
handler.

• On return from chained handler, examine AL, as follows:
0,1,3

Put XGA sUbsytem in Extended graphics mode
Restore video state

2
UnChain and restore original Int 10h Video handler
UnChain and restore original Int 21 h DOS function handler

• Interrupt return (IRET)

Int 2Fh Screen Switch Notification Handler

• Examine value of (Ah)

40h Screen Switch Notification
Examine value of (AL)
01 h Impending switch to background.

- Put XGA sUbsystem in VGA mode
02h Impending switch to foreground

Put XGA sUbsystem in Extended Graphics Mode
- Semaphore "re-draw required" to application
- Chain on to saved Int 2Fh handler ( if any)

Any other value
- Chain on to saved Int 2F Interrupt vector ( if any)

72 OEK 258 00 September 1991



136

15.1 .2 Code Example

Main C Program

/* **************************************************************** */
/* */
/* */
/* Program s ext */
/* */
/* Description This program is sample code to illustrate entry to */
/* Ext Graphics mode and back to VGA mode upon program */
/* termination. */
/* */
/* **************************************************************** */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

POS
POS GET BASE ADDRESS
FALSE
TRUE
EMM INT
DEVICE NAME LENGTH
MAX_SLOTS
XGA ID UPPER
XGA ID LOWER
INDEX_SELECT
INDEX DATA
MONITOR ID

Oxc4
OXOO
OxOO
OxOl
Ox67
Ox08
Ox09
Ox8fdb
Ox8fd8
OxOa
OxOb
Ox52

#include <dos.h>
#include <stdio.h>
#include <conio.h>
#include <signal.h>
#include <malloc.h>
#include <memory.h>
#include <stdlib.h>
#include <conio.h>

typedef struct
{

int
int

MPAA

page segment ;
page_number

/* Mapable Physical Address Array struct */

typedef struct
{

unsigned int pos id
char pos_bytel
char pos_byte2
char pos_byte3
char pos_byte4

POS_REC ;

/* POS Record */

union,REGS inregs , outregs ;
struct SREGS segregs ;
unsigned int pos_base address , IoRegBase , slot number

POS REC pos_record

72 OEK 25800 September 1991



137

long int ROS_add_rec[16] OxcOOOO
Oxc2000
Oxc4000 ,
Oxc6000 ,
Oxc8000 ,
OxcaOOO
OxccOOO ,
OxceOOO ,
OxdOOOO ,
Oxd2000
Oxd4000 ,
Oxd6000
Oxd8000 ,
OxdaOOO
OxdcOOO
OxdeOOO

unsigned char vga_data[] OxOI OxOO OxOO
Ox04 , OxOO OxOO
Ox05 , Oxff , OxOO ,
OxOa , Oxff Ox64
OxOa , Oxl5 Ox50
OxOa Oxl4 Ox50
OxOa , OxOO , Ox51 ,
OxOa Ox04 Ox54
OxOa , Ox7f , Ox70 ,
OxOa , Ox20 , Ox2a
OxOO OxOI OxOO

unsigned char nm_data [] Ox04 OxOO OxOO OxOO
Ox05 Oxff Oxff OxOO ,
OxOO , Ox04 , Ox04 , OxOO ,
OxOa , OxOO , OxOO Ox64
OxOI , OxOO OxOO , OxOO ,
Ox08 , OxOO , OxOO , OxOO ,
Ox06 O~OO , OxOO , OxOO ,
Ox09 Ox03 , Ox02 , OxOO ,
OxOa OxOI , OxOI , Ox50 ,
OxOa OxOO OxOO , Ox50 ,
OxOa Ox9d , Ox9d , OxlO ,
OxOa , OxOO , OxOO Oxll
OxOa Ox7f Ox7f Oxl2
OxOa OxOO OxOO , Oxl3 ,
OxOa , Ox7f , Ox7f , Oxl4
OxOa OxOO OxOO Oxl5 ,
OxOa , Ox9d , Ox9d Oxl6 ,
OxOa OxOO OxOO , Oxl7 ,
OxOa Ox87 Ox87 Oxl8 ,
OxOa , OxOO , OxOO , Oxl9 ,
OxOa , Ox9c , Ox9c , Oxla ,
OxOa , OxOO , OxOO , Oxlb ,
OxOa , Ox40 , Ox40 , Oxlc ,
OxOa , Ox04 Ox04 Oxle ,
OxOa Ox30 Ox30 , Ox20 ,
OxOa Ox03 Ox03 Ox21 ,
OxOa Oxff Oxff , Ox22 ,
OxOa Ox02 Ox02 , Ox23
OxOa , Oxff , Oxff , Ox24
OxOa , Ox02 Ox02 , Ox25 ,

72 OEK 258 00 September 1991



138

OxOa , Ox30 , Ox30 Ox26 ,
OxOa , Ox03 , Ox03 , Ox27 ,
OxOa , OxOO , OxOO , Ox28 ,
OxOa , Ox03 Ox03 , Ox29 ,
OxOa , Ox08 Ox08 , Ox2a ,
OxOa , Oxff , Oxff , Ox2c ,
OxOa , Oxff , Oxff , Ox2d ,
OxOa , OxOO , OxOO , Ox36
OxOa , OxOO OxOO Ox40 ,
OxOa OxOO , OxOO , Ox41 ,
OxOa , OxOO OxOO , Ox42 ,
OxOa Ox80 , Ox40 , Ox43 ,
OxOa , OxOO , OxOO Ox44 ,
OxOa , OxOd , OxOd , Ox54 ,
OxOa , Ox03 Ox02 , Ox51 ,
OxOa , OxOO OxOO , Ox70 ,
OxOa OxOf OxOf , Ox50
OxOa OxOO , OxOO Ox55 ,
OxOa , OxOO , OxOO , Ox60
OxOa , OxOO , OxOO , Ox61 ,
OxOa , OxOO , OxOO , Ox62 ,
OxOa OxOO , OxOO , Ox63
OxOa Oxff Oxff Ox64

/* colour_default_palette
unsigned char colour_default_palette[]

R G B */
OxOO OxOO OxOO
OxOO , OxOO Oxa8,
OxOO , Oxa8 , OxOO ,
OxOO , OxA8 , OxA8
OxA8 OxOO, OxOO ,
OxA8 , OxOO Oxa8,
OxA8 Ox54, OxOO ,
OxA8 , OxA8 , OxA8 ,
Ox54 , Ox54 , Ox54 ,
Ox54 , Ox54 Oxfc,
Ox54 , Oxfc , Ox54
Ox54 , OxFC , OxFC ,
OxFC , Ox54 , Ox54
OxFC , Ox54 , OxFC ,
OxFC , OxFC , Ox54
OxFC OxFC OxFC

int
long
char
char
void
void
FILE
int
char

IpInt , cop_instance ;
int ROS address

XGAFound , VRAM_1Meg;
XGAInVGA , ExtG_mode_set

far *int_10_original_vector
far *int_2f_original_vector

*stream ;
delaytime = 1000

VramIr , A1024x768 ;

unsigned short int VRAM_address 10 VRAM address hi- -

interrupt far int_10( void) ;
interrupt far int_2f( void) ;
char *build_ptr( unsigned int unsigned int );
char emm_installed( void ) ;
int far return_ax( void ) ;

72 OEK 258 00 September 1991



139

int far return_7f( void)
void PutXGAlnVGA (void)
void PutXGAlnExtG(void) ;
int exit_handler ( void) ;
void signal_handler( void)
void co_pro_blit(void);
void CoProWriteByte(int , unsigned char);
void CoProWriteWord(int , unsigned int );
void CoProPrintByte( int , char * );
void WaitForCoProReady(void) ;
void delay(long int);

*/
*/
*/
*/
*/
*/
*/

*/

This is the program entry point.

Function main()

Description

*************************************************************

/* ************************************************************ */
/*
/*
/*
/*
/*
/*
/*
/*

void main( void )
{

int index
MPAA *mpaa
unsigned int ipdata
unsigned char far *vram address
unsigned char ip_byte ;

atexit( exit_handler);
signal ( SIGINT ,signal handler);
signal( SIGFPE ,signal_handler);
signal( SIGABRT , signal_handler);

ExtG_mode_set = FALSE ;
int_IO_original vector 0
int_2f_original_vector 0

inregs.h.ah POS;
inregs.h.al POS_GET_BASE ADDRESS;
int86( OxI5 , &inregs , &outregs );

/* get base POS address */
/* from system services */

printf( "No XGA Installed\n"

pos_base_address = outregs.x.dx
XGAFound = FALSE ;
if( outregs.x.cflag )
{

}
else
{

/* carry flag set means */
/* not a microchannel */
/* machine */

XGAFound = FALSE ;
slot_enabled = FALSE
for (slot number = 0
{ -

slot number <= MAX_SLOTS ; slot_number++)

disable(); /* Disable interrupts */
if (slot number == 0)
{ /* Look at the planar for XGA */

72 OEK 258 00 September 1991



140

outp( OX094 , OxOdf ) /* Enable planar for setup */
}
else
{ /* Look in the slots for XGA */

inregs.x.ax Oxc40I;
inregs.x.bx slot_number;
int86( Ox15 , &inregs , &outregs ) ;

/* enable slot for update */

Enable planar for normal mode *//*outp( OX094 , OxOff)

}
slot enabled = TRUE ;
/* Get pos record for the slot */
pos_record.pos_id = inpw( pos_base address) ;
pos_record.pos_bytel (char)inp( pos_base_address + 2
pos_record.pos_byte2 (char)inp( pos_base_address + 3
pos_record.pos_byte3 (char)inp( pos_base_address + 4
pos_record.pos_byte4 (char)inp( pos_base_address + 5 )
IoRegBase = « pos_record.pos_bytel & OxOe ) « 3 ) + Ox2I00
if(slot number == 0)
{ -

}
else
{

inregs.x.ax Oxc402;
inregs.x.bx slot number
int86( Ox15 , &inregs , &outregs ) ; /

/* enable slot normal mode */
}
slot enabled FALSE
_enable(); /* Enable interrupts */
/* Check for a valid XGA POS id */
if ( pos_record.pos_id >= XGA_ID_LOWER &&

pos_record.pos id <= XGA_ID_UPPER )

/* XGA found in slot */

/* Look to see if monitor connected to XGA */
outp( IoRegBase + INDEX_SELECT, MONITOR_ID);
if ( ( inp(IoRegBase + INDEX DATA) & OxOf) != OxOF
{ -

/* Monitor connected to XGA */
XGAFound = TRUE

/* Determine if XGA in VGA */
ipdata = inp( IoRegBase ) ;
if( ipdata & OxOI )
{

XGAlnVGA = TRUE ;
/* Chain Int IOH */
int_IO_original_vector _dos_getvect( OxIO )
_dos setvect( OxIO , int_IO ) ;

}
else

XGAlnVGA = FALSE ;
/* calculate VRAM address */
VRAM_address_lo = OxO ;
VRAM_address_hi = «short int)

( pos_record.pos_byte3 & Oxfe )) « 8

72 OEK 258 00 September 1991



VRAM_IMeg = TRUE

printf("Unable to allocate memory\n") ;

72 OEK 258 00

141

VRAM_address_hi &lor.= «short int)
(pos_record.pos_bytel & OxOe» « 5

/* check VRAM */
outp(IoRegBase + 4 OxOO) ;
outp(IoRegBase + 0 Ox04) ;
outp(IoRegBase + 1 OxOl);
outpw(IoRegBase + OxOa , Ox0064 );

VRAM_IMeg = FALSE
outp(IoRegBase + 8 , OxOc) ;
vram_address = (unsigned char far *)OxaOOOOOOO
*vram_address = Oxa5

vram_address++ ;
*vram_address = 0

vram_address-- ;
ip_byte = *vram_address

if(ip byte == Oxa5)
{ -

}

index = (pos_record.pos_bytel » 4) & Oxf
cop_instance = (pos_record.pos_bytel » 1) & Ox07
ROS_address = ROS_add_rec[ index] ;
if( emm installed() )
{ -

/* get number of entries in mappable physical page */
inregs.x.ax = Ox5801 ;
int86( Ox15 , &inregs , &outregs ) ;
if(outregs.x.cx)
{

/* entries exist in the list */
mpaa = (MPAA *)calloc(outregs.x.cx, sizeof(MPAA»;
if( !mpaa)
{

}
else
{

segregs.es = FP_SEG( mpaa ) ;
inregs.x.di = FP_OFF( mpaa ) ;
int86x( Ox67 , &inregs , &outregs , &segregs );

fore ; outregs.x.cx > 0 ; mpaa++
{

if(ROS address == mpaa->page segment
{ -

printf("Extended memory conflict at");
printf(" segement address");
printf (" %x\n" , mpaa->page segment );
exit(O) ;

September 1991



142

}
/* Chain Int 2fH */
int_2f_original_vector _dos_getvect( Ox2f )
_dos_setvect( Ox2f , int_2f ) ;
PutXGAlnExtG() ;
co_pro_blit();

}
if( XGAFound ) break

/* ****************************************************************
/*
/* Function pointer = build_ptr( segment , offset )
/*
Description Constructs a pointer from segment and offset.
/*
/*
/*
/* ****************************************************************

char *build ptr( unsigned int segment , unsigned int offset
{ char *pt;;- ;

ptr = (char *) «(unsigned long)segment « 16) + offset)
return( ptr ) ;

/* ****************************************************************
/*
Function status = emm_installed()
/*
/* Description checks to see if extended memory installed
/*
/*
/* ****************************************************************

char emm installed(
{ -

char *EMM device name = "EMMXXXXO"
char *int_67_device_name_ptr
inregs.h.ah = Ox35 ;
inregs.h.al = EMM_INT ;
intdosx( &inregs , &outregs , &segregs ) ;
int_67_device_name_ptr = build_ptr( segregs.es , OxOa
if( memcmp(EMM_device_name, int_67_device_name_ptr,

DEVICE_NAME_LENGTH »
return ( FALSE );

else
return TRUE);

*/
*/
*/
*/ /*
*/
*/
*/
*/

*/

*/
*/ /*
*/
*/
*/
*/
*/

*/

72 OEK 25800 September 1991



143

*1
*1
*1
*1 1*
*1
*1
*1

/* ****************************************************************
1*
1* Function interrupt routine int_10()
1*
Description internal INT lOh interrupt handler
1*
1*
/* **************************************************************** */

interrupt far int lO( void )
{ -

unsigned int ax ;
ax = return_ax() » 8
if( ax == 0 )
{

1* set xga to vga mode *1
_chain_intr( int_10_original vector

}
else if (
{

}
else
{

}

ax == OxOf

/* **************************************************************** */

1* *I
1* Function Interrupt routine int_2f() *1
1* *I
1* Description Internal INT 2fh interrupt handler *1
1* *I
1* *I
/* **************************************************************** */

interrupt far int 2f( void)
{ -

unsigned int ax ;
unsigned char ah
unsigned char al

ax return_axO
ah (unsigned char)(ax» 8) ;
al (unsigned char)(ax & OxOf);
if( ah == Ox40 )
{ 1* Screen switch notification received *1

if (al == OxOl ) 1* Switch to background *1
PutXGAInVGA() ;

else if (al == Ox02) 1* Switch to foreground *1
PutXGAInExtG();

}
if(int 2f_original_vector)
_chain_intr( int_2f_original_vector

72 OEK258 00 September 1991



exit(O) ;

144

/* **************************************************************** */
/* */
/* Function signal_handler() */
/* */
/* Description error handler */
/* */
/* */
/* **************************************************************** */

void signal handler( void)
{ -

}

/* **************************************************************** */

/* */
/* Function exi t_handler () */
/* */
/* Description Exit handler */
/* */
/* **************************************************************** */

int exit handler( void)
{ -

/* reset interrupt vectors to original values */
if ( int_IO_original_vector )

_dos_setvect( OxlO , int 10_original_vector
if int_2f_original_vector)

_dos setvect( Ox2f , int 2f_original vector

/* reset to VGA if originally in VGA mode */
if ( ExtG_mode_set && XGAlnVGA ) PutXGAlnVGA ()
printf ("Completed\n");
return (0)

/* **************************************************************** */
/* */
/* Function co_pr_blit() */
/* */
/* Description Use co-processor to blit to the display */
/* */
/* **************************************************************** */

void co pro blit(void){ --

unsigned char i , j , k;
AI024x768 = TRUE ;

CoProWriteByte( Oxll , OxOO ) ;
CoProWriteByte( Oxl2 OxOI )

/* set up VRAM base address */
CoProWriteWord( Oxl4 VRAM address 10 ) ;
CoProWriteWord( Oxl6 VRAM address hi ) ;- -

CoProWriteWord( Oxl8 AI024x768 ? Ox03ff Ox02a8 )

CoProWriteWord( Oxla AI024x768 ? Ox02ff OxOleO )

CoProWriteByte( Oxlc (unsigned char) (VRAM- IMeg ? Ox03

72 OEK 25800

Ox02 ))

September 1991



CoProWriteByte( Ox48
CoProWriteByte( Ox49
CoProWriteByte( Ox4a
CoProWriteWord( Ox50
CoProWriteWord( Ox54
CoProWriteByte( Ox58
CoProWriteByte( Ox5c
CoProWriteWord( Ox60
CoProWriteWord( Ox62
CoProWriteWord( Ox6c
COProWriteWord( Ox6e
CoProWriteWord( Ox70
CoProWriteWord( Ox72
CoProWriteWord( Ox74
CoProWriteWord( Ox76
CoProWriteWord( Ox78
COProWriteWord( Ox7a
CoProWriteWord( Ox7c
CoProWriteWord( Ox7e

WaitForCoProReady() ;

Ox03
Ox05
Ox04
Oxff
Ox7f
OxOO
OxOO )
Al024x768 ? Ox03ff
Al024x768 ? Ox02ff
OxOOOO )
OxOOOO )
OxOOOO )
OxOOOO )
OxOOOO )
OxOOOO )
OxOOOO )
OxOOOO )
Ox8000 )
Ox08ll )

Ox02a8
OxOleO

145

CoProWriteWord( Ox60 , Ox0015 ) ;
CoProWriteWord( Ox62 , Ox02ff ) ;
CoProWriteWord( Ox60 Al024x768? Ox0015
CoProWriteWord( Ox62 Al024x768? Ox02ff
for (j=O; j < 30 ; j++)
{

k=O;
for (i=l; i<= 34 i++)
{

OxOOlO
Ox02ff

if (k > 15
k = 1

else
k++

CoProWriteword( Ox78 (Ox0030 * i) - 15 +j)
CoProWriteWord( Ox7a OxOOOO)
CoProWriteByte( Ox58 k)
CoProWriteByte( Ox7f ,Ox08 ) ;
WaitForCoProReady() ;

}
CoProWriteWord( Ox60
CoProWriteWord( Ox62
CoProWriteWord( Ox70
CoProWriteWord( Ox72
CoProWriteWord( Ox78
COProWriteword( Ox7a
CoProWriteByte( Ox7f
WaitFQrCoProReady()

72 OEK 25800

Ox03ff
Ox02ff
Ox0015
OxOOOO
Ox0030
Ox0024 )

,Ox28 ) ;

September 1991



146

/* **************************************************************** */
/* */
/* Function CoProWriteByte(offset, data) */
/* */
/* Description Writes a data byte to the co-processor at the */
/* supplied offset. */
/* */
/* **************************************************************** */

void CoProWriteByte(int offset , unsigned char ipdata)
{

unsigned char far *cop
unsigned long tmp

tmp = ROS address + Ox1cOO + offset + (cop_instance * 128 ) ;
cop = (void far *) «(tmp & OxffffO )«12 ) + (tmp & OxOf» ;
*cop= ipdata ;

}
void CoProPrintByte(int offset , char *string)
{

unsigned char far *cop
unsigned long tmp

tmp = ROS_address + Ox1cOO + offset + (cop_instance * 128 ) ;
cop = (void far *) «(tmp & OxffffO )«12 ) + (tmp & OxOf» ;
printf(string) ;
printf (" %x\n" , *cop) ;

/* **************************************************************** */
/* */
/* Function CoProWriteWord(offset, data) */
/* */
/* Description Writes a data word to the co-processor at the */
/* supplied offset. */
/* */
/* **************************************************************** */

void CoProWriteword(int offset , unsigned int ipdata)
{ unsigned int far *cop

unsigned long tmp ;

tmp = ROS_address + Ox1cOO + offset + (cop_instance * 128 ) ;
cop = (void far *) «(tmp & OxffffO )«12 ) + (tmp & OxOf» ;
*cop= ipdata ;

/* **************************************************************** */
/* */
/* Function WaitForCoProReady() */
/* */
/* Description waits until co-processor in ready state */
/* */
/* **************************************************************** */

void WaitForCoProReady(void)
{

unsigned char far *cop ;
unsigned long tmp ;
long int count

72 OEK 258 00 September 1991



147

tmp = ROS_address + Ox1cOO + Ox11 + (cop_instance * 128 ) ;
cop = (void far *) «(tmp & OxffffO )«12 ) + (tmp & OxOf» ;
count 0;
for(;; )
{

if ( «*cop & Ox80)==0) 11 (count> 20000» break;
count++;

/* **************************************************************** */
/* */
/* Function PutXGAInExtG() */
/* */
/* Description Puts the XGA into Extended Graphics Mode */
/* */
/* **************************************************************** */

void PutXGAInExtG( void )
{

int i, res , palette_size

outp( Ox03c3 , OxOl );
ExtG_mode_set = TRUE ;
/* 1meg VRAM res = 1 if 512K VRAM res = 2 */
res = VRAM_IMeg ? 1 : 2
for (i = 0 ; i < sizeof(nm data) ; i = i + 4
{ -

if (nm_data[i+3])
outpw( IoRegBase + nm_data[i] ,

«(int)nm_data[i+res]) « 8) + (unsigned)nm_data[i+3]

else
outp( IoRegBase + nm_data[i] , (int)nm_data[i+res] );

outpw( IoRegBase + OxOa , Ox0066 );
outpw( IoRegBase + OxOa , Ox0060 );
outpw( IoRegBase + OxOa , Ox0061 );

palette_size = sizeof(colour_default palette)
for ( i=O ; i <= palette size ; i++ )
{

/* select palette data register */
outp( IoRegBase + INDEX_SELECT, Ox65 ) ;
outp( IoRegBase + OxOb , (int)colour_default_palette[i]

72 OEK 25800 September 1991



148

/* **************************************************************** */
/* */
/* Function PutXGAlnVGA() */
/* */
/* Description puts the XGA into VGA mode */
/* */
/* **************************************************************** */

void PutXGAlnVGA( void )
{

int i ;
vram_address = (unsigned char far *)OxAOOOOOOO;
/* clear 1st 256k of vram */
for (i = 0 ; i < 4 ; i++)
{

outp(IoRegBase + 8 , i) ;
ptr = vram_address ;
memset(ptr , 0 , Ox8000) ; /* set 1st 32K of 64K aperture*/
ptr = vram_address + Ox8000 ;
memset(ptr , 0 , Ox8000) ; /* set 2nd 32K of 64K aperture*/

for (i = 0 ; i < sizeof(vga_data)
{

i + 3 )

if (vga_data[i+2])
outpw( IoRegBase + vga_data[i] ,

«(unsigned)vga_data[i+1]) « 8)
+ (unsigned) vga_data [i+2]

) ;
else

outp( IoRegBase + vga_data[i] , (int)vga_data[i+1] );

outp( Ox03c3 , OxOl );

/* select scan lines for alphanumeric modes */
inregs.h.ah Ox12
inregs.h.al Ox02; /* 400 scan lines */
inregs.h.bl Ox30;
int86( Ox10 , &inregs , &outregs ) ;
inregs.h.ah OxOO;
inregs.h.al Ox03;
int86( Ox10 &inregs, &outregs )

72 OEK 25800 September 1991



149

Assembler Subroutines

;*********************************************************************
;**
;** Function _return_ax()
;**

**
**
**

;** Description unwinds the stack after a call to an interrupt **
;** routine to obtain contents ofax register, the **
;** value of which is returned. The stack is restored **
; ** prior to the return. **
;** **
;*********************************************************************

.286c

.MODEL SMALL

.DATA
return_segment address
return_offset_address
ret_data_seg
ret_bp

. CODE

dw ?
dw ?
dw ?
dw ?

PUBLIC
return ax- -

moy
pop
pop
moy
moy
add
pop
pop
moy
popa
pusha
moy
push
push
sub
moy
moy
push
push
moy
ret

return ax- -

END

72 OEK258 00

~return_ax

PROC FAR
ret_bp , bp
bx
es
return_segment address , es
return_offset_address , bx
sp,+2
es
bx ; data seg
ret_data_seg bx

bx,ret_data_seg
bx ; data seg
es
sp,+2
es,return_segment address
bx,return_offset_address
es
bx
bp ret_bp

ENDP

September 1991



150

;*********************************************************************
;**
;** Function return_7f
;**

**
**
**

;** Description unwinds the stack after a call to an interrupt **
;** routine to obtain contents ofax register, the **
;** value of which is returned. The stack is restored **
; ** prior to the return. **
;** **
;*********************************************************************

.286c

. MODEL SMALL

. DATA
return_segment address
return_offset_address
ret_data_seg
ret_bp

. CODE

dw ?
dw ?
dw ?
dw ?

PUBLIC
return_7f

mov
pop
pop
mov
mov
add
pop
pop
mov
popa
mov
pusha
mov
push
push
sub
mov
mov
push
push
mov
ret

return_7f
END

72 OEK 258 00

_return_7f
PROC FAR
ret_bp , bp
bx
es
return_segment address , es
return_offset_address , bx
sp,+2
es
bx ; data seg
ret_data_seg , bx

ah,7fh

bx,ret data seg
bx ; data seg
es
sp,+2
es,return_segment_address
bx,return_offset_address
es
bx
bp , ret_bp

ENDP

September 1991



151

15.2 Putting the XGA Subsystem Into 132 Column Text Mode

15.2.1 Pseudo Code

Main Program

• Locate XGA sUbsystem with attached monitor in VGA mode

• If none, display error message and return.

• Chain Int 10h Video handler

• Chain Int 21 h DOS Function handler

• Chain Int 23h Ctrl Break Exit Address

• Chain Int 2Fh Screen Switch Notification handler

• Put XGA into 132 column text mode (see Section 11.1.3)

• Display simple text

• Exit

Int 10 Handler

• Examine value of (Ah)

OOh Set Mode
- Put XGA sUbsystem in normal VGA mode (see Section 11 .1.2)
- Chain on to saved Int 10h Video Interrupt handler.

Any other value
- Interrupt return (IRET)

Int 21 h DOS Function handler

• Examine value of (Ah)

4Ch Program Terminate
Put XGA sUbsystem in normal VGA mode

- UnChain and restore original Int 10h Video handler
- UnChain and restore original Int 21 h DOS function handler

• Chain on to saved Int 21 h handler

Int 23h Ctrl Break Exit Address

• Chain on to saved Int 23h handler, using a method that will ensure return of control via this function
handler.

• On return from chained handler, examine Carry Flag (CF). If set
Put XGA sUbsystem in normal VGA mode

- UnChain and restore original Int 10h Video handler
- UnChain and restore original Int 21 h DOS function handler

• Interrupt return (IRET)

72 OEK258 00 September 1991



152

Int 2Fh Screen Switch Notification Handler

• Examine value of (Ah)

40h Screen Switch Notification
Examine value of (AL)
01h Impending switch to background.

Put XGA sUbsystem in normal VGA mode
Chain on to saved Int 2Fh handler ( if any)

02h Impending switch to foreground
Put XGA sUbsystem in 132 column text mode
Semaphore "re-draw required" to application
Chain on to saved Int 2Fh handler ( if any)

Any other value
Chain on to saved Int 2F Interrupt vector ( if any)

15.2.2 Code Example

Main C Program

/* **************************************************************** */
/* */
/* */
/* Program s_132n */
/* */
/* Description This program is sample code to illustrate entry */
/* to 132 mode and back to VGA mode upon program */
/* termination. */
/* */
/* **************************************************************** */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

POS
POS GET BASE ADDRESS
FALSE
TRUE
EMM INT
DEVICE NAME LENGTH
MAX_SLOTS
XGA--"ID_UPPER
XGA ID LOWER
INDEX SELECT
INDEX DATA
MONITOR ID

Oxc4
OXOO
OxOO
Ox01
Ox67
Ox08
Ox09
Ox8fdb
Ox8fd8
OxOa
OxOb
Ox52

#include <dos.h>
#include <stdio.h>
#include <conio.h>
#include <signal.h>
#include <malloc.h>
#include <memory.h>
#include <stdlib.h>
#include <conio.h>

72 OEK 258 00 September 1991



typedef struct
{
unsigned int pos id

char pos_bytel
char pos_byte2
char pos_byte3
char pos_byte4

POS_REC ;

/* POS Record */

153

union REGS inregs , outregs ;
struct SREGS segregs ;
unsigned int pos_base_address , IoRegBase , slot number

POS REC pos_record ;

unsigned char OxOl
Ox04 ,
Ox05 ,
OxOa ,
OxOa ,
OxOa ,
OxOa ,
OxOa ,
OxOa ,
OxOa ,
OxOO ,

OxOO
OxOO
Oxff
Oxff
Ox15
Ox14
OxOO
Ox04
Ox7f
Ox20
OxOl

OxOO
, OxOO ,
, OxOO ,

Ox64 ,
, Ox50 ,
, Ox50 ,
, Ox5l ,

Ox54 ,
, Ox70 ,
, Ox2a ,
, OxOO

char RedrawRequired
char XGAFound ;
char XGAlnVGA;
void far *int 10 original_vector
void far *int_2f_original_vector

interrupt far int_lO( void)
interrupt far int_2f( void)
int far return_axe void)
int far return_7f( void)
void PutXGAlnVGA(void) ;
void PutXGAln132 (void) ;
int exit_handler( void)
void signal_handler ( void
void DisplayText( void);

72 OEK 25800 September 1991



154 .

/* **************************************************************** */
/* Function main() */
/* */
/* Description This is the program entry point. */
/* **************************************************************** */

void main( void)
{

int index
unsigned int ipdata
unsigned char far *vram_address
unsigned char ip_byte ;

atexit( exit_handler);
signal ( SIGINT ,signal handler);
signal ( SIGFPE ,signal_handler);
signal ( SIGABRT , signal_handler );

int_IO_original vector 0
int_2f_original_vector 0

inregs.h.ah POS;
inregs.h.al POS_GET_BASE ADDRESS;
int86( OxI5 , &inregs , &outregs );

/* get base POS address */
/* from system services */

printf( "No XGA Installed\n"

pos_base_address = outregs.x.dx
XGAFound = FALSE ;
if( outregs.x.cflag )
{

}
else
{

/* carry flag set means */
/* not a microchannel */
/* machine */

XGAFound
XGAlnVGA

FALSE
FALSE

*/

/* Disable interrupts */

XGA */
/* Enable planar for setup

o

slots for XGA */
Oxc40I ;
slot_number ;

, &inregs , &outregs ) ;
/* enable slot for update */

_disable() ;
if (slot number == 0)
{ /* Look at the planar for

outp( OX094 , OxOdf ) ;
}
else
{ /* Look in the

inregs.x.ax
inregs.x.bx
int86( OxI5

for (slot_number
{

/* Get pos record for the slot */
pos_record.pos_id = inpw( pos_base_address ) ;
pos_record.pos_bytel (char)inp( pos_base_address + 2
pos_record.pos_byte2 (char)inp( pos_base_address + 3
pos_record.pos_byte3 (char)inp( pos_base_address + 4
pos_record.pos_byte4 (char)inp( pos_base_address + 5 )
IoRegBase = « pos_record.pos_bytel & OxOe ) « 3 ) + Ox2100

72 OEK 25800 September 1991



outp(OX094 , OxOff)

if(slot number == 0)
{ -

}
else
{

/* Enable planar for normal mode */

155

inregs.x.ax Oxc402;
inregs.x.bx slot_number
int86( Ox15 , &inregs , &outregs ) ;

/* enable slot normal mode */

_enable(); /* Enable interrupts */
/* Check for a valid XGA POS id */
if ( pos_record.pos_id >= XGA_ID_LOWER &&

pos_record.pos id <= XGA_ID_UPPER )

/* XGA found in slot */

/* Look to see if monitor connected to XGA */
outp( IoRegBase + INDEX_SELECT , MONITOR_ID);
if ( ( inp(IoRegBase + INDEX DATA) & OxOf) != OxOF
{ -

/* Monitor connected to XGA */
XGAFound = TRUE ;
/* Determine if XGA in VGA */
ipdata = inp( IoRegBase ) ;
if( ipdata & Ox01 )
{

XGAInVGA = TRUE ;
break;

printf( "XGA in VGA with attached monitor - not found\n");

}
if (XGAInVGA
{

}
else
{

FALSE )

RedrawRequired = FALSE
/* Chain Int 10H */
int_10_original_vector _dos_getvect( Ox10 )
_dos setvect( Ox10 , int 10 ) ;

/* Chain Int 2fH */
int_2f_original_vector _dos_getvect( Ox2f )
_dos setvect( Ox2f , int 2f ) ;

PutXGAIn132() ;

DisplayText() ;

72 OEK 25800 September 1991



156

/* **************************************************************** */

1* *1
1* Function interrupt routine int lOO *1
1* *1
1* Description - internal INT lOh interrupt handler *1
1* *1
1* *1
1* **************************************************************** */

interrupt far int_lO( void )
{

int ax
ax = return_ax() » 8
if( ax == 0 )
{

1* set xga to vga mode *1
PutXGAInVGAO;
_chain_intr( int_lO_original_vector

return 7fO

}
else if (
{

}
else
{

}

ax == OxOf

/* ******************************************************~********* */

1* *1
1* Function Interrupt routine int 2f() *1
1* *1
1* Description Internal INT 2fh interrupt handler *1
1* *1
1* *1
/* **************************************************************** */

interrupt far int 2f( void)
{ -

unsigned int ax
unsigned char ah
unsigned char al

ax return_axO
ah (unsigned char) (ax » 8) ;
al (unsigned char) (ax & OxOf);
if( ah == Ox40 )
{ 1* Screen switch notification received *1

if (al == OxOl ) 1* Switch to background *1
PutXGAInVGAO;

else if (al == Ox02) 1* Switch to foreground *1
{

RedrawRequired = FALSE ;
PutXGAIn132();

}
if (int_2f_original_vector) _chain_intr( int_2f_original vector

72 OEK 258 00 September 1991



exit(O) ;

/* ****************************************************************
/*
/* Function signal_handler()
/*
/* Description error handler
/*
/*
/* ****************************************************************

void signal handler ( void)
{ -

}

157

*/
*/
*/
*/
*/
*/
*/

*/

/* **************************************************************** */
/* */
/* Function exit_handler() */
/* */
/* Description Exit handler */

/* /
/* **************************************************************** */

int exit handler( void)
{ -

/* reset interrupt vectors to original values */
if ( int 10_original_vector

_dos_setvect( OxlO int 10_original vector
if int 2f_original_vector

_dos setvect( Ox2f int 2f_original_vector

if(XGAlnVGA)PutXGAlnVGA (); return (0)

/* **************************************************************** */
/* */
/* Function PutXGAln132 () * /
/* */
/* Description Puts the XGA into 132 mode
*/
/* */
/* **************************************************************** */

void PutXGAln132( void )
{

int ipdata ;
int far *bios

outw IoRegBase + OxOa Ox1550

outw IoRegBase + OxOa Ox1450

outw IoRegBase + OxOa Ox0454

/* select scan lines for alphanumeric modes */
inregs.h.ah Ox12
inregs.h.al Ox02; /* 400 scan lines */
inregs.h.bl Ox30;
int86( OxlO &inregs &outregs)

72 OEK 258 00 September 1991



158

/* set vga mode */
inregs.h.ah OxOO
inregs.h.al Ox03
int86( OxlO &inregs &outregs

outp ( IoRegBase + OxOa Ox50)
ipdata = inp (IoRegBase + OxOb
ipdata &lor.= OxOI
outp ( IoRegBase + OxOb , ipdata)

outp ( IoRegBase + OxOa , Ox50 )
ipdata = inp (IoRegBase + OxOb ) ;
ipdata &= OxFD ;
outp ( IoRegBase + OxOb , ipdata)

outp ( IoRegBase + OxOa , Ox50 )
ipdata = inp (IoRegBase + OxOb ) ;
ipdata &= OxFC ;
outp ( IoRegBase + OxOb , ipdata)

outp IoRegBase , Ox03 ) ;

outpw( IoRegBase + OxOa OxOl54

outpw( IoRegBase + OxOa Ox8070

outp ( IoRegBase + OxOa Ox50 )
ipdata = inp ( IoRegBase + OxOb
ipdata &= Oxef ;
outp ( IoRegBase + OxOb , ipdata) ;

outp( Ox03d4 , Oxll )

ipdata = inp( Ox03d5)
ipdata &= Ox7f
outp( Ox03d5 , ipdata ) ;

outp( Ox03d4 OxOO )

outp( Ox03d5 , Oxa4 ) ;

outp( Ox03d4 , OxOI ) ;
outp( Ox03d5 , Ox83 ) ;

outp( Ox03d4 , Ox02 ) ;
outp( Ox03d5 , Ox84 ) ;

outp( Ox03d4 , Ox03 ) ;
outp( Ox03d5 Ox83 ) ;

outp( Ox03d4 , Ox04 ) ;
outp( Ox03d5 , Ox90 ) ;

outp( Ox03d4 , Ox05 ) ;
outp( Ox03d5 , Ox80 ) ;

t outpw( IoRegBase + OxOa Oxa3la
outpw( IoRegBase + OxOa OxOOlb

outp( Ox03d4 , Oxl3 ) ;

72 OEK 258 00 September 1991



159

outp( Ox03d5 , Ox42 );

outp( Ox03d4 Ox11)
ipdata = inp( Ox03d5)
ipdata &lor.= Ox80 ;
outp( Ox03d5 , ipdata );

outp ( IoRegBase + OxOa , Ox50 )
ipdata = inp (IoRegBase + OxOb
ipdata &lor.= Ox03
outp ( IoRegBase + OxOb , ipdata) ;

outp( Ox03c4 , Ox01 )
ipdata = inp( Ox03c5)
ipdata &lor.= Ox01 ;
outp( Ox03c5 , ipdata );

ipdata = inp( Ox03da)

outp( Ox03cO , Ox13 );

outp( Ox03cO , OxOO );

outp( Ox03cO , Ox20 );

bios = (int far *)Ox40004a
*bios = Ox84 ; /* tell BIOS we have 132 columns */

/* **************************************************************** */
/* */
/* Function PutXGAlnVGA() */
/* */
/* Description puts the XGA into VGA mode */
/* */
/* ****************************************************************, */

void PutXGAlnVGA( void )
{

int i;
vram address = (unsigned char far *)OxAOOOOOOO;

/* clear 1st 256k of vram */
for (i = 0 ; i < 4 ; i++)
{

outp(IoRegBase + 8 , i);
ptr = vram_address ;
memset(ptr , 0 , Ox8000); /* set 1st 32K of 64K aperture*/
ptr = vram_address + Ox8000 ;
memset(ptr , 0 , Ox8000); /* set 2nd 32K of 64K aperture*/

for (i = 0 ; i < sizeof(vga_data)
{

i i + 3 )

if (vga_data[i+2])
outpw( IoRegBase + vga_data[i] ,

«(unsigned)vga_data[i+1]) « 8)
+ (unsigned)vga_data[i+2]
) ;

72 OEK258 00 September 1991



160

else
outp( IoRegBase + vga_data[i] , (int)vga_data[i+1] );

outp( Ox03c3 , Ox01 );

/* select scan lines for alphanumeric modes */
inregs.h.ah Ox12
inregs.h.al Ox02; /* 400 scan lines */
inregs.h.bl Ox30;
int86( Ox10 , &inregs , &outregs ) ;

/* set vga mode */
inregs.h.ah OxOO
inregs.h.al Ox03
int86( Ox10 &inregs, &outregs )

void DisplayText( void)
{

int j ;
char ch

for (j =1 ; j < 24 j ++ )
{ /* sample code to fill screen with 24 x 132 chars */
printf("This line ")
printf(" ")
printf (" . . . . . . . . . . . . . . . .. is 132 chars long")
}

printf("Press Enter to continue ");
ch = getchar();

Assembler Subroutines

See Section 15.1 .

72 OEK258 00 September 1991


	Contents overview
	Contents
	Preface
	XGA function
	1 XGA Overview
	1.1 Major Components
	1.1.1 System Bus Interface
	1.1.2 Memory and CRT Controller

	1.2 Coprocessor
	1.2.1 Video Memory

	1.3 Attribute Controller
	1.4 Sprite Controller
	1.5 The Serializer, Palette and DAC
	1.6 A/N Font and Sprite Buffer
	1.7 Modes Of Operation
	1.8 Compatibility
	1.8.1 8514/A
	1.8.2 LIM EMS Drivers


	2 VGA
	3 132 Column Text
	4 Extended Graphics
	4.1 Display Controller Description
	4.1.1 Video Memory Format
	4.1.2 Pixel Color Mapping
	4.1.3 Border Color Mapping
	4.1.4 Direct Access to the Video Memory
	System Apertures Into Video Memory

	4.1.5 CRT Controller
	CRTC Register Interpretations
	Scrolling

	4.1.6 Sprite
	Sprite Color Mapping
	Sprite Buffer Accesses
	Sprite Positioning

	4.1.7 Palette
	Palette Accesses


	4.2 Direct Color Mode
	Coprocessor Functions

	4.3 Display Controller Registers
	4.3.1 Register Usage Guidelines
	4.3.2 Direct Access I/O Registers
	Operating Mode Register (Address: 21x0)
	Aperture Control Register (Address: 21x1)
	Interrupt Enable Register (Address: 21x4)
	Interrupt Status Register (Address: 21x5)
	Virtual Memory Control Register (Address: 21x6)
	Virtual Memory Interrupt Status Register (Address: 21x7)
	Aperture Index Register (Address: 21x8)
	Memory Access Mode Register (Address: 21x9)
	Index Register (Address: 21xA)
	Data Registers (Addresses: 21xB to 21xF)

	4.3.3 Indexed Access I/O Registers
	Auto-Configuration Register (Index: 04)
	Coprocessor Save/Restore Data Registers (Index: 0C & 0D)
	Horizontal Total Registers (Index: 10 & 11)
	Horizontal Display End Registers (Index: 12 & 13)
	Horizontal Blanking Start Registers (Index: 14 & 15)
	Horizontal Blanking End Registers (Index: 16 & 17)
	Horizontal Sync Pulse Start Registers (Index: 18 & 19)
	Horizontal Sync Pulse End Registers (Index: 1A & 1B)
	Horizontal Sync Pulse Position Registers (Index: 1C & 1E)
	Vertical Total Registers (Index: 20 & 21)
	Vertical Display End Registers (Index: 22 & 23)
	Vertical Blanking Start Registers (Index: 24 & 25)
	Vertical Blanking End Registers (Index: 26 & 27)
	Vertical Sync Pulse Start Registers (Index: 28 & 29)
	Vertical Sync Pulse End Register (Index: 2A)
	Vertical Line Compare Registers (Index: 2C & 2D)
	Sprite Horizontal Start Registers (Index: 30 & 31)
	Sprite Horizontal Preset (Index: 32)
	Sprite Vertical Start Registers (Index: 33 & 34)
	Sprite Vertical Preset (Index: 35)
	Sprite Control Register (Index: 36)
	Sprite Color Registers (Index: 38 - 3D)
	Display Pixel Map Offset Registers (Index: 40 - 42)
	Display Pixel Map Width Registers (Index: 43 & 44)
	Display Control 1 Register (Index: 50)
	Display Control 2 Register (Index: 51)
	Display ID and Comparator (Index: 52)
	Clock Frequency Select Register (Index: 54)
	Border Color Register (Index: 55)
	Sprite/Palette Index Registers (Index: 60 & 61)
	Sprite/Palette Index Registers with Prefetch (Index: 62 & 63)
	Palette Mask Register (Index: 64)
	Palette Data Register (Index: 65)
	Palette Sequence Register (Bits 2:0 only) (Index: 66)
	Palette Red Prefetch Register (Index: 67)
	Palette Green Prefetch Register (Index: 68)
	Palette Blue Prefetch Register (Index: 69)
	Sprite Data Register (Index: 6A)
	Sprite Prefetch Register (Index: 6B)
	External Clock Select Register (Index: 70)


	4.4 Coprocessor Description
	4.5 Programmer's View
	4.6 Pixel Formats
	4.6.1 Pixel Data
	Fixed And Variable Data
	XGA Function

	4.6.2 The Coprocessor View of Memory
	4.6.3 XGA Pixel Maps
	Pixel Maps A, B, And C (General Maps)
	Pixel Map M (Mask Map)
	Map Origin
	X and Y Pointers
	Scissoring With The Mask Map

	4.6.4 Drawing Operations
	Draw and Step
	Line Draw
	Pixel Block Transfer (PxBlt)
	Area Fill

	4.6.5 Logical And Arithmetic Functions
	Mixes
	Breaking the ALU Carry Chain
	Generating The Pattern From The Source
	Color Expansion
	Pixel Bit Masking
	Color Compare

	4.6.6 Controlling Coprocessor Operations
	Starting a Coprocessor Operation
	Suspending a Coprocessor Operation
	Terminating a Coprocessor Operation

	4.6.7 Coprocessor Operation Completion
	Accesses To The Coprocessor During An Operation

	4.6.8 Coprocessor State Save/Restore
	Suspending Coprocessor Operations

	4.6.9 Save/Restore Mechanism

	4.7 Coprocessor Registers
	4.7.1 Register Usage Guidelines
	4.7.2 Virtual Memory Registers
	Page Directory Base Address Register (Coprocessor Registers, Offset: 0)
	Current Virtual Address Register (Coprocessor Registers, Offset: 4)

	4.7.3 State Save/Restore Registers
	Coprocessor Control Register (Offset: 11)
	State Length Registers (Offset: C & D)
	Save/Restore Data Ports (I/O Index: C & D)

	4.7.4 Pixel Interface Registers
	Pixel Map Index Register (Offset: 12)
	Pixel Map n Base Pointer (Offset: 14)
	Pixel Map n Width (Offset: 18)
	Pixel Map n Height (Offset: 1A)
	Pixel Map n Format (Offset: 1C)
	Pixel Maps A, B and C
	Mask Map
	Bresenham Error Term E (Offset: 20)
	Bresenham Constant K1 (Offset: 24)
	Bresenham Constant K2 (Offset: 28)
	Direction Steps Register (Offset: 2C)
	Foreground Mix Register (Offset: 48)
	Background Mix Register (Offset: 49)
	Destination Color Compare Condition (Offset: 4A)
	Destination Color Compare Value (Offset: 4C)
	Pixel Bit Mask (Plane Mask) (Offset: 50)
	Carry Chain Mask (Offset: 54)
	Foreground Color Register (Offset: 58)
	Background Color Register (Offset: 5C)
	Operation Dimension 1 (Offset: 60)
	Operation Dimension 2 (Offset: 62)
	Mask Map Origin X Offset (Offset: 6C)
	Mask Map Origin Y Offset (Offset: 6E)
	Source X Address (Offset: 70)
	Source Y Address (Offset: 72)
	Pattern X Address (Offset: 74)
	Pattern Y Address (Offset: 76)
	Destination X Address (Offset: 78)
	Destination Y Address (Offset: 7A)
	Pixel Operations Register (Offset: 7C)



	5 XGA System Interface
	5.1 Multiple Instances
	5.1.1 Multiple XGA Subsystems in VGA Mode
	5.1.2 Multiple XGA Subsystems in 132 Column Text Mode
	5.1.3 Multiple XGA Subsystems in Extended Graphics Mode

	5.2 XGA POS Registers
	5.2.1 Register Usage Guidelines
	5.2.2 Subsystem Identification Low Byte (Base + 0)
	5.2.3 Subsystem Identification High Byte (Base + 1)
	5.2.4 POS Register 2 (Base + 2)
	XGA Enable (EN, Bit 0)
	I/O Device Address (IODA, Bits 1-3)
	ROM Address (ROM Addr, Bits 4-7)

	5.2.5 POS Register 4 (Base + 4)
	Video Memory Base Address (Bits 7-1)
	Video Memory Enable (VE, Bit 0)


	5.3 POS register 5 (Base + 5)
	1 Mbyte Aperture Base Address (1 Mbyte Base, Bits 3-0)

	5.4 Virtual Memory Description
	5.4.1 Address Translation
	Page Directory and Page Table Entries

	5.4.2 The XGA Implementation of Virtual Memory
	The TLB
	TLB Misses
	System Coherency
	VM Page Not Present Interrupts
	VM Protection Violation Interrupts
	The XGA in Segmented Systems


	5.5 Virtual Memory Registers
	5.5.1 Page Directory Base Address Register (Coprocessor Registers, Offset: 0)
	5.5.2 Current Virtual Address Register (Coprocessor Registers, Offset: 4)
	5.5.3 Virtual Memory Control Register (I/O Address: 21x6)
	5.5.4 Virtual Memory Interrupt Status Register (I/O Address: 21x7)


	XGA programming considerations
	6 Adapter Co-existence
	6.1 Co-existence with VGA
	6.2 Co-existence with Other XGA Subsystems

	7 Locating the XGA Subsystem
	7.1 Reading POS Data
	7.2 Address Calculations
	7.2.1 ROM address
	7.2.2 Coprocessor Registers
	7.2.3 I/O Registers
	7.2.4 The Video Memory Base Address
	4 Mbyte System Video Memory Aperture
	Video Memory Location in Coprocessor Address Space

	7.2.5 1 Mbyte Aperture Base Address

	7.3 Display Type and Video Memory Size

	8 VGA Primary Adapter Considerations
	8.1 Chaining the Int 10h Video BIOS Handler
	8.2 Int 24h, Critical Error Handler
	8.3 Int 23h Ctrl-Break Exit Address
	8.4 Int 21h Function 4Ch Program Terminate function

	9 General Systems Considerations
	9.1 Co-existing with LIM Expanded Memory Managers
	9.2 Screen Switch Notification, Int 2Fh

	10 Extended Graphics Modes Selection
	10.1 Modes Available

	11 Mode Setting the XGA Subsystem
	11.1 Individual Mode Setting Procedures
	11.1.1 Extended Graphics Mode
	11.1.2 VGA Mode
	11.1.3 132 Column Text Mode

	11.2 System Video Memory Apertures
	11.2.1 64K System Video Memory Aperture
	11.2.2 1 Mbyte System Video Memory Aperture
	11.2.3 4 Mbyte System Video Memory Aperture

	11.3 Physical Addressability to System Memory
	11.3.1 Real Mode DOS Environments
	Extended Memory
	LIM EMS Managers

	11.3.2 32 bit DOS Extended Environments
	11.3.3 Multiple Virtual DOS Machine Environments
	11.3.4 Protect Mode 16 Bit Segmented Environments
	64K Segment Limit
	Segment Motion
	System Overheads
	Access to XGA Registers and System Memory Apertures
	Suggested Design Model

	11.3.5 Paged Virtual Memory (VM) Environments
	4K Discontiguous Pages
	Page Table Coherency
	System Overheads
	Access to XGA Registers and System Memory Apertures
	Suggested Design Model

	11.3.6 Video Memory Addressability in VM Mode
	11.3.7 System Memory Access Limitation


	12 Upwards Compatibility
	12.1 XGA Subsystem POS ID Allocations
	12.2 General Register Usage
	12.3 Video BIOS Mode 14h
	12.4 PS/2 Video Memory Apertures

	13 Programming the XGA Subsystem in Extended Graphics Mode
	13.1 XGA Coprocessor Pixel Interface Registers
	13.1.1 Pixel Map Index Register (OFFSET 12h)
	13.1.2 Pixel Map Base Address Register (OFFSET 14h)
	13.1.3 Pixel Map Width Register (OFFSET 18h)
	13.1.4 Pixel Map Height Register (OFFSET 20h)
	13.1.5 Pixel Map Format Register (OFFSET 1Ch)
	13.1.6 Other Registers

	13.2 Using the Coprocessor to Perform a Pixel Blit (PxBlt)
	13.2.1 Mixes and Colors
	Foreground and Background Mix Registers
	Foreground & Background Color Registers

	13.2.2 PxBlt Dimensions
	13.2.3 Pixel Map, Source & Destination
	Source Map X and Y Registers
	Destination Map X and Y Registers
	Pattern Map X and Y Registers
	Mask Map Origin X and Y Offset Registers

	13.2.4 Pixel Operations Register
	Background Source
	Foreground Source
	Step Function
	Source Pixel Map
	Destination Pixel Map
	Pattern Pixel Map
	Mask Pixel Map
	Drawing Mode
	Direction Octant
	Conclusion


	13.3 Using the Coprocessor to Perform a Bresenham Line Draw
	13.3.1 Mixes and Colors
	Foreground and Background Mix Registers
	Foreground and Background Color Registers

	13.3.2 Bresenham Line Draw
	Bresenham Error Term Register
	Bresenham Constant K1 Register
	Bresenham Constant K2 Register
	Operation Dimension Registers

	13.3.3 Pixel Map, Source and Destination
	Source Map X and Y Registers
	Destination Map X and Y Registers
	Pattern Map X and Y Registers
	Mask Map Origin X and Y Offset Registers

	13.3.4 Pixel Operations Register
	Background Source
	Foreground Source
	Step Function
	Source Pixel Map
	Destination Pixel Map
	Pattern Pixel Map
	Mask Pixel Map
	Drawing Mode
	Direction Octant
	Conclusion


	13.4 Memory Access Modes (Reg. 21x9)
	13.5 Motorola/Intel Format
	13.5.1 System Processor Access
	13.5.2 XGA Coprocessor Accesses
	13.5.3 Exploitation


	14 Other Programming Considerations
	14.1 Overlapping BitBlits
	14.1.1 Pixel Block Transfer (PxBlt)
	14.1.2 Inverting PxBlt

	14.2 Sprite Handling
	14.2.1 Sprite Loading
	14.2.2 Sprite Positioning

	14.3 Waiting for Hardware Not Busy
	14.4 Destination Bitmap Width Restriction
	14.5 Line Length Restriction
	14.6 System Register Usage
	14.7 Direct Color Mode
	14.7.1 Palette Loading
	14.7.2 Coprocessor Support


	15 Sample Code
	15.1 Putting the XGA Subsystem into Extended Graphics Mode
	15.1.1 Pseudo Code
	15.1.2 Code Example
	Main C Program
	Assembler Subroutines


	15.2 Putting the XGA Subsystem into 132 Column Text Mode
	15.2.1 Pseudo Code
	15.2.2 Code Example
	Main C Program
	Assembler Subroutines






