

MEMORY DATABOOK

First Edition February 1989

INMOS Databook Series

Transputer Databook Transputer Support Databook: Development and Sub-systems Memory Databook Graphics Databook Digital Signal Processing Databook

Copyright ©INMOS Limited 1989

INMOS reserves the right to make changes in specifications at any time and without notice. The information furnished by INMOS in this publication is believed to be accurate; however, no responsibility is assumed for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No licence is granted under any patents, trademarks or other rights of INMOS.

, Inmos, IMS and OCCAM are trademarks of the INMOS Group of Companies.

INMOS document number: 42-1261-00

Contents

	Preface and Selection Guide	v
	INMOS	
1	1.1 Introduction	1.1
<u> </u>	1.2 Static RAMs	1.3
	1.3 Manufacturing	1.3
	1.4 Assembly	1.3
····	1.5 Test	1.3
	1.6 Quality and reliability	1.3
	1.7 Military	1.3
	1.8 Future developments	1.4
	1.8.1 Research and development	1.4
	1.8.1 Process developments	1.4
	1.9 Package developments	1.4
2	Commercial RAMs	2.1
	IMS 1203 (4K) 4K×1 CMOS Static RAM	2.3
	IMS 1223 (4K) 1K×4 CMOS Static RAM	2.11
	IMS 1403 (16K) 16K×1 CMOS Static RAM	2.19
	IMS 1423 (16K) 4K×4 CMOS Static RAM	2.27
	IMS 1600/1601 (64K) 64K×1 CMOS Static RAM	2.35
	IMS 1620 (64K) 16K×4 CMOS Static RAM	2.43
	IMS 1624 (64K) 16K×4 (OE) CMOS Static RAM	2.51
3	Military RAMs	3.1
-	IMS1203M (4K) 4K×1 CMOS Static RAM	3.3
	IMS1223M (4K) 1K×4 CMOS Static RAM	3.11
	IMS1400M (16K) 16K×1 NMOS Static RAM	3.19
	IMS1403M/LM (16K) 16K×1 CMOS Static RAM	3.27
	IMS1420M (16K) 4K×4 NMOS Static RAM	3.35
	IMS1423M (16K) 4K×4 CMOS Static RAM	3.43
	IMS1600M/1601LM (64K) 64K×1 CMOS Static RAM	3.51
	IMS1620M/LM (64K) 16K×4 CMOS Static RAM	3.59
	IMS1624M/LM (64K) 16K×4 (OE) CMOS Static RAM	3.67
	IMS1630M/LM (64K) 8K×8 CMOS Static RAM	3.75
	IMS2600M (64K) 64K×1 NMOS Dynamic RAM	3.83
	<u> </u>	
<u>A</u>	Military qualification	A.1
	A.1 Military qualification	A.3
	A.1.1 Military product program A.1.2 Standard military drawing program	A.3 A.3
		<u></u>
В	Cross reference	B.1
	B.1 Product cross reference	B.3
	B.2 Standard military drawing reference	B.7
С	Quality and reliability	C.1
	C.1 Total quality control (TQC) and reliability program	C.3
	C.2 Quality and reliability in design	C.3
	C.3 Document control	C.4
	C.4 New product qualification	C.4

	C.5	Product monitoring programme	C.4
	C.6	Production testing and quality monitoring procedure	C.5
		C.6.1 Reliability testing	C.5
		C.6.2 Production testing	C.5
		C.6.3 Quality monitoring procedure	C.6
		Material procurement and product flow diagram	C.7
D	Gene	ral information	D.1
-	D.1	Thermal considerations	D.3
	<u></u>	D.1.1 Thermal resistance	D.3
		D.1.2 Junction temperature	D.3
		D.1.3 K-factor and θ_{ia} measurement	D.3
		D.1.4 Factors affecting θ_{ia}	D.3
	D.2	Packaging information	D.5
	D.3	Product numbering, package designators and ordering information	D.17

'

Preface

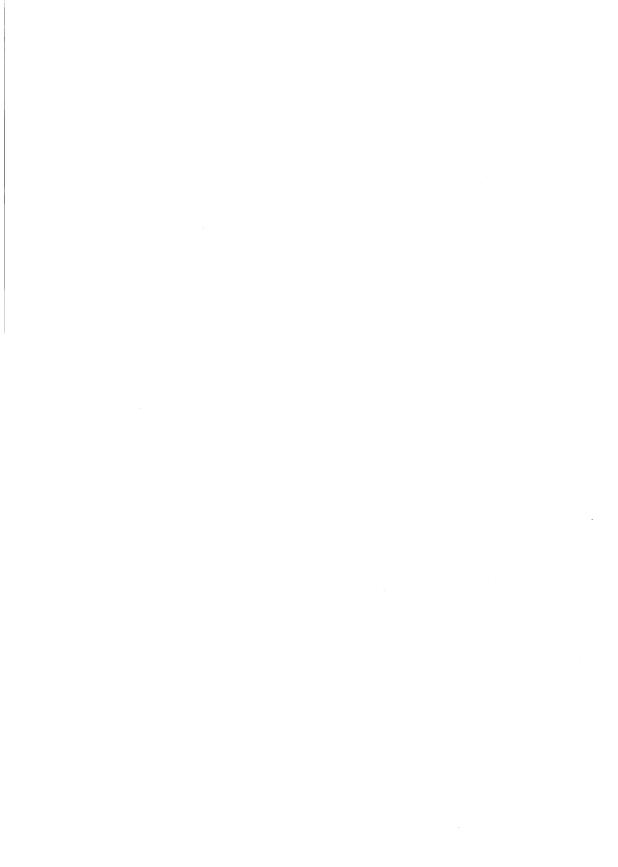
1 Preface and selection Guide

High performance memory devices form an integral part of the INMOS product range. The INMOS Memory Databook has been published to provide comprehensive information regarding the current range of INMOS memory devices.

The databook comprises a selection guide, INMOS overview and engineering data for the current range of commercial and military memory devices. Additional information is provided detailing military qualification, quality and reliability information and general information covering thermal performance, product numbering, packaging and ordering.

All INMOS military products are designed to satisfy the requirements of a military environment in terms of temperature and reliability under adverse conditions. The majority of the military versions of INMOS memory devices fully comply with MIL-STD-883C and the US Government Standard Military Drawing (SMD) Program.

In addition to memory devices, the INMOS product range also includes transputer products, digital signal processing devices and graphics devices. For further information concerning INMOS products, please contact your local INMOS sales outlet.


CMOS Static RAMs									
	Co	ommercial	Milit						
Organisation	Device Speed(ns)		Device	Speed(ns)	Packages *				
4K x 1	IMS1203	25, 35, 45	IMS1203M	25, 35, 45	P, S, A				
1K x 4	IMS1223	25, 35, 45	IMS1223M	25, 35, 45	P, S, A				
16K x 1	IMS1403	25, 35, 45, 55	IMS1403M ⁽¹⁾	35, 45, 55	P, S, W, N				
4K x 4	IMS1423	25, 35, 45, 55	IMS1423M	35, 45, 55	P, S, E, W, Y, N				
64K x 1	IMS1600 ⁽¹⁾	25, 30, 35, 45, 55	IMS1600M ⁽¹⁾	45, 55, 70	P, S, E, W, N				
16K x 4	IMS1620	25, 30, 35, 45, 55	IMS1620M ⁽¹⁾	45, 55, 70	P, S, E, W, N				
16K x 4	IMS1624 ⁽²⁾	25, 30, 35, 45, 55	IMS1624M ⁽¹⁾	45, 55, 70	P, S, E, W, N				
8K x 8			IMS1630M ⁽¹⁾	45, 55, 70	S, N				

NMOS RAMs (Military Only)									
Organisation Type Device Speed(ns) Packages									
16K x 1	Static	IMS1400M	45, 55, 70	S, N, Y					
4K x 4	Static	IMS1420M	55, 70	S, N, Y					
64K x 1	Dynamic	IMS2600M	100, 120, 150	S, N, K					

⁽¹⁾ Low-power/battery back-up versions available.

⁽²⁾ With Output Enable function.

* Solder dip lead finish available for all products, refer to Appendix D for details.

Inmos

Chapter 1

1 INMOS

1.1 Introduction

INMOS supplies high performance memory and microprocessor products to companies manufacturing systems in the United States, Europe, Japan and the Far East. The current INMOS product lines include very fast static random access memories (RAMs), microprocessors called transputers, colour graphics devices and digital signal processing devices.

The Company's fabrication facility is at Newport, South Wales with final test facilities located both at Newport and Colorado Springs, Colorado, USA. The corporate headquarters, product design team and worldwide sales and marketing management are all based at Bristol, UK.

1.2 Static RAMs

INMOS designs and manufactures a broad range of fast static RAMs, ranging from 4K to 64K bits, in a number of configurations. Revenues from memory products in 1988/89 accounted for approximately one third of total revenues.

As microprocessors become faster, so the demand for fast memory products increases. Despite the semiconductor recession of 1985/86 the number of fast static RAMs shipped worldwide continued to grow throughout the period. The growth of the computer market, coupled with the increasing amount of memory in each computer, has led to the continued demand for static RAMs. From Dataquest's actual figures of \$330M in 1986 for the worldwide fast static RAM market ('fast' includes 70ns cycle time and above) it is anticipated that market growth will continue rising to \$839M by 1991.

1.3 Manufacturing

All products are manufactured at the INMOS Newport, Duffryn facility which began operations in 1983. This is an 8000 square metre building with a 3000 square metre cleanroom operating to Class 10 environment in the work areas.

To produce high performance products, where each microchip may consist of up to 300,000 transistors, INMOS uses advanced manufacturing equipment. Wafer steppers, plasma etchers and ion implantors form the basis of fabrication.

1.4 Assembly

Sub-contractors in Korea, Taiwan, Hong Kong and the UK are used to assemble devices.

1.5 Test

The final testing of commercial products is carried out at the INMOS Newport, Coed Rhedyn facility. Military final testing takes place at Colorado Springs.

1.6 Quality and Reliability

Stringent controls of quality and reliability provide the customer with early failure rates of less than 1000 ppm and long term reliability rates of better than 100 FITs (one FIT is one failure per 1000 million device hours). Requirements for military products are even more stringent.

1.7 Military

Most INMOS static RAMs are available in military versions processed in full compliance with MIL-STD-883C. INMOS also supports the US Government Defense Electronics Supply Center (DESC) Standard Military Drawing (SMD) program and is an approved supplier of a range of the SMDs already established by DESC.

1.8 Future developments

1.8.1 Research and Development

INMOS has achieved technical success based on a position of leadership in products and process technology in conjunction with substantial research and development investment. R and D investment has averaged 18 percent of revenues since inception and it is anticipated that future investment levels will be maintained at this level.

1.8.2 Process developments

One aspect of the work of the Technology Development Group at Newport is to scale the present technology to 1.0 micron for products to be manufactured in 1989/90. Additionally, work is in progress on the development of 0.8 micron CMOS technology.

A new process technology developed in Colorado Springs for an advanced range of 256K static RAMs and other products is currently being transferred to Newport. To achieve early expertise in this new process a new 64K static RAM, based on the new technology, is being brought into production.

1.9 Package developments

Where surface mount technology is desirable, the range of fast 64K static RAM will also be introduced in SOJ packaging.

Inmos

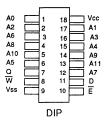
Chapter 2

commercial RAMs

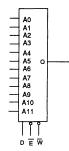
IMS1203 CMOS High Performance 4K x 1 Static RAM

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- · 4K x 1 Bit Organization
- · 25, 35, and 45 nsec Access Times
- 25, 35, and 45 nsec Chip Enable Access Times
- Fully TTL Compatible
- Separate Data Input and Output
- Three-state Output
- 18 Pin, 300-mil DIP
- Single +5V ± 10% Operation
- Power Down Function

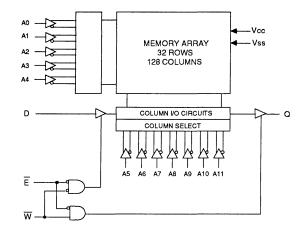

DESCRIPTION

The INMOS IMS1203 is a high performance 4Kx1 CMOS static RAM. The IMS1203 allows speed enhancements to existing 4Kx1 applications with the additional benefit of reduced power consumption.


The IMS1203 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1203 provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1203M is a MIL-STD-883 version intended for military applications.

PIN CONFIGURATION


LOGIC SYMBOL

PIN NAMES

A ₀ - A	A11 ADDRESS INPUTS	Vcc POWER
w	WRITE ENABLE	Vss GROUND
D	DATA INPUT	
Ē	CHIP ENABLE	
Q	DATA OUTPUT	

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V_{ss}
Voltage on Q -1.0 to (V _{CC} + 0.5V)
Temperature Under Bias
Storage Temperature
Power Dissipation 1W
DC Output Current
(One Second Duration)

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS	NOTES
V _{CC}	Supply Voltage	4.5	5.0	5.5	V	
V _{SS}	Supply Voltage	0	0	0	V	
V _{IH}	Input Logic "1" Voltage	2.0		Vcc +.5	V	All inputs
V _{IL}	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
T _A	Ambient Operating Temperature	0		70	°C	400 linear ft/min air flow

* V_{IL} Min = -3.0V for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS (0°C $\leq T_A \leq 70^{\circ}C$) (V_{CC} = 5.0V \pm 10%) a

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
I _{CC1}	Average V_{CC} Power Supply Current		80	mA	$t_{AVAV} = t_{AVAV} (min)$
I _{CC2}	V _{CC} Power Supply Current (Standby, Stable TTL Input Levels)		15	mA	$\begin{array}{l} \overline{E} \geq V_{\text{IH}} \\ \text{All other inputs } V_{\text{IN}} \\ \leq V_{\text{IL}} \text{ or } \geq V_{\text{IH}} \end{array}$
I _{CC3}	V _{CC} Power Supply Current (Standby, Stable CMOS Input Levels)		6	mA	$\label{eq:constraint} \begin{split} \overline{E} &\geq (V_{CC} - 0.2V) \\ \text{All other inputs at } V_{IN} \\ &\leq 0.2V \text{ or } \geq \\ (V_{CC} - 0.2V) \end{split}$
I _{CC4}	V _{CC} Power Supply Current (Standby, Cycling CMOS Input Levels)		13	mA	$\begin{split} \overline{E} &\geq (V_{CC} - 0.2V) \\ \text{Inputs cycling at } V_{\text{IN}} \\ &\leq 0.2V \text{ or } \geq \\ (V_{CC} - 0.2V) \end{split}$
I _{ILK}	Input Leakage Current (Any Input)		±1	μA	$V_{CC} = max$ $V_{IN} = V_{SS}$ to V_{CC}
Ι _{οικ}	Off State Output Leakage Current		±5	μA	$V_{CC} = max$ $V_{IN} = V_{SS}$ to V_{CC}
V _{он}	Output Logic "1" Voltage	2.4		V	$I_{OUT} = -4mA$
V _{OL}	Output Logic "0" Voltage		0.4	V	$I_{OUT} = 12mA$

Note a: I_{CC} is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels	1
--------------------	---

$\textbf{CAPACITANCE} \ (T_A = 25^{\circ}C, \, f = 1.0 \; MHz)^{\, b}$

SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
CIN	Input Capacitance	4	ρF	$\Delta V = 0$ to 3V
COUT	Output Capacitance	4	рF	$\Delta V = 0$ to 3V

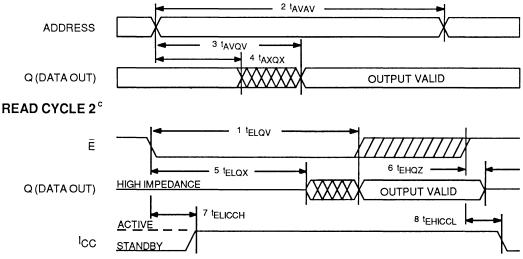
Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C) (V_{cc} = 5.0V \pm 10%) READ CYCLE^g

	SYMBOL			120	3-25	120	3-35	1203-45		UNITO	NOTEO
NO.	Standard	Alternate	ate PARAMETER		MAX					UNITS	NOTES
1	t _{ELQV}	t _{ACS}	Chip Enable Access Time		25		35		45	ns	
2	t _{avav}	t _{RC}	Read Cycle Time	25		35		45		ns	С
3	t _{avav}	t _{AA}	Address Access Time		25		35		45	ns	d
4	t _{AXQX}	t _{он}	Output Hold After Address Change	3		3		3		ns	
5	t _{ELQX}	t _{LZ}	Chip Enable to Output Active	5		5		5		ns	j
6	t _{ehoz}	t _{HZ}	Chip Disable to Output Inactive	0	20	0	30	0	30	ns	f, j
7	t _{ELICCH}	t _{PU}	Chip Enable to Power Up	0		0		0		ns	j
8	t _{EHICCL}	t _{PD}	Chip Enable to Power Down		20		20		20	ns	j
		t _T	Input Rise and Fall Times		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, W is high for entire cycle.

Note d: Device is continuously selected; E low.


Note e: Measured between VIL max and VIH min.

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \vec{E} and \vec{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

READ CYCLE 1^{c, d}

DEVICE OPERATION

The IMS1203 has two control inputs, Chip Enable (\overline{E}) and Write Enable (\overline{W}), twelve address inputs (A₀-A₁₁), a data in (D_{IN}) and a data out (D_{OUT}). The \overline{E} input controls device selection as well as active and standby modes. With \overline{E} low, the device is selected and the twelve address inputs are decoded to select one memory cell out of 4096. Read and Write operations on the memory cell are controlled by \overline{W} input. With \overline{E} high, the device is deselected, the output is disabled, and the power consumption is reduced to less than one-third of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

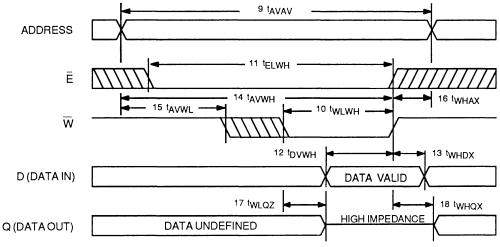
A read cycle is defined as $\overline{W} \ge V_{IH}$ min with $\overline{E} \le V_{IL}$ max. Read access time is measured from either \overline{E} going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while \overline{E} is low. The output remains active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and as long as \overline{E} remains low, the cycle time is equal to the address access time.

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T _A \leq 70°C) (V _{cc} = 5.0V \pm 10%)	
WRITE CYCLE 1: W CONTROLLED ^{g, h}	

NO.	SYM	BOL	PARAMETER		3-25		3-35	1203-45		UNITS	NOTES
NO.	Standard	Alternate	FANAMEIEN	MIN	MAX	MIN	MAX	MIN	MAX	014113	NOTES
9	t _{avav}	t _{wc}	Write Cycle Time	25		35		45		ns	
10	t _{wLWH}	t _{wP}	Write Pulse Width	15		20		25		ns	
11	t _{elwh}	t _{cw}	Chip Enable to End of Write	20		30		40		ns	
12	t _{DVWH}	t _{DW}	Data Set-up to End of Write	15		20		25		ns	
13	t _{wHDX}	t _{DH}	Data Hold After End of Write	0		0		0		ns	
14	t _{avwh}	t _{AW}	Address Set-up to End of Write	20		30		40		ns	
15	t _{avwl}	t _{AS}	Address Set-up to Beginning of Write	0		0		0		ns	
16	t _{whax}	t _{wR}	Address Hold After End of Write	0		0		0		ns	
17	t _{wLQZ}	t _{wz}	Write Enable to Output Disable	0	15	0	20	0	20	ns	f, j
18	t _{whax}	t _{ow}	Output Active After End of Write	0		0		0		ns	i

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\geq V_{IH}$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

The READ CYCLE 2 waveform shows a read access that is initiated by \overline{E} going low. As long as address is stable when \overline{E} goes low, valid data is at the output at the specified Chip Enable Access time. If address is not valid when \overline{E} goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

The write cycle of the IMS1203 is initiated by the latter of \overline{E} or \overline{W} to fall. In the case of \overline{W} falling last, the output buffer will be turned on t_{ELQX} after the falling edge of

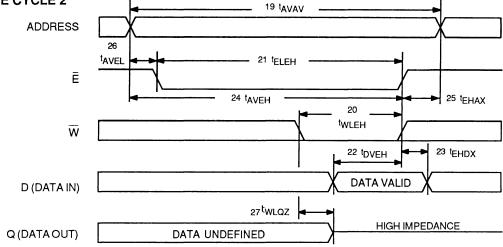
 \overline{E} (just as in a read cycle). The output buffer is then turned off within t_{WLQZ} of the falling edge of \overline{W} . During this interval, it is possible to have bus contention between devices with D and Q connected together in a common I/O configuration. Contention can be avoided in a carefully designed system. During a write cycle, data on the input is written into the selected cells and the output is floating.

WRITE CYCLE 1 waveform shows a write cycle terminated by \overline{W} going high. Data set-up and hold times are referenced to the rising edge of \overline{W} . When \overline{W} goes high at the end of the cycle with \overline{E} active, the output of

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C) (V_{cc} = 5.0V ± 10%) **WRITE CYCLE 2:** E CONTROLLED^{g, h}

NO.		BOL	PARAMETER		3-25		03-35 1203-45			UNITS	NOTES
	Standard	Alternate		MIN	MAX	MIN	MAX	MIN MAX			
19	t _{avav}	t _{wc}	Write Cycle Time	25		35		45		ns	
20	t _{wLEH}	t _{wP}	Write Pulse Width	15		20		25		ns	
21	t _{elen}	t _{CW}	Chip Enable to End of Write	20		30		40		ns	
22	t _{DVEH}	t _{DW}	Data Set-up to End of Write	15		20		25		ns	
23	t _{EHDX}	t _{DH}	Data Hold After End of Write	0		0		0		ns	
24	t _{AVEH}	t _{AW}	Address Set-up to End of Write	20		30		40		ns	_
25	t _{ehax}	t _{wR}	Address Hold After End of Write	0		0		0		ns	
26	t _{AVEL}	t _{AS}	Address Set-up to Beginning of Write	0		0		0		ns	
27	t _{wLQZ}	t _{wz}	Write Enable to Output Disable	0	15	0	20	0	20	ns	f, j

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: \tilde{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\geq V_{IH}$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

WRITE CYCLE 2

the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by \overline{E} going high. Data set-up and hold times are referenced to the rising edge of \overline{E} . With \overline{E} high, the outputs remain in the high impedance state.

APPLICATION

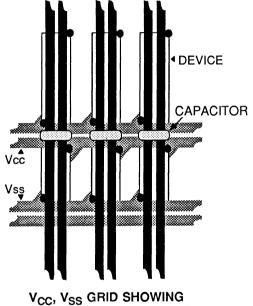
It is imperative when designing with any very high speed memory, such as the IMS1203, that the fundamental rules in regard to memory board layout be followed to ensure proper system operation.

POWER DISTRIBUTION

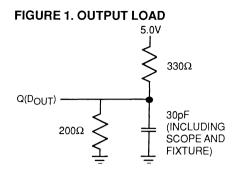
The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1203. The impedance in the decoupling path from the power pin (18) through the decoupling capacitor to the ground pin (9) should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Since the current transients associated with the operation of the high speed IMS1203 have very high frequency

components, the line inductance is the dominating factor. To reduce the line inductance, the power trace and around trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad, and be placed between each row of devices in the array (see drawing). A larger tantalum capacitor, with a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.


The ground grid of the memory array should extend to the TTL driver periphery circuit. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

TERMINATION


Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the drivertermination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

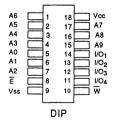
DECOUPLING CAPACITORS

DEVICE	SPEED	PACKAGE	PART NUMBER
	25ns	PLASTIC DIP	IMS1203P-25
	25ns	CERAMIC DIP	IMS1203S-25
IMS1203	35ns	PLASTIC DIP	IMS1203P-35
	35ns	CERAMIC DIP	IMS1203S-35
	45ns	PLASTIC DIP	IMS1203P-45
	45ns	CERAMIC DIP	IMS1203S-45

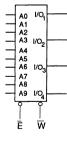
IMS1223 CMOS High Performance 1K x 4 Static RAM

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- 1K x 4 Bit Organization
- 25, 35, and 45 nsec Access Times
- · 25, 35, and 45nsec Chip Enable Access Times
- Fully TTL Compatible
- · Common Data Input and Output
- Three-state Output
- 18 Pin, 300-mil DIP
- Single +5V ± 10% Operation
- Power Down Function

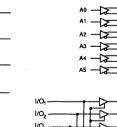

DESCRIPTION

The INMOS IMS1223 is a high performance 1Kx4 CMOS static RAM. The IMS1223 allows speed enhancements to existing 1Kx4 applications with the additional benefit of reduced power consumption.

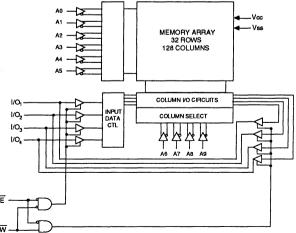

The IMS1223 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1223 provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1223M is a MIL-STD-883 version intended for military applications.

PIN CONFIGURATION



LOGIC SYMBOL


PIN NAMES

A ₀ - A ₉	ADDRESS INPUTS	Vcc POWER
w	WRITE ENABLE	Vss GROUND
Ē	CHIP ENABLE	
1/0	DATA IN/OUT	

BLOCK DIAGRAM

IMS1223 ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V _{ss}	2.0 to 7.0V
Voltage on Q $\ldots \ldots -1$.	
Temperature Under Bias.	-55°C to 125°C
Storage Temperature	
Power Dissipation	1W
DC Output Current	
(One Second Duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS	NOTES
V _{cc}	Supply Voltage	4.5	5.0	5.5	V	
V _{SS}	Supply Voltage	0	0	0	V	
V _{IH}	Input Logic "1" Voltage	2.0		V_{CC} +.5	V	All inputs
V _{IL}	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
T _A	Ambient Operating Temperature	0		70	°C	400 linear ft/min air flow

* VIL Min = -3.0V for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS (0°C \leq T_{A} \leq 70°C) (V_{CC} = 5.0V \pm 10%) a

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
I _{CC1}	Average V_{CC} Power Supply Current		100	mA	$t_{AVAV} = t_{AVAV} (min)$
I _{CC2}	V _{CC} Power Supply Current (Standby, Stable TTL Input Levels)		15	mA	$\begin{array}{l} \overline{E} \geq V_{\text{IH}} \\ \text{All other inputs } V_{\text{IN}} \\ \leq V_{\text{IL}} \text{ or } \geq V_{\text{IH}} \end{array}$
I _{CC3}	V _{CC} Power Supply Current (Standby, Stable CMOS Input Levels)		6	mA	$\label{eq:constraint} \begin{split} \overline{E} &\geq (V_{CC} - 0.2V) \\ \text{All other inputs at } V_{IN} \\ &\leq 0.2V \text{ or } \geq \\ (V_{CC} - 0.2V) \end{split}$
I _{CC4}	V _{CC} Power Supply Current (Standby, Cycling CMOS Input Levels)		8	mA	$\label{eq:constraint} \begin{split} \overline{E} &\geq (V_{CC} - 0.2V) \\ \text{Inputs cycling at } V_{IN} \\ &\leq 0.2V \text{ or } \geq \\ (V_{CC} - 0.2V) \end{split}$
I _{ILK}	Input Leakage Current (Any Input)		±1	μA	$V_{CC} = max$ $V_{IN} = V_{SS}$ to V_{CC}
I _{olk}	Off State Output Leakage Current		±5	μA	$V_{cc} = max$ $V_{IN} = V_{SS}$ to V_{CC}
V _{он}	Output Logic "1" Voltage	2.4		V	$I_{OUT} = -4mA$
V _{OL}	Output Logic "0" Voltage		0.4	V	I _{OUT} = 8mA

Note a: I_{CC} is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input and Output Timing Reference Levels
--

CAPACITANCE $(T_A = 25^{\circ}C, f = 1.0 \text{ MHz})^{\circ}$

SYMBOL	PARAMETER	MAX	UNITS	CONDITIONS
C _{IN}	Input Capacitance	4	рF	$\Delta V = 0$ to 3V
C _{OUT}	Output Capacitance	4	рF	$\Delta V = 0$ to 3V

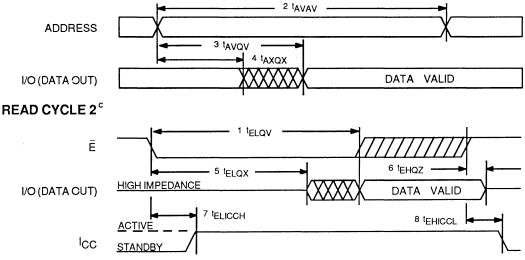
Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C) (V_{cc} = 5.0V \pm 10%) READ CYCLEg

	SYM	BOL		122	3-25	122	3-35	1223-45		UNITS	NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
1	t _{ELQV}	t _{ACS}	Chip Enable Access Time		25		35		45	ns	
2	t _{avav}	t _{RC}	Read Cycle Time	25		35		45		ns	С
3	t _{avav}	t _{AA}	Address Access Time		25		35		45	ns	d
4	t _{axox}	t _{OH}	Output Hold After Address Change	0		0		0		ns	
5	t _{ELOX}	t _{LZ}	Chip Enable to Output Active	5		5		5		ns	j
6	t _{EHQZ}	t _{HZ}	Chip Disable to Output Inactive		15		20		20	ns	f, j
7	t _{ELICCH}	t _{PU}	Chip Enable to Power Up	0		0		0		ns	j
8	t _{EHICCL}	t _{PD}	Chip Enable to Power Down		20		20		20	ns	j
		t _T	Input Rise and Fall Times		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.

Note d: Device is continuously selected; E low.


Note e: Measured between V_{IL} max and V_{IH} min.

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \vec{E} and \vec{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

READ CYCLE 1^{c, d}

DEVICE OPERATION

The IMS1223 has two control inputs: Chip Enable (\overline{E}) and Write Enable (\overline{W}), ten address inputs (A_0 - A_9), and four data I/O lines. The \overline{E} input controls device selection as well as active and standby modes. With \overline{E} low, the device is selected and the ten address inputs are decoded to select one 4 bit word out of 1024. Read and Write operations on the memory cell are controlled by \overline{W} input. With \overline{E} high, the device is deselected, the outputs are disabled, and the power consumption is reduced to less than one-third of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $\overline{W} \ge V_{IH}$ min with $\overline{E} \le V_{IL}$ max. Read access time is measured from either \overline{E} going low or from valid address.

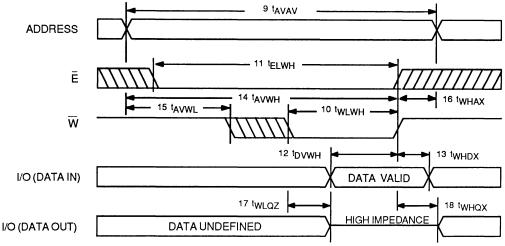
The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while \overline{E} is low. The output remains active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and as long as \overline{E} remains low, the cycle time is equal to the adcress access time.

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C) (V_{CC} = 5.0V \pm 10%)

NO.	SYM	BOL	PARAMETER	122	3-25	122	3-35	122	3-45	UNITS	NOTES
NO.	Standard	Alternate	FARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NULES
9	t _{avav}	t _{wc}	Write Cycle Time	25		35		45		ns	
10	t _{wLWH}	t _{wP}	Write Pulse Width	20		25		35		ns	
11	t _{elwh}	t _{cw}	Chip Enable to End of Write	20		25		30		ns	
12	t _{DVWH}	t _{DW}	Data Set-up to End of Write	10		15		15		ns	
13	t _{wHDX}	t _{DH}	Data Hold After End of Write	0		0		0		ns	
14	t _{avwh}	t _{AW}	Address Set-up to End of Write	20		25		35		ns	
15	t _{AVWL}	t _{AS}	Address Set-up to Beginning of Write	0		0		0		ns	
16	t _{whax}	t _{wR}	Address Hold After End of Write	0		0		0		ns	
17	t _{wLQZ} .	t _{wz}	Write Enable to Output Disable		15		20		20	ns	f, j
18	t _{whax}	t _{ow}	Output Active After End of Write	5		5		5		ns	i

WRITE CYCLE 1: W CONTROLLED^{g, h}

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\geq V_{||H}$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the outputs remain in the high impedance state.

Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

The READ CYCLE 2 waveform shows a read access that is initiated by \overline{E} going low. As long as address is stable when \overline{E} goes low, valid data is at the output at the specified Chip Enable Access time. If address is not valid when \overline{E} goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

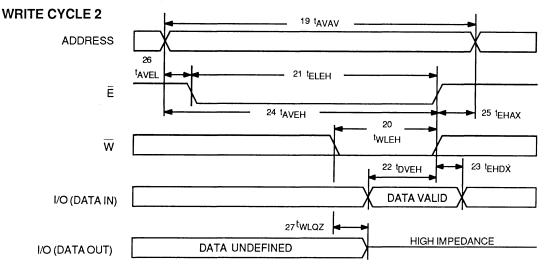
The write cycle of the IMS1223 is initiated by the latter of \overline{E} or \overline{W} to transition from a high to a low. In the case of \overline{W} falling last, the output buffer will be turned on t_{ELQX} after the falling edge of \overline{E} (just as in a read cycle).

The output buffer is then turned off within t_{WLQZ} of the falling edge of \overline{W} . During this interval, it is possible to have bus contention between devices with common I/O configurations. Contention can be avoided in a carefully designed system. During a write cycle, data on the input is written into the selected cells and the output is floating.

WRITE CYCLE 1 waveform shows a write cycle terminated by \overline{W} going high. Data set-up and hold times are referenced to the rising edge of \overline{W} . When \overline{W} goes high at the end of the cycle with \overline{E} active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

RECOMMENDED AC OPERATING CONDITIONS ($-0^{\circ}C \le T_{A} \le 70^{\circ}C$) ($V_{cc} = 5.0V \pm 10\%$) WRITE CYCLE 2: \overline{e} controlled^{g, h}

NO.	SYM		PARAMETER	1223-25 MIN MAX		1223-35		1223-45		UNITS	NOTES
	Standard	Alternate		MIN	MAX	MIN	MAX	MIN	MAX		
19	t _{avav}	t _{wc}	Write Cycle Time	25		35		45		ns	
20	t _{wLEH}	t _{wP}	Write Pulse Width	15		25		35		ns	
21	t _{eleh}	t _{cw}	Chip Enable to End of Write	20		25		30		ns	
22	t _{oven}	t _{DW}	Data Set-up to End of Write	10		15		15		ns	
23	t _{ehdx}	t _{DH}	Data Hold After End of Write	0		0		0		ns	
24	t _{AVEH}	t _{AW}	Address Set-up to End of Write	20		25		35		ns	
25	t _{ehax}	t _{wR}	Address Hold After End of Write	0		0		0		ns	
26	t _{AVEL}	t _{AS}	Address Set-up to Beginning of Write	0		0		0		ns	
27	t _{wLQZ}	t _{wz}	Write Enable to Output Disable		15		20		20	ns	f, j


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: E and W must transition between VIH to VII or VII to VIH in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\geq V_{IH}$ during address transitions.

Note i: If W is low when E goes low, the outputs remain in the high impedance state.

Note j: Parameter guaranteed but not tested.

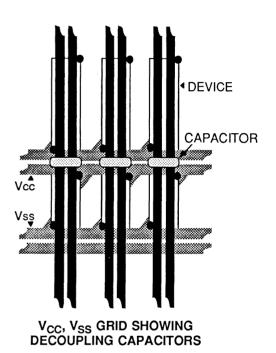
WRITE CYCLE 2 waveform shows a write cycle terminated by \overline{E} going high. Data set-up and hold times are referenced to the rising edge of $\overline{E}.$ With \overline{E} high, the outputs remain in the high impedance state.

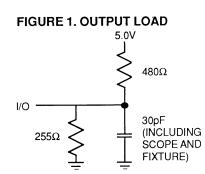
APPLICATION

It is imperative when designing with any very high speed memory, such as the IMS1223, that the fundamental rules in regard to memory board layout be followed to ensure proper system operation.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1223. The impedance in the decoupling path from the power pin (18) through the decoupling capacitor to the ground pin (9) should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.


Since the current transients associated with the operation of the high speed IMS1223 have very high frequency components, the line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad, and be placed between each row of devices in the array (see drawing). A larger tantalum capacitor, with a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.


The ground grid of the memory array should extend to the TTL driver periphery circuit. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the drivertermination combination close to the memory array. Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
	25ns	PLASTIC DIP	IMS1223P-25
	25ns	CERAMIC DIP	IMS1223S-25
IMS1223	35ns	PLASTIC DIP	IMS1223P-35
111/31223	35ns	CERAMIC DIP	IMS1223S-35
	45ns	PLASTIC DIP	IMS1223P-45
	45ns	CERAMIC DIP	IMS1223S-45

2-18

CMOS High Performance 16K x 1 Static RAM

FEATURES

DESCRIPTION

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- 16K x 1 Bit Organization
- 25, 35, 45 and 55 nsec Access Times
- Fully TTL Compatible
- Separate Data Input & Output
- Three-state Output

19

18

DIP

- Power Down Function
- Single +5V ± 10% Operation
- 20-Pin, 300-mil DIP (JEDEC Std.)
- 20-Pin Ceramic LCC (JEDEC Std.)

The INMOS IMS1403 is a high performance 16K x 1 CMOS Static RAM. The IMS1403 provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1403 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1403 provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1403M and IMS1403LM are MIL-STD-883 versions intended for military applications.

PIN CONFIGURATION

А₆ А₈

A ...

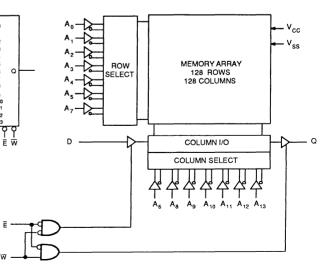
A₁₂

Q

13 A 13

A, V.

Ēſ


CHIP

CARRIER

A₁₁

BLOCK DIAGRAM

	ADDRESS INPUTS	٥	DATA OUTPUT
w	WRITE ENABLE	Vcc	POWER
Ē	CHIP ENABLE	VSS	GROUND
D	DATA INPUT		

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V	/ss2.0 to 7.0V
Voltage on Q	1.0 to (Vcc+0.5)
Temperature Under Bias	55° C to 125°C
Storage Temperature	65° C to 150°C
Power Dissipation	1W
DC Output Current	
(One Second Duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	v	
Vss	Supply Voltage	0	0	0	V	
Vін	Input Logic "1" Voltage	2.0		Vcc+.5	V	All inputs
Vil	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
Ta	Ambient Operating Temperature	0	25	70	°C	400 linear ft/min air flow

*VIL min = -3 volts for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS $(0^{\circ}C \le T_A \le 70^{\circ}C)$ $(Vcc = 5.0V \pm 10\%)^a$

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
lcc1	Average Vcc Power Supply Current		75	mA	tavav = tavav (min)
lcc2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		15	mA	Ē ≿ Vi⊢ . All other inputs at Vi⊵ ≤ Vi∟ or ≿ Vi⊢
lcc3	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		5	mA	Ē ≿ (Vcc - 0.2). All other inputs at Vi⊵ ≤ 0.2 or ≥ (Vcc - 0.2V)
lcc4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		10	mA	$\overline{E} \ge$ (Vcc - 0.2). Inputs cycling at VIN \le 0.2 or \ge (Vcc - 0.2V)
lilk	Input Leakage Current (Any Input)		±1	μA	Vcc = max ViN = Vss to Vcc
Іогк	Off State Output Leakage Current		±5	μA	Vcc = max ViN = Vss to Vcc
Vон	Output Logic "1" Voltage	2.4		v	lo∟ = -4mA
Vol	Output Logic "0" Voltage		0.4	v	Іон = 16mA

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels	Vss to 3V
Input Rise and Fall Times	5ns
Input and Output Timing Referen	
Output Load	See Figure 1

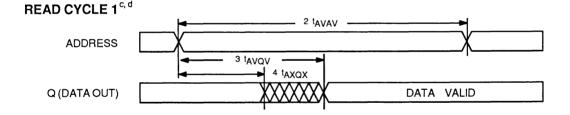
CAPACITANCE^b (Ta=25°C, f=1.0MHZ)

SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
Cin	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	4	pF	$\Delta V = 0$ to $3V$

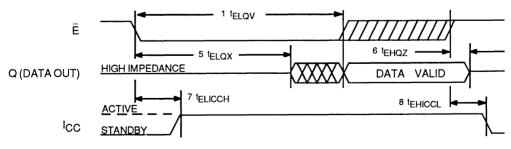
Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS ($0^{\circ}C \le T_A \le 70^{\circ}C$) ($V_{cc} = 5.0V \pm 10\%$) **READ CYCLE**^g

NO.	SYM	BOL	PARAMETER		3-25		3-35		3-45		3-55	UNITS	NOTES
NO.	Standard	Alternate	FANAMETEN	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	01113	NOTES
1	t _{ELQV}	t _{ACS}	Chip Enable Access Time		25		35		45		55	ns	
2	t _{avav}	t _{RC}	Read Cycle Time	25		35		40		50		ns	С
3	t _{AVQV}	t _{AA}	Address Access Time		25		35		40		50	ns	d
4	t _{axqx}	t _{on}	Output Hold After Address Change	5		5		5		5		ns	
5	t _{ELQX}	t _{LZ}	Chip Enable to Output Active	5		5		5		5		ns	j,
6	t _{ehqz}	t _{HZ}	Chip Disable to Output Inactive	0	20	0	20	0	20	0	25	ns	f, j
7	t _{ELICCH}	t _{PU}	Chip Enable to Power Up	0		0		0		0		ns	j
8	t _{EHICCL}	t _{PD}	Chip Enable To Power Down		30		30		30		30	ns	j
		t _T	Input Rise and Fall Times		50		50		50		50	ns	e, j


Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.

Note d: Device is continuously selected, E low.

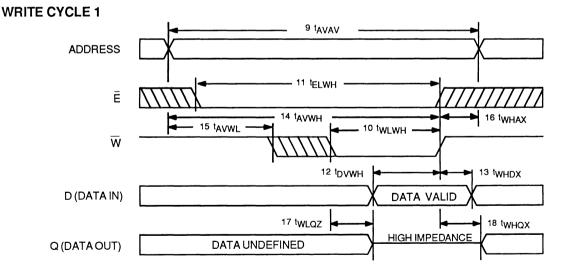

Note e: Measured between VIL max and VIH min.

Note f: Measured \pm 200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion. Note j: Parameter guaranteed but not tested.

READ CYCLE 2^c

RECOMMENDED AC OPERATING CONDITIONS ($0^{\circ}C \le T_{A} \le 70^{\circ}C$) ($V_{cc} = 5.0V \pm 10\%$)


WRITE CYCLE 1: W CONTROLLED^{g, h}

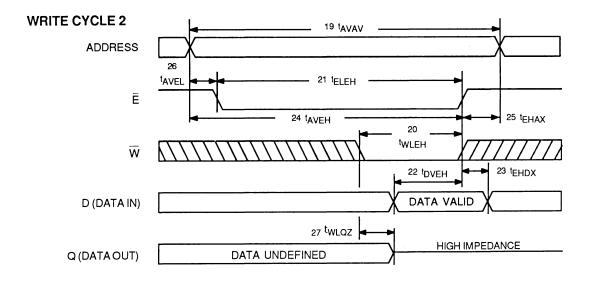
NO.	SYM		PARAMETER		3-25		3-35		3-45		3-55	UNITS	NOTES
NO.	Standard	Alternate		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	011113	NOTES
9	t _{avav}	t _{wc}	Write Cycle Time	20		30		40		50		ns	
10	t _{wLWH}	t _{wP}	Write Pulse Width	15		20		20		25		ns	
11	t _{ELWH}	t _{cw}	Chip Enable to End of Write	20		30		35		45		ns	
12	t _{DVWH}	t _{DW}	Data Set-up to End of Write	15		15		15		20		ns	
13	t _{wHDX}	t _{DH}	Data Hold After End of Write	0		0		0		0		ns	
14	t _{avwh}	t _{AW}	Address Set-up to End of Write	20		30		35		45		ns	
15	t _{avwl}	t _{AS}	Address Set-up to Beginning of Write	0		0		0		0		ns	
16	t _{whax}	t _{wR}	Address Hold After End of Write	0		0		0		0		ns	
17	t _{wLQZ}	ʻt _{wz}	Write Enable to Output Disable	0	20	0	20	0	20	0	20	ns	f, j
18	t _{wHQX}	t _{ow}	Output Active After End of Write	0		0		0		0		ns	i

Note f: Measured ± 200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion. Note h: \overline{E} or \overline{W} must be \geq V_{IH} during address transitions. Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C) (V_{cc} = 5.0V \pm 10%)


WRITE CYCLE 2: E CONTROLLED^{g, h}

NO.	SYM		PARAMETER		3-25		3-35		3-45		3-55	UNITS	NOTES
NO.	Standard	Alternate		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		NOTES
19	t _{AVAV}	t _{wc}	Write Cycle Time	20		30		40		50		ns	
20	t _{wLEH}	t _{wP}	Write Pulse Width	15		20		20		25		ns	
21	t _{ELEH}	t _{cw}	Chip Enable to End of Write	20		30		35		45		ns	
22	t _{DVEH}	t _{DW}	Data Set-up to End of Write	15		15		15		20		ns	
23	t _{EHDX}	t _{DH}	Data Hold After End of Write	0		0		0		0		ns	
24	t _{AVEH}	t _{AW}	Address Set-up to End of Write	20		30		35		45		ns	
25	t _{EHAX}	t _{wR}	Address Hold After End of Write	0		0		0		0		ns	
26	t _{AVEL}	t _{AS}	Address Set-up to Beginning of Write	0		0		0		0		ns	
27	t _{wLQZ}	t _{wz}	Write Enable to Output Disable	0	20	0	20	0	20	0	25	ns	f, j

Note f: Measured ± 200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion. Note h: \overline{E} or \overline{W} must be \geq V_{IH} during address transitions. Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note i: Parameter guaranteed but not tested.

DEVICE OPERATION

The IMS1403 has two control inputs, Chip Enable (\overline{E}) and Write Enable (\overline{W}) , fourteen address inputs $(A_0 - A_{13})$, a Data in (D) and a Data out (Q). The \overline{E} input controls device selection as well as active and standby modes. With \overline{E} low, the device is selected and the fourteen address inputs are decoded to select one bit out of 16K bits. Read and Write operations on the memory cell are controlled by \overline{W} input. With \overline{E} high, the device is deselected, the output is disabled, and power consumption is reduced to less than one-fourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $\overline{W} \ge V_{IH}$ min with $\overline{E} \le V_{IL}$ max. Read access time is measured from either \overline{E} going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while E is low. The output remains active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time as long as E remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by \overline{E} going low. As long as address is stable when \overline{E} goes low, valid data is at the output at the specified Chip Enable Access time. If address is not

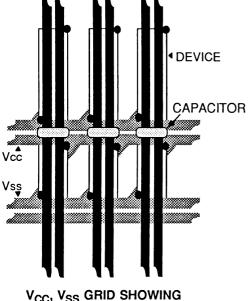
valid when \overline{E} goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

A write cycle of the IMS1403 is initiated by the latter of \overline{E} or \overline{W} to transition from a high to a low. In the case of \overline{W} falling last, the output buffer will be turned on t_{ELOX} after the falling edge of \overline{E} (just as in a read cycle). The output buffer is then turned off within t_{WLOZ} of the falling edge of \overline{W} . During this interval, it is possible to have bus contention between devices with D and Q connected together in a common I/O configuration. Contention can be avoided in a carefully designed system. During a write cycle, data on the input is written into the selected cells and the output is floating.

WRITE CYCLE 1 waveform shows a write cycle terminated by \overline{W} going high. Data set-up and hold times are referenced to the rising edge of \overline{W} . When \overline{W} goes high at the end of the cycle with \overline{E} active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by E going high. Data set-up and hold times are referenced to the rising edge of E. With E high, the outputs remain in the high impedance state.


APPLICATION

It is imperative when designing with any very high speed memory, such as the IMS1403, that the fundamental rules in regard to memory board layout be followed to ensure proper system operation.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1403. The impedance in the decoupling path from the power pin through the decoupling capacitor, to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Since the current transients associated with the operation of the high speed IMS1403 have very high frequency components, the line inductance is the dominating factor.

DECOUPLING CAPACITORS

To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1μ F, and be placed between each row of devices in the array (see drawing). A larger tantalum capacitor, with a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.

The ground grid of the memory array should extend to the TTL periphery circuit. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the drivertermination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

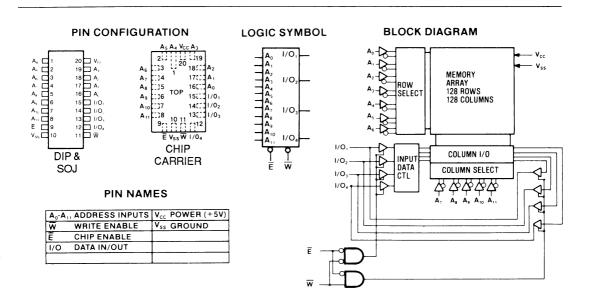
FIGURE 1. OUTPUT LOAD 5.0V 250Ω Q (Dout) 167Ω T T T SCOPE AND FIXTURE)

ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PARTNUMBER
	25ns	PLASTIC DIP	IMS1403P-25
	25ns	CERAMIC DIP	IMS1403S-25
	25ns	CERAMIC LCC	IMS1403W-25
	35ns	PLASTIC DIP	IMS1403P-35
	35ns	CERAMIC DIP	IMS1403S-35
IMS1403	35ns	CERAMIC LCC	IMS1403W-35
	45ns	PLASTIC DIP	IMS1403P-45
	45ns	CERAMIC DIP	IMS1403S-45
	45ns	CERAMIC LCC	IMS1403W-45
	55ns	PLASTIC DIP	IMS1403P-55
	55ns	CERAMIC DIP	IMS1403S-55
	55ns	CERAMIC LCC	IMS1403W-55

IMS1423 High Performance 4K x 4 CMOS Static RAM

FEATURES


- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- 4K x 4 Bit Organization
- 25, 35, 45 and 55 nsec Access Times
- Fully TTL Compatible
- Common Data Input & Output
- Three-state Output
- 20-Pin, 300-mil DIP & SOJ (JEDEC Std.)
- 20-Pin Ceramic LCC (JEDEC Std.)
- Single +5V ± 10% Operation
- Power Down Function for Low Standby Power
- Pin Compatible with IMS1420

DESCRIPTION

The INMOS IMS1423 is a high performance 4K x 4 CMOS static RAM. The IMS1423 provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1423 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1423 provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1423M is a MIL-STD-883 version intended for military applications that demand superior performance and reliability.

IMS1423

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V_{SS}-2.0 to 7.0V Voltage on I/O (Pins 13-16)....-1.0 to (V_{CC} + 0.5V) Temperature Under Bias....-55°C to 125°C Storage Temperature (Ambient)....-65°C to 150°C Power Dissipation.....1W DC Output Current......25mA (One Second Duration)

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
V _{CC}	Supply Voltage	4.5	5.0	5.5	v	
V _{SS}	Supply Voltage	0	0	0	V	
VIH	Input Logic "1" Voltage	2.0		Vcc + .5	V	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
T _A	Ambient Operating Temperature	0	25	70	°C	400 linear ft/min air flow

* VIL Min = -3.0V for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS (0°C \leq $T_{A} \leq$ 70°C) (V_{CC} = 5.0V \pm 10%) a

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
ICC1	Average V _{CC} Power Supply Current		105 100 100	mA mA mA	$t_{AVAV} = 25ns$ $t_{AVAV} = 35ns$ $t_{AVAV} = 45ns \& 55ns$
I _{CC2}	V _{CC} Power Supply Current (Standby,Stable TTL Input Levels)		15	mA	Ē≥V _{IH} All other inputs at V _{IN} ≤V _{IL} or ≥V _{IH}
I _{CC3}	V _{CC} Power Supply Current (Standby, Stable CMOS Input Levels)		5	mA	$\overline{E} \ge (V_{CC} - 0.2)$ All other inputs at $V_{IN} \le 0.2$ or $\ge (V_{CC} - 0.2V)$
lcc4	V _{CC} Power Supply Current (Standby, Cycling CMOS Input Levels)		10	mA	$\overline{E} \ge (V_{CC} - 0.2)$ Inputs cycling at $V_{IN} \le 0.2$ or $\ge (V_{CC} - 0.2V)$
IILK	Input Leakage Current (Any Input)		±1	μA	$V_{CC} = max$ $V_{IN} = V_{SS}$ to V_{CC}
I _{OLK}	Off State Output Leakage Current		±5	μA	$V_{CC} = max$ $V_{IN} = V_{SS}$ to V_{CC}
V _{OH}	Output Logic "1" Voltage	2.4		v	I _{OH} = -4mA
V _{OL}	Output Logic "0" Voltage		0.4	v	I _{OL} = 8mA

Note a: ICC is dependent on output loading and cycle rate, the specified values are obtained with the outputs unloaded.

AC TEST CONDITIONS

Input Pulse Levels	V _{SS} to 3V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	
Output LoadS	ee Figure 1

CAPACITANCE^b (T_A = 25°C, f = 1.0MH_Z)

SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
CIN	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
C _{OUT}	Output Capacitance	4	pF	$\Delta V = 0$ to $3V$

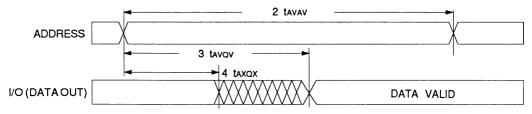
Note b: This parameter is sampled and not 100% tested.

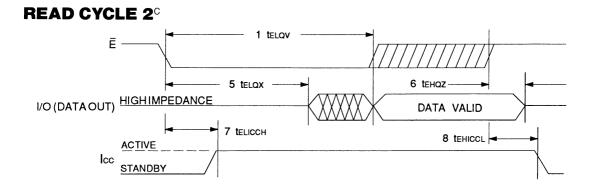
RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C) (V_{cc} = 5.0V \pm 10%) READ CYCLE g

NO.	SYM	BOL	PARAMETER		3-25		3-35	1423-45			3-55	UNITS	NOTES
NO.	Standard	Alternate	TANAMETEN	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
1	t _{ELQV}	t _{ACS}	Chip Enable Access Time		25		35		45		55	ns	
2	t _{AVAV}	t _{RC}	Read Cycle Time	25		35		40		50		ns	с
3	t _{AVQV}	t _{AA}	Address Access Time		25		35		40		50	ns	d
4	t _{axox}	t _{он}	Output Hold After Address Change	3		3		3		3		ns	
5	t _{ELQX}	t _{LZ}	Chip Enable to Output Active	5		5		5		5		ns	j
6	t _{ehqz}	t _{HZ}	Chip Disable to Output Inactive	0	15	0	15	0	15	0	15	ns	f, j
7	t _{ELICCH}	t _{PU}	Chip Enable to Power Up	0		0		0		0		ns	j
8	t _{EHICCL}	t _{PD}	Chip Disable To Power Down		30		30		30		30	ns	j
		t _T	Input Rise and Fall Times		50		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.

Note d: Device is continuously selected, E low.


Note e: Measured between V_{IL} max and V_{IH} min.


Note f: Measured \pm 200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

READ CYCLE 1^{c,d}

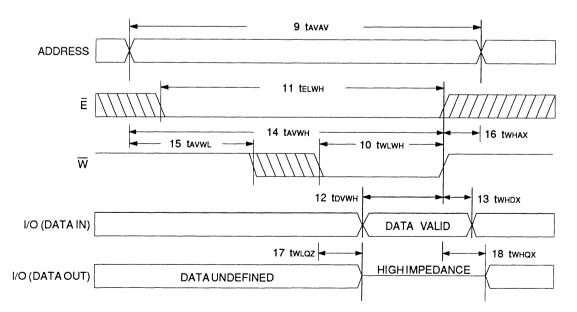
IMS1423

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C) (V_{CC} = 5.0V \pm 10%)

SYMBOL 1423-25 1423-35 1423-45 1423-55 PARAMETER UNITS NOTES NO. Standard Alternate MIN MAXIMIN MAXIMIN MAXIMIN MAX 25 9 Write Cycle Time 35 40 50 ns t_{AVAV} twc 20 25 35 10 Write Pulse Width 45 twp ns t_{wLWH} 11 Chip Enable to End of Write 20 25 35 45 tow ns t_{EI WH} 20 12 Data Set-up to End of Write 10 13 15 t_{DW} ns t_{DVWH} 2 3 3 13 Data Hold After End of Write 2 t_{DH} ns t_{wHDX} 25 20 40 Address Set-up to End of Write 30 14 t_{aw} ns t_{AVWH} 15 0 0 0 0 Address Set-up to Beainning of Write ns t_{AVWL} tas 2 3 5 5 16 twe Address Hold After End of Write ns t_{whax} 0 0 20 0 25 17 Write Enable to Output Disable 15 0 15 f,j twi oz t_{w7} ns 18 Output Active After End of Write 6 6 6 6 i ns t_{wHOX} t_{∩w}

WRITE CYCLE 1: W CONTROLLED^{g, h}

Note f: Measured \pm 200mV from steady state output voltage. Load capacitance is 5pF.


Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\geq V_{IH}$ during address transitions.

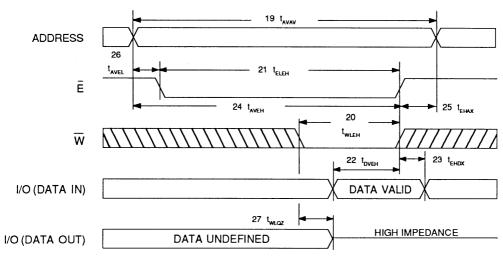
Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C) (V_{CC} = 5.0V \pm 10%)

WRITE CYCLE 2: E CONTROLLED^{g, h}

NO.	SYM		PARAMETER				3-35		3-45		3-55	UNITS	NOTES
<u> </u>	Standard	Alternate		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	011113	NOTES
19	t _{AVAV}	t _{wc}	Write Cycle Time	25		35		40		50		ns	
20	t _{wLEH}	t _{wP}	Write Pulse Width	20		25		35		45		ns	
21	t _{elen}	t _{cw}	Chip Enable to End of Write	20		25		35		45		ns	
22	t _{DVEH}	t _{DW}	Data Set-up to End of Write	10		13		15		20		ns	
23	t _{EHDX}	t _{DH}	Data Hold After End of Write	3		3		3		5		ns	
24	t _{AVEH}	t _{AW}	Address Set-up to End of Write	20		25		30		40		ns	
25	t _{EHAX}	t _{wR}	Address Hold After End of Write	2		3		5		5		ns	
26	t _{AVEL}	t _{AS}	Address Set-up to Beginning of Write	0		0		0		0		ns	
27	t _{wLQZ}	t _{wz}	Write Enable to Output Disable	0	15	0	15	0	20	0	25	ns	f,j


Note f: Measured ± 200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\ge V_{IH}$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

WRITE CYCLE 2

IMS1423

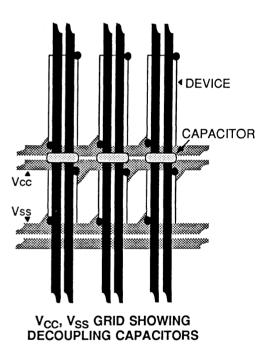
DEVICE OPERATION

The IMS1423 has two control inputs, Chip Enable (\overline{E}) and Write Enable (\overline{W}) , twelve address inputs (A_0-A_{11}) , and four Data I/O lines. The \overline{E} input controls device selection as well as active and standby modes. With \overline{E} low, the device is selected and the twelve address inputs are decoded to select one 4-bit word out of 4K words. Read and Write operations on the memory cell are controlled by \overline{W} input. With \overline{E} high, the device is deselected, the outputs are disabled and the power consumption is reduced to less than one-fourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $\overline{W} \ge V_{|H}$ min with $\overline{E} \le V_{|L}$ max. Read access time is measured from either \overline{E} going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while \overline{E} is low. The outputs remain active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and as long as \overline{E} remains low, the cycle time is equal to the address access time.


The READ CYCLE 2 waveform shows a read access that is initiated by \overline{E} going low. As long as address is stable when \overline{E} goes low, valid data is at the outputs at the specified Chip Enable Access time. If address is not valid when \overline{E} goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

The write cycle of the IMS1423 is initiated by the latter of \overline{E} or \overline{W} to transition from a high level to a low level. In the case of \overline{W} falling last, the output buffers will be turned on t_{ELOX} after the falling edge of \overline{E} (just as in a read cycle). The output buffers are then turned off within t_{WLOZ} of the falling edge of \overline{W} . During this interval, it is possible to have bus contention between devices with common I/O configurations. Therefore input data should not be active until t_{WLOZ} to avoid bus contention.

WRITE CYCLE 1 waveform shows a write cycle terminated by \overline{W} going high. Data set-up and hold times are referenced to the rising edge of \overline{W} . When \overline{W} goes high at the end of the cycle with \overline{E} active, the outputs of the memory become active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by \overline{E} going high. Data set-up and hold times are referenced to the rising edge of \overline{E} . With \overline{E} high, the outputs remain in the high impedance state.

APPLICATION

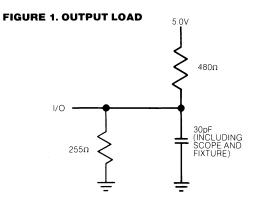
It is imperative, when designing with any very high speed memory such as the IMS1423, that the fundamental rules in regard to memory board layout be followed to ensure proper system operation.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the wide operating margins of the IMS1423. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Since the current transients associated with the operation of the high speed IMS1423 have very high frequency components, the line inductance is the dominating factor. To reduce the line inductance, the power trace and around trace should be aridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1μ F and be placed between each row of devices in the array (see drawing). A larger tantalum capacitor, with a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage

drop due to the main supply being located off the memory board and at the end of a long inductive path.


The ground grid of the memory array should extend to the TTL periphery circuit. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the drivertermination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 330hm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically. IMS1423

ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
IMS1423	25ns 25ns 25ns 35ns 35ns 35ns 35ns 45ns 45ns 45ns 55ns 55ns 55ns 55ns	PLASTIC DIP PLASTIC SOJ CERAMIC DIP CERAMIC LCC PLASTIC DIP PLASTIC SOJ CERAMIC LCC PLASTIC DIP PLASTIC SOJ CERAMIC DIP CERAMIC LCC PLASTIC DIP PLASTIC SOJ CERAMIC DIP CERAMIC DIP	IMS1423P-25 IMS1423E-25 IMS1423W-25 IMS1423W-25 IMS1423P-35 IMS1423E-35 IMS1423E-35 IMS1423B-45 IMS1423P-45 IMS1423E-45 IMS1423W-45 IMS1423W-45 IMS1423P-55 IMS1423E-55 IMS1423S-55 IMS1423W-55

IMS1600 IMS1601L CMOS High Performance 64K x 1 Static RAM

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- · 64K x 1 Bit Organization
- 25, 30, 35, 45 and 55 nsec Access Times
- Fully TTL Compatible
- · Separate Data Input & Output
- · Three-state Output
- Power Down Function
- Single +5V ± 10% Operation
- 22-Pin, 300-mil DIP (JEDEC Std.)
- · 22-Pin Ceramic LCC (JEDEC Std.)
- 24-Pin, 300-mil SOJ

A0 A2 A4 A6 A8 A10

A12 A14 Q W

 Battery Backup Operation - 2V Data Retention (L version only)

DESCRIPTION

The INMOS IMS1600 is a high performance 64K x 1 CMOS Static RAM. The IMS1600 provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1600 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1600 provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1601L is a low power version offering battery backup data retention operating from a 2 volt supply.

The IMS1600M and IMS1601LM are MIL-STD-883 versions intended for military applications.

BLOCK DIAGRAM

A0 A0 A2 A4 A6 A8 A10 NC A12 A14 Q W 24 -Vcc 23 A1 22 A3 21 A5 20 A7 19 NC 18 A9 17 A11 16 A13 15 A15 14 D 13 E ∽ -Vss 21 A1 20 19 A3 **A**6 7 ₽ A5 A7 A9 A11 A13 AB 18 17 MEMORY ARRAY A10 76 16 15 A12 7 256 ROWS ₽ A14 256 COLUMNS -18 14 13 A15 a 10 Δ5 臣 46 Α7 DIP CHIP SOJ CARRIER D(D_{IN}) COLUMN VO CIRCUITS (Dout)Q COLUMN SELECT **PIN NAMES** A0-A15 ADDRESS INPUTS O DATA OUTPUT A9 A10 A11 A12 A13 A14 A15 **A**8 W WRITE ENABLE Vcc POWER F Ē CHIP ENABLE Vss GROUND DATA INPUT D

2 - 35

PIN CONFIGURATION

IMS1600/IMS1601L

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V	ss2.0 to 7.0V
Voltage on Q	1.0 to (Vcc+0.5)
Temperature Under Bias	55° C to 125°C
Storage Temperature	65° C to 150°C
Power Dissipation	1W
DC Output Current	25mA
(One Second Duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	түр	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	V	
Vih	Input Logic "1" Voltage	2.0		Vcc+0.5	V	All inputs
Vil	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
TA	Ambient Operating Temperature	0	25	70	°C	400 linear ft/min air flow

*VIL min = -3 volts for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS $(0^{\circ}C \le T_A \le 70^{\circ}C)$ $(Vcc = 5.0V \pm 10\%)^a$

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES	
lcc1	Average Vcc Power Supply Current		77 70	mA mA	tAVAV = 25ns and 30ns (PRELIM) tAVAV = 35, 45 and 55ns	
lcc2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		25	mA	Ē ≿ V⊮. All other inputs at	
	IMS1601L version		15		VIN S VIL or 2 VIH	
lcc3	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		14	mA	Ē ≥ (Vcc - 0.2). All other inputs at	
	IMS1601L version		2		$V_{IN} \leq 0.2$ or \geq (Vcc - 0.2V)	
Icc4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		15	mA	$\overline{E} \ge$ (Vcc - 0.2). Inputs cycling at	
	IMS1601L version		5		Vin ≤ 0.2 or ≥ (Vcc - 0.2V)	
lilk	Input Leakage Current (Any Input)		±1	μA	Vcc = max ViN = Vss to Vcc	
Іогк	Off State Output Leakage Current		±5	μA	Vcc = max V _{IN} = Vss to Vcc	
Vон	Output Logic "1" Voltage	2.4		v	lol = -4mA	
Vol	Output Logic "0" Voltage		0.4	v	Іон = 8mA	

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels	Vss to 3V
Input Rise and Fall Times	
Input and Output Timing Reference	
Output Load	See Figure 1

CAPACITANCE^b (Ta=25°C, f=1.0MHZ)

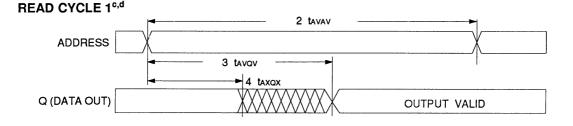
SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
CIN	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	7	рF	$\Delta V = 0$ to $3V$

Note b: This parameter is sampled and not 100% tested.

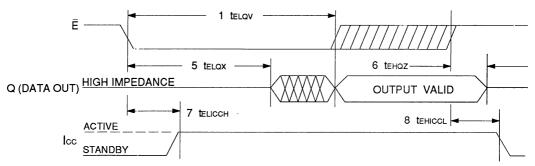
RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C) (Vcc = 5.0V ±10%) **READ CYCLE**^g

	SYM	BOL	PARAMETER	160	AS)0-25 ELIM	160	NS 10-30 ELIM	160 8	IS 0-35 k 1-35	16	MS 00-45 & 01-45	16	MS 00-55 & 01-55	U N I T	N O T E
No.	Standard	Alternate		MIN	МАХ	MIN	MAX	MIN	мах	MIN	МАХ	MIN	МАХ	S	s
1	t ELQV	tacs	Chip Enable Access Time		25		30		35		45		55	ns	
2	tavav	tRC	Read Cycle Time	25		30		35		45		55		ns	с
3	tavov	taa	Address Access Time		25		30		35		45		55	ns	d
4	taxox	tон	O/P Hold After Address Change	3		3		5		5		5		ns	
5	t ELQX	t∟z	Chip Enable to O/P Active	3		З		5		5		5		ns	j
6	tehoz	tHZ	Chip Disable to O/P Inactive	0	15	0	15	0	20	0	25	0	30	ns	f, j
7	t ELICCH	tPU	Chip Enable to Power Up	0		0		0		0		0		ns	j
8	t EHICCL	tPD	Chip Enable to Power Down		25		30		35		45	1	55	ns	j
		tτ	I/P Rise and Fall Times		50		50		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.


Note d: Device is continuously selected; E low.

Note e: Measured between ViL max and ViH min.


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

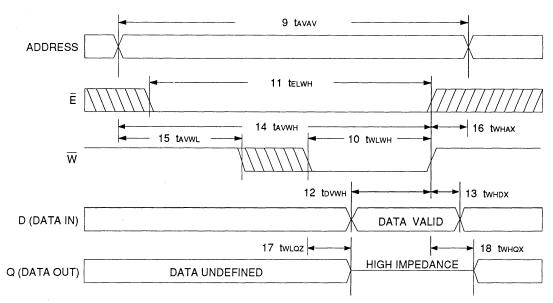
Note j: Parameter guaranteed but not tested.

READ CYCLE 2°

$\label{eq:stable} \begin{array}{l} \textbf{IMS1600/IMS1601L} \\ \textbf{RECOMMENDED AC OPERATING CONDITIONS} (0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}) \ (\text{Vcc} = 5.0\text{V} \pm 10\%) \\ \textbf{WRITE CYCLE 1: } \ \overline{W} \ \text{CONTROLLED}^{g,h} \end{array}$

	SYMBOL		PARAMETER	IM 1600 PRE	-25	IM 1600 PRE	-30	IM 1600 8 1601	-35	IM 1600 8 1601	-45 4	IM 1600 8 1601	-55 k	U N I T	N O T E
No	Standard	Alternate		MIN	МАХ	MIN	МАХ	MIN	МАХ	MIN	МАХ	MIN	МАХ	s	s
9	tAVAV	t WC	Write Cycle Time	25		30		35		45		55		ns	
10	tWLWH	t WP	Write Plus Width	20		20		20		20		25		ns	
11	tELWH	tcw	Chip Enable to End of Write	20		20		30		30		30		ns	
12	tDVWH	tow	Data Setup to End of Write	15		15		15		20		20		ns	
13	tWHDX	t DH	Data Hold after End of Write	0		0		0		0		0		ns	
14	tAVWH	t AW	Address Setup End of Write	20		20		25		25		30		ns	
15	tAVWL	t AS	Address Setup to Start of Write	5		5		5		5		5		ns	
16	tWHAX	t WR	Address Hold after End of Write	5		5		5		5		5		ns	
17	tWLQZ	t WZ	Write Enable to Output Disable	0	15	0	15	0	20	0	20	0	25	ns	f,j
18	tWHQX	tow	Write Enable to Output Disable	0		0		0		0		0		ns	i

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: \overline{E} and \overline{W} must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\ge V_{15}$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

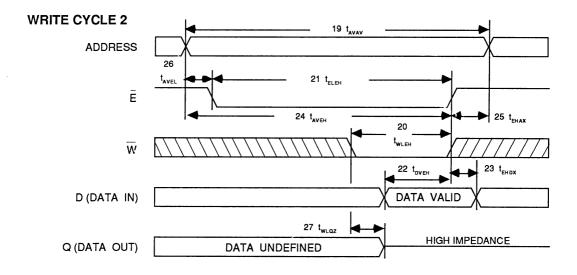
Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

IMS1600/IMS1601L

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq Ta \leq 70°C) (Vcc = 5.0V ±10%) WRITE CYCLE 2: \overline{E} CONTROLLED^{9, h}

	SYMBOL PARAMETER MIN MAX MIN MAX		-30	IM 1600 1601	-35	IM 1600 1601	-45	IMS 1600-55 1601-55		U N I T	N O T E				
No	Standard	Alternate		MIN	МАХ	MIN	МАХ	MIN	МАХ	MIN	МАХ	MIN	MAX	S	s
19	tAVAV	t WC	Write Cycle Time	25		30		35		45		55		ns	
20	tWLEH	twp	Write Plus Width	20		20		20		20		25		ns	
21	tELEH	tcw	Chip Enable to End of Write	20		20		30		30		30		ns	
22	tDVEH	t DW	Data Setup to End of Write	15		15		15		20		20		ns	
23	t EHDX	t DH	Data Hold after End of Write	0		0		0		0		0		ns	
24	tAVEH	t AW	Address Setup to End of Write	20		20		30		30		30		ns	
25	tEHAX	tWR	Address Setup to Start of Write	5		5		5		5		5		ns	
26	tAVEL	t AS	Address Hold after End of Write	0		0		0		0		0		ns	
27	tWLQZ	t WZ	Write Enable to Output Disable	0	15	0	15	0	20	0	20	0	25	ns	f,j


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: Ē and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\ge V_{IH}$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

IMS1600/IMS1601L DEVICE OPERATION

The IMS1600 has two control inputs, Chip Enable (/E) and Write Enable (/W), 16 address inputs (A0 -A15), a data in (D) and a data out (Q).

The /E input controls device selection as well as active and standby modes. With /E low, the device is selected and the 16 address inputs are decoded to select one memory cell out of 65,536. Read and Write operations on the memory cell are controlled by the /W input. With /E high, the device is deselected, the output is disabled and the power consumption is reduced to less than one-fourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $/W \ge V_{H}$ min with $/E \le V_{IL}$ max. Read access time is measured from either /E going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E is low. The output remains active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and long as /E remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by /E going low. As long as address is stable when /E goes low, valid data is at the output at the specified Chip Enable Access time. If address is not valid when /E goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

The write cycle of the IMS1600 is initiated by the latter of /E or /W to transition from a high to a low. In the case of /W falling last, the output buffer will be turned on tELox after the falling edge of /E (just as in a read cycle). The output buffer is then turned off within twLoz of the falling edge of /W. During this interval it is possible to have bus contention between devices with D and Q connected together in a common I/O configuration. Therefore input data should not be active until twLoz to aviod bus contention. WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high at the end of the cycle with /E active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of /E. With /E high the output remains in the high impedance state.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1600. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Current transients associated with the operation of any high speed device have very high frequency components, so line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad and be placed between each row of devices in the array. A larger tantalum capacitor of a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path. The ground grid of the memory array should extend to the TTL driver periphery circuit area. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

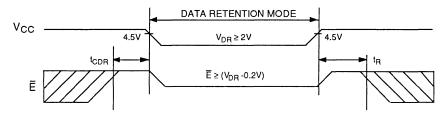
TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

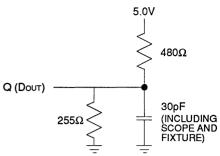
The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

DATA RETENTION (L version only) ($0^{\circ}C \le T_A \le 70^{\circ}C$)


SYMBOL	PARAMETER	MIN	TYP*	МАХ	UNITS	NOTES
V _{DR}	Data Retention Voltage	2.0			volts	$V_{IN} \le 0.2V \text{ or } \ge (V_{CC} - 0.2V) \ E \ge (V_{CC} - 0.2V)$
ICCDR1	Data Retention Current		8	100	μA	V _{CC} = 3.0 volts
ICCDR2	Data Retention Current		5	70	μA	V _{CC} = 2.0 volts
^t EHVCCL	Deselect Time (t _{CDR})	0			ns	j, k
t VCCHEL	Recovery Time (t _R)	t _{RC}			ns	j, k (t _{RC} = Read Cycle Time)

*Typical data retention parameters at 25°C.


Note j: Parameter guaranteed but not tested.

Note k: Supply recovery rate should not exceed 100mV per µs from VDR to VCC min.

LOW V CC DATA RETENTION

FIGURE 1. OUTPUT LOAD

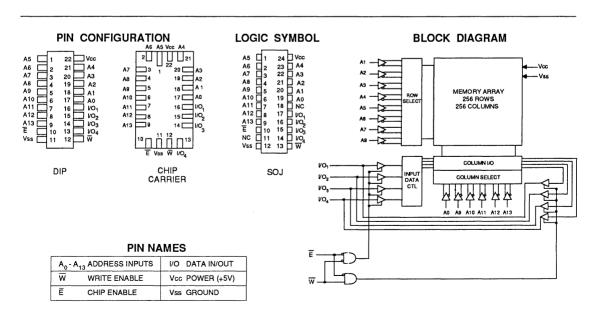
ORDERING INFORMATION

DEVICE IMS1600 IMS1601L	ODEED	DACKACE	PART N	UMBER
DEVICE	SPEED	PACKAGE	STANDARD	LOW POWER
	25ns	PLASTIC DIP	IMS1600P-25	
	25ns	CERAMIC DIP	IMS1600S-25	
	25ns	CERAMIC LCC	IMS1600W-25	
	25ns	PLASTIC SOJ	IMS1600E-25	
	30ns	PLASTIC DIP	IMS1600P-30	
	30ns	CERAMIC DIP	IMS1600S-30	
IMS1600	30ns	CERAMIC LCC	IMS1600W-30	
	30ns	PLASTIC SOJ	IMS1600E-30	
MISTOUTE	35ns	PLASTIC DIP	IMS1600P-35	IMS1601LP35
	35ns	CERAMIC DIP	IMS1600S-35	IMS1601LS35
	35ns	CERAMIC LCC	IMS1600W-35	IMS1601LW3
	35ns	PLASTIC SOJ	IMS1600E-35	IMS1601LE35
	45ns	PLASTIC DIP	IMS1600P-45	IMS1601LP45
	45ns	CERAMIC DIP	IMS1600S-45	IMS1601LS45
	45ns	CERAMIC LCC	IMS1600W-45	IMS1601LW45
	45ns	PLASTIC SOJ	IMS1600E-45	IMS1601LE45
		IMS1600P-55	IMS1601LP55	
	55ns CERAMIC DIP		IMS1600S-55	IMS1601LS55
	55ns	CERAMIC LCC	IMS1600W-55	IMS1601LW55
	55ns	PLASTIC SOJ	IMS1600E-55	IMS1601LE55

IMS1620 CMOS High Performance 16K x 4 Static RAM

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- · 16K x 4 Bit Organization
- 25, 30, 35, 45 and 55 nsec Access Times
- Fully TTL Compatible
- Common Data Input & Output
- Three-state Output
- Power Down Function
- Single +5V ± 10% Operation
- · 22-Pin, 300-mil DIP (JEDEC Std.)
- · 22-Pin Ceramic LCC (JEDEC Std.)
- 24-Pin, 300-mil SOJ


DESCRIPTION

The INMOS IMS1620 is a high performance 16K x 4 CMOS Static RAM. The IMS1620 provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1620 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1620 provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1624 is the functional equivalent of the IMS1620 with the addition of an Output Enable input.

The IMS1620M and IMS1620LM are MIL-STD-883 versions intended for military applications.

IMS1620 ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to	Vss2.0 to 7.0V
Voltage on I/O	1.0 to Vcc+0.5
Temperature Under Bias	55° C to 125°C
Storage Temperature	65° C to 150°C
Power Dissipation	1W
DC Output Current	
(One output at a time, one second duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ΤΥΡ	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	v	
Viн	Input Logic "1" Voltage	2.0		Vcc+.5	V	All inputs
Vı∟	Input Logic "0" Voltage	-1.0*		0.8	v	All inputs
TA	Ambient Operating Temperature	0	25	70	°C	400 linear ft/min air flow

*VIL min = -3 volts for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS $(0^{\circ}C \subseteq T_A \subseteq 70^{\circ}C)$ $(Vcc = 5.0V \pm 10\%)^a$

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
lcc1	Average Vcc Power Supply Current		110 100	mA mA	tavav = 25ns and 30ns tavav = 35, 45 and 55ns
lcc2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		25	mA	Ē ≿ Vi⊢ . All other inputs at Vi⊵ ≤ Vi∟ or ≿ Vi⊢
ါငငဒ	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		14	mA	Ē ≿ (Vcc - 0.2) . All other inputs at Vi⊵ ≤ 0.2 or ≿ (Vcc - 0.2V)
Icc4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		17	mA	Ē ≿ (Vcc - 0.2). Inputs cycling at Vi⊵ ≤ 0.2 or ≿ (Vcc - 0.2V)
lilk	Input Leakage Current (Any Input)		±1	μA	Vcc = max ViN = Vss to Vcc
lolk	Off State Output Leakage Current		±5	μA	Vcc = max VIN = Vss to Vcc
Vон	Output Logic "1" Voltage	2.4		V	lol = -4mA
Vol	Output Logic "0" Voltage		0.4	V	Іон = 8mA

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels	Vss to 3V
Input Rise and Fall Times	5ns
Input and Output Timing Reference I	Levels1.5V
Output Load	

CAPACITANCE^b (T_A=25°C, f=1.0MHZ)

SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
CIN	Input Capacitance	4	pF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	7	рF	$\Delta V = 0$ to $3V$

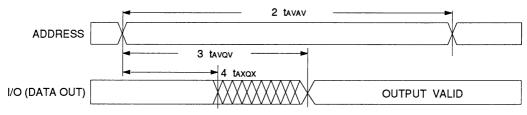
Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq Ta \leq 70°C) (Vcc = 5.0V ±10%) **READ CYCLE**^g

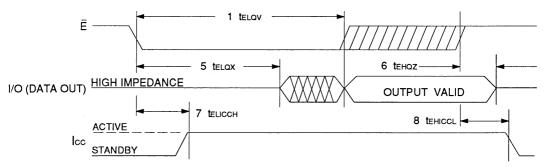
			IMS IMS 1620-35 1620-4			IMS 5 1620-55		U N I T	N O T E						
No	Standard	Alternate		MIN	МАХ	MIN	МАХ	MIN	МАХ	MIN	МАХ	MIN	мах	s	s
1	tELQV	t ACS	Chip Enable Access Time		25		30		35		45		55	ns	
2	tAVAV	t RC	Read Cycle Time	25		30		35		45		55		ns	С
3	tAVQV	t AA	Address Access Time		25		30		35		45		55	ns	d
4	tAXQX	tон	O/P Hold After Address Change	5		5		5		5		5		ns	
5	t ELQX	tLZ	Chip Enable to O/P Active	5		5		5		5		5		ns	j
6	t EHQZ	tнz	Chip Disable to Output Inactive	0	15	0	15	0	15	0	20	0	25	ns	f, j
7	t ELICCH	t PU	Chip Enable to Power Up	0		0		0		0		0		ns	j
8	t EHICCL	t PD	Chip Enable to Power Down		25		30		35		45		55	ns	j
		tТ	Input Rise and Fall Times		50		50		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.

Note d: Device is continuously selected; E low.


Note e: Measured between VIL max and VIH min.

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: \overline{E} and \overline{W} must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

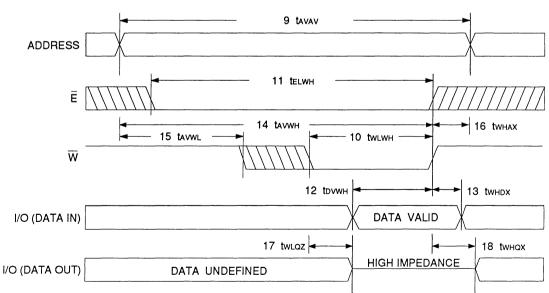
Note j: Parameter guaranteed but not tested.


```
READ CYCLE 2<sup>c</sup>
```


IMS1620

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq TA \leq 70°C) (Vcc = 5.0V ±10%) WRITE CYCLE 1: \overline{W} CONTROLLED^{g,h}

	SYM	BOL	PARAMETER	IMS 1620-25 11		IMS 1620-30		IMS 1620-35		IMS 1620-45		IN 1620	1S)-55	U N I T	N O T E
No	Standard	Alternate		MIN	МАХ	MIN	MAX	MIN	МАХ	MIN	МАХ	MIN	мах	S	s
9	tAVAV	t WC	Write Cycle Time	25		30		35		45		55		ns	
10	tWLWH	twp	Write Pulse Width	20		20		30		30		40		ns	
11	tELWH	tcw	Chip Enable to End of Write	20		20		30		30		40		ns	
12	tDVWH	t DW	Data Setup to End of Write	13		15		15		20		25		ns	
13	tWHDX	t DH	Data Hold after End of Write	0		0		0		0		0		ns	
14	tavwh	t AW	Address Setup End of Write	20		25		30		30		40		ns	
15	tAVWL	t AS	Address Setup to Start of Write	0		0		0		0		0		ns	
16	tWHAX	tWR	Address Hold after End of Write	5		5		5		0		0		ns	
17	tWLQZ	t WZ	Write Enable to Output Disable	0	15	0	15	0	20	0	20	0	25	ns	f,j
18	tWHQX	tow	Write Enable to Output Disable	0		0		0		0		0		ns	i


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note \tilde{h} : \tilde{E} or \overline{W} must be $\geq V \bowtie$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the outputs remain in the high impedance state.

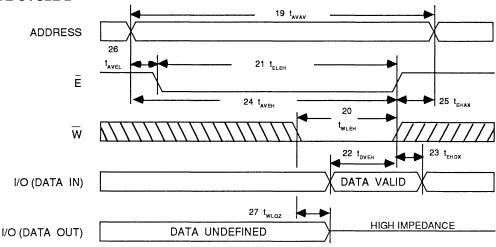
Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq Ta \leq 70°C) (Vcc = 5.0V \pm 10%) **WRITE CYCLE 2:** \bar{E} CONTROLLED^{g, h}

	SYMBOL		PARAMETER	IMS 1620-25		IMS 1620-30		IMS 1620-35		IMS 1620-45		IMS 1620-55		U N I T	N O T E
No	Standard	Alternate		MIN	МАХ	s	s								
19	tAVAV	t WC	Write Cycle Time	25		30		35		45		55		ns	
20	tWLEH	twp	Write Pulse Width	20		20		30		30		40		ns	
21	tELEH	tcw	Chip Enable to End of Write	20		20		30		30		40		ns	
22	tDVEH	tow	Data Setup to End of Write	13		15		15		20		25		ns	
23	tEHDX	t DH	Data Hold after End of Write	0		0		0		0		0		ns	
24	tAVEH	t aw	Address Setup to End of Write	20		25		30		30		40		ns	
25	tEHAX	tWR	Address Setup to Start of Write	5		5		5		0		0		ns	
26	tAVEL	t AS	Address Hold after End of Write	0		0		0		0		0		ns	
27	tWLQZ	t WZ	Write Enable to Output Disable	0	15	0	15	0	15	0	20	0	25	ns	f,j

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: E and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be \ge VIH during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

WRITE CYCLE 2

IMS1620 DEVICE OPERATION

The IMS1620 has two control inputs, Chip Enable (/E) and Write Enable (/W), 14 address inputs (A0 -A13), and four Data I/O pins.

The /E input controls device selection as well as active and standby modes. With /E low, the device is selected and the 14 address inputs are decoded to select one 4-bit word out of 16,384. Read and Write operations on the memory cells are controlled by the /W input. With /E high, the device is deselected, the outputs are disabled and the power consumption is reduced to less than one-fourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $/W \ge V_{IH}$ min with $/E \le V_{IL}$ max. Read access time is measured from either /E going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E is low. The outputs remain active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and long as /E remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by /E going low. As long as address is stable when /E goes low, valid data is at the outputs at the specified Chip Enable Access time. If address is not valid when /E goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

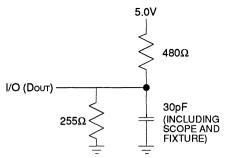
The write cycle of the IMS1620 is initiated by the latter of /E or /W to transition from a high to a low. In the case of /W falling last, the output buffers are turned on tELox after the falling edge of /E (just as in a read cycle). The output buffers are then turned off within twLozof the falling edge of /W. During this interval it is possible to have bus contention between devices with common I/O configurations. Therefore input data should not be active until twLoz to aviod bus contention. WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high at the end of the cycle with /E active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of /E. With /E high the outputs remain in the high impedance state.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1620. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Current transients associated with the operation of any high speed device have very high frequency components. so line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad and be placed between each row of devices in the array. A larger tantalum capacitor of a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path. The ground grid of the memory array should extend to the TTL driver periphery circuit area This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.


TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

FIGURE 1. OUTPUT LOAD

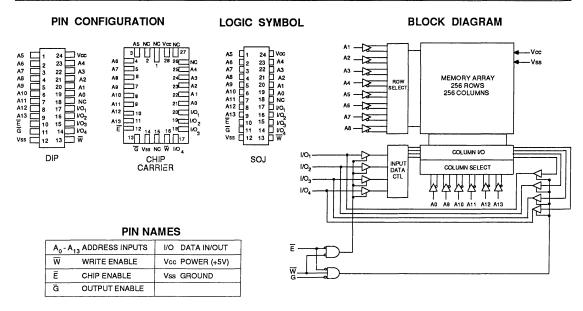
ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
	25ns	PLASTIC DIP	IMS1620P-25
	25ns	CERAMIC DIP	IMS1620S-25
	25ns	CERAMIC LCC	IMS1620W-25
	25ns	PLASTIC SOJ	IMS1620E-25
	30ns	PLASTIC DIP	IMS1620P-30
	30ns	CERAMIC DIP	IMS1620S-30
	30ns	CERAMIC LCC	IMS1620W-30
	30ns	PLASTIC SOJ	IMS1620E-30
IMS1620	35ns	PLASTIC DIP	IMS1620P-35
	35ns	CERAMIC DIP	IMS1620S-35
	35ns	CERAMIC LCC	IMS1620W-35
	35ns	PLASTIC SOJ	IMS1620E-35
	45ns	PLASTIC DIP	IMS1620P-45
	45ns	CERAMIC DIP	IMS1620S-45
	45ns	CERAMIC LCC	IMS1620W-45
	45ns	PLASTIC SOJ	IMS1620E-45
	55ns	PLASTIC DIP	IMS1620P-55
	55ns	CERAMIC DIP	IMS1620S-55
	55ns	CERAMIC LCC	IMS1620W-55
	55ns	PLASTIC SOJ	IMS1620E-55

IMS1624 CMOS High Performance 16K x 4 Static RAM with Output Enable

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- · 16K x 4 Bit Organization with Output Enable
- · 25, 30, 35, 45 and 55 nsec Address Access Times
- 25, 30, 35, 45 and 55 nsec Chip Enable Access Times
- · Fully TTL Compatible
- · Common Data Input & Output
- · Three-state Output
- · Power Down Function
- Single +5V ± 10% Operation
- 24-Pin, 300-mil DIP (JEDEC Std.)
- 28-Pin Ceramic LCC (JEDEC Std.)
- 24-Pin, 300-mil SOJ


DESCRIPTION

The INMOS IMS1624 is a high performance 16K x 4 CMOS Static RAM. The IMS1624 provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1624 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. The IMS1624 provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode. The IMS1624 also includes an Output Enable (/G) for fast access to data and enhanced bus contention control.

The IMS1624 is the functional equivalent of the IMS1620 with the addition of an Output Enable input.

The IMS1624M and IMS1624LM are MIL-STD-883 versions intended for military applications.

IMS1624

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V	ss2.0 to 7.0V
Voltage on I/O	1.0 to Vcc+0.5
Temperature Under Bias	55° C to 125°C
Storage Temperature	65° C to 150°C
Power Dissipation	1W
DC Output Current	
(One output at a time, one second duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	V	
Viн	Input Logic "1" Voltage	2.0		Vcc+.5	V	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
TA	Ambient Operating Temperature	0	25	70	°C	400 linear ft/min air flow

*ViL min = -3 volts for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS ($0^{\circ}C \leq T_A \leq 70^{\circ}C$) (Vcc = 5.0V ± 10%)^a

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
lcc1	Average Vcc Power Supply Current		110 100	mA mA	tavav = 25ns and 30ns tavav = 35, 45, and 55ns
lcc2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		25	mA	Ē ≿ Vi⊢. All other inputs at Viℕ ≤ Vi∟ or ≿ Vi⊢
lcc3	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		14	mA	\bar{E} \geq (Vcc - 0.2). All other inputs at VIN \leq 0.2 or \geq (Vcc - 0.2V)
lcc4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		17	mA	Ē ≿ (Vcc - 0.2). Inputs cycling at ViN ≤ 0.2 or ≿ (Vcc - 0.2V)
lilk	Input Leakage Current (Any Input)		±1	μA	Vcc = max Viℕ = Vss to Vcc
Іогк	Off State Output Leakage Current		±5	μA	Vcc = max Vın = Vss to Vcc
Vон	Output Logic "1" Voltage	2.4		v	lo∟ = -4mA
Vol	Output Logic "0" Voltage		0.4	v	Іон = 8mA

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels	Vss to 3V
Input Rise and Fall Times	5ns
Input and Output Timing Referen	ce Levels 1.5V
Output Load	

CAPACITANCE^b (T_A=25°C, f=1.0MHZ)

SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
CIN	Input Capacitance	4	pF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	7	pF	$\Delta V = 0$ to $3V$

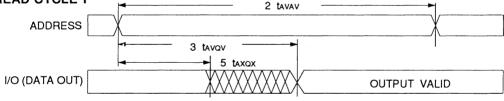
Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS (0°C \leq Ta \leq 70°C) (Vcc = 5.0V $\pm 10\%$) READ CYCLE^g

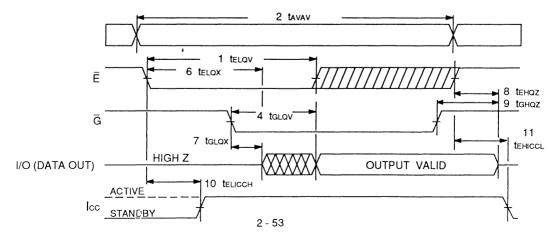
	SYM	BOL	PARAMETER	IMS 1624-25		IMS 1624-30		IMS 1624-35		IMS 1624-45		IMS 1624-55		U N I T	N O T E
No	Standard	Alternate		MIN	МАХ	MIN	МАХ	MIN	MAX	MIN	МАХ	MIN	МАХ	s	s
1	tELQV	t ACS	Chip Enable Access Time		25		30		35		45		55	ns	
2	tAVAV	t RC	Read Cycle Time	25		30		35		45		55		ns	с
3	tAVQV	t aa	Address Access Time		25		30		35		45		55	ns	d
4	tGLQV	t TOE	O/P Enable Access Time		15		15		20		20		25	ns	
5	tAXQX	tон	O/P Hold After Address Change	5		5		5		5		5		ns	i
6	tELQX	t∟z	O/P Enable to O/P Active	5		5		5		5		5		ns	j
7	tGLQX	tolz	O/P Enable to O/P Active	0		0		0		0		0		ns	j
8	t EHQZ	tнz	Chip Disable to Output Inactive	0	15	0	15	0	15	0	20	0	25	ns	f, j
9	tGHQZ	t ohz	O/P Disable to Output Inactive	0	15	0	15	0	15	0	20	0	25	ns	f, j
10	tELICCH	t PU	Chip Enable to Power Up	0		0		0		0		0		ns	j
11	tEHICCL	t PD	Chip Disable to Power Down		25		30		35		45		55	ns	j
		tT	Input Rise and Fall Times		50		50		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.

Note d: Device is continuously selected; E and G low.


Note e: Measured between VIL max and VIH min.

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: E, G and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

READ CYCLE 1^{c,d}

READ CYCLE 2°

IMS1624 RECOMMENDED AC OPERATING CONDITIONS (0°C ≤ TA ≤ 70°C) (Vcc = 5.0V ±10%) WRITE CYCLE 1: W CONTROLLED^{g,h}

				IMS IMS 24-25 1624-3				IMS 1624-35		IMS 1624-45		1S 1-55	U N I	N O T F	
No	Standard	Alternate		MIN	МАХ	MIN	MAX	MIN	МАХ	MIN	МАХ	MIN	мах	S	E S
12	tAVAV	t WC	Write Cycle Time	25		30		35		45		55		ns	
13	t WLWH	t WP	Write Pulse Width	20		20		30		30		40		ns	
14	tELWH	tcw	Chip Enable to End of Write	20		20		30		30		40		ns	
15	t DVWH	t DW	Data Setup to End of Write	13		15		15		20		25		ns	
16	t WHDX	t DH	Data Hold after End of Write	0		0		0		0		0		ns	
17	t AVWH	t AW	Address Setup to End of Write	20		25		30		30		40		ns	
18	t AVWL	t AS	Address Setup to Start of Write	0		0		0		0		0		ns	
19	t WHAX	t WR	Address Hold after End of Write	5		5		5		0		0		ns	
20	t WLQZ	t WZ	Write Enable to Output Disable	0	15	0	15	0	15	0	20	0	25	ns	f,j
21	t WHQX	tow	O/P Active after end of Write	0		0		0		0		0		ns	j

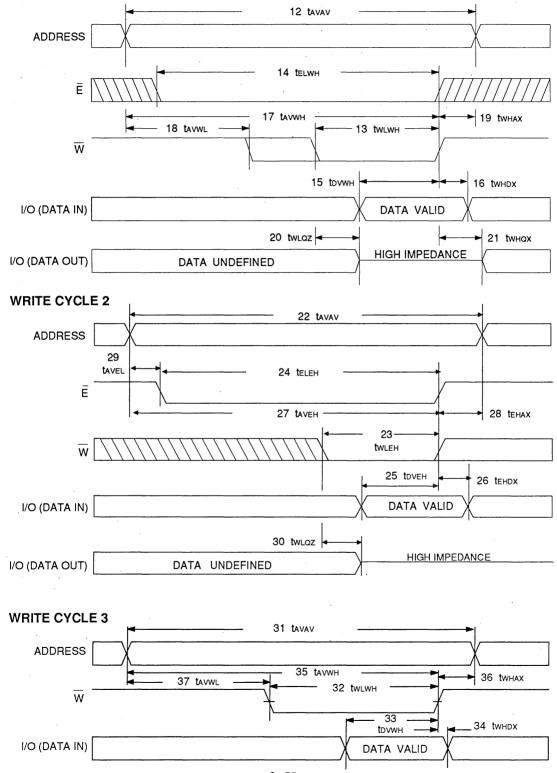
WRITE CYCLE 2: E CONTROLLED^{g,h}

	SYMBOL		PARAMETER	IMS 1624-25		IMS 1624-30		IMS 1624-35		IN 1624		IMS 1624-55		U N I	N 0 T
No	Standard	Alternate		MIN	мах	MIN	МАХ	MIN	МАХ	MIN	МАХ	MIN	МАХ	s	E S
22	tAVAV	t WC	Write Cycle Time	25		30		35		45		55		ns	
23	t WLEH	t WP	Write Pulse Width	20		20		30		30		40		ns	
24	t ELEH	tcw	Chip Enable to End of Write	20		20		30		30		40		ns	
25	t DVEH	t DW	Data Setup to End of Write	13		15		15		20		25		ns	
26	t EHDX	t DH	Data Hold after End of Write	0		0		0		0		0		ns	
27	t AVEH	t AW	Address Setup to End of Write	20		25		30		30		40		ns	
28	t EHAX	t WR	Address Hold after End of Write	5		5		5		0		0		ns	
29	t AVEL	t AS	Address Setup to Start of Write	0		0		0		0		0		ns	
30	tWLQZ	t WZ	Write Enable to Output Disable	0	15	0	15	0	15	0	20	0	25	ns	f,j

WRITE CYCLE 3: Fast Write, Outputs Disabled^{g,h}

	SYN	BOL	PARAMETER	IMS 1624-25				IMS 1624-35		IMS 1624-45		IMS 1624-55		U N I	N O T
No	Standard	Alternate		MIN	МАХ	MIN	МАХ	MIN	МАХ	MIN	МАХ	MIN	МАХ	S	E S
31	tAVAV	t WC	Write Cycle Time	18		20		20		25		30		ns	
32	t WLWH	t WP	Write Pulse Width	13		15		15		20		25		ns	
33	t DVWH	t DW	Data Setup to End of Write	18		20		20		25		30		ns	
34	t WHDX	t DH	Data Hold after End of Write	0		0		0		0		0		ns	
35	t AVWH	t AW	Address Setup to End of Write	12		15		15		20		25		ns	
36	t WHAX	twR	Address Hold after End of Write	5		5		5		0		0		ns	
37	tAVWL	t AS	Address Setup to Start of Write	0		0		0		0		0		ns	

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: E, G and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: \vec{E} or \vec{W} must be $\geq V_{H}$ during address transitions.

Note i: If W is low when E goes low, the outputs remain in the high impedance state. Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

IMS1624

IMS1624 DEVICE OPERATION

The IMS1624 has three control inputs, Chip Enable (/E), Output Enable (/G) and Write Enable (/W), 14 address inputs (A0 -A13), and four Data I/O pins.

The /E input controls device selection as well as active and standby modes. With /E low, the device is selected and the 14 address inputs are decoded to select one 4-bit word out of 16,384. Read and Write operations on the memory cells are controlled by the /W and /G inputs. With /E high, the device is deselected, the outputs are disabled and the power consumption is reduced to less than onefourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $/W \ge V_{H}$ min with /E and /G $\le V_{L}$ max. Read access time is measured from the latter of either /E or /G going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E and /G are low. The outputs remain active throughout READ CYCLE 1 and are valid at the specified address access time. The address inputs may change at access time and long as /E and /G remain low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated bythe latter of /E or /G going low. As long as address is stable when /E goes low, valid data is at the outputs at thelatter of specified Chip Enable Access or Output Enable Access times. If address is not valid when /E goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

Since /G controls the output buffers, /G is required to be low in order for the outputs to be active.

WRITE CYCLE

The write cycle of the IMS1624 is initiated by the latter of /E or /W to transition from a high to a low. In the case of /W falling last, the output buffers are turned on tELOX after the falling edge of /E if /G is already low (just as in a read cycle). The output buffers are then turned off within twLoz of the falling edge of /W. During this interval it is possible to have bus contention between devices with common I/O configurations. Therefore input data should not be active until twLoz. To aviod bus contention, the /G input can be held high throughout the write operation.

WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high at the end of the cycle with /E active, the output of the memory becomes active (if /G is low). The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of /E. With /E high the outputs remain in the high impedance state.

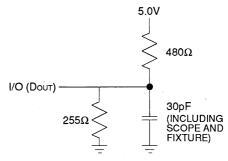
WRITE CYCLE 3 waveform shows a write cycle controlled by /W, with /G high and /E low throughout the cycle. As the outputs will not become active during this operation, maximum data bandwidth is provided by allowing very short write cycles and eliminating any bus contention considerations.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1624. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Current transients associated with the operation of any high speed device have very high frequency components. so line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad and be placed between each row of devices in the array. A larger tantalum capacitor of a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path. The ground grid of the memory array should extend to the TTL driver periphery circuit area This

will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.


TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

FIGURE 1. OUTPUT LOAD

ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
	25ns	PLASTIC DIP	IMS1624P-25
	25ns	CERAMIC DIP	IMS1624S-25
	25ns	CERAMIC LCC	IMS1624W-25
	25ns	PLASTIC SOJ	IMS1624E-25
	30ns	PLASTIC DIP	IMS1624P-30
	30ns	CERAMIC DIP	IMS1624S-30
	30ns	CERAMIC LCC	IMS1624W-30
IMS1624	30ns	PLASTIC SOJ	IMS1624E-30
11/15/1024	35ns	PLASTIC DIP	IMS1624P-35
	35ns	CERAMIC DIP	IMS1624S-35
	35ns	CERAMIC LCC	IMS1624W-35
	35ns	PLASTIC SOJ	IMS1624E-35
	45ns	PLASTIC DIP	IMS1624P-45
	45ns	CERAMIC DIP	IMS1624S-45
	45ns	CERAMIC LCC	IMS1624W-45
	45ns	PLASTIC SOJ	IMS1624E-45
	55ns	PLASTIC DIP	IMS1624P-55
	55ns	CERAMIC DIP	IMS1624S-55
	55ns	CERAMIC LCC	IMS1624W-55
	55ns	PLASTIC SOJ	IMS1624E-55

Inmos

Chapter 3

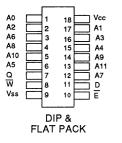
military RAMs

3.2

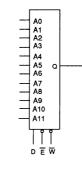
IMS1203M CMOS High Performance 4K x 1 Static RAM MIL-STD-883C

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- Specifications guaranteed over full military temperature range (-55° C to + 125° C)
- 4K x 1 Bit Organization
- 25, 35, and 45 nsec Access Times
- Single +5V ± 10% Operation
- Power Down Function
- · Fully TTL Compatible
- · Separate Data Input and Output
- Three-state Output
- Standard Military Drawing version available (refer to page B-7)
- · 18-Pin, 300-mil DIP (JEDEC Std.) and FP

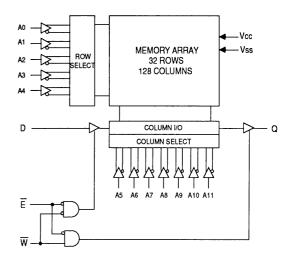

DESCRIPTION

The INMOS IMS1203M is a high speed CMOS 4Kx1 static RAM processed in full compliance to MIL-STD-883C. The IMS1203M provides performance enhancements with the additional CMOS benefits of lower power and superior reliability.


The IMS1203M features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1203M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1203M is a VLSI static RAM intended for military temperature applications that demand superior performance and reliability.

PIN CONFIGURATION


LOGIC SYMBOL

PIN NAMES

A0 - A11 ADDRESS INPUTS		Vcc POWER (+5V)
W	WRITE ENABLE	Vss GROUND
D	DATA INPUT	
Ē	CHIP ENABLE	
Q	DATA OUTPUT	

BLOCK DIAGRAM

IMS1203M

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to Vss	2.0 to 7.0V
Voltage on Q	-1.0 to (Vcc+0.5)
Temperature Under Bias	55° C to 125°C
Storage Temperature	65° C to 150°C
Power Dissipation	1W
DC Output Current	
(One Second Duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

	PARAMETER	MIN	ТҮР	МАХ	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	V	
Vін	Input Logic "1" Voltage	2.0		Vcc+0.5	V	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
TA	Ambient Operating Temperature	-55	25	125	°C	400 linear ft/min air flow

*VIL min = -3.0 V for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS (-55°C \leq Ta \leq 125°C) (Vcc = 5.0V \pm 10%)^a

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES	
lcc1	Average Vcc Power Supply Current		80	mA	tavav = tavav(min)	
lcc2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		15	mA	Ē ≥ Vi⊢ . All other inputs at Viℕ ≤ Vi∟ or ≥ Vi⊢	
lcc3	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		5	mA	 E ≥ (Vcc - 0.2). All other inputs at ViN ≤ 0.2 or ≥ (Vcc - 0.2V)	
lcc4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		10	mA	Ē	
lilk	Input Leakage Current (Any Input)		±5	μA	Vcc = max Vin = Vss to Vcc	
Югк	Off State Output Leakage Current		± 10	μA	Vcc = max ViN = Vss to Vcc	
Vон	Output Logic "1" Voltage	2.4		V	Іон = -4mA	
Vol	Output Logic "0" Voltage		0.4	V	lol = 12mA	

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels	Vss to 3V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Leve	
Output LoadSee	Figure 1

CAPACITANCE^b (Ta=25°C, f=1.0 MHZ)^b

SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
CIN	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	4	рF	$\Delta V = 0$ to $3V$

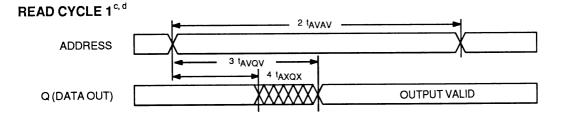
Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \leq T_{A} \leq 125^{\circ}C$) ($V_{CC} = 5.0V \pm 10\%$)

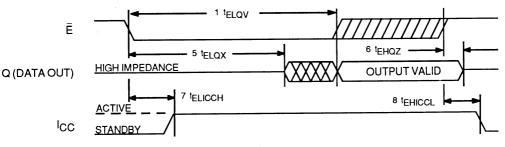
READ CYCLE^g

NO.	SYM	BOL	PARAMETER						M-45	UNITS	NOTES
NO.	Standard	Alternate	TANAMETEN	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOILS
1	t _{ELQV}	t _{ACS}	Chip Enable Access Time		25		35		45	ns	
2	t _{avav}	t _{RC}	Read Cycle Time	25		35		45		ns	С
3	t _{AVQV}	t _{AA}	Address Access Time		25		35		45	ns	d
4	t _{AXQX}	t _{OH}	Output Hold After Address Change	5		5		5		ns	
5	t _{ELQX}	t _{LZ}	Chip Enable to Output Active	5		5		5		ns	j
6	t _{EHQZ}	t _{HZ}	Chip Disable to Output Inactive	0	15	0	20	0	20	ns	f, j
7	t _{ELICCH}	t _{PU}	Chip Enable to Power Up	0		0		0		ns	j
8	t _{EHICCL}	t _{PD}	Chip Disable to Power Down		30		30		30	ns	j
		t _T	Input Rise and Fall Times		50		50		50	ns	e, j

Note c: For READ CYCLES 1 & 2, \overline{W} is high for entire cycle.


Note d: Device is continuously selected, \overline{E} low.

Note e: Measured between V_{IL} max and V_{IH} min.


Note f: Measured ± 200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

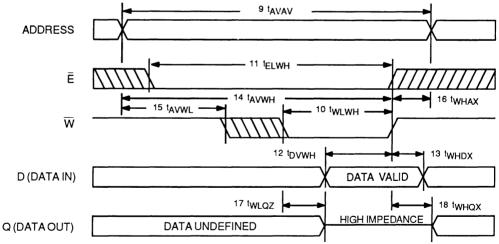
READ CYCLE 2^c

IMS1203M

RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \le T_{A} \le 125^{\circ}C$) ($V_{cc} = 5.0V \pm 10\%$)

WRITE CYCLE 1: W CONTROLLED^{g, h}

	SYMBOL		PARAMETER	IMS12	03M-25	IMS12	03M-35	IMS12	03M-45		NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
9	t _{AVAV}	twc	Write Cycle Time	25		35		45		ns	
10	^t WLWH	t _{WP}	Write Pulse Width	15		20		25		ns	
11	t _{ELWH}	^t cw	Chip Enable to End of Write	20		30		40		ns	
12	t _{DVWH}	t _{DW}	Data Set-up to End of Write	15		20		20		ns	
13	^t WHDX	t _{DH}	Data Hold After End of Write	0		0		0		ns	
14	t _{AVWH}	t _{AW}	Address Set-up to End of Write	20		30		40		ns	
15	t _{AVWL}	tAS	Address Set-up to Beginning of Write	0		0		0		ns	
16	^t whax	t _{WR}	Address Hold After End of Write	0		0		0		ns	
17	^t wLQZ	twz	Write Enable to Output Disable	0	15	0	20	0	20	ns	f, j
18	^t whax	tow	Output Active After End of Write	0		0		0		ns	i, j


Note f: Measured \pm 200mV from steady state output voltage. Load capacitance is 5pF.

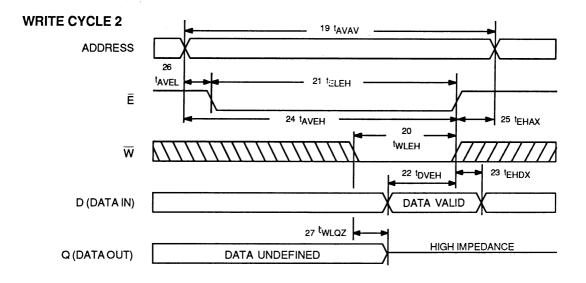
Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note h: \vec{E} or \vec{W} must be $\geq V_{H}$ during address transitions. Note i: If \vec{W} is low when \vec{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

RECOMMENDED AC OPERATING CONDITIONS ($-55^\circ C \le T_A \le 125^\circ C)$ ($V_{CC}=5.0V\pm10\%$)


WRITE CYCLE 2: E CONTROLLED^{g, h}

	SYMBOL		PARAMETER	IMS12	03M-25	IMS12)3M-35	IMS120)3M-45	UNITS	NOTES
NO.	Standard	Alternate	PARAMEICR	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
19	t _{avav}	twc	Write Cycle Time	25		35		45		ns	
20	^t WLEH	twp	Write Pulse Width	15		20		25		ns	
21	t _{ELEH}	^t cw	Chip Enable to End of Write	20		30		40		ns	
22	^t DVEH	t _{DW}	Data Set-up to End of Write	15		20		20		ns	
23	t _{EHDX}	t _{DH}	Data Hold After End of Write	0		0		0		ns	
24	^t AVEH	t _{AW}	Address Set-up to End of Write	20		30		40		ns	
25	t _{EHAX}	twR	Address Hold After End of Write	0		0		0		ns	
26	^t AVEL	t _{AS}	Address Set-up to Beginning of Write	0		0		0		ns	
27	^t wlaz	twz	Write Enable to Output Disable	0	15	0	20	0	20	ns	f, j

Note f: Measured ± 200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion. Note h: \overline{E} or \overline{W} must be $\geq V_{\text{IH}}$ during address transitions. Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

IMS1203M

DEVICE OPERATION

The IMS1203M has two control inputs, Chip Enable (E) and Write Enable (\overline{W}), twelve address inputs (A₀-A₁₁), a Data In (D) and a Data Out (Q). The \overline{E} input controls device selection as well as active and standby modes. With \overline{E} low, the device is selected and the twelve address inputs are decoded to select one bit out of 4K bits. Read and Write operations on the memory cell are controlled by \overline{W} input. With \overline{E} high, the device is deselected, the output is disabled, and the power consumption is reduced to less than one-fourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $\overline{W} \ge V_{IH}$ min with $\overline{E} \le V_{IL}$ max. Read access time is measured from either \overline{E} going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while \overline{E} is low. The outputs remain active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and as long as \overline{E} remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by \overline{E} going low. As long as address is stable when \overline{E} goes low, valid data is at the output at the specified Chip Enable Access time. If address is not valid when \overline{E} goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

The write cycle of the IMS1203M is initiated by the latter of \overline{E} or \overline{W} to transition from a high to low. In the case of \overline{W} falling last, the output buffer will be turned on t_{ELQX} after the falling edge of \overline{E} (just as in a read cycle). The output buffer is then turned off within t_{WLQZ} of the falling edge of \overline{W} . During this interval, it is possible to have bus contention between devices with D and Q connected together in a common I/O configuration. Contention can be avoided in a carefully designed system. During a write cycle, data on the input is written into the selected cells and the output is floating.

WRITE CYCLE 1 waveform shows a write cycle terminated by \overline{W} going high. Data set-up and hold times are referenced to the rising edge of \overline{W} . When \overline{W} goes high at the end of the cycle with \overline{E} active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by \overline{E} going high. Data set-up and hold times are referenced to the rising edge of \overline{E} . With \overline{E} high, the outputs remain in the high impedance state.

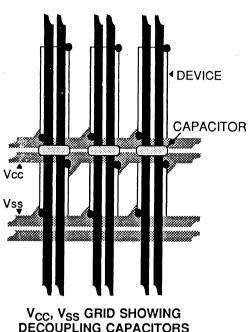
APPLICATION

It is imperative when designing with any very high speed memory, such as the IMS1203M, that the fundamental rules in regard to memory board layout be followed to ensure proper system operation.

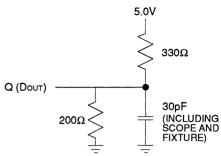
TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the drivertermination combination close to the memory array.


Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

POWER DISTRIBUTION


The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating marains of the IMS1203M. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Since the current transients associated with the operation of the high speed IMS1203M have very high frequency components, the line inductance is the dominating factor. To reduce the line inductance, the power trace and around trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad, and be placed between each row of devices in the array (see drawing). A larger tantalum capacitor, with a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.

The ground grid of the memory array should extend to the TTL driver periphery circuit. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential around noise.

FIGURE 1. OUTPUT LOAD

TRUTH TABLE

Ē	W	Q	MODE
н	х	HI-Z	Standby (Isb)
L	н	Dout	Read
L	L	HI-Z	Write

Standard Military Drawing version available, see SMD Reference Guide

ORDERING INFORMATION

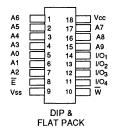
DEVICE	SPEED	PACKAGE	PART NUMBER
IMS 1203M	25ns	CERAMIC DIP	IMS1203S-25M
	25ns	FLAT PACK	IMS1203A-25M
	35ns	CERAMIC DIP	IMS1203S-35M
	35ns	FLAT PACK	IMS1203A-35M
	45ns	CERAMIC DIP	IMS1203S-45M
	45ns	FLAT PACK	IMS1203A-45M

IMS1223M **CMOS High Performance** 1K x 4 Static RAM MIL-STD-883C

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- · Specifications guaranteed over full military temperature range (-55° C to + 125° C)
- 1K x 4 Bit Organization
- · 25, 35, and 45 nsec Access Times
- Fully TTL Compatible
- Single +5V ± 10% Operation
- Power Down Function
- · Common Data Input and Output
- Three-state Output
- Standard Military Drawing version available (refer to page B-7)
- 18-Pin, 300-mil DIP (JEDEC Std.) and FP

DESCRIPTION


The INMOS IMS1223M is a high speed CMOS 1Kx4 static RAM processed in full compliance to MIL-STD-883C. The IMS1223M provides performance enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1223M features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1223M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1223M is a VLSI static RAM intended for military temperature applications that demand superior performance and reliability.

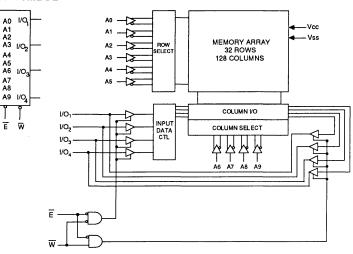
BLOCK DIAGRAM

PIN CONFIGURATION

PIN NAMES

A ₀ - A _g	ADDRESS INPUTS	Vcc POWER
w	WRITE ENABLE	Vss GROUND
Ē	CHIP ENABLE	
I/O	DATA IN/OUT	

LOGIC SYMBOL


A0

Α7

A8

A9

Ē

IMS1223M

ABSOLUTE MAXIMUM RATINGS*

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	түр	МАХ	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	V	
Vін	Input Logic "1" Voltage	2.0		Vcc+0.5	V	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	v	All inputs
T₄	Ambient Operating Temperature	-55	25	70	°C	400 linear ft/min air flow

*VIL min = -3 V for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS $(-55^{\circ}C \le T_A \le 125^{\circ}C)$ $(Vcc = 5.0V \pm 10\%)^a$

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
lcc1	Average Vcc Power Supply Current		110	mA	tavav = tavav(min)
lcc2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		15	mA	E ≿ Vi⊩ . All other inputs at Vi∖ ≤ Vi∟ or ≿ Vi⊢
ါငငဒ	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		5	mA	E ≥ (Vcc - 0.2) . All other inputs at ViN ≤ 0.2 or ≥ (Vcc - 0.2V)
lcc4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		10	mA	E ≥ (Vcc - 0.2) . Inputs cycling at ViN ≤ 0.2 or ≥ (Vcc - 0.2V)
lilk	Input Leakage Current (Any Input)		±5	μA	Vcc = max ViN = Vss to Vcc
Іогк	Off State Output Leakage Current		± 10	μΑ	Vcc = max Vin = Vss to Vcc
Vон	Output Logic "1" Voltage	2.4		V	Iон = -4mA
Vol	Output Logic "0" Voltage		0.4	v	lo∟ = 8mA

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

CAPACITANCE^b (Ta=25°C, f=1.0MHZ)

Input Pulse LevelsVss to 3V
Input Rise and Fall Times5ns
Input and Output Timing Reference Levels. 1.5V
Output LoadSee Figure 1

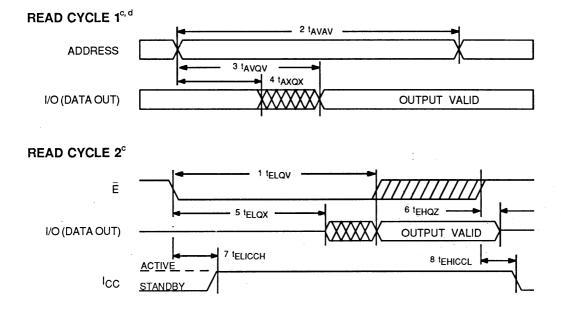
SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
CIN	Input Capacitance	4	pF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	4	pF	$\Delta V = 0$ to $3V$

Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS $-55^{\circ}C \le T_A \le 125^{\circ}C)$ (V_{2C} = 5.0V ± 10%)

READ CYCLE^g

NO.	SYM	BOL	PARAMETER	1223	3M-25	1223	M-35	1223	M-45	UNITS	NOTES
	Standard	Alternate	TANAMETEN	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOILS
1	t _{ELQV}	t _{ACS}	Chip Enable Access Time		25		35		45	ns	
2	t _{avav}	t _{RC}	Read Cycle Time	25		35		45		ns	С
3	t _{AVQV}	t _{AA}	Address Access Time		25		35	•	45	ns	d
4	t _{AXQX}	t _{OH}	Output Hold After Address Change	5		5		5		ns	
5	t _{ELQX}	t _{LZ}	Chip Enable to Output Active	5		5		5		ns	j
6	t _{eHQZ}	t _{HZ}	Chip Disable to Output Inactive	0	15	0	20	0	20	ns	f, j
7	t _{ELICCH}	t _{PU}	Chip Enable to Power Up	0		0		0		ns	j
8	t _{EHICCL}	t _{PD}	Chip Disable to Power Down		30		30		30	ns	j
		t _T	Input Rise and Fall Times		50		50		50	ns	e, j


Note c: For READ CYCLES 1 & 2, \overline{W} is high for entire cycle.

Note d: Device is continuously selected, E low.

Note e: Measured between V_{IL} max and V_{IH} min.

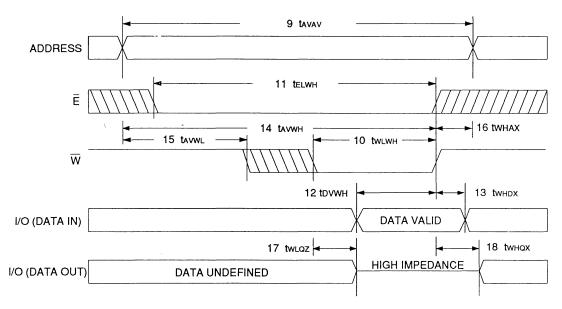
Note f: Measured \pm 200mV from steady state output voltage. Load capacitance is 5pF. Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note i: Parameter guaranteed but not tested.

IMS1223M

RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq Ta \leq 125°C) (Vcc = 5.0V \pm 10%) WRITE CYCLE 1: \overline{W} CONTROLLED^{9,h}

	SYN	BOL	PARAMETER	1223	1-25	1223	1-35	1223	1-45		
NO.	Standard	Alternate		MIN	MAX	MIN	МАХ	MIN	MAX	UNITS	NOTES
9	tavav	twc	Write Cycle Time	20		30		40		ns	
10	tw∟wн	twp	Write Pulse Width	15		20		25		ns	
11	telwh	tcw	Chip Enable to End of Write	20		30		40		ns	
12	t DVWH	tow	Data Setup to End of Write	15		20		25		ns	
13	twhox	toн	Data Hold after End of Write	0		0		0		ns	
14	tavwh	taw	Address Setup to End of Write	20		30		40		ns	
15	tavwl	tas	Address Setup to Start of Write	0		0		0		ns	
16	twhax	twr	Address Hold after End of Write	0		0		0		ns	
17	twlaz	twz	Write Enable to Output Disable	0	15	0	20	0	20	ns	f, j
18	twhax	tow	Output Active after End of Write	5		5		5		ns	i, j


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: Ē and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\geq V_{H}$ during address transitions.

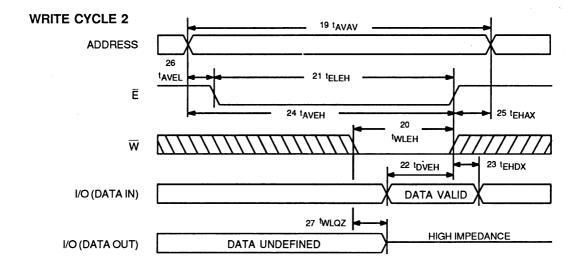
Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \le T_A \le 125^{\circ}C$) ($V_{cc} = 5.0V \pm 10\%$)

NO.	SYM		PARAMETER	1223M-25 1223M-35 1223M-45 MIN MAX MIN MAX MIN MAX			UNITS	NOTES			
	Standard	Alternate		MIN	MAX MIN		MAX MIN MAX		MAX		
19	t _{avav}	t _{wc}	Write Cycle Time	20		30		40		ns -	
20	t _{wLEH}	t _{wP}	Write Pulse Width	15		20		25		ns	
21	t _{ELEH}	t _{cw}	Chip Enable to End of Write	20		30		40		ns	
22	t _{DVEH}	t _{DW}	Data Set-up to End of Write	10		15		15		ns	
23	t _{endx}	t _{DH}	Data Hold After End of Write	0		0		0		ns	
24	t _{AVEH}	t _{AW}	Address Set-up to End of Write	20		30		40		ns	
25	t _{EHAX}	t _{wR}	Address Hold After End of Write	0		0		0		ns	
26	t _{AVEL}	t _{AS}	Address Set-up to Beginning of Write	0		0		0		ns	
27	t _{wLQZ}	t _{wz}	Write Enable to Output Disable	- 0	15	0	20	0	20	ns	f, j


WRITE CYCLE 2: E CONTROLLED^{9, h}

Note f: Measured \pm 200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\ge V_{H}$ during address transitions. Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

IMS1223M

DEVICE OPERATION

The IMS1223M has two control inputs, Chip Enable (\overline{E}) and Write Enable (\overline{W}), ten address inputs (A₀-A₉), and four Data I/O lines. The \overline{E} input controls device selection as well as active and standby modes. With \overline{E} low, the device is selected and the ten address inputs are decoded to select one four-bit word out of 1K words. Read and Write operations on the memory cell are controlled by \overline{W} input. With \overline{E} high, the device is deselected, the output is disabled and the power consumption is reduced to less than one-fourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $\overline{W} \ge V_{IH}$ min with $\overline{E} \le V_{IL}$ max. Read access time is measured from either \overline{E} going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while \overline{E} is low. The outputs remain active throughout READ CYCLE 1 and are valid at the specified address access time. The address inputs may change at access time and as long as \overline{E} remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by \overline{E} going low. As long as address is stable when \overline{E} goes low, valid data is at the outputs at the specified Chip Enable Access time. If address is not valid when \overline{E} goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

The write cycle of the IMS1223M is initiated by the latter of \overline{E} or \overline{W} to transition from a high to a low. In the case of \overline{W} falling last, the output buffers will be turned on t_{ELQX} after the falling edge of \overline{E} (just as in a read cycle). The output buffers are then turned off within t_{WLQZ} of the falling edge of \overline{W} . During this interval, it is possible to have bus contention between devices with common I/O configurations. To avoid bus contention, input data should not become active on the I/O bus until t_{WLQZ}.

WRITE CYCLE 1 waveform shows a write cycle terminated by \overline{W} going high. Data set-up and hold times are referenced to the rising edge of \overline{W} . When \overline{W} goes high at the end of the cycle with \overline{E} active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by \overline{E} going high. Data set-up and hold times are referenced to the rising edge of \overline{E} . With \overline{E} high the outputs remain in the high impedance state.

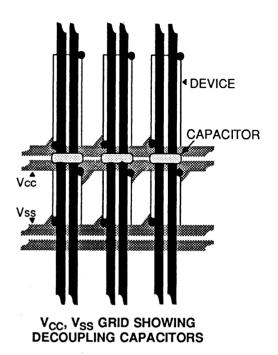
APPLICATION

It is imperative when designing with any very high speed memory, such as the IMS1223M, that the fundamental rules in regard to memory board layout be followed to ensure proper system operation.

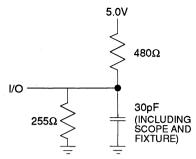
TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the drivertermination combination close to the memory array.


Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

POWER DISTRIBUTION


The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1223M. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Since the current transients associated with the operation of the high speed IMS1223M have very high frequency components, the line inductance is the dominating factor. To reduce the line inductance, the power trace and around trace should be aridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad, and be placed between each row of devices in the array (see drawing). A larger tantalum capacitor, with a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.

The ground grid of the memory array should extend to the TTL driver periphery circuit. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

FIGURE 1. OUTPUT LOAD

TRUTH TABLE

Ē	W	Q	MODE
Н	x	HI-Z	Standby (Isb)
L	Н	Dout	Read
L	L	Din	Write

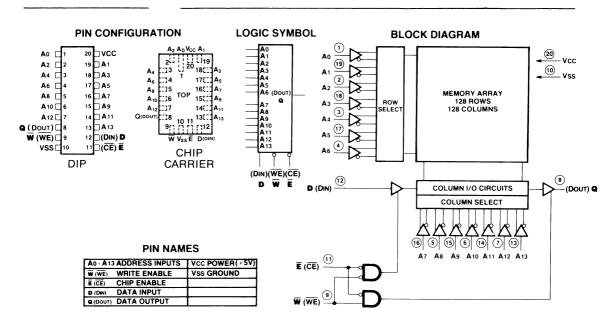
Standard Military Drawing version available, see SMD Reference Guide

ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
IMS 1223M	25ns	CERAMIC DIP	IMS1223S-25M
	25ns	FLAT PACK	IMS1223A-25M
	35ns	CERAMIC DIP	IMS1223A-35M
	35ns	FLAT PACK	IMS1223A-35M
	45ns	CERAMIC DIP	IMS1223S-45M
	45ns	FLAT PACK	IMS1223A-45M

IMS1400M High Performance 16K Static RAM MIL-STD-883C

FEATURES


- Full Military Temperature Operating Range (-55°C to +125°C)
- MIL-STD-883C Processing
- 45, 55 and 70 nsec Access Times
- Fully TTL Compatible
- Separate Data Input & Output
- Three-state Output
- Power Down Function
- Single +5V ± 10% Operation
- 20-Pin, 300-mil DIP (JEDEC Std.)
- 20-Pin Ceramic LCC (JEDEC Std.)

DESCRIPTION

The INMOS IMS1400M is a high performance 16Kx1 Static RAM processed in full compliance to MIL-STD-883C with access times as fast as 45nsec and a maximum power consumption of 660mW. These characteristics are made possible by the combination of innovative circuit design and INMOS' proprietary NMOS technology.

The IMS1400M features fully static operation requiring no external clocks or timing strobes with equal access and cycle times. Additionally, the IMS1400M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode reducing consumption to less than 165mW.

The IMS1400M is a high speed VLSI RAM intended for military applications which demand superior performance and reliability.

IMS1400M

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V _{ss}	3.5 to 7.0V
Temperature Under Bias65°	C to 135°C
Storage Temperature (Ambient)65°	C to 150°C
Power Dissipation.	1W
DC Output Current.	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

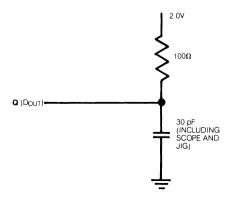
SYMBOL	PARAMETER	MIN	ТҮР	ΜΑΧ	UNITS	NOTES
V _{cc}	Supply Voltage	4.5	5.0	5.5	V	
V _{SS}	 Supply Voltage 	0	0	0	V	
V _{IH}	Input Logic "1" Voltage	2.0		6.0	V	All Inputs
V _{IL}	Input Logic "0" Voltage	-2.0		0.8	V	All Inputs
T _A	Ambient Operating Temperature	-55		125	°C	400 Linear ft/min transverse air flow

DC ELECTRICAL CHARACTERISTICS ($-55^{\circ}C \leq T_{A} \leq 125^{\circ}C$) ($V_{CC} = 5.0V \pm 10\%$)

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
I _{CC1}	Average V_{CC} Power Supply Current AC		120	mA	$t_c = t_c min$
I _{CC2}	V _{cc} Power Supply Current (Standby)		30	mA	$\overline{E} \ge V_{iH}$ min
I _{IN}	Input Leakage Current (Any Input)	-10	10	μΑ	$V_{CC} = max$ $V_{IN} = V_{SS}$ to V_{CC}
I _{olk}	Off State Output Leakage Current	-50	50	μΑ	$V_{CC} = max$ $V_{OUT} = V_{SS}$ to V_{CC}
V _{OH}	Output Logic "1" Voltage $I_{OUT} = -4mA$	2.4		V	
V _{OL}	Output Logic "0" Voltage I _{out} = 16mA		0.4	V	

AC TEST CONDITIONS^a

Input Pulse Levels
Input Rise and Fall Times5ns
Input and Output Timing Reference Levels
Output Load


Note a: Operation to specifications guaranteed 2ms after $V_{\mbox{\scriptsize CC}}$ applied.

CAPACITANCE b (T_A = 25 $^{\circ}$ C, f = 1.0MHz)

SYMBOL	PARAMETER	MAX	UNIT	CONDITIONS
C _{IN}	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
COUT	Output Capacitance	7	рF	$\Delta V = 0$ to $3V$
CĒ	E Capacitance	6	рF	$\Delta V = 0$ to $3V$

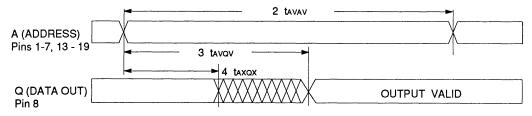
Note b: This parameter is sampled and not 100% tested.

FIGURE 1. OUTPUT LOAD

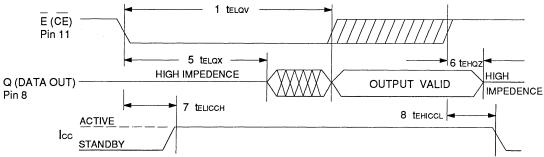
RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq TA \leq 125°C) (Vcc = 5.0V \pm 10%) **READ CYCLE**

NO.	SYM	BOL	DADANETED	1400M-45		1400M-55		1400M-70			NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NUTES
1	t ELQV	tacs	Chip Enable Access Time		45		55		70	ns	
2	tavav	tRC	Read Cycle Time	40		50		65		ns	с
З	tavqv	taa	Address Access Time		40		50		65	ns	d
4	taxox	tон	Output Hold After Address Change	3		3		0		ns	
5	t ELQX	t∟z	Chip Enable to Output Active	3		5		5		ns	
6	t ehoz	tHZ	Chip Disable to Output Disable	0	25	0	30	0	40	ns	f
7	t ELICCH	tPU	Chip Enable to Power Up	0		0		0		ns	j
8	teniccl	tPD	Chip Enable to Power Down	0	45	0	55	0	70	ns	j
		tr	Input Rise and Fall Times		50		50		50	ns	е

Note c: For READ CYCLE 1 & 2, W is high for entire cycle.


Note d: Device is continuously selected; E low.

Note e: Measured between VIL max and VIH min.


Note f: Measured ±200mV from steady state output voltage.

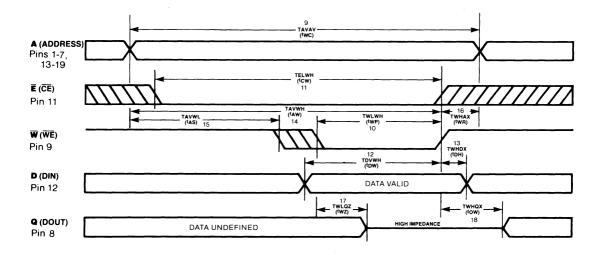
Note j: Parameter guaranteed but not tested.

READ CYCLE 1^{c,d}

RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \leq T_{A} \leq 125^{\circ}C)$ ($V_{CC} = 5.0V \pm 10\%$)

WRITE CYCLE 1: \overline{w} controlled^h

NO.	SYM	BOL	PARAMETER	140	DM-45	1400	DM-55	1400	0M-70	UNITS	NOTES
NO.	Standard	Alternate	FANAMETEN	MIN	MAX	MIN	MAX	MIN	MAX		NOTES
9	t _{avav}	t _{wC}	Write Cycle Time	40		50		65		ns	
10	t _{wLWH}	t _{wP}	Write Pulse Width	20		25		30		ns	
11	t _{elwh}	t _{CW}	Chip Enable to End of Write	40		50		60		ns	
12	t _{DVWH}	t _{DW}	Data Set-up to End of Write	15		20		23		ns	
13	t _{whdx}	t _{DH}	Data Hold After End of Write	0		0		8		ns	
14	t _{avwh}	t _{AW}	Address Set-up to End of Write	40		50		55		ns	
15	t _{avwl}	t _{AS}	Address Set-up to Beginning of Write	8		8		8		ns	
16	t _{whax} .	t _{wR}	Address Hold After End of Write	0		0		10		ns	
17	t _{wLQZ}	t _{wz}	Write Enable to Output Disable	0	20	0	25	0	28	ns	f
18	t _{whax}	t _{ow}	Output Active After End of Write	0	25	0	30	0	40	ns	g, j


Note f: Measured ±200mV from steady state output voltage.

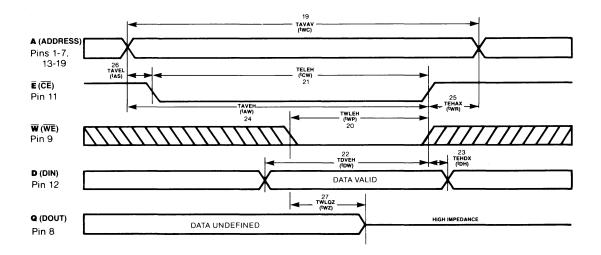
Note g: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note h: \overline{E} or \overline{W} must be $\ge V_{IH}$ during address transitions.

Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \leq T_{A} \leq 125^{\circ}C)$ ($V_{cc}=5.0V\pm10\%$)


WRITE CYCLE 2: \overline{E} CONTROLLED^h

NO.	SYM	BOL	PARAMETER	1400	DM-45	1400	M-55	1400	DM-70	UNITS	NOTES
	Standard	Alternate		MIN	MAX	MIN	MAX	MIN	MAX		
19	t _{avav}	t _{wc}	Write Cycle Time	40		50		65		ns	
20	t _{wleh}	t _{wP}	Write Pulse Width	20		25		30		ns	
21	t _{eleh}	t _{cw}	Chip Enable to End of Write	40		50		60		ns	
22	t _{DVEH}	t _{DW}	Data Set-up to End of Write	15		20		23		ns	
23	t _{ehdx}	t _{DH}	Data Hold After End of Write	5		5		10		ns	
24	t _{AVE} H	t _{AW}	Address Set-up to End of Write	40		50		55		ns	
25	t _{EHAX}	t _{wR}	Address Hold After End of Write	0		0		10		ns	
26	t _{AVEL}	t _{AS}	Address Set-up to Beginning of Write	-5		-5		-5		ns	
27	t _{wLQZ}	t _{wz}	Write Enable to Output Disable	0	20	0	25	0	28	ns	f

Note f: $\underline{Measured} \pm 200 \text{mV}$ from steady state output voltage.

Note h: \overline{E} or \overline{W} must be $\ge V_{IH}$ during address transition.

WRITE CYCLE 2

IMS1400M

DEVICE OPERATION

The IMS1400M has two control inputs: Chip Enable (\overline{E}) and Write Enable (\overline{W}), 14 address inputs, a data in (D_{IN}) and a data out (D_{OUT}).

When V_{CC} is first applied to pin 20, a circuit associated with the \overline{E} input forces the device into the lower power standby mode regardless of the state of the \overline{E} input. After V_{CC} is applied for 2ms the \overline{E} input controls device selection as well as active and standby modes.

With \overline{E} low, the device is selected and the 14 address inputs are decoded to select one memory cell out of 16,385. READ and WRITE operations on the memory cell are controlled by \overline{W} input. With \overline{E} high, the device is deselected, the output is disabled, and the power consumption is reduced to less than $\frac{1}{4}$ of the active mode power.

READ CYCLE

A read cycle is defined as $\overline{W} \ge V_{IH}$ min with $\overline{E} \le V_{IL}$ max. Read access time is measured from either \overline{E} going low or from valid address.

The READ CYCLE 1 waveform on page 3 shows a read access that is initiated by a change in the address inputs while \overline{E} is low. The output remains active throughout a READ CYCLE 1 and is valid at the specified address access time. As long as \overline{E} remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform on page 3 shows a read access that is initiated by Egoing low. As long as address is stable within 5ns after E goes low, valid data is at the output at the specified Chip Enable access time. If address is not valid within 5ns after E goes low, the timing is as specified in the READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

A write cycle is initiated by the latter of \overline{W} or \overline{E} going low, and terminated by \overline{W} (WRITE CYCLE 1) or \overline{E} (WRITE CYCLE 2) going high. During the write cycle, data on the input (D_{IN}) is written into the selected cell, and the output (D_{OUT}) is in high impedance.

If a write cycle is initiated by W going low, the address must be stable for the WRITE CYCLE 1 set-up time. If a write cycle is initiated by E going low, the address must be held stable for the entire write cycle. After W or E goes high to terminate the cycle, addresses may change. If these address set-up and hold times are not met, contents of other cells may be altered in unpredictable ways.

WRITE CYCLE 1 waveform on page 4 shows a write cycle terminated by \overline{W} going high. D_{IN} set-up and hold times are referenced to the rising edge of \overline{W} . With \overline{W} high, D_{OUT} becomes active.

WRITE CYCLE 2 waveform on page 5 shows a write cycle terminated by \overline{E} going high. D_{IN} set-up and hold times are referenced to the rising edge of \overline{E} . With \overline{E} high, D_{OUT} remains in the high impedance state.

APPLICATION

To ensure proper operation of the extended temperature IMS1400M in a system environment, it is recommended that the following guidelines on board layout and power distribution be followed.

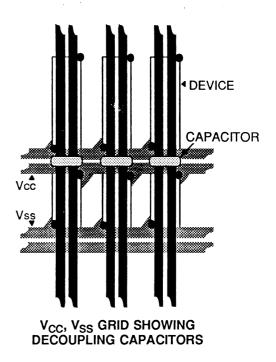
POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors. The impedance in the decoupling path from the power pin (20) through the decoupling capacitor, to the ground pin (10) should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

To reduce the power line impedance, it is recommended that the power trace and ground trace be gridded or provided by separate power planes. The high frequency decoupling capacitor should have a value of 0.1μ F, and be placed between the rows of memory devices in the array (see Figure 2). A larger tantalum capacitor with a value between 22μ F and 47μ F should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These large capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.

Also, to prevent loss of signal margins due to differential ground noise, the ground grid of the memory array should be extended to the TTL drivers in the peripheral circuitry.

TERMINATION


Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals, line termination is recommended. The termination may be either parallel or series but the series termination technique has the advantages of drawing no DC current and using a minimum of components. The recommended technique is to use series termination.

A series resistor in the signal line at the output of the TTL driver to match the source impedance of the TTL driver to the signal line will dampen the reflections on the line. The line should be kept short with the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10Ω to 30Ω range will be required.

The use of proper power distribution techniques, including adequate use of decoupling capacitors, along with proper termination of TTL driver outputs, are some of the most important, yet basic rules to be followed.

The rules are intended to maintain the operating margins of all devices on the memory board by providing a quiet environment relatively free of noise spikes and signal reflections.

IMS1400M

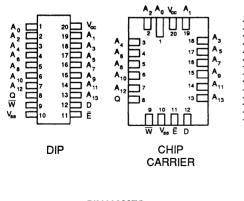
ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
IMS 1400M	45ns	CERAMIC DIP	IMS1400S-45M
	45ns	CERAMIC LCC	IMS1400N-45M
	55ns	CERAMIC DIP	IMS1400S-55M
	55ns	CERAMIC LCC	IMS1400N-55M
	70ns	CERAMIC DIP	IMS1400N-70M
	70ns	CERAMIC LCC	IMS1400N-70M

IMS1403M IMS1403LM CMOS High Performance 16K x 1 Static RAM MIL-STD-883C

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- Specifications guaranteed over full military temperature range (-55° C to +125° C)
- 16K x 1 Bit Organization
- 35, 45, 55 nsec Access Times
- Fully TTL Compatible
- Separate Data Input & Output
- Three-state Output
- Single +5V ± 10% Operation
- Power Down Function
- Pin Compatible with IMS1400M
- · Standard Military Drawing version available
- · 20-Pin, 300-mil DIP & LCC (JEDEC Std.)
- Battery Backup Operation 2V Data Retention (L version only)

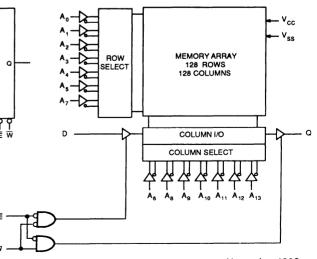

DESCRIPTION

The INMOS IMS1403M is a high speed 16K x 1 CMOS static RAM processed in full compliance to MIL-STD-883C. The IMS1403M provides maximum density and performance enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1403M features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1403M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1403LM is a low power version offering battery backup data retention operating from a 2 volt supply.

PIN CONFIGURATION



PIN NAMES

A0 - A13	ADDRESS INPUTS	Q	DATA OUTPUT
W	WRITE ENABLE	Vcc	POWER
Ē	CHIP ENABLE	VSS	GROUND
D	DATA INPUT		

LOGIC SYMBOL

BLOCK DIAGRAM

November 1988

IMS1403M/IMS1403LM

ABSOLUTE MAXIMUM RATINGS*

DC OPERATING CONDITIONS

*Stresses greater than those listed under "Absolute Maxir	num
Ratings" may cause permanent damage to the device. This	is a
stress rating only and functional operation of the device at thes	e or
any other conditions above those indicated in the operati	onal
sections of this specification is not implied. Exposure to abso	olute
maximum rating conditions for extended periods may affect reliability	<i>ı</i> .

SYMBOL	PARAMETER	MIN	ΤΥΡ	MAX	UNITS	NOTES
V _{CC}	Supply Voltage	4.5	5.0	5.5	v	
V _{SS}	Supply Voltage	0	0	0	v	
VIH	Input Logic "1" Voltage	2.0		Vcc+.5	v	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
TA	Ambient Operating Temperature	-55	25	125	°C	400 linear ft/min air flow

 * V_{IL} Min = -3.0V for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS (-55°C \leq T_A \leq 125°C) (V_{CC} = 5.0V \pm 10%) ^a

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
I _{CC1}	Average V _{CC} Power Supply Current		75	mA	t _{AVAV} = t _{AVAV} (min)
I _{CC2}	V _{CC} Power Supply Current (Standby, Stable TTL Input Levels)		15	mA	$\overline{E} \ge V_{IH}$ All other inputs at $V_{IN} \le V_{IL}$ or $\ge V_{IH}$
I _{CC3}	V _{CC} Power Supply Current (Standby, Stable CMOS Input Levels)		5	mA	$\overline{E} \ge (V_{CC} - 0.2)$ All other inputs at $V_{IN} \le 0.2$ or $\ge (V_{CC} - 0.2V)$
ICC4	V _{CC} Power Supply Current (Standby, Cycling CMOS Input Levels)		10	mA	$\overline{E} \ge (V_{CC} - 0.2)$ Inputs cycling at $V_{IN} \le 0.2$ or $\ge (V_{CC} - 0.2V)$
^I ILK	Input Leakage Current (Any Input)		±5	μA	$V_{CC} = max$ $V_{IN} = V_{SS}$ to V_{CC}
IOLK	Off State Output Leakage Current		±10	μA	$V_{CC} = max$ $V_{IN} = V_{SS}$ to V_{CC}
V _{OH}	Output Logic "1" Voltage	2.4		V	I _{OH} = -4mA
V _{OL}	Output Logic "0" Voltage		0.4	V	I _{OL} = 16mA

Note a: I_{CC} is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels	V _{SS} to 3V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	See Figure 1

CAPACITANCE^b ($T_A = 25^{\circ}C, f = 1.0MH_Z$)

SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
C _{IN}	Input Capacitance	4	pF	$\Delta V = 0$ to $3V$
COUT	Output Capacitance	4	pF	$\Delta V = 0$ to $3V$

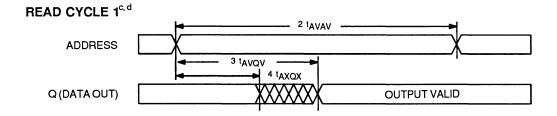
Note b: This parameter is sampled and not 100% tested.

IMS1403M/IMS1403LM

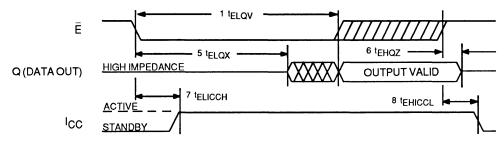
RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq T_A \leq 125°C) (V_{CC} = 5.0V \pm 10%) READ CYCLE g

	SY	MBOL		IMS140	3M-35	IMS1403M-45		IMS1403M-55		UNITS	NOTES
NO.	Standard	Alternate		MIN	MIN MAX		MIN MAX		MAX	UNITS	NOTES
1	tELQV	tACS	Chip Enable Access Time		35		45		55	ns	
2	tAVAV	t _{RC}	Read CycleTime	35		40		50		ns	с
3	tavov	t _{AA}	Address Access Time	35			40		50	ns	d
4	tAXQX	tон	Output Hold After Address Change	5		5		5		ns	
5	t _{ELQX}	tLZ	Chip Enable to Output Active	5		5		5		ns	j
6	t _{EHQZ}	tHZ	Chip Disable to Output Inactive	0	20	0	20	0	25	ns	f, j
7	^t ELICCH	t _{PU}	Chip Enable to Power Up	0		0		0		ns	j
8	t _{EHICCL}	t _{PD}	Chip Enable to Power Down		30		30		30	ns	j
		t _T	Input Rise and Fall Times		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.


Note d: Device is continuously selected; \overline{E} low.

Note e: Measured between VIL max and VIH min.


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

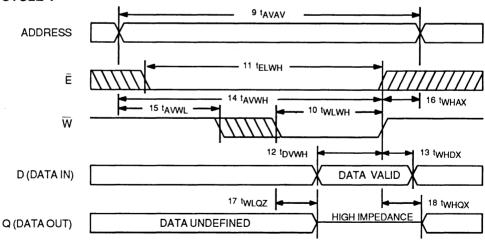
Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

READ CYCLE 2°

IMS1403M/IMS1403LM RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq T_A \leq 125°C) (V_{CC} = 5.0V \pm 10%) WRITE CYCLE 1: W CONTROLLED^{g, h}

	SYN	IBOL		IMS140	3M-35	IMS140	3M-45	IMS1403M-55			NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
9	t _{avav}	twc	Write Cycle Time	30		40		50		ns	
10	twLwH	t _{WP}	Write Pulse Width	20		20		25		ns	
11	t _{ELWH}	tcw	Chip Enable to End of Write	30		35		45		ns	
12	t _{DVWH}	t _{DW}	Data Set-up to End of Write	15		15		20		ns	
13	^t whdx	t _{DH}	Data Hold After End of Write	0		0		0		ns	
14	t _{AVWH}	t _{AW}	Address Set-up to End of Write	30		35		45		ns	
15	^t AVWL	tAS	Address Set-up to Beginning of Write	0		0		0		ns	
16	^t WHAX	twR	Address Hold After End of Write	0		0		0		ns	
17	^t wLQZ	twz	Write Enable to Output Disable	0	20	0	20	0	25	ns	f, j
18	^t whax	tow	Output Active After End of Write	0		0		0			i, j


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \vec{E} and \vec{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note h: \vec{E} or \vec{W} must be $\geq V_{IH}$ during address transitions. Note h: If \vec{W} is low when \vec{E} goes low, the output remains in the high impedance state.

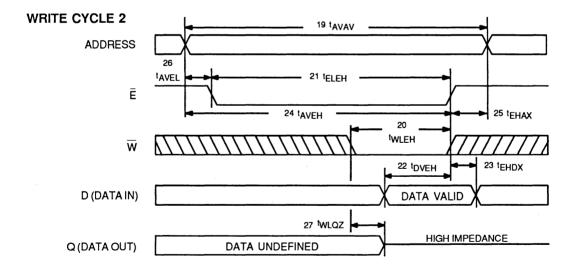
Note j: Parameter guaranteed but not tested.

WRITE CYCLE 1

IMS1403M/IMS1403LM

RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq T_A \leq 125°C) (V_{CC} = 5.0V ±10%) WRITE CYCLE 2: \tilde{E} CONTROLLED ^{g, h}

	SYI	MBOL		IMS140	3M-35	IMS140	3M-45	IMS140	3M-55	UNITS	NOTES
NO.	Standard	Alternate	PARAMETER		MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
19	t _{AVAV}	twc	Write Cycle Time	30		40		50		ns	
20	twleh	t _{WP}	Write Pulse Width	20		20		25		ns	
21	t _{ELEH}	tcw	Chip Enable to End of Write	30		35		45		ns	
22	^t DVEH	t _{DW}	Data Set-up to End of Write	15		15		20		ns	
23	t _{EHDX}	t _{DH}	Data Hold After End of Write	0		0		0		ns	
24	^t AVEH	t _{AW}	Address Set-up to End of Write	30		35		45		ns	
25	t _{EHAX}	twn	Address Hold After End of Write	0		0		0		ns	
26	^t AVEL	t _{AS}	Address Set-up to Beginning of Write	0		0		0		ns	
27	twLaz	t _{WZ}	Write Enable to Output Disable	0	20	0	20	0	25	ns	f, j


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \underline{E} and \underline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note h: E or W must be $\ge V_{IH}$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

IMS1403M/1403LM

DEVICE OPERATION

The IMS1403M has two control inputs, Chip Enable (/E) and Write Enable (/W), 14 address inputs (A0 -A13), a Data In (D) and a Data Out (Q). The /E input controls device selection as well as active and standby modes. With /E low, the device is selected and the14 address inputs are decoded to select one bit out of 16K bits. Read and Write operations on the memory cell are controlled by the /W input. With /E high, the device is deselected, the outputs are disabled and the power consumption is reduced to less than one-fourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $/W \ge V_{IH}$ min with $/E \le V_{IL}$ max. Read access time is measured from either /E going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E is low. The output remains active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and long as /E remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by /E going low. As long as address is stable when /E goes low, valid data is at the output at the specified Chip Enable Access time. If address is not valid when /E goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

The write cycle of the IMS1403M is initiated by the latter of /E or /W to transition from a high to a low. In the case of /W falling last, the output buffer will be turned on t_{ELQX} after the falling edge of /E (just as in a read cycle). The output buffer is then turned off within t_{WLQZ} of the falling edge of /W. During this interval, it is possible to have bus contention between devices with D and Q connected together in a common I/O configuration. Contention can be avoided in a carefully designed system. During a write cycle, data on the input is written into the selected cells and the output is floating.

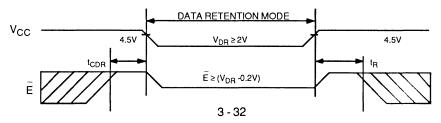
WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high at the end of the cycle with /E active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of /E. With /E high the outputs remain in the high impedance state.

APPLICATION

It is imperative when designing with any very high speed memory, such as the IMS1403M, that the fundamental rules in regard to memory board layout be followed to ensure proper system operation.

SYMBOL	PARAMETER	MIN	ТҮР⁺	MAX	UNITS	NOTES
V _{DR}	Data Retention Voltage	2.0			volts	$V_{IN} \le 0.2V \text{ or } \ge (V_{CC} - 0.2V) \stackrel{-}{E} \ge (V_{CC} - 0.2V)$
ICCDR1	Data Retention Current		3	400	μA	V _{CC} = 3.0 volts
ICCDR2	Data Retention Current		2	250	μA	V _{CC} = 2.0 volts
t EHVCCL	Deselect Time (t _{CDR})	0			ns	j, k
^t VCCHEL	Recovery Time (t _R)	t _{RC}			ns	j, k (t _{RC} = Read Cycle Time)


DATA RETENTION (L version only) (-55°C \leq T_A \leq 125°C)

*Typical data retention parameters at 25°C.

Note j: Parameter guaranteed but not tested.

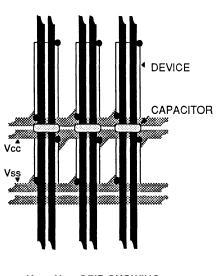
Note k: Supply recovery rate should not exceed 100mV per μ S from V_{DR} to V_{CC} min.

LOW V_{CC} DATA RETENTION

POWER DISTRIBUTION

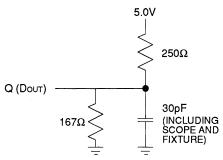
The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1403M. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Since the current transients associated with the operation of the high speed IMS1403M have very high frequency components, the line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad, and be placed between each row of devices in the array (see drawing). A larger tantalum capacitor, with a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.


The ground grid of the memory array should extend to the TTL periphery circuit. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.


The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

V_{CC}, V_{SS} GRID SHOWING DECOUPLING CAPACITORS

FIGURE 1. OUTPUT LOAD

TRUTH TABLE

Ē	w	Q	MODE
Н	x	HI-Z	Standby (Isb)
L	н	Dout	Read
L	L	HI-Z	Write

Standard Military Drawing version available, see SMD Reference Guide

ORDERING INFORMATION

DEVICE	SPEED PACKAGE		PART	NUMBER
DEVICE			STANDARD	LOW POWER
IMS 1403M IMS 1403LM	35ns 35ns 45ns 45ns 55ns 55ns	CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC	IMS1403S-35M IMS1403N-35M IMS1403S-45M IMS1403N-45M IMS1403S-55M IMS1403N-55M	IMS1403LS35M IMS1403LN35M IMS1403LS45M IMS1403LN45M IMS1403LS55M IMS1403LN55M

IMS1420M High Performance 4Kx4 Static RAM MIL-STD-883C

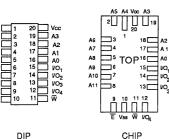
FEATURES

A5 A6 A7 A8 A9

A10

A11

- Full Military Temperature Operating Range (-55° C to + 125° C)
- MIL-STD-883C Processing
- 4Kx4 Bit Organisation
- · 55 and 70 nsec Access Times
- Fully TTL Compatible
- Common Data Input and Output
- Three-state Output
- Power Down Function
- Single +5V ± 10% Operation
- 20-Pin, 300-mil DIP (JEDEC Std.)
- 20-Pin Ceramic LCC (JEDEC Std.)


DESCRIPTION

The INMOS IMS1420M is a high performance 4Kx4 Static RAM processed in full compliance to MIL-STD-883C with access times of 55ns and 70ns and a maximum power consumption of 660mW. These characteristics are made possible by the combination of innovative circuit design and INMOS' proprietary NMOS technology.

The IMS1420M features fully static operation requiring no external clocks or timing strobes with equal access and cycle times. Additionally, the IMS1420M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode reducing consumption to less than 165mW.

The IMS1420M is a high speed VLSI RAM intended for military applications which demand high performance and reliability.

PIN CONFIGURATION

CARRIER

PIN NAMES

A ₀ - A	11 ADDRESS INPUTS	Vcc POWER (+5V)
Ŵ	WRITE ENABLE	Vss GROUND
Ē	CHIP ENABLE	
I/O	DATA IN/OUT	

LOGIC SYMBOL

A1 A2

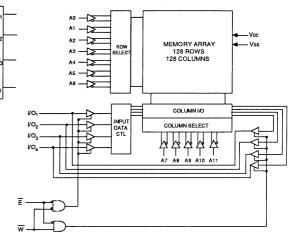
A3 A4

A5

A6 A7

A8

A9


A10 VC

VO

VC

1/0

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V_{ss}	3.5 to 7.0V
Temperature Under Bias.	-65°C to 135°C
Storage Temperature (Ambient)	-65°C to 150°C
Power Dissipation.	
DC Output Current.	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

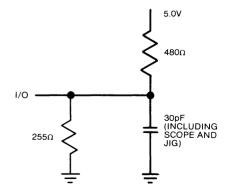
DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	ΜΑΧ	UNITS	NOTES
V _{CC}	Supply Voltage	4.5	5.0	5.5	V	
V _{SS}	Supply Voltage	0	0	0	V	
V _{IH}	Input Logic "1" Voltage	2.4		6.0	V	All Inputs
V _{IL}	Input Logic "0" Voltage	-2.0		0.8	٧	All Inputs
T _A	Ambient Operating Temperature	-55		125	°C	400 Linear ft/min transverse air flow

DC ELECTRICAL CHARACTERISTICS ($-55^{\circ}C \leq T_{A} \leq 125^{\circ}C$) (V_{CC} = 5.0V \pm 10%)

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
I _{CC1}	Average V_{CC} Power Supply Current AC		120	mA	$t_c = t_c min$
I _{CC2}	V _{cc} Power Supply Current (Standby)		30	mA	$\overline{E} \geq V_{\text{IH}} \ \text{min}$
I _{IN,}	Input Leakage Current (Any Input)	-10	10	μA	$V_{CC} = max$ $V_{IN} = V_{SS}$ to V_{CC}
I _{OLK}	Off State Output Leakage Current	-50	50	μΑ	$V_{cc} = max$ $V_{out} = V_{ss}$ to V_{cc}
V _{OH}	Output Logic "1" Voltage $I_{OUT} = -4mA$	2.4		V	
V _{OL}	Output Logic "0" Voltage I _{OUT} = 8mA		0.4	V	

AC TEST CONDITIONS^a


Note a: Operation to specifications guaranteed 2ms after V_{CC} applied.

CAPACITANCE b (T_A = 25°C, f = 1.0MHz)

SYMBOL	PARAMETER	MAX	UNIT	CONDITIONS
C _{IN}	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
COUT	Output Capacitance	7	рF	$\Delta V = 0$ to $3V$
CE	E Capacitance	6	рF	$\Delta V = 0$ to $3V$

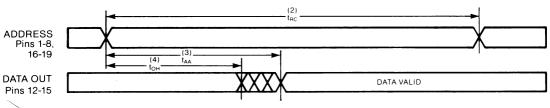
Note b: This parameter is sampled and not 100% tested

FIGURE 1. OUTPUT LOAD

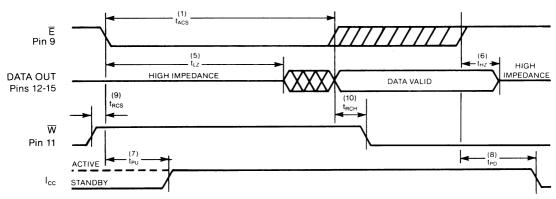
RECOMMENDED AC OPERATING CONDITIONS ($-55^\circ C \le T_A \le 125^\circ C$) ($V_{CC} = 5.0V \pm 10\%$)

READ CYCLE

NO.	SYMBOL	PARAMETER	IMS1420M-55					NOTES
NO.	STINDOL	TANAMETEN	MIN	MAX	MIN	MAX		110120
1	t _{ACS}	Chip Enable Access Time		55		70	ns	
2	t _{RC}	Read Cycle Time	55		70		ns	с
3	t _{AA}	Address Access Time		55		70	ns	d
4	t _{on}	Output Hold After Address Change	3		3		ns	j
5	t _{LZ}	Chip Enable to Output Active	15		15		ns	j
6	t _{HZ}	Chip Disable to Output Disable		25		30	ns	f
7	t _{PU}	Chip Enable to Power Up	0		0		ns	j
8	t _{PD}	Chip Disable to Power Down	0	55	0	70	ns	j
9	t _{RCS}	Read Command Set-up Time	-5		-5		ns	
10	t _{RCH}	Read Command Hold Time	-5		-5		ns	
	t _T	Input Rise and Fall Times		50		50	ns	е


Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.

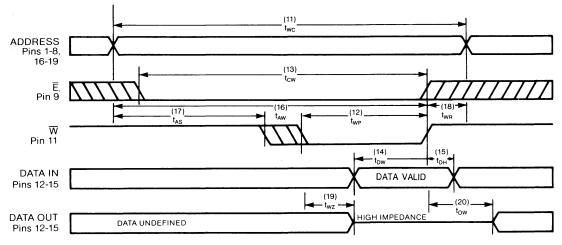
Note d: Device is continuously selected; \overline{E} low.


Note e: Measured between V_{IL} max and V_{IH} min. Note f: Measured ±200mV from steady state output voltage.

Note j: Parameter guaranteed but not tested.

READ CYCLE 1^{c, d}

READ CYCLE 2^c


RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \le T_A \le 125^{\circ}C$) ($V_{cc} = 5.0V \pm 10\%$) WRITE CYCLE 1: \overline{W} controlled^h

NO.	SYMBOL	PARAMETER	IMS14	20M-55	IMS14	20M-70	UNITS	NOTES
<u> </u>		TANAMETEN	MIN	MAX	MIN	MAX	01113	NOTES
11	twc	Write Cycle Time	55		70		ns	
12	t _{wP}	Write Pulse Width	45		65		ns	
13	t _{CW}	Chip Enable to End of Write	45		65		ns	
14	t _{DW}	Data Set-up to End of Write	25		30		ns	
15	t _{DH}	Data Hold After End of Write	3		5		ns	
16	t _{AW}	Address Set-up to End of Write	45		65		ns	
17	t _{AS}	Address Set-up to Beginning of Write	0		0		ns	
18	t _{wn}	Address Hold After End of Write	5		5		ns	
19	t _{wz}	Write Enable to Output Disable	0	25	0	30	ns	f
20	t _{ow}	Output Active After End of Write	0		0		ns	g

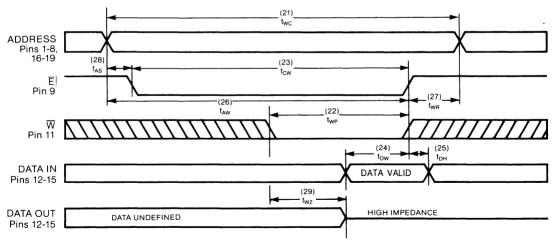
Note f: Measured \pm 200mV from steady state output voltage.

Note g: If \overline{E} goes high with \overline{W} low, Output remains in HIGH impedance state.

Note h: \overline{E} or \overline{W} must be $\ge V_{IH}$ during address transitions.

WRITE CYCLE 1

RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \leq T_{A} \leq 125^{\circ}C)$ (V_{CC} = $5.0V \pm 10\%)$


WRITE CYCLE 2: \overline{E} CONTROLLED^h

NO.	SYMBOL	PARAMETER	IMS14	20M-55	IMS1420M-70		UNITS	NOTES
NO.			MIN	MAX	MIN	MAX		NOTES
21	t _{wc}	Write Cycle Time	55		70		ns	
22	t _{wP}	Write Pulse Width	45		65		ns	
23	t _{cw}	Chip Enable to End of Write	45		65		ns	
24	t _{DW}	Data Set-up to End of Write	25		30		ns	
25	t _{DH}	Data Hold After End of Write	5		5		ns	
26	t _{AW}	Address Set-up to End of Write	40		60		ns	
27	t _{wn}	Address Hold After End of Write	5		5		ns	
28	t _{AS}	Address Set-up to Beginning of Write	-5		-5		ns	5.
29	t _{wz}	Write Enable to Output Disable	0	25	0	30	ns	f

Note f: Measured \pm 200mV from steady state output voltage.

Note h: \overline{E} or \overline{W} must be $\ge V_{IH}$ during address transitions.

WRITE CYCLE 2

IMS1420M

DEVICE OPERATION

The IMS1420M has two control inputs, Chip Enable (\overline{E}) and Write Enable (\overline{W}) , twelve address inputs, and four Data I/O lines.

When \underline{V}_{CC} is first applied to pin 20, a circuit associated with the \overline{E} input forces the device into the lower power standby mode regardless of the state of the \overline{E} input. After V_{CC} is applied for 2ms the \overline{E} input controls device selection as well as active and standby modes.

With \overline{E} low, the device is selected and the twelve address inputs are decoded to select one 4-bit word out of 4096. READ and WRITE operations on the memory cell are controlled by \overline{W} input. With \overline{E} high, the device is deselected, the output is disabled, and the power consumption is reduced to less than one-third of the active mode power.

READ CYCLE

A read cycle is defined as $\overline{W} \ge V_{IH}$ min with $\overline{E} \le V_{IL}$ max. Read access time is measured from either \overline{E} going low or from valid address.

The READ CYCLE 1 waveform on page 3 shows a read access that is initiated by a change in the address inputs while \overline{E} is low. The output remains active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and the output remains valid for a minimum of 3ns. As long as \overline{E} remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform on page 3 shows a read access that is initiated by \overline{E} going low. As long as address is stable within 5ns after \overline{E} goes low, valid data is at the output at the specified Chip Enable access time. If address is not valid within 5ns after \overline{E} goes low, the timing is as specified in the READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

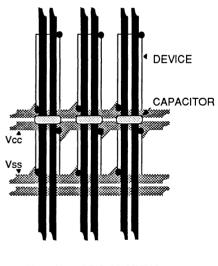
A write cycle is initiated by the latter of \overline{W} or \overline{E} going low, and terminated by \overline{W} (WRITE CYCLE 1) or \overline{E} (WRITE CYCLE 2) going high. During the write cycle, data on the inputs is written into the selected cells, and the outputs are floating.

If a write cycle is initiated by \overline{W} going low, the address must be stable for the WRITE CYCLE 1 set-up time. If a write cycle is initiated by \overline{E} going low, the address need not be stable until a maximum of 5ns after \overline{E} goes low. The address must be held stable for the entire write cycle. After \overline{W} or \overline{E} goes high to terminate the write cycle, addresses may change. If these address set-up and hold times are not met, contents of other cells may be altered in unpredictable ways.

WRITE CYCLE 1 waveform on page 4 shows a write cycle terminated by \overline{W} going high. D_{IN} set-up and hold times are referenced to the rising edge of W. With \overline{W} high, the outputs become active. When \overline{W} goes high at the end of a write cycle and the outputs of the memory go active, the data from the memory will be the same as the data just written into the memory. Thus, no data bus contention will occur.

WRITE CYCLE 2 waveform on page 5 shows a write cycle terminated by \overline{E} going high. Data set-up and hold times are referenced to the rising edge of \overline{E} . With \overline{E} high, the outputs remain in the high impedance state.

APPLICATION


Fundamental rules in regard to memory board layout should be followed to ensure maximum benefit from the features offered by the IMS1420M Static RAM.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1420M. The impedance in the decoupling path from the power pin (20) through the decoupling capacitor, to the ground pin (10) should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Since the current transients associated with the operation of the high speed IMS1420M are high frequency, the line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor acts as a low impedance power supply located near the memory device. The high frequency decoupling capacitor should have a value of 0.1μ F, and be placed between the rows of memory devices in the array (see drawing). A larger tantalum capacitor with a value between 22μ F and 47μ F should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.

The ground grid of the memory array should extend to the TTL driver periphery circuit. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

V_{CC}, V_{SS} GRID SHOWING DECOUPLING CAPACITORS

TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10Ω to 30Ω range will be required.

Proper power distribution techniques, including adequate use of decoupling capacitors, and proper termination of TTL drive outputs, are some of the most important, yet basic guidelines that need to be followed when designing and building a memory board. The guidelines are intended to maintain the operating margins of all devices on the memory board by providing a quiet environment free of noise spikes and signal reflections.

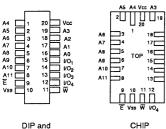
ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
IMS 1420M	55ns	CERAMIC DIP	IMS1420S-55M
	55ns	CERAMIC LCC	IMS1420N-55M
	70ns	CERAMIC DIP	IMS1420S-70M
	70ns	CERAMIC LCC	IMS1420N-70M

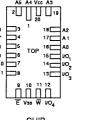
IMS1423M **CMOS** High Performance 4K x 4 Static RAM MIL-STD-883C

FEATURES

- INMOS' Very High Speed CMOS
- · Advanced Process 1.6 Micron Design Rules
- · Specifications guaranteed over full military temperature range (-55° C to + 125° C)
- · 4K x 4 Bit Organization
- 35, 45, and 55 nsec Access Times
- Single +5V ± 10% Operation
- · Power Down Function for Low Standby Power
- Fully TTL Compatible
- · Common Data Input and Output
- Three-state Output
- · Standard Military Drawing version available (refer to page B-7)
- · 20-Pin DIP, LCC (JEDEC Std.) and FP
- · Pin Compatible with IMS1420M


DESCRIPTION

The INMOS IMS1423M is a high speed 4K x 4 CMOS static RAM processed in full compliance to MIL-STD-883C. The IMS1423M provides maximum density and performance enhancements to existing 16K applications.


The IMS1423M features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1423M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1423M is a VLSI static RAM intended for military applications that demand high performance and superior reliability.

PIN CONFIGURATION

FLAT PACK

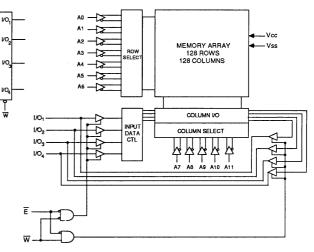
CARRIER

A ₀ - A	11 ADDRESS INPUTS	Vcc POWER (+5V)
\overline{w}	WRITE ENABLE	Vss GROUND
Ē	CHIP ENABLE	
1/0	DATA IN/OUT	

LOGIC SYMBOL

A2 A3

A4


A5 A8

A7

A8 A9

A10

BLOCK DIAGRAM

IMS1423M

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to Vss.	2.0 to 7.0V
Voltage on I/O	1.0 to (Vcc+0.5)V
Temperature Under Bias	55° C to 125°C
Storage Temperature	65° C to 150°C
Power Dissipation	1W
DC Output Current	25mA
(One output at a time, one second duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	v	
Vін	Input Logic "1" Voltage	2.0		Vcc+0.5	V	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
TA	Ambient Operating Temperature	-55	25	125	°C	400 linear ft/min air flow

*V_{IL} min = -3 volts for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS $(-55^{\circ}C \le T_A \le 125^{\circ}C)$ $(Vcc = 5.0V \pm 10\%)^a$

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
ICC1	Average Vcc Power Supply Current		130 120 110	mA mA mA	tAVAV = 35ns tAVAV = 45ns tAVAV = 55ns
ICC2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		20	mA	E ≥ VIH . All other inputs at VIN ≤ VIL or ≥ VIH
Іссз	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		8	mA	\bar{E} \geq (Vcc - 0.2) . All other inputs at VIN \leq 0.2 or \geq (Vcc - 0.2V)
ICC4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		15 14 13	mA mA mA	$\begin{array}{l} tAVAV = 35ns\\ tAVAV = 45ns\\ tAVAV = 55ns\\ \overline{E} \ge (Vcc - 0.2). \mbox{ all other ilnputs cycling}\\ at V_{IN} \le 0.2 \mbox{ or } \ge (Vcc - 0.2V) \end{array}$
lilk	Input Leakage Current (Any Input)		±10	μА	Vcc = max ViN = Vss to Vcc
Ιοικ	Off State Output Leakage Current		±50	μA	Vcc = max V _{IN} = Vss to Vcc
Vон	Output Logic "1" Voltage	2.4		V	lout = -4mA
Vol	Output Logic "0" Voltage		0.4	V	lout = 8mA

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

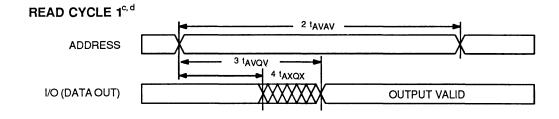
AC TEST CONDITIONS	CAPACI	TANCE ^b (TA=25°C	C, f=1.0	OMHZ)	
Input Pulse LevelsVss to 3V	SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
Input Rise and Fall Times5ns Input and Output Timing Reference Levels 1.5V	CIN	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
Output LoadSee Figure 1	Соит	Output Capacitance	7	рF	$\Delta V = 0$ to $3V$
	CE	/E Capacitance	6	pF	$\Delta V = 0$ to $3V$

Note b: This parameter is sampled and not 100% tested.

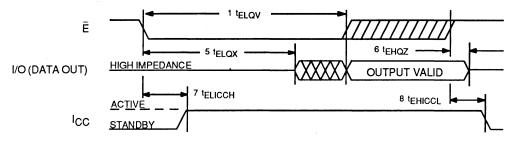
RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq T_A \leq 125°C) (V_{CC} = 5.0V \pm 10%) READ CYCLE ⁹

	SYM	BOL	PARAMETER	IMS142	3M-35	IMS1423M-45		IMS1423M-55			NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
1	t _{ELQV}	tACS	Chip Enable Access Time		35		45		55	ns	
2	t _{AVAV}	t _{RC}	Read CycleTime	35		45		55		ns	с
3	tAVQV	t _{AA}	Address Access Time		35		45		55	ns	d
4	t _{AXQX}	tон	Output Hold After Address Change	3		3		3		ns	j
5	^t ELQX	t∟z	Chip Enable to Output Active	5		5		5		ns	
6	t _{EHQZ}	^t HZ	Chip Disable to Output Inactive	0	20	0	20	0	20	ns	f, j
7	^t ELICCH	t _{PU}	Chip Enable to Power Up	0		0		0		ns	j
8	tEHICCL	t _{PD}	Chip Enable to Power Down		35		45		55	ns	j
		t _T	Input Rise and Fall Times		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.


Note d: Device is continuously selected; E low.

Note e: Measured between V_{IL} max and V_{IH} min.


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

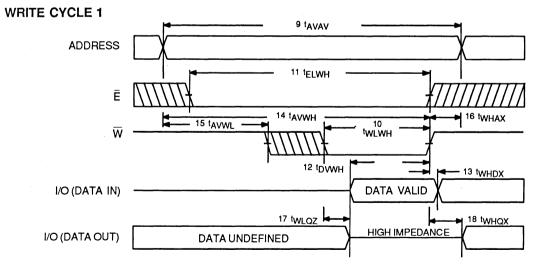
Note j: Parameter guaranteed but not tested.

READ CYCLE 2^c

IMS1423M

1

RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq T_A \leq 125°C) (V_{CC} = 5.0V ±10%) WRITE CYCLE 1: W CONTROLLED^{g, h}


	SYN	BOL		IMS140	3M-35	IMS140	3M-45	IMS140	3M-55	UNITS	NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NUTES
9	t _{AVAV}	twc	Write Cycle Time	35		45		55		ns	
10	twlwh	twp	Write Pulse Width	30		40		50		ns	
11	t _{ELWH}	tcw	Chip Enable to End of Write	30		40		50		ns	
12	t _{DVWH}	t _{DW}	Data Set-up to End of Write	15		20		25		ns	
13	tWHDX	t _{DH}	Data Hold After End of Write	3		3		3		ns	
14	t _{AVWH}	t _{AW}	Address Set-up to End of Write	30		40		50		ns	
15	t _{AVWL}	tAS	Address Set-up to Beginning of Write	0		0		0		ns	
16	twhax	twR	Address Hold After End of Write	5		5		5		ns	
17	twlaz	twz	Write Enable to Output Disable	0	15	0	20	0	25	ns	f, j
18	twhax	tow	Output Active After End of Write	5		5		5			i, j

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

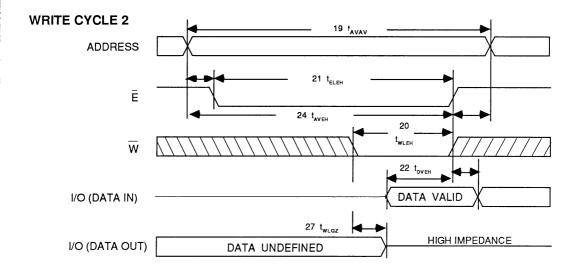
Note g: E and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: \vec{E} or \vec{W} must be $\geq V_{|||}$ during address transitions. Note h: If \vec{W} is low when \vec{E} goes low, the outputs remain in the high impedance state.

Note j: Parameter guaranteed but not tested.

RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq TA \leq 125°C) (Vcc = 5.0V \pm 10%) WRITE CYCLE 2: \overline{E} CONTROLLED^{g, h}

	SYM	BOL		IN 1423	ИS M-35	IM 1423	/IS M-45	IN 1423	IS 1-55	UNITS	NOTES
No	Standard	Alternate	PARAMETER	MIN	МАХ	MIN	MAX	MIN	МАХ		
19	tAVAV	t WC	Write Cycle Time	35		45		55		ns	
20	tWLEH	tWP	Write Pulse Width	30		40		50		ns	
21	tELEH	tcw	Chip Enable to End of Write	30		40		50		ns	
22	tDVEH	t _{DW}	Data Setup to End of Write	15		20		25		ns	
23	tEHDX	t DH	Data Hold after End of Write	3		3		3		ns	
24	tAVEH	taw	Address Setup to End of Write	30		40		50		ns	
25	tEHAX	tWR	Address Hold After End of Write	5		5		5		ns	
26	tAVEL	t AS	Address Setup to Beginning of Write	3		3		3		ns	
27	tWLQZ	t WZ	Write Enable to Output Disable	0	15	0	20	0	25	ns	f,j


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be \ge VIH during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

IMS1423M DEVICE OPERATION

The IMS1423M has two control inputs, Chip Enable (/E) and Write Enable (/W), 12 address inputs (A0 -A11), and four Data I/O lines. The /E input controls device selection as well as active and standby modes. With /E low, the device is selected and the 12 address inputs are decoded to select one four-bit word out of 4K words. Read and Write operations on the memory cell are controlled by the /W input. With /E high, the device is deselected, the outputs are disabled and the power consumption is reduced to less than one-fourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $/W \ge V_{IH}$ min with $/E \le V_{IL}$ max. Read access time is measured from either /E going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E is low. The outputs remain active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and long as /E remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by /E going low. As long as address is stable when /E goes low, valid data is at the outputs at the specified Chip Enable Access time. If address is not valid when /E goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITE CYCLE

The write cycle of the IMS1423M is initiated by the latter of /E or /W to transition from a high to a low. In the case of /W falling last, the output buffers will be turned on t_{ELQX} after the falling edge of /E (just as in a read cycle). The output buffers are then turned off within t_{WLQZ} of the falling edge of /W. During this interval, it is possible to have bus contention between devices with common I/O configurations. To avoid bus contention, input data should not be active until t_{WLQZ}.

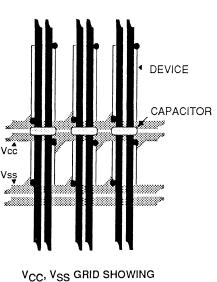
WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high at the end of the cycle with /E active, the outputs of the memory become active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of /E. With /E high the outputs remain in the high impedance state.

POWER DISTRIBUTION

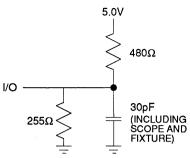
The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1423M. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Since the current transients associated with the operation of the high speed IMS1423M have very high frequency components, the line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad, and be placed between each row of devices in the array (see drawing). A larger tantalum capacitor, with a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.


The ground grid of the memory array should extend to the TTL periphery circuit. This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.


The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

DECOUPLING CAPACITORS

FIGURE 1. OUTPUT LOAD

W MODE Ε Q Н Х HI-Z Standby (Isb) L н Dout Read L L Din Write

TRUTH TABLE

Standard Military Drawing version available, see SMD Reference Guide

ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
IMS 1423M	35ns	CERAMIC DIP	IMS1423S-35M
	35ns	CERAMIC LCC	IMS1423N-35M
	45ns	FLAT PACK	IMS1423Y-35M
	45ns	CERAMIC DIP	IMS1423S-45M
	45ns	CERAMIC LCC	IMS1423N-45M
	55ns	FLAT PACK	IMS1423Y-45M
	55ns	CERAMIC DIP	IMS1423S-55M
	55ns	CERAMIC LCC	IMS1423N-55M
	55ns	FLAT PACK	IMS1423Y-55M

IMS1600M IMS1601LM CMOS High Performance 64K x 1 Static RAM MIL-STD-883C

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- Full Military Temperature Operating Range (-55°C to +125°C)
- MIL-STD-883C Processing
- 45, 55, and 70 nsec Access Times
- · Fully TTL Compatible
- Separate Data Input & Output
- Three-state Output
- · Power Down Function
- Single +5V ± 10% Operation
- · Standard Military Drawing version available (refer to page B-7)
- 22-Pin, 300-mil DIP (JEDEC Std.)
- 22-Pin Ceramic LCC (JEDEC Std.)
- Battery Backup Operation 2V Data Retention (L version only)


DESCRIPTION

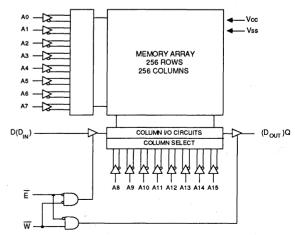
The INMOS IMS1600M is a high performance 64Kx1 CMOS Static RAM processed in full compliance to MIL-STD-883C and guaranteed to operate over the full military temperature range. The IMS1600M provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1600M features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1600M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1601LM is a low power version offering battery backup data retention operating from a 2 volt supply.

PIN CONFIGURATION

^ശഷ്


A1 A2 A3 A4 A5 A5 A5

AB

As A10

A10 A11 A12 A13 A14

PIN NAMES

CHIP

A ₀ -4	A15 ADDRESS INPUTS	Q DATA OUTPUT
W	WRITE ENABLE	Vcc POWER (+5V)
Ē	CHIP ENABLE	Vss GROUND
D	DATA INPUT	

IMS1600M/IMS1601LM

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to Vs	s2.0 to 7.0V
Voltage on Q	1.0 to (Vcc+0.5)
Temperature Under Bias	55° C to 125°C
Storage Temperature	65° C to 150°C
Power Dissipation	1W
DC Output Current	25mA
(One Second Duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	V	
Vih	Input Logic "1" Voltage	2.0		Vcc+0.5	v	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	v	All inputs
Ta	Ambient Operating Temperature	-55	25	125	°C	400 linear ft/min air flow

*V_{IL} min = -3 V for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERIST:CS (-55°C \leq Ta \leq 125°C) (Vcc = 5.0V \pm 10%)^a

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES			
lcc1	Average Vcc Power Supply Current		70	mA	tavav = tavav(min)			
lcc2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		25	mA	$\overline{E} \ge V_{H}$. All other inputs at			
	IMS1601L version		20		VIN S VIL OF 2 VIH			
lcc3	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		14	mA	\overline{E} ≥ (Vcc - 0.2) . All other inputs at			
	IMS1601L version		9	ing	Vin ≤ 0.2 or ≥ (Vcc - 0.2V)			
lcc4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		19	mA	 E ≥ (Vcc - 0.2) . Inputs cycling at			
	IMS1601L version		15		VIN ≤ 0.2 or ≥ (Vcc - 0.2V)			
lilk	Input Leakage Current (Any Input)		±5	μA	Vcc = max ViN = Vss to Vcc			
Іогк	Off State Output Leakage Current		± 10	μA	Vcc = max VIN = Vss to Vcc			
Vон	Output Logic "1" Voltage	2.4		v	Іон = -4 m A			
Vol	Output Logic "0" Voltage		0.4	v	lo∟ = 8mA			

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse LevelsVss	to 3V
Input Rise and Fall Times	
Input and Output Timing Reference Levels	1.5V
Output Load See Fig	gure 1

CAPACITANCE (Ta=25°C, f=1.0MHZ)^b

SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
Cin	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	7	рF	$\Delta V = 0$ to $3V$

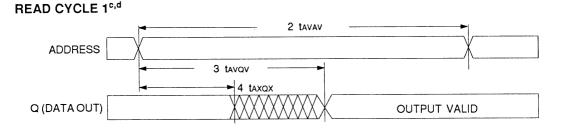
Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \leq T_{A} \leq 125^{\circ}C$) ($V_{CC} = 5.0V \pm 10\%$)

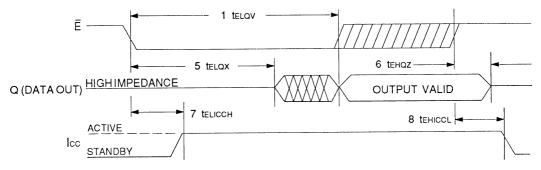
READ CYCLE^g

NO.	SYM	IBOL	DADAMETED	IMS16	00M-45	IMS1600M-55		IMS1600M-70		UNITE	NOTES
NU.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
1	telav	tacs	Chip Enable Access Time		45		55		70	ns	
2	tavav	tRC	Read Cycle Time	45		55		70		ns	с
3	tavqv	taa	Address Access Time		45		55		70	ns	d
4	taxox	tон	Output Hold After Address Change	5		5		5		ns	
5	t ELQX	t∟z	Chip Enable to Output Active	5		5		5		ns	
6	t EHQZ	tHZ	Chip Disable to Output Inactive	0	25	0	30	0	30	ns	f, j
7	t ELICCH	tPU	Chip Enable to Power Up	0		0		0		ns	j
8	t EHICCL	tPD	Chip Enable to Power Down		45		55		70	ns	j
		tτ	Input Rise and Fall Times		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.


Note d: Device is continuously selected; E low.

Note e: Measured between VIL max and VIH min.


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

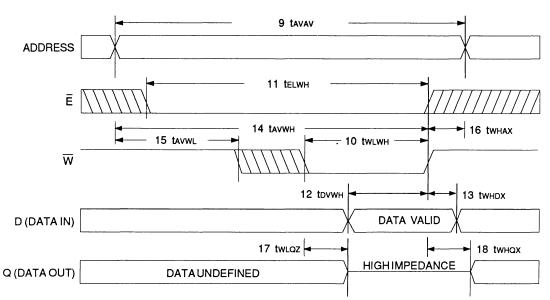
Note g: E and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

READ CYCLE 2^c

IMS1600M/IMS1601LM RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \le T_A \le 125^{\circ}C$) ($V_{cc} = 5.0V \pm 10\%$) WRITE CYCLE 1: \overline{w} CONTROLLED^{g, h}

NO.	SYM	BOL	DADAMETER	IMS16	00M-45	IMS1600M-55		IMS1600M-70			
NU.	Standard Alternat	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
9	tavav	twc	Write Cycle Time	45		55		70		ns	
10	twLWH	twp	Write Pulse Width	20		25		30		ns	
11	telwh	tcw	Chip Enable to End of Write	20		30		35		ns	
12	tovwн	tow	Data Setup to End of Write	20		20		30		ns	
13	twhdx	tDH	Data Hold after End of Write	0		5		5		ns	
14	tavwh	taw	Address Setup to End of Write	27		32		37		ns	
15	tavwl	tas	Address Setup to Start of Write	7		7		7		ns	
16	twhax	twn	Address Hold after End of Write	5		5		5		ns	
17	twLQZ	twz	Write Enable to Output Disable	0	20	0	25	0	30	ns	f, j
18	twhax	tow	Output Active after End of Write	0		0		0		ns	i, j


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: \overline{E} and \overline{W} must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note \tilde{h} : \bar{E} or \overline{W} must be $\geq V_{H}$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

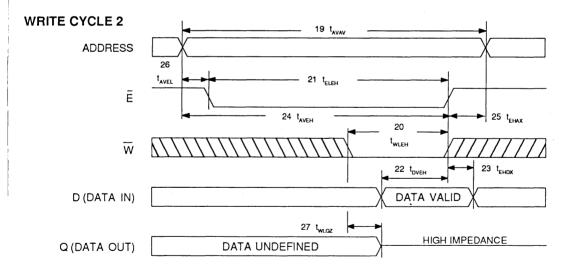
WRITE CYCLE 1

IMS1600M/IMS1601LM

RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq TA \leq +125°C) (Vcc = 5.0V \pm 10%)

WRITE CYCLE 2: Ē CONTROLLED^{g, h}

NO.	SYM	BOL	PARAMETER	IMS160	0M-45	IMS1600M-55		IMS1600M-70		UNITS	NOTES
NO.	Standard	Alternate	FANAMETEN	MIN	MAX	MIN	MIN MAX		MAX		NOTES
19	tavav	twc	Write Cycle Time	45		55		70		ns	
20	twLEH	twp	Write Pulse Width	20		25		30		ns	
21	teleh	tcw	Chip Enable to End of Write	20		25		30		ns	
22	tDVEH	tow	Data Setup to End of Write	20		20		30		ns	
23	tendx	tDH	Data Hold after End of Write	5		5		5		ns	
24	taven	taw	Address Setup to End of Write	23		28		33		ns	
25	t EHAX	twn	Address Hold after End of Write	5		5		5		ns	
26	tavel	tas	Address Setup to Start of Write	3		3		3		ns	
27	twlaz	twz	Write Enable to Output Disable	0	20	0	25	0	30	ns	f, j


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: E and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note \tilde{h} : \tilde{E} or \widetilde{W} must be \ge ViH during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the output remains in the high impedance state.

Note j: Parameter guaranteed but not tested.

IMS1600M/IMS1601LM DEVICE OPERATION

The IMS1600M has two control inputs, a Chip Enable (/E) and Write Enable (/W), 16 address inputs (A0 -A15), a data in (D) and a data out (Q).

The /E input controls device selection as well as active and standby modes. With /E low, the device is selected and the 16 address inputs are decoded to select one memory cell out of 65,536. Read and Write operations on the memory cell are controlled by the /W input. With /E high, the device is deselected, the output is disabled and the power consumption is reduced to less than one-third of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $/W \ge V_{H}$ min with $/E \le V_{IL}$ max. Read access time is measured from either /E going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E is low. The output remains active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and long as /E remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by /E going low. As long as address is stable when /E goes low, valid data is at the output at the specified Chip Enable Access time. If address is not valid when /E goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITECYCLE

The write cycle of the IMS1600M is initiated by the latter of /E or /W to transition from a high to a low. In the case of /W falling last, the output buffer will be turned on tELox after the falling edge of /E (just as in a read cycle). The output buffer is then turned off within twLoz of the falling edge of /W. During this interval it is possible to have bus contention between devices with D and Q connected together in acommon I/O configuration. To aviod bus contention input data should not be active until twLoz. WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high at the end of the cycle with /E active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of /E. With /E high the output remains in the high impedance state.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1600M. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Current transients associated with the operation of any high speed device have very high frequency components. so line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad and be placed between each row of devices in the array. A larger tantalum capacitor of a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path. The ground grid of the memory array should extend to the TTL driver periphery circuit area This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

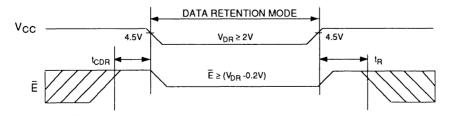
TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

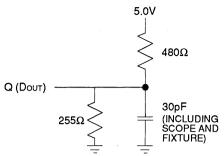
The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

DATA RETENTION (L version only) (-55°C \leq T_A \leq 125°C)


SYMBOL	PARAMETER	MIN	TYP*	МАХ	UNITS	NOTES
V _{DR}	Data Retention Voltage	2.0			volts	$V_{IN} \le 0.2V \text{ or } \ge (V_{CC} - 0.2V) \overline{E} \ge (V_{CC} - 0.2V)$
ICCDR1	Data Retention Current		8	1200	μA	V _{CC} = 3.0 volts
ICCDR2	Data Retention Current		5	800	μA	V _{CC} = 2.0 volts
t EHVCCL	Deselect Time (t _{CDR})	0			ns	j, k
t VCCHEL	Recovery Time (t _R)	t _{RC}			ns	j, k (t _{RC} = Read Cycle Time)

*Typical data retention parameters at 25°C.


Note j: Parameter guaranteed but not tested.

Note k: Supply recovery rate should not exceed 100mV per μ S from VDR to VCC min.

LOW V CC DATA RETENTION

FIGURE 1. OUTPUT LOAD

TRUTH TABLE

Ē	W	Q	MODE		
н	x	HI-Z	Standby (Isb)		
L	н	Dout	Read		
L	L	HI-Z	Write		

Standard Military Drawing version available, see SMD Reference Guide

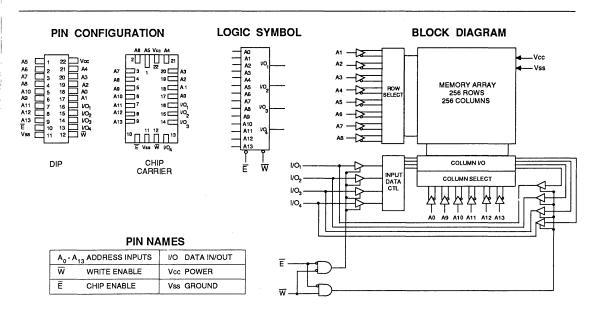
ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART N	IUMBER
DEVICE	SFELD FACKAGE	STANDARD	LOW POWER	
IMS 1600M IMS1600LM	45ns 45ns 55ns 55ns 70ns 70ns	CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC	IMS1600S-45M IMS1600N-45M IMS1600S-55M IMS1600N-55M IMS1600S-70M IMS1600N-70M	IMS1601LS45M IMS1601LN45M IMS1601LS55M IMS1601LN55M IMS1601LS70M IMS1601LN70M

IMS1620M IMS1620LM CMOS High Performance 16K x 4 Static RAM MIL-STD-883C

FEATURES

- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- Full Military Temperature Operating
- Range (-55°C to + 125°C)
- MIL-STD-883C Processing
- 16K x 4 Bit Organization
- 45, 55 and 70 nsec Access Times
- Fully TTL Compatible
- Common Data Input & Output
- Three-state Output
- Power Down Function
- Single +5V ± 10% Operation
- 22-Pin, 300-mil DIP (JEDEC Std.)
- 22-Pin Ceramic LCC (JEDEC Std.)
- Battery Backup Operation 2V Data Retention (L version only)


DESCRIPTION

The INMOS IMS1620M is a high performance 16Kx4 CMOS Static RAM processed in full compliance to MIL-STD-883C and guaranteed to operate over the full military temperature range. The IMS1620M provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1620M features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. Additionally, the IMS1620M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode.

The IMS1620LM is a low power version offering battery backup data retention operating from a 2 volt supply.

The IMS1624M is the functional equivalent of the IMS1620M with an added Output Enable function.

IMS1620/IMS1620LM

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to Vss2.0 to	7.0V
Voltage on I/O Pins (13-16)1.0 to (Vcc+	0.5)
Temperature Under Bias55° C to 12	25°C
Storage Temperature65° C to 15	50°C
Power Dissipation	.1W
DC Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

(One output at a time, one second duration)

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	V	
Viн	Input Logic "1" Voltage	2.0		Vcc+.5	V	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	V	All inputs
Ta	Ambient Operating Temperature	0	25	70	°C	400 linear ft/min air flow

*VIL min = -3 volts for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS (-55°C \leq Ta \leq 125°C) (Vcc = 5.0V \pm 10%)^a

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES	
ICC1	Average Vcc Power Supply Current		100	∙mA	tavav = tAVAV (min)	
ICC2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		30	mA	Ē ≥ Vi⊣. All other inputs at	
1002	IMS1620L version		20		VIN S VIL or 2 VIH	
ICC3	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		19	mA	$\overline{E} \ge$ (Vcc - 0.2). All other inputs at	
	IMS1620L version		8		$V_{IN} \leq 0.2$ or $\geq (V_{CC} - 0.2V)$	
ICC4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		20	mA	$\overline{E} \ge (Vcc - 0.2)$. Inputs cycling at	
	IMS1620L version		8		ViN ≤ 0.2 or ≥ (Vcc - 0.2V)	
IILK	Input Leakage Current (Any Input)		±5	μA	Vcc = max Vin = Vss to Vcc	
Iolk	Off State Output Leakage Current		± 10	μA	Vcc = max ViN = Vss to Vcc	
Vон	Output Logic "1" Voltage	2.4		۷	lон = -4mA	
Vol	Output Logic "0" Voltage		0.4	v	lol = 8mA	

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse Levels	Vss to 3V
Input Rise and Fall Times	5ns
Input and Output Timing Reference	
Output Load	.See Figure 1

CAPACITANCE^b (TA=25°C, f=1.0 MHZ)

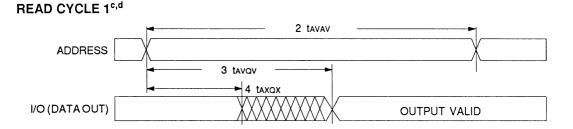
SYMBOL PARAMETER		МАХ	UNITS	CONDITIONS
CIN	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	7	рF	$\Delta V = 0$ to $3V$

Note b: This parameter is sampled and not 100% tested.

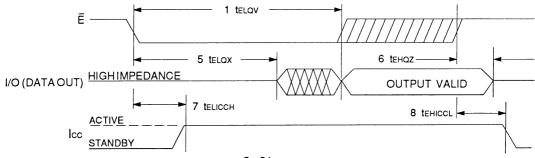
RECOMMENDED AC OPERATING CONDITIONS ($-55^{\circ}C \le T_A \le 125^{\circ}C$) ($V_{CC} = 5.0V \pm 10\%$)

READ CYCLE⁹

NO.	SYMBOL	BOL	DADAMETER	IMS1620M-45		IMS1620M-55		IMS1620M-70		UNITS	NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
1	tELQV	tacs	Chip Enable Access Time		45		55		70	ns	
2	tavav	tRC	Read Cycle Time	45		55		70		ns	с
3	tavqv	taa	Address Access Time		45		55		70	ns	d
4	taxox	toн	Output Hold After Address Change	5		5		5		ns	
5	t ELQX	t∟z	Chip Enable to Output Active	5		5		5		ns	j
6	t EHQZ	tHZ	Chip Disable to Output Inactive	0	15	0	20	0	25	ns	f, j
7	t ELICCH	tPU	Chip Enable to Power Up	0		0		0		ns	j
8	t EHICCL	tPD	Chip Enable to Power Down		45		55		70	ns	j
		tτ	Input Rise and Fall Times		50		50		50	ns	e, j


Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle. Note d: Device is continuously selected; \overline{E} low.

Note e: Measured between VIL max and VIH min.


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

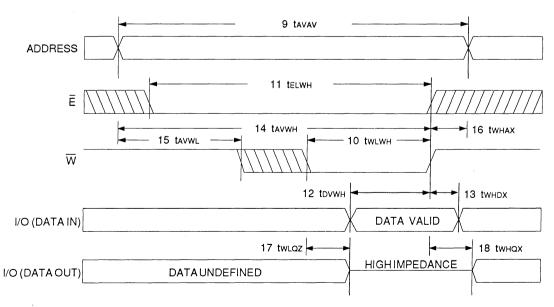
Note g: Ē and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

READ CYCLE 2^c

IMS1620M/IMS1620LM

RECOMMENDED AC OPERATING CONDITIONS (-55°C ≤ TA ≤ +125°C) (Vcc = 5.0V ±10%) WRITE CYCLE 1: W CONTROLLED^{g,h}


NO.	SYM	IBOL	PARAMETER	IMS162	20M-45	IMS162	0M-55	IMS1620M-70			NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
9	tavav	twc	Write Cycle Time	40		50		60		ns	
10	tw∟wн	twp	Write Pulse Width	30		40		50		ns	
11	t ELWH	tcw	Chip Enable to End of Write	Enable to End of Write 30		40		50		ns	
12	tovwн	tow	Data Setup to End of Write	20		25		30		ns	
13	twhdx	tdн	Data Hold after End of Write	0		0		0		ns	
14	tavwн	taw	Address Setup to End of Write	30		40		50		ns	
15	tavwl	tas	Address Setup to Start of Write	0		0		0		ns	
16	twhax	twR	Address Hold after End of Write	0		0		0		ns	
17	twLQZ	twz	Write Enable to Output Disable	0	15	0	20	0	25	ns	f, j
18	twнax	tow	Output Active after End of Write	5		5		5		ns	i, j

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: Ē and ₩ must transition between Vi⊩ to Vi∟ or Vi∟ to Vi⊨ in a monotonic fashion. Note h: Ē or ₩ must be ≥ Vi⊣ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the outputs remain in the high impedance state.

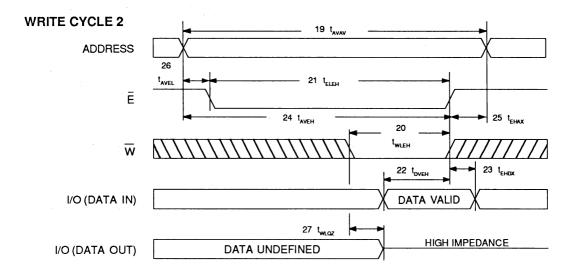
Note i: Parameter guaranteed but not tested.

WRITE CYCLE 1

IMS1620M/IMS1620LM

RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq Ta \leq 125°C) (Vcc = 5.0V ±10%) WRITE CYCLE 2: Ē CONTROLLED^{9, h}

		BOL	PARAMETER	IMS16	20M-45	IMS1620M-55		IMS1620M-70		UNITS	NOTES
NO.	Standard	Alternate		MIN	MAX	MIN	MAX	MIN	MAX		NOTES
19	tavav	twc	Write Cycle Time	40		50		60		ns	
20	twlen	twp	Write Pulse Width	30	30			50		ns	
21	teleh	tcw	Chip Enable to End of Write	30		40		50		ns	
22	tdveh	tow	Data Setup to End of Write	20		25		30		ns	
23	tehdx	tDH	Data Hold after End of Write	0		0		0		ns	
24	taven	taw	Address Setup to End of Write	30		40		50		ns	
25	t EHAX	twn	Address Hold after End of Write	0		0		0		ns	
26	tAVEL	tas	Address Setup to Start of Write	0		0		0		ns	
27	twlaz	twz	Write Enable to Output Disable	0	15	0	20	0	25	ns	f, j


Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.

Note g: E and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be \ge VIH during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the outputs remain in the high impedance state.

Note j: Parameter guaranteed but not tested.

IMS1620M/IMS1620LM DEVICE OPERATION

The IMS1620M has two control inputs, a Chip Enable (/E) and Write Enable (/W), 14 address inputs (A0 -A13), and four Data I/O pins.

The /E input controls device selection as well as active and standby modes. With /E low, the device is selected and the 14 address inputs are decoded to select one 4-bit word out of 16,384. Read and Write operations on the memory cells are controlled by the /W input. With /E high, the device is deselected, the outputs are disabled and the power consumption is reduced to less than one-third of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $/W \ge V_{H}$ min with $/E \le V_{IL}$ max. Read access time is measured from either /E going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E is low. The outputs remain active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and long as /E remains low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by /E going low. As long as address is stable when /E goes low, valid data is at the outputs at the specified Chip Enable Access time. If address is not valid when /E goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITECYCLE

The write cycle of the IMS1620M is initiated by the latter of /E or /W to transition from a high to a low. In the case of /W falling last, the output buffers are turned on tELox after the falling edge of /E (just as in a read cycle). The output buffers are then turned off within twLozof the falling edge of /W. During this interval it is possible to have bus contention between devices with common I/O configurations. Therefore input data should not be active until twLoz to aviod bus contention. WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high at the end of the cycle with /E active, the output of the memory becomes active. The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of /E. With /E high the outputs remain in the high impedance state.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1620M. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance and reactance of the decoupling capacitor.

Current transients associated with the operation of any high speed device have very high frequency components. so line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad and be placed between each row of devices in the array. A larger tantalum capacitor of a sufficient value to eliminate low frequency ripple, should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path. The ground grid of the memory array should extend to the TTL driver periphery circuit area This will provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

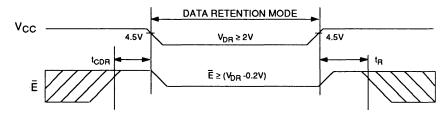
TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

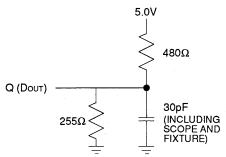
The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

DATA RETENTION (L version only) (-55°C \leq T_A \leq 125°C)


SYMBOL	PARAMETER	MIN	ТҮР*	МАХ	UNITS	NOTES
VDR	Data Retention Voltage	2.0			volts	$V_{IN} \le 0.2V \text{ or } \ge (V_{CC} - 0.2V) \overline{E} \ge (V_{CC} - 0.2V)$
ICCDR1	Data Retention Current		15	1200	μA	V _{CC} = 3.0 volts
ICCDR2	Data Retention Current		10	800	μA	V _{CC} = 2.0 volts
^t EHVCCL	Deselect Time (t _{CDR})	0			ns	j, k
t vcchel	Recovery Time (t _R)	t _{RC}			ns	j, k (t _{RC} = Read Cycle Time)

*Typical data retention parameters at 25°C.


Note j: Parameter guaranteed but not tested.

Note k: Supply recovery rate should not exceed 100mV per μ S from V_{DR} to V_{CC} min.

LOW V CC DATA RETENTION

FIGURE 1. OUTPUT LOAD

TRUTH TABLE

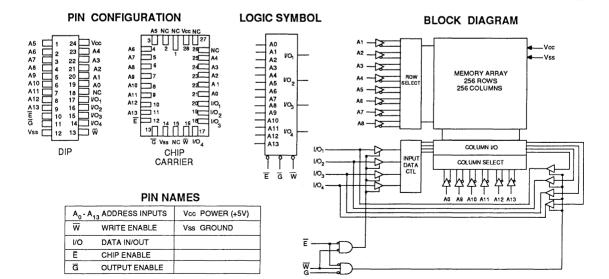
Ē	W	Q	MODE
н	х	HI-Z	Standby (Isb)
L	н	Dout	Read
L	L	HI-Z	Write

ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER			
DEVICE	SPEED PACKAGE		STANDARD	LOW POWER		
IMS 1620M IMS1620LM	45ns 45ns 55ns 55ns 70ns 70ns	CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC	IMS1620S-45M IMS1620N-45M IMS1620S-55M IMS1620N-55M IMS1620N-70M IMS1620N-70M	IMS1620LS45M IMS1620LN45M IMS1620LS55M IMS1620LN55M IMS1620LS70M IMS1620LN70M		

IMS1624M IMS1624LM CMOS High Performance 16K x 4 Static RAM MIL-STD-883C

FEATURES


- INMOS' Very High Speed CMOS
- Advanced Process 1.6 Micron Design Rules
- Full Military Temperature Operating Range (-55°C to +125°C)
- MIL-STD-883C Processing
- 16K x 4 Bit Organization with Output Enable
- · 45, 55, and 70 nsec Access Times
- Fully TTL Compatible
- · Common Data Input & Output
- Three-state Output
- Power Down Function
- Single +5V ± 10% Operation
- 24-Pin, 300-mil DIP (JEDEC Std.)
- · 28-Pin, 300-mil LCC (JEDEC Std.)
- Standard Military Drawing version available (refer to page B-7)
- Battery Backup Operation 2V Data Retention (L version only)

DESCRIPTION

The INMOS IMS1624M is a high performance 16Kx4 CMOS Static RAM processed in full compliance to MIL-STD-883C and guaranteed to operate over the full military temperature range. The IMS1624M provides maximum density and speed enhancements with the additional CMOS benefits of lower power and superior reliability.

The IMS1624M features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. The IMS1624M provides a Chip Enable (/E) function that can be used to place the device into a low-power standby mode. The IMS1624M also includes an Output Enable (/G) for fast access to data and enhanced bus contention control.

The IMS1624LM is a low power version offering battery backup data retention operating from a 2 volt supply.

IMS1624M/IMS1624LM

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to Vss	2.0 to 7.0V
Voltage on I/O Pins (13-16)1.0	to (Vcc+0.5)
Temperature Under Bias5	5° C to 125°C
Storage Temperature65	5° C to 150°C
Power Dissipation	1W
DC Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

(One output at a time, one second duration)

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	v	
Vін	Input Logic "1" Voltage	2.0		Vcc+0.5	v	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	v	All inputs
Ta	Ambient Operating Temperature	55	25	125	°C	400 linear ft/min air flow

*VIL min = -3 volts for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS (-55°C \leq Ta \leq +125°C) (Vcc = 5.0V \pm 10%)^a

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES		
ICC1	Average Vcc Power Supply Current		100	mA	tavav = tavav (min)		
ICC2	Vcc Power Supply Current (Standby,Stable TTL Input Levels) 30 mA		Ē ≥ Vi⊣ . All other inputs at				
IUUL	IMS1624L version 20	VIN S VIL OF 2 VIH					
lcc3	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		19	mA	\overline{E} \geq (Vcc - 0.2) . All other inputs at		
	IMS1624L version 8		VIN ≤ 0.2 or ≥ (Vcc - 0.2V)				
ICC4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		20	mA	$\overline{E} \ge (Vcc - 0.2)$. Inputs cycling at		
	IMS1624L version		8		ViN ≤ 0.2 or ≥ (Vcc - 0.2V)		
lilk	Input Leakage Current (Any Input)		±5	μA	Vcc = max ViN = Vss to Vcc		
Iolk	Off State Output Leakage Current		± 10	μA	Vcc = max Vin = Vss to Vcc		
Vон	Output Logic "1" Voltage	2.4		V	lон = -4mA		
Vol	Output Logic "0" Voltage		0.4	v	Iol = 8mA		

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS

Input Pulse LevelsVss to	зV
Input Rise and Fall Times	
Input and Output Timing Reference Levels1	
Output LoadSee Figu	re 1

CAPACITANCE^b (TA=25°C, f=1.0 MHZ)

SYMBOL	PARAMETER	МАХ	UNITS	CONDITIONS
CIN	Input Capacitance	4	рF	$\Delta V = 0$ to $3V$
Соит	Output Capacitance	7	рF	$\Delta V = 0$ to $3V$

Note b: This parameter is sampled and not 100% tested.

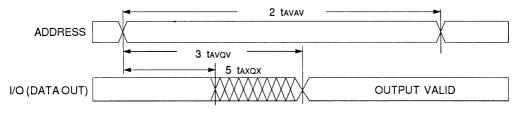
IMS1624M/IMS1624LM

RECOMMENDED AC OPERATING CONDITIONS (-55°C $\leq T \land \leq 125$ °C) (V cc = 5.0V $\pm 10\%$) **READ CYCLE**^g

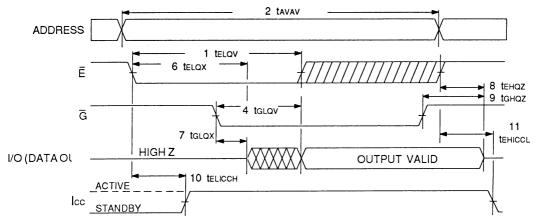
	SYM	IBOL		IMS162	24M-45	IMS162	24M-55	IMS162	24M-70	111170	NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
1	t ELQV	tacs	Chip Enable Access Time		45		55		70	ns	
2	tavav	tRC	Read Cycle Time	45		55		70		ns	с
3	tavov	taa	Address Access Time		45		55		70	ns	d
4	tGLQV	tOE	Output Enable Access Time		20		25		30	ns	
5	taxox	tон	Output Hold After Address Change	5		5		5		ns	
6	t ELQX	tLZ	Chip Enable to Output Active	5		5		5		ns	j
7	tGLQX	toLz	Output Enable to Output Active	5		5		5		ns	j
8	t EHQZ	tHZ	Chip Disable to Output Inactive	0	15	0	20	0	25	ns	f, j
9	tGHQZ	tonz	Output Disable to Output Inactive	0	15	0	20	0	25	ns	f, j
10	t ELICCH	tPU	Chip Enable to Power Up	0		0		0		ns	j
11	t EHICCL	tPD	Chip Enable to Power Down		45		55		70	ns	j
		tτ	Input Rise and Fall Times		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.

Note d: Device is continuously selected; $\overline{\overline{E}}$ low.


Note e: Measured between VIL max and VIH min.

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: \overline{E} and \overline{W} must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

READ CYCLE 1^{c,d}

READ CYCLE 2°

IMS1624M/LM

RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq TA \leq 125°C) (Vcc = 5.0V ±10%) WRITE CYCLE 1: \overline{W} CONTROLLED^{g,h}

	SYM	BOL	PARAMETER				IMS 1624-55		IS I-70		
No	Standard	Alternate		MIN	MAX	MIN	MAX	MIN	МАХ	UNITS	NOTES
12	tAVAV	t WC	Write Cycle Time	40		50		60		ns	
13	tWLWH	twp	Write Pulse Width	30		40		50		ns	
14	tELWH	tcw	Chip Enable to End of Write	30		40		50		ns	
15	tDVWH	t _{DW}	Data Setup to End of Write	20		25		30		ns	
16	tWHDX	t DH	Data Hold after End of Write	0		0		0		ns	
17	tAVWH	t AW	Address Setup to End of Write	30		40		50		ns	
18	tAVWL	t AS	Address Setup to Start of Write	0		0		0		ns	
19	tWHAX	tWR	Address Hold after End of Write	0		0		0		ns	
20	tWLQZ	t WZ	Write Enable to Output Disable	0	15	0	20	0	25	ns	f,j
21	tWHQX	tow	O/P Active after end of Write	0		0		0		ns	i,j

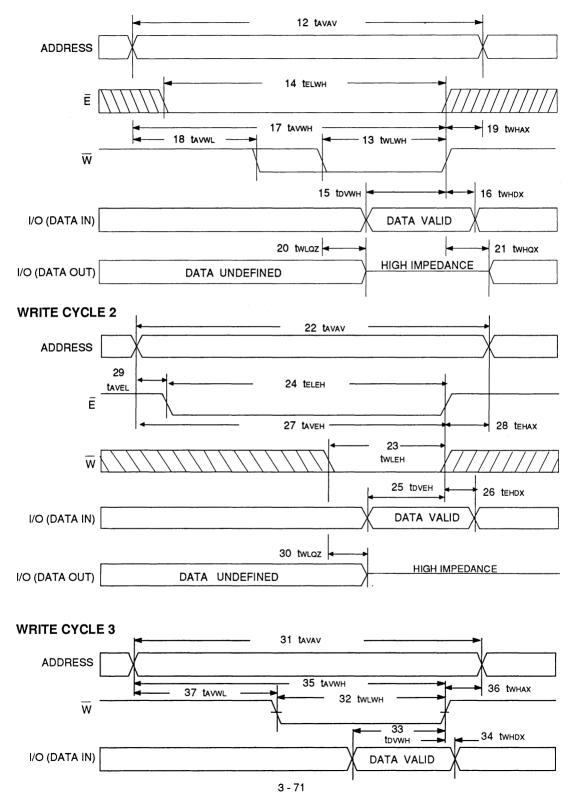
WRITE CYCLE 2: E CONTROLLED^{g,h}

	SYN	IBOL	PARAMETER			IMS 1624-55		NS 4-70	UNITS	NOTES	
No	Standard	Alternate		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
22	tAVAV	t WC	Write Cycle Time	40		50		60		ns	
23	tWLEH	twp	Write Pulse Width	30		40		50		ns	
24	tELEH	tcw	Chip Enable to End of Write	30		40		50		ns	
25	tDVEH	t DW	Data Setup to End of Write	20		25		30		ns	
26	tEHDX	t DH	Data Hold after End of Write	0		0		0		ns	
27	tAVEH	t AW	Address Setup to End of Write	30		40		50		ns	
28	tEHAX	t WR	Address Hold after End of Write	0		0		0		ns	
29	tAVEL	t AS	Address Setup to Start of Write	0		0		0		ns	
30	tWLQZ	t WZ	Write Enable to Output Disable	0	15	0	20	0	25	ns	f,j

WRITE CYCLE 3: Fast Write, Outputs Disabled^{g,h}

	SYN	IBOL	PARAMETER		IMS IMS 1624-45 1624-55			IMS 1624-70		UNITS	NOTES
No	Standard	Alternate		MIN	MAX	MIN	MAX	MIN	MAX		
31	tAVAV	t WC	Write Cycle Time	25		30		35		ns	
32	tWLWH	t WP	Write Pulse Width	20		25		30		ns	
33	tDVWH	t DW	Data Setup to End of Write	20		25		30		ns	
34	tWHDX	t DH	Data Hold after End of Write	0		0		0		ns	
35	t AVWH	t AW	Address Setup to End of Write	20		25		30		ns	
36	tWHAX	twR	Address Hold after End of Write	5		5		5		ns	
37	t AVWL	t AS	Address Setup to Start of Write	0		0		0		ns	

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: Ē, G and W must transition between VIH to VIL or VIL to VIH in a monotonic fashion.

Note h: \overline{E} or \overline{W} must be $\ge V_{H}$ during address transitions.

Note i: If \overline{W} is low when \overline{E} goes low, the outputs remain in the high impedance state.

Note j: Parameter guaranteed but not tested.

IMS1624M/IMS1624M

IMS1624/IMS1624LM DEVICE OPERATION

The IMS1624M has three control inputs, Chip Enable (/E), Output Enable (/G) and Write Enable (/W), 14 address inputs (A0 -A13), and four Data I/O pins.

The /E input controls device selection as well as active and standby modes. With /E low, the device is selected and the 14 address inputs are decoded to select one 4-bit word out of 16,384. Read and Write operations on the memory cells are controlled by the /W and /G inputs. With /E high, the device is deselected, the outputs are disabled and the power consumption is reduced to less than onefourth of the active mode power with TTL levels and even lower with CMOS levels.

READ CYCLE

A read cycle is defined as $/W \ge V \bowtie$ min with /E and $/G \le V \bowtie$ max. Read access time is measured from the latter of either /E or /G going low or from valid address.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E and /G are low. The outputs remain active throughout READ CYCLE 1 and are valid at the specified address access time. The address inputs may change at access time and long as /E and /G remain low, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated bythe latter of /E or /G going low. As long as address is stable when /E goes low, valid data is at the outputs at thelatter of specified Chip Enable Access or Output Enable Access times. If address is not valid when /E goes low, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

WRITECYCLE

The write cycle of the IMS1624M is initiated by the latter of /E or /W to transition from a high to a low. In the case of /W falling last, the output buffers are turned on tELOX after the falling edge of /E if /G is already low (just as in a read cycle). The output buffers are then turned off within twLoz of the falling edge of /W. During this interval it is possible to have bus contention between devices with common I/O configurations. Therefore input data should not be active until twLoz. To aviod bus contention, the /G input can be held high throughout the write operation.

WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high at the end of the cycle with /E active, the output of the memory becomes active (if /G is low). The data from the memory will be the same as the input data unless the input data or address changes.

WRITE CYCLE 2 waveform shows a write cycle terminated by /E going high. Data set-up and hold times are referenced to the rising edge of /E. With /E high the outputs remain in the high impedance state.

WRITE CYCLE 3 waveform shows a write cycle controlled by /W, with /G high and /E low throughout the cycle. As the outputs will not become active during this operation, maximum data bandwidth is provided by allowing very short write cycles and eliminating any bus contention considerations.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper power trace layout and placement of decoupling capacitors to maintain the operating margins of the IMS1624M. The impedance in the decoupling path from the power pin through the decoupling capacitor to the ground pin should be kept to a minimum.

Current transients associated with the operation of any high speed device have very high frequency components, so line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as close to the devices with as short lead length as possible. The high frequency decoupling capacitor should have a value of 0.1 microfarad and be placed between each row of devices in the array. A larger capacitor to eliminate low frequency ripple should be placed near the edge connection where the power traces meet the backplane power. The larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path. The ground grid of the memory array should extend to the TTL driver periphery circuit area to provide a solid ground reference for the TTL drivers and prevent loss of operating margin of the drivers due to differential ground noise.

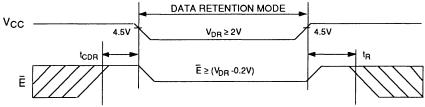
TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

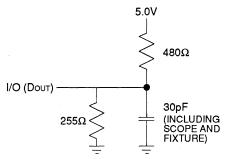
The recommended technique is to use series termination. The series termination technique has the advantage of drawing no DC current and using a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The resistor should be placed as close to the driver package as is practical. The line should be kept short by placing the driver-termination combination close to the memory array.

Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 33 ohm range will be required. Because each design will result in a different signal impedance, a resistor of predetermined value may not properly match the signal path impedance. The proper value of resistance should therefore be selected empirically.

SYMBOL	PARAMETER	MIN	ТҮР∗	MAX	UNITS	NOTES
V _{DR}	Data Retention Voltage	2.0			volts	$V_{IN} \le 0.2V \text{ or } \ge (V_{CC} - 0.2V) \overline{E} \ge (V_{CC} - 0.2V)$
ICCDR1	Data Retention Current		15	1200	μA	V _{CC} = 3.0 volts
ICCDR2	Data Retention Current		10	800	μA	V _{CC} = 2.0 volts
^t EHVCCL	Deselect Time (t _{CDR})	0			ns	j, k
t VCCHEL	Recovery Time (t _R)	t _{RC}			ns	j, k (t _{RC} = Read Cycle Time)


DATA RETENTION (L version only) (-55°C \leq T_A \leq 125°C)

*Typical data retention parameters at 25°C.


Note j: Parameter guaranteed but not tested.

Note k: Supply recovery rate should not exceed 100mV per µS from VDR to VCC min.

LOW V CC DATA RETENTION

FIGURE 1. OUTPUT LOAD

TRUTH TABLE

Ē	W	G	I/O	MODE
н	х	х	HI-Z	Standby (Isb)
L	Н	н	HI-Z	Output Disable
L	Н	L	Dout	Read
L	L	х	Din	Write

Standard Military Drawing version available, see SMD Reference Guide

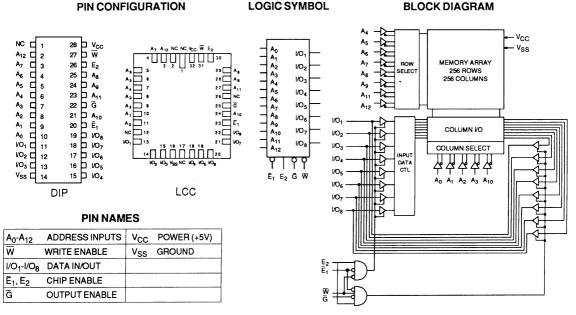
ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER				
DEVICE	SFEED FACKAGE		STANDARD	LOW POWER			
IMS 1624M IMS1624LM	45ns 45ns 55ns 55ns 70ns 70ns	CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC	IMS1624S-45M IMS1624N-45M IMS1624S-55M IMS1624N-55M IMS1624S-70M IMS1624N-70M	IMS1624LS45M IMS1624LN45M IMS1624LS55M IMS1624LN55M IMS1624LS70M IMS1624LN70M			

IMS1630M IMS1630LM CMOS High Performance 8K x 8 Static RAM MIL-STD-883C

FEATURES

- INMOS' Very High Speed CMOS
- Military Temperature Range (-55°C to 125°C)
- Advanced Process 1.6 Micron Design Rules
- 8K x 8 Bit Organization
- 45, 55 and 70 ns Address Access Times
- 45, 55 and 70 ns Chip Enable Access Times
- Fully TTL Compatible
- · Common Data Inputs and Outputs
- Single +5V ± 10% Operation
- Fast Write Cycle when Outputs Disabled
- Standard Military Drawing version available
- 28 pin DIP, 32 pin LCC (JEDEC Standard)
- Battery Backup Operation 2V data retention (L version only)


DESCRIPTION

The IMS1630M is a high speed CMOS 8K x 8 Static RAM processed in full compliance to MIL-STD-883C.

The IMS1630M features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. The IMS1630M provides two Chip Enable functions (/E1, E2) to place the circuit in a reduced power standby mode.

The IMS1630LM is a low power version offering battery backup data retention operating from a 2 volt supply.

The IMS1630M and IMS1630LM are VLSI Static RAMs intended for military applications that demand high performance and superior reliability.

IMS1630M/IMS1630LM

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to	Vss2.0 to 7.0V
Voltage on I/O	1.0 to (Vcc+0.5)V
Temperature Under Bias	55° C to 125°C
Storage Temperature	65° C to 150°C
Power Dissipation	1W
DC Output Current	25mA
(One output at a time, one second duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS

	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage	0	0	0	v	
ViH	Input Logic "1" Voltage	2.0		Vcc+0.5	V	All inputs
VIL	Input Logic "0" Voltage	-1.0*		0.8	v	All inputs
Ta	Ambient Operating Temperature	-55		+125	°C	400 linear ft/min air flow

 V_{IL} min = -3.0 volts for pulse width <20ns, note b.

DC ELECTRICAL CHARACTERISTICS $(-55^{\circ}C \le T_A \le 125^{\circ}C)$ $(Vcc = 5.0V \pm 10\%)^a$

SYMBOL	PARAMETER	MIN	МАХ	UNITS	NOTES
ICC1	Average Vcc Power Supply Current		85	mA	tAVAV = tAVAV (min)
ICC2	Vcc Power Supply Current (Standby,Stable TTL Input Levels)		30	mA	Ē ≥ Viн . All other inputs at Vi⊾ ≤ Vi∟ or ≥ Viн
ICC3	Vcc Power Supply Current (Standby, Stable CMOS Input Levels)		17	mA	Ē ≥ (Vcc - 0.2) . All other inputs at ViN ≤ 0.2 or ≥ (Vcc - 0.2V)
ICC4	Vcc Power Supply Current (Standby, Cycling CMOS Input Levels)		20	mA	Ē ≥ (Vcc - 0.2). All other inputs cycling at ViN ≤ 0.2 or ≥ (Vcc - 0.2V)
lilk	Input Leakage Current (Any Input)		±5	μA	Vcc = max ViN = Vss to Vcc
Ιοικ	Off State Output Leakage Current		±10	μA	Vcc = max ViN = Vss to Vcc
Vон	Output Logic "1" Voltage	2.4		V	loυτ = -4mA
Vol	Output Logic "0" Voltage		0.4	v	lout = 8mA

Note a: Icc is dependent on output loading and cycle rate, the specified values are obtained with the output unloaded.

AC TEST CONDITIONS	CAPACITANCE ^b (Ta=25°C, f=1.0MHZ) ^b				
Input Pulse LevelsVss to 3V Input Rise and Fall Times5ns Input and Output Timing Reference Levels 1.5V Output LoadSee Figure 1	SYMBOL	PARAMETER	MAX	UNITS	CONDITIONS
	CIN	Input Capacitance	5	рF	$\Delta V = 0$ to $3V$
	Соит	Output Capacitance	7	рF	$\Delta V = 0$ to $3V$

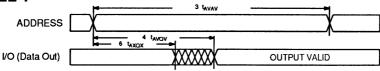
Note b: This parameter is sampled and not 100% tested.

RECOMMENDED AC OPERATING CONDITIONS (-55°C \leq T_A \leq 125°C)(V_{CC} = 5.0V \pm 10%) READ CYCLE g

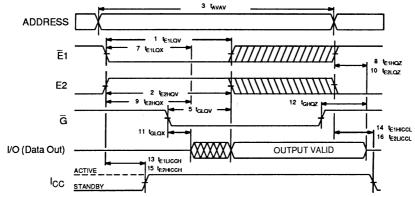
NO.	SYMBO		DADAMETER	1630		1630	M-55	1630		UNITS	NOTEO
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MiN	MAX	MIN	MAX	UNITS	NOTES
1	^t E1LQV	tACS	Chip Enable Access Time		45		55		70	ns	
2	te2HQV	t _{ACS}	Chip Enable Access Time		45		55		70	ns	
3	^t AVAV	tRC	Read Cycle Time	45		55		70		ns	c
4	t _{AVQV}	t _{AA}	Address Access Time		45		55		70	ns	d
5	^t GLQV	^t OE	Output Enable to Data Valid		15		20		25	ns	
6	tAXQX	^t он	Output Hold After Address Change	5		5		5		ns	÷
7	t _{E1LQX}	٤z	Chip Enable to Output Active	5		5		5		ns	
8	t _{E1HQZ}	ŧнz	Chip Disable to Output Inactive	0	20	0	25	0	25	ns	f, j
9	t _{E2HQX}	٤z	Chip Enable to Output Active	5		5		5		ns	
10	te2LQZ	ŧнz	Chip Disable to Output Inactive	0	20	0	25	0	25	ns	f, j
11	^t GLQX	٤z	Output Enable to Output Active	5		5		5		ns	
12	t _{GHQZ}	ŧнz	Output Disable to Output Inactive	0	20	0	25	0	25	ns	f, j
13	tE1LICCH	t _{PU}	Chip Enable to Power Up	0		0		0		ns	j
14	tE1HICCL	t _{PD}	Chip Enable to Power Down		25		30		35	ns	j
15	tE2HICCH	^t PU	Chip Enable to Power Up	0		0		0		ns	j
16	t _{E2LICCL}	t _{PD}	Chip Disable to Power Down		25		30		35	ns	j
		tT	Input Rise and Fall Times		50		50		50	ns	e, j

Note c: For READ CYCLE 1 & 2, \overline{W} is high for entire cycle.

Note d: Device is continuously selected, E1 low, G low and E2 high.


Note e: Measured between V_{IL} max and V_{IH} min.

Note f: Measured ±200mV from steady state output voltage. Load capacitance is 5pF.


Note g: $\overline{E}1$, E2, \overline{G} and \overline{W} must transition between V_{IH} to V_{IL} or V_{IL} to V_{IH} in a monotonic fashion.

Note j: Parameter guaranteed but not tested.

READ CYCLE 1^{c, d}

READ CYCLE 2°

RECOMMENDED AC OPERATING CONDITIONS (-55°C $\leq T_A \leq 125°C$)(V_{CC} = 5.0V ± 10%) WRITE CYCLE 1: W CONTROLLED^{9, h}

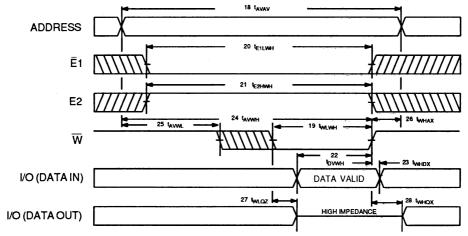
NO.	SYM		PARAMETER		M-45	1630		1630		UNITS	NOTES
<u>no.</u>	Standard	Alternate	FANAMLILN	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
18	^t avav	twc	Write Cycle Time	45		55		70		ns	
19	twLwH	t _{WP}	Write Pulse Width	35		45		50		ns	
20	t _{E1LWH}	tcw	Chip Enable 1 to End of Write	35		45		50		ns	
21	t _{E2HWH}	^t cw	Chip Enable 2 to End of Write	35		45		50		ns	
22	t _{DVWH}	t _{DW}	Data Set-up to End of Write	20		25		25		ns	
23	twhdx	t _{DH}	Data Hold After End of Write	0		0		0		ns	
24	t _{AVWH}	t _{AW}	Address Set-up to End of Write	35		45		50		ns	
25	t _{AVWL}	t _{AS}	Address Set-up to Start of Write	0		0		0		ns	
26	t _{WHAX}	twr	Address Hold After End of Write	0		0		0		ns	
27	twlaz,	t _{WZ}	Write Enable to Output Disable	0	20	0	25	0	25	ns	f, j
28	twhax	tow	Output Active After End of Write	5		5		5		ns	i, j

WRITE CYCLE 2: E1 or E2 CONTROLLED^{9, h}

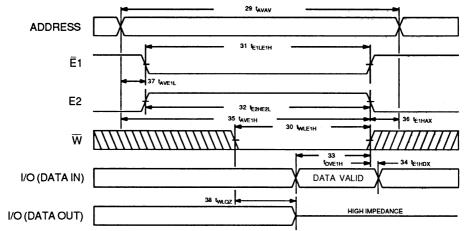
NO.	SYMB		DADAWETED	1630	M-45	1630	M-55	1630	M-70	UNITS	NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
29	t _{AVAV}	twc	Write Cycle Time	45		55		70		ns	
30	^t WLE1H	t _{WP}	Write Pulse Width	35		45		50		ns	
31	t _{E1} LE1H	tcw	Chip Enable 1 to End of Write	35		45		50		ns	
32	tE2HE2L	^t cw	Chip Enable 2 to End of Write	35		45		50		ns	
33	^t DVE1H	t _{DW}	Data Set-up to End of Write	20		25		25		ns	
34	^t E1HDX	t _{DH}	Data Hold After End of Write	0		0		0		ns	
35	^t AVE1H	tAW	Address Set-up to End of Write	35		45		50		ns	
36	^t E1HAX	t _{AS}	Address Hold After End of Write	0		0		0		ns	
37	^t AVE1L	^t WR	Address Set-up to Start of Write	0		0		0		ns	
38	^t wlqz	twz	Write Enable to Output Disable	0	20	0	25	0	25	ns	f, j

WRITE CYCLE 3: FAST WRITE, OUTPUTS DISABLED (DEVICE CONTINUOUSLY SELECTED, G HIGH)^{g, h}

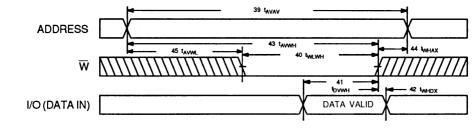
NO.	SYM	BOL	DADAMETED	1630	M-45	1630	VI-55	1630M-70		LINUTO	NOTES
NO.	Standard	Alternate	PARAMETER	MIN	MIN MAX		MAX	MIN MAX		UNITS	NUTES
39	^t avav	twc	Write Cycle Time	25		30		35		ns	
40	twlwh	twp	Write Pulse Width	20		25		30		ns	
41	t _{DVWH}	t _{DW}	Data Set-up to End of Write	20		25		30		ns	
42	twhdx	^t DH	Data Hold After End of Write	0		0		0		ns	
43	t _{AVWH}	t _{AW}	Address Set-up to End of Write	20		25		30		ns	
44	twhax	^t WR	Address Hold After End of Write	0		0		0		ns	
45	t _{AVWL}	t _{AS}	Address Set-up to Start of Write	0		0		0		ns	


Note f: Measured ±200mV from steady state output voltage. Output load capacitance is 5pF.

Note g: $\overline{E}1$, E2, \overline{G} and \overline{W} must transition between V_{IH} to \overline{V}_{IL} or V_{IL} to V_{IH} in a monotonic fashion.


Note h: $\overline{E1}$, E2 or \overline{W} must be $\ge V_{IH}$ during address transitions.

Note i: If \overline{W} is low when the later of $\overline{E}1$ goes low or E2 goes high, the outputs remain in high impedance state.


WRITE CYCLE 1

WRITE CYCLE 2

WRITE CYCLE 3

DEVICE OPERATION

The IMS1630M has four control inputs: Chip Enable 1 (/E1), Chip Enable 2 (E2), Write Enable (/W), and Output Enable (/G). There are also thirteen address inputs (A0 - A12) and eight Data I/O lines (I/O 1 - I/O 8). The Enable inputs control device selection as well as active and standby modes. The /W input controls the mode of operation (Read or Write). The /G input controls only the state of the eight output drivers.

With both /E1 low and E2 high, the device is selected and the thirteen address inputs are decoded to select one 8-bit word out of 8k words. Read and Write operations on the memory cells are controlled by /W input. With either /E1 high or E2 low, the device is deselected, the output is disabled, and the power consumption is reduced to less than one-fourth of the active mode power. /G serves only to control the operation of the output drivers. When /G is high, the output drivers are in a high impedance state, independent of the /E1, E2 and /W inputs.

READ CYCLE

A read cycle is defined as $W \ge V_{IL}$ min. with $/E1 \le V_{IL}$ max. $E2 \ge V_{IH}$ min. and $/G \le V_{IL}$ max. Read access time is measured from the latter of either /E1 going low, E2 going high, valid address, or /G going low.

The READ CYCLE 1 waveform shows a read access that is initiated by a change in the address inputs while /E1 is low and E2 is high (with /G low). The output remains active throughout READ CYCLE 1 and is valid at the specified address access time. The address inputs may change at access time and the output remains valid for a minimum of t_{AXOX} . As long as /E1 remains low and E2 is high, the cycle time is equal to the address access time.

The READ CYCLE 2 waveform shows a read access that is initiated by the latter of /E1 going low, E2 going high or /G going low. As long as address is stable when the latter of /E1 goes low or E2 goes high, valid data is at the output at the latter of tE1LQV, tE2HQV or tGLQV. If address is not valid when the latter of /E1 goes low or E2 goes high, the timing is as specified in READ CYCLE 1. Chip Enable access time is not affected by the duration of the deselect interval.

The /G signal controls the output buffer. /G is required to be low (along with /E1 low and E2 high) in order for I/O1 - I/O8 to be active.

WRITE CYCLE

The write cycle of the IMS1630M is initiated by the latter of /E1 or /W to transition from a high to a low level or E2 transitioning from low to high. The /G control will eliminate bus contention if held high throughout the duration of the write cycle. If /G is low during a /W controlled write cycle (Write Cycle 1), the output buffer will be turned on by the latter of $t_{\rm E1LOX}$ after the falling edge of /E1 or $t_{\rm E2HOX}$ after the rising

edge of E2. The output buffer is then turned off within t_{WLQZ} of the falling edge of /W. During this interval, it is possible to have bus contention between devices with common input/output connections. Therefore the recommended mode of operation is to keep /G high during the write cycle. During a write cycle, data on the inputs is written into the selected cells and the outputs are floating.

For any Write Cycle, t_{AVWL} , t_{AVE1L} or t_{AVE2H} must be met, depending on whether /E1, E2 or /W is the last to transition. After either /W or /E1 goes high or E2 goes low to terminate the write cycle, addresses may change. If address set-up and hold times are not met, contents of other cells may be altered in unpredictable ways. The fidelity of the /W control signal is very important. Excessive ringing on high to low transitions may cause signals to rise above V_{IL} max, violating the minimum /W pulse width specification - t_{WI} wH.

WRITE CYCLE 1 waveform shows a write cycle terminated by /W going high. Data set-up and hold times are referenced to the rising edge of /W. When /W goes high while /E1 is low and E2 is high, the outputs remain in a high impedance (unless /G is low). If /G is low when /W goes high at the end of a write cycle the data read from the memory will be the same as the data just written into the memory. Thus, no data bus contention will occur.

WRITE CYCLE 2 waveform shows a write cycle terminated by the latter of /E1 going high or E2 going high. Data set-up and hold times are referenced to the latter of the rising edge of /E1 or the falling edge of E2. With either /E1 high or E2 low the outputs remain in the high impedance state.

WRITE CYCLE 3 waveform shows a write cycle controlled by /W, with /G high , /E1 low and E2 high throughout the cycle. This cycle will allow the maximum data bandwidth for the write operation while eliminating bus contention. This very short write pulse (t_{WLWH}) allows high speed operation.

When using WRITE CYCLE 1, proper management of the /G control signal will avoid bus contention. If /G is low when /W goes high (with /E1 low and E2 high) the output buffers will be active t_{WHQX} after the rising edge of /W. Data out will be the same as the data just written, unless the address changes. If input data from the previous cycle is still valid after the address changes, contention may result. Contention may also result if the device is selected (/E1 low, E2 high, /G low) before /W goes low and input data is valid early in the cycle.The recommended mode of operation is to keep /G high except when reading data from the device, thus avoiding bus contention.

TTL VS. CMOS INPUT LEVELS

The IMS1630M is fully compatible with TTL input levels. The input circuitry of the IMS1630M is designed for maximum speed and also for conversion of TTL level signals to the CMOS levels required for internal operation. The IMS1630M consumes less power when CMOS levels are used instead of TTL levels. The lower CMOS lcc specifications (lcc3 and lcc4) may be achieved by using CMOS levels. The power consumption will be lower at typical TTL levels than at the worst case levels.

POWER DISTRIBUTION

Recommended power distribution schemes combine proper power trace layout and placement of decoupling capacitors to maintain the wide operating margins of the IMS1630M. The impedance in the decoupling path from the Vcc power pin through the decoupling capacitor to the ground pin should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line inductance and the inductance/reactance of the decoupling capacitor.

Current transients associated with the operation of high speed memories have very high frequency components, so line inductance is the dominating factor. To reduce the line inductance, the power trace and ground trace should be gridded or provided by separate power planes. The decoupling capacitor supplies energy for high frequency current transients and should be located as near the memory as possible, with the shortest lead lengths practical. The high frequency decoupling capacitor should have a minimum value of 0.1µF and be placed between the rows of memory devices in the array. A larger tantalum capacitor for low frequency current transients should be placed near the memory board edge connection where the power traces meet the backplane power distribution system. These larger capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path. The ground grid of the memory array should extend to the TTL driver periphery circuit. This will provide a solid ground reference for the drivers and prevent loss of operating margin due to differential ground noise.

TERMINATION

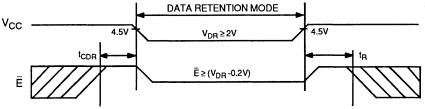
Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propagating down the lines, especially low going TTL signals, line termination is recommended. The termination may be either series or parallel.

The recommended series termination technique uses no DC current and a minimum number of components. This is accomplished by placing a series resistor in the signal line at the output of the TTL driver to dampen the reflection on the line. The termination resistor should be placed as close to the driver package as possible. The line should be kept short by placing the driver-termination combination close to the memory array.

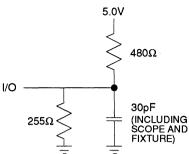
Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10 to 330hm range will be required. Because the characteristic impedance of each layout will be different, it is necessary to select the proper value of this resistor by trial and error. A resistor of predetermined value may not properly terminate the transmission line.

Proper power distribution techniques, including adequate use of decoupling capacitors, and proper termination of TTL drive outputs are some of the most important yet basic guidelines that need to be followed when designing and building a memory board. The guidelines are intended to maintain the operating margins of all devices on the memory board by providing a quiet environment free of noise spikes, undershoot, and excessive ringing. It is wise to verify signal fidelity by observation utilizing a wideband oscilloscope and probe.

SYMBOL	PARAMETER	MIN	TYP*	МАХ	UNITS	NOTES
V _{DR}	Data Retention Voltage	2.0			volts	$V_{IN} \le 0.2V \text{ or } \ge (V_{CC} - 0.2V) \vec{E} \ge (V_{CC} - 0.2V)$
ICCDR1	Data Retention Current		15	1200	μA	V _{CC} = 3.0 volts
ICCDR2	Data Retention Current		10	800	μA	V _{CC} = 2.0 volts
tEHVCCL	Deselect Time (t _{CDR})	0			ns	j, k
t VCCHEL	Recovery Time (t _R)	tRC			ns	j, k (t _{RC} = Read Cycle time)


DATA RETENTION (L version only) (-55°C \leq T_A \leq 125°C)

*Typical data retention parameters at 25°C.


Note j: Parameter guaranteed but not tested.

Note k: Supply recovery rate should not exceed 100mV per uS from VDR to VCC min.

LOW V_{CC} DATA RETENTION

FIGURE 1. OUTPUT LOAD

E1	E2	Ŵ	G	I/O	MODE							
Н	x	х	x	HI-Z	Standby (Isb)							
X	L	X	X	HI-Z	Standby(lsb)							
L	н	н	н	HI-Z	Output disable							
L	Н	н	L	Dout	Read							
L	н	L	x	Din	Write							

TRUTH TABLE

Standard Military Drawing version available, see SMD Reference Guide

ORDERING INFORMATION

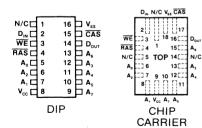
DEVICE	SPEED	PACKAGE	PART NUMBER				
DEVICE			STANDARD	LOW POWER			
IMS 1630M IMS1630LM	45ns 45ns 55ns 55ns 70ns 70ns	CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC CERAMIC DIP CERAMIC LCC	IMS1630S-45M IMS1630N-45M IMS1630S-55M IMS1630N-55M IMS1630S-70M IMS1630N-70M	IMS1630LS45M IMS1630LN45M IMS1630LS55M IMS1630LN55M IMS1630LS70M IMS1630LN70M			

IMS2600M High Performance 64Kx1 Dynamic RAM MIL-STD-883C

FEATURES

- Full Military DRAM Temperature Operating Range (-55°C to +110°C)
- MIL-STD-883C Processing
- 100, 120 and 150nsec RAS Access Times
- · Cycle Times of 160, 190 and 230ns
- Low Power: 28mW Standby 358mW Active (350ns Cycle Time) 468mW Active (160ns Cycle Time)
- On-Chip Refresh using CAS-before-RAS
- 4ms / 256 Cycle Refresh, Pin 1 left as N/C for 256K expansion
- RAS-Only Refresh Capability
- Dout Hold under CAS control
- JEDEC Standard 16-pin Configuration
- Read, Write Read-Modify-Write Capability both on Single Bit and in Nibble Mode Operation

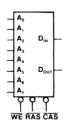
DESCRIPTION

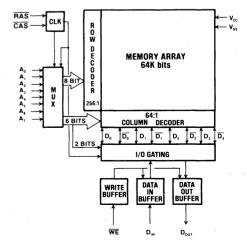

The INMOS IMS2600M 64Kx1 Dynamic RAM is processed in full compliance to MIL-STD-883C. This RAM is fabricated with INMOS' proprietary NMOS technology and utilizes innovative circuit techniques to achieve high performance, low power and wide operating margins.

Multiplexed addresses allows the IMS2600M to be packaged in the conventional 16 pin DIP. Additionally, the IMS2600M features new functional enhancements that make it more versatile than previous dynamic RAMs. CAS-before-RAS Refresh is an "on-chip" refresh mechanism that is upward compatible to 256K generations because pin 1 is left as a no connect. "Nibble Mode" also provides high speed serial access of 4 bits of data, thus providing the system equivalent of 4-way interleaving on chip.

The IMS2600M is fully TTL compatible on all linputs and the output, and operates from a single $+5V \pm 10\%$ power supply.

The IMS2600M is a high speed VLSI RAM intended for military applications which demand high density as well as superior performance and reliability.


PIN CONFIGURATION


PIN NAMES

A0-A7	ADDRESS INPUTS
CAS	COLUMN ADDRESS STROBE
RAS	ROW ADDRESS STROBE
DIN	DATA IN
Dout	DATA OUT
WE	WRITE ENABLE
V _{cc}	+5 VOLT SUPPLY INPUT
Vss	GROUND

LOGIC SYMBOL

BLOCK DIAGRAM

IMS2600M

DEVICE OPERATION

The IMS2600M contains 65536 (216) bits of information as 256 (2⁸) rows by 256 (2⁸) columns. The sixteen addresses for unique bit selection are time-division multiplexed over eight address lines under control of the Row Address Strobe (RAS) and Column Address Strobe (\overline{CAS}) clocks. The normal sequence of \overline{RAS} and \overline{CAS} requires that CAS is high as RAS goes low. This causes the eight address inputs to be latched and decoded for selection of one of the 256 rows. The row addresses must be held for the specified period $[t_{BAH}(min)]$ and then they may be switched to the appropriate column address. After the column addresses are stable for the specified column address setup time, CAS may be brought low. This causes the eight address inputs to be latched and used to select a single column in the specified row. The cycle is terminated by bringing RAS high. A new cycle may be initiated after RAS has been high for the specified precharge interval [t_{RP} (min)]. RAS and CAS must be properly overlapped and once brought low they must remain low for their specified pulse widths.

READ CYCLE

<u>A</u> read cycle is performed by sequencing RAS and CAS as described above while holding the WE input high during the period when RAS and CAS are both low. The read access time will be determined by the actual timing relationship between RAS and CAS. If CAS goes low within the specified RAS-to-CAS delay [t_{RCD} (max)], then the access time will be determined by RAS and be equal to t_{RAC} (max). If CAS occurs later than t_{RCD} (max) then the access time is measured from CAS and will be equal to t_{CAC} (max).

WRITE CYCLE

The IMS2600M will perform three types of write cycles: Early-Write, Late-Write or Read-Modify-Write. The difference between these cycles is that on an Early-Write D_{OUT} will remain open and on a Late-Write or Read-Modify-Write D_{OUT} will reflect the contents of the addressed cell before it was written.

The type of write cycle that is performed is determined by the relationship between \overline{CAS} and \overline{WE} . For Early-Write cycles \overline{WE} occurs before \overline{CAS} goes low, and D_{IN} setup is referenced to the falling edge of \overline{CAS} . For Late-Write or Read-Modify-Write cycles \overline{WE} occurs after \overline{CAS} , and D_{IN} setup is referenced to the falling edge of \overline{WE} .

The choice of write cycle timing is usually very system dependent and the different modes are made available to accommodate these differences. In general, the Early-Write timing is most appropriate for systems that have a bidirectional data bus. Because D_{OUT} remains inactive during Early-Write cycles, the D_{IN} and D_{OUT} pins may be tied together without bus contention.

DEVICE SELECTION AND OUTPUT CONTROL

Selection of a memory <u>device</u> for <u>a read</u> or write operation requires that both <u>RAS</u> and <u>CAS</u> be sequenced. A device is not selected if <u>RAS</u> is sequenced while <u>CAS</u> remains high or if <u>CAS</u> is sequenced while <u>RAS</u> remains high. The device must receive a properly overlapped <u>RAS</u>/ <u>CAS</u> sequence to be selected.

Once a device is selected the state of D_{OUT} becomes

entirely controlled by \overline{CAS} . If \overline{CAS} remains low when \overline{RAS} goes high, D_{OUT} will remain in the state it was in when \overline{RAS} went high. The output will remain unchanged even if a \overline{RAS} sequence occurs while \overline{CAS} is held low.

REFRESH

The IMS2600M remembers data by storing charge on a capacitor. Because the charge will leak away over a period of time it is necessary to access the data in the cell (capacitor) periodically in order to fully restore the stored charge while it is still at a sufficiently high level to be properly detected. For the IMS2600M any RAS sequence will fully refresh an entire row of 256 bits. To ensure that all cells remain sufficiently refreshed, all 256 rows must be refreshed every 4 ms.

The addressing of the rows for refresh may be sourced either externally or internally. If the row refresh addresses are to be provided from an external source, CAS must be high when RAS goes low. If CAS is high when RAS goes low, any type of cycle (Read, Write, Read-Modify-Write or RAS only) will cause the addressed row to be refreshed.

If \overline{CAS} is low when \overline{RAS} falls, the IMS2600M will use an internal 8-bit counter as the source of the row addresses and will ignore the address inputs. This \overline{CAS} before- \overline{RAS} refresh mode is a refresh-only mode and no data access is allowed. Also, \overline{CAS} -before- \overline{RAS} refresh does not cause device selection and the state of D_{OUT} will remain unchanged.

NIBBLE MODE

The IMS2600M is designed to allow high-speed serial read, write or read-modify-write access of 2, 3 or 4 bits of data. The bits of data that may be accessed during Nibble Mode are determined by the eight row addresses and the most significant 6 bits of the column address. The low-order 2 bits of the column address (A_3, A_6) are used to select one of the 4 nibble bits for initial access. After the first bit is accessed the remaining nibble bits may be accessed by bringing CAS high then low (toggle) while RAS remains low. Toggling CAS causes A3 and A6 to be incremented internally while all other address bits are held constant and makes the next nibble bit available for read, write and/or read-modify-write access (See Table 1 for example). If more than 4 bits are accessed during Nibble Mode, the address sequence will begin to repeat. If any bit is written during an access, the new value will be read on any subsequent accesses.

In Nibble Mode, read, write and read-modify-write operations may be performed in any desired combination: (e.g., first bit read, second bit write, third bit readmodify-write, etc.)

		Table 1	
NIBBLE M	ODE AC	DRESSING	SEQUENCE EXAMPLE
SEQUENCE	NIBBLE BIT	ROW	COLUMN ADDRESSES A ₃₁ A ₆
			0.0
RAS/CAS	1	10101010	10101010 generated externally
toggle CAS	2	10101010	10101011
toggle CAS	3	10101010	10101000 generated
toggle CAS	4	10101010	10101001 internally
toggle CAS	1	10101010	10101010 sequence
A			repeats

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC relative to Vss1.0 to +7	7.0V
Storage Temperature (Ceramic) 65° C to + 7	150°C
Power Dissipation	1W
Short Circuit Output Current	JmA
(One Second Duration)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC OPERATING CONDITIONS a, b

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	
Vss	Supply Voltage		0		V	
Vін	Logic "1" Voltage	2.4		Vcc+1	V	
VIL	Logic "0" Voltage	-2.0		0.8	V	
TA	Ambient Operating Temperature	-55°		110	°C	Still Air

DC Electrical Characteristics (-55°C \leq T_A \leq 110°C, Vcc = 5.0V \pm 10%)^C

SYM	PARA	IETER	MIN	МАХ	UNIT	NOTES
lcc ₁	Average Vcc Power Supply (Dynamic Operating) Current	IMS2600M-10 IMS2600M-10 IMS2600M-12 IMS2600M-12 IMS2600M-15 IMS2600M-15		85 65 85 65 75 65	mA	tRC = 160ns, tRAS = 100ns tRC = 350ns, tRAS = 100ns tRC = 190ns, tRAS = 120ns tRC = 350ns, tRAS = 120ns tRC = 230ns, tRAS = 150ns tRC = 350ns, tRAS = 150ns
lcc ₂	Supply Current (Active)			20	mA	RAS & CAS ≤ Vi∟ (max)
lcc3	Standby Current			5.0	mA	RAS & CAS ≤ ViH (max)
lilk	Input Leakage Curr	ent (any input)		±10	μΑ	0V ≤VIN ≤ 5.5V (others = 0 V)
IOLK	Output Leakage Cu	irrent		±10	μΑ	Dout = Hi-Z, 0V ≤ Dout ≤ 5.5V
Vон	Output High Voltage		2.4		v	IOH = -5.0 mA
Vol	Output Low Voltage			0.4	v	ЮL =+5.0 mA

Note a: All voltage values in this data sheet are with respect to Vss.

b: After power-up, a pause of 500 µs followed by eight initialization memory cycles is required to achieve proper device operation. Any interval greater than 4 ms with RAS inactivity requires eight reinitialization cycles to achieve proper device operation.

c: lcc is dependent on output loading and cycle rates. Specified values are obtained with output open.

AC TEST CONDITIONS

Input Pulse Levels.....0 to 3V Input Rise and Fall Times......5ns between 0.8 and 2.4V Input and Output Timing Ref. Levels......0.8 and 2.4V Output Load......Equivalent to 2 TTL Loads and 50pF

CAPACITANCE

SYM.	PARAMETER	MAX	UNITS	COND.
Cin	I/P Cap RAS, CAS, WE	6	рF	d
CIN	I/P Cap. Addresses	5	рF	d
Соит	O/P Capacitance	7	рF	d o

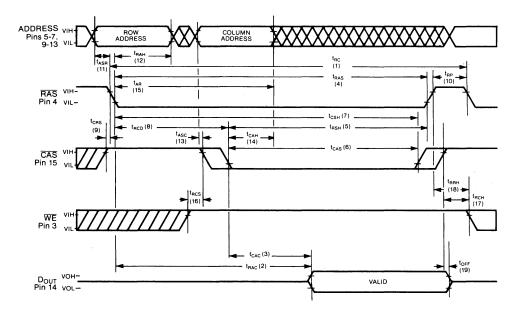
Note d: <u>Capacitance measured with BOONTON METER.</u> o: CAS = VIH to disable Dout

IMS2600M

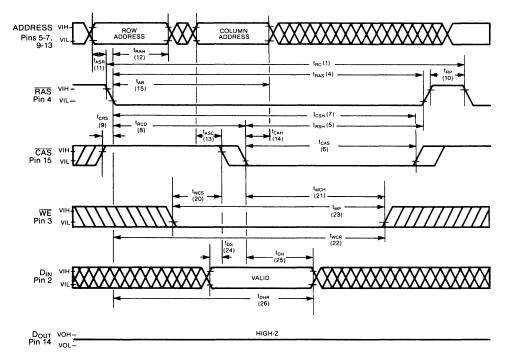
AC OPERATING CONDITIONS (-55°C \leq Ta \leq +110°C) (Vcc = 5.0V \pm 10%)

			IMS260	0M-10	IMS260	0M-12	IMS260	0M-15		
NO.	SYM.	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
1	tRC	Random Read Cycle Time	160		190		230		ns	
2	t RAC	Access Time from RAS		100		120		150	ns	h
3	tCAC	Access Time from CAS		60		75		90	ns	i
4	tras	RAS Pulse Width	100	10K	120	10K	150	10K	ns	
5	trsh	RAS Hold Time	60		75		90		ns	
6	tcas	CAS Pulse Width	60		75		90		ns	
7	tcsH	CAS Hold Time	100		120		150		ns	
8	tRCD	RAS to CAS Delay Time	15	40	17	45	20	60	ns	e, j
9	tCRS	CAS to RAS Set-up Time	0		0		0		ns	
10	tRP	RAS Precharge Time	50		60		70		ns	
11	tasr	Row Address Set-up Time	0		0		0		ns	
12	t RAH	Row Address Hold Time	10		12		15		ns	
13	tasc	Column Address Set-up Time	Iress Set-up Time 0 0			0		ns		
14	t CAH	Column Address Hold Time (Ref. CAS)	25		35		45		ns	
15	tar	Column Address Hold Time (Ref. RAS)	55		75		95		ns	
16	tRCS	Read Command Set-up Time	0		0		0		ns	
17	trch	Read Command Hold Time (Ref. CAS)	0		0		0		ns	k
18	trrh	Read Command Hold Time (Ref. RAS)	0		0		0		ns	k
19	tOFF	Output Buffer Turn-off Delay	0	25	0	25	0	30	ns	f
20	twcs	Write Command Set-up Time	0		0		0		ns	m
21	twch	Write Command Hold Time (Ref. CAS)	25		30		35		ns	
22	twcR	Write Command Hold Time (Ref. RAS)	65		70		85		ns	
23	twp	Write Pulse Width	20		25		30		ns	
24	tos	Data-in Set-up Time	0		0		0		ns	1
25	tон	Data-in Hold Time (Ref. CAS)	25		30		35		ns	I
26	t DHR	Data-in Hold Time (Ref. RAS)	55		70		85		ns	
27	trw	Read-Write Cycle Time	180		215		260		ns	
27	trmw	Read-Modify-Write Cycle Time	190		225		270		ns	
28	tRRW	Read-Write Cycle RAS Pulse Width	120		145		180		ns	
28	tRRW	Read-Modify-Write Cycle RAS P. W.	130		155		190		ns	
29	tCRW	Read-Write Cycle CAS Pulse Width	90		105		130		ns	
29	tCRW	Read-Modify-Write Cycle CAS P. W.	100		115		140		ns	
30	tRDW	RAS to Write Delay	100		110		140		ns	m
31	tcwD	CAS to Write Delay	60		70		90		ns	m
32	tRWL	Write Command to RAS Lead Time	25		30		35		ns	

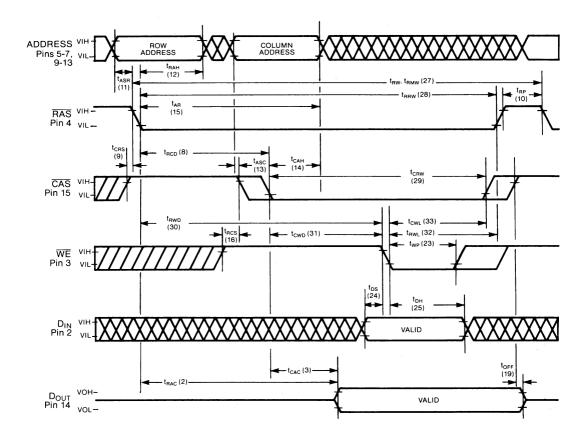
				IMS2600M-10		IMS2600M-12		IMS2600M-15		
NO.	SYM.	SYM. PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
33	tcwL	Write Command to CAS Lead Time	25		30		35		ns	
34	tNC	Nibble Mode Read Cycle Time	55		65		75		ns	
35	t NCAC	Nibble Mode Acces Time from CAS		25		30		35	ns	
36	tNCAS	Nibble Mode CAS Pulse Width	25		30		35		ns	
37	tNCP	Nibble Mode CAS Precharge Time	20		25		30		ns	
38	tNRSH	Nibble Mode RAS Hold Time	25		30		35		ns	
39	t NRMW	Nibble Mode RMW Cycle Time	80		95		110		ns	
40	t NCRW	Nibble Mode RMW CAS Pulse Width	45		60		70		ns	
41	tNCWD	Nibble Mode CAS to Write Delay	20		25		30		ns	
42	tFCS	Refresh Set-up for CAS (Ref. RAS)	0		0		0		ns	
43	tFCH	Refresh Hold Time (Ref. RAS)	15		17		20		ns	
	tREF	Refresh Period		4		4		4	ms	
	tτ	Input Rise and Fall Times	3	50	3	50	3	50	ns	n


AC OPERATING CONDITIONS ($-55^{\circ}C \le T_A \le 110^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$)

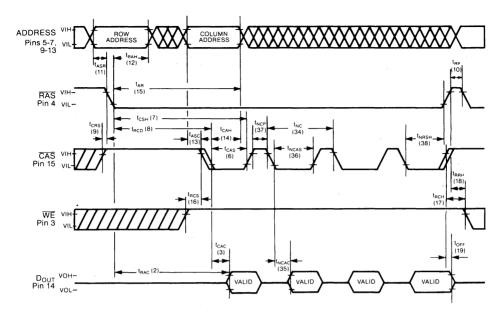
NOTES:


- e: t_{RCD} (max) is a derived parameter; t_{RCD} (max) = t_{RAC} (max) <u>- t_{CAC} (max); t_{RCD} (min) is a restrictive parameter due to CAS-before-RAS refresh.</u>
- f: toFF (max) is defined as the time at which the output achieves the open circuit condition.
- h: Assumes that $t_{RCD} \le t_{RCD}$ (max).If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds t_{RCD} (max).
- i: Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- j: Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is determined exclusively by t_{CAC} .
- k: Either t_{RRH} or t_{RCH} must be satisfied for a Read cycle.
- I: These parameters are referenced to CAS leading edge in Early-Write cycles, and to WE leading edge in Read-Write or Read-Modify-Write cycles.
- m: twcs, t_{CWD}, and t_{RWD} are restrictive operating parameters in Read-Write and Read-Modify-Write cycles only. If twcs \geq twcs (min) the cycle is an Early-Write cycle and the data output will remain open circuit throughout the entire cycle. If t_{CWD} \geq tcwD (min) and t_{RWD} \geq t_{RWD} (min) the cycle is a Read-Write and the data output will contain data read from the selected cell. If neither of the above conditions is met the condition of the <u>data</u> out is indeterminate at access time and remains so until CAS returns to V_{IH}.
- n: The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must transit between V_{IL} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner. Transition time measured between V_{IL} (max) and V_{IH} (min).

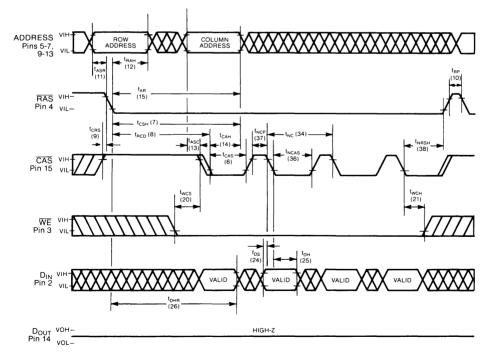
IMS2600M


READ CYCLE

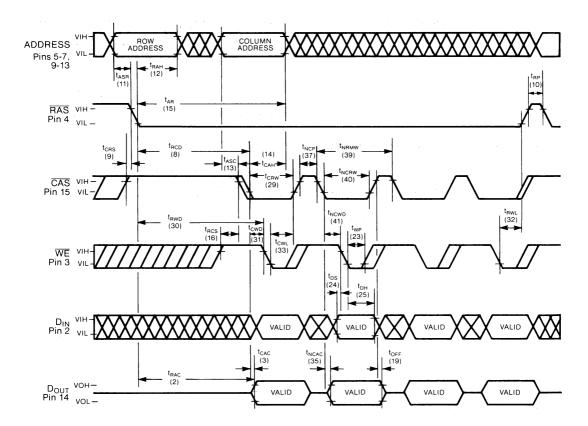
WRITE CYCLE



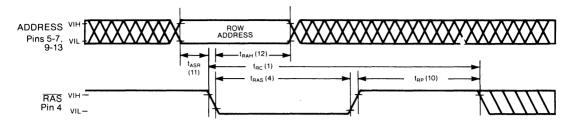
READ-WRITE/READ-MODIFY-WRITE CYCLE



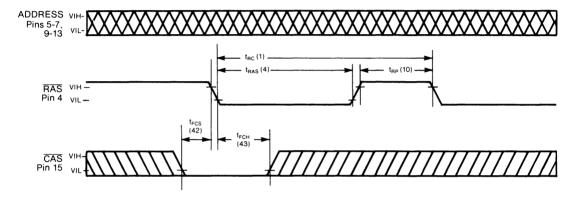
IMS2600M


NIBBLE MODE READ CYCLE

NIBBLE MODE WRITE CYCLE



NIBBLE MODE READ-MODIFY-WRITE CYCLE



IMS2600M

$\label{eq:response} \overline{\textbf{RAS}}\text{-} \textbf{ONLY REFRESH} \left[\overline{\textbf{CAS}} \geq \textbf{V}_{\text{IH}} \left(\text{min} \right) \right]$

CAS-BEFORE-RAS REFRESH

APPLICATION

To ensure proper operation of the IMS2600M in a system environment it is recommended that the following guidelines on board layout and power distribution be followed.

POWER DISTRIBUTION

The recommended power distribution scheme combines proper trace layout and placement of decoupling capacitors. The impedance in the decoupling path from the power pin (8) through the decoupling capacitor, to the ground pin (16) should be kept to a minimum. The impedance of this path is determined by the series impedance of the power line and the decoupling capacitor.

To reduce the power line impedance, it is recommended that the power trace and ground trace be gridded or provided by separate power planes. To prevent loss of signal margins due to differential ground noise, the ground grid of the memory array should be extended to the TTL drivers in the peripheral circuitry. A high-frequency decoupling capacitor with a value of 0.1μ F should be placed between the rows of memory devices in the array. A larger tantalum capacitor with a value between 22μ F and 47μ F should be placed near the memory board edge connection where the power traces meet the back-plane power distribution system. These large capacitors provide bulk energy storage to prevent voltage drop due to the main supply being located off the memory board and at the end of a long inductive path.

TERMINATION

Trace lines on a memory board in the array look to TTL driver signals like low impedance, unterminated transmission lines. In order to reduce or eliminate the reflections of the TTL signals propogating down the lines, especially low-going TTL signals, line termination is recommended. The termination may be either parallel or series but the series termination technique has the advantages of drawing no DC current and using a minimum of components. The recommended technique is to use series termination.

A series resistor in the signal line at the output of the TTL driver to match the source impedance of the TTL driver to the signal line will dampen the reflections on the line. The line should be kept short with the driver/ termination combination close to the memory array. Some experimentation will have to be done to find the proper value to use for the series termination to minimize reflections, but generally a series resistor in the 10Ω to 30Ω range will be required.

Proper power distribution techniques, including adequate use of decoupling capacitors, along with proper termination of TTL driver outputs, are among the most important, yet basic guidelines to be followed. These guidelines are intended to maintain the operating margins of all devices on the memory board by providing a quiet environment relatively free of noise spikes and signal reflections.

ORDERING INFORMATION

DEVICE	SPEED	PACKAGE	PART NUMBER
IMS 2600M	100ns	CERAMIC DIP	IMS2600S-100M
	100ns	CERAMIC LCC	IMS2600N-100M
	120ns	CERAMIC DIP	IMS2600K-100M
	120ns	CERAMIC DIP	IMS2600S-120M
	120ns	CERAMIC DIP	IMS2600N-120M
	120ns	CERAMIC DIP	IMS2600K-100M
	150ns	CERAMIC DIP	IMS2600S-150M
	150ns	CERAMIC LCC	IMS2600N-150M
	150ns	CERAMIC DIP	IMS2600K-100M

•

Appendix A

military qualification

A Military Qualification

A.1 Military qualification

A.1.1 Military product program

The INMOS Military Product Program has been developed to meet the increasingly demanding requirements for Class B memory product in accordance with paragraph 1.2.1 of MIL-STD-883 'Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices'.

All INMOS MIL-STD-883 Class B product is screened to the specifications of Method 5004 with electrical testing executed over the military temperature range -55°C to +125°C.

Each inspection lot is subjected to the requirements of method 5004 Group A Electrical sampling and Group B Mechanical and Environmental sample testing. Additionally, all new product and changes to product as defined in MIL-M-38510 paragraph 3.4.2 [major changes] is qualified per method 5005 Group C [Die related] and Group D [Package related tests]. Periodic Conformance Testing is carried out per the requirements of MIL-STD-883 paragraph 1.2.1 for all relevent die families and package types.

INMOS MIL-STD-883 product in hermetically sealed packages includes an organic die overcoat [RTV] for enhanced alpha-particle protection. INMOS uses the Alternate Die Inspection procedure in Method 5004 paragraph 3.3.1 which allows for a low magnification visual inspection but requires an additional Temperature Cycle screen in assembly, followed by a voltage stress and low level leakage electrical screen in final test.

Full details of INMOS' military processing are included in INMOS Specification 49-9047, 'General Military Processing Specification', which may be obtained upon request from INMOS.

Suitability for use in specific applications should be determined by using the guidelines of MIL-STD-454.

By specifying an INMOS military product, the user is assured of a product which has been subjected to the full Screening and Quality Conformance requirements of paragraph 1.2.1 of MIL-STD-883 in addition to the full range of in-house process, test and quality control functions designed to enhance the quality and reliability of all INMOS products.

A.1.2 Standard military drawing program

The INMOS Standard Military Drawing (SMD) program was introduced in 1986 to supply military and governmental products. The SMD Program was implemented by the US Government and its associated subcontractors to provide the industry with a single SMD for each military IC requirement. These SMDs are intended to replace the multiplicity of Source Control Drawings (SCDs) generated by each contractor. Components specified according to the SMD Program are standard military MIL-STD-883 compliant devices.

INMOS, and other IC manufacturers, initiate the development of SMDs in conjunction with military contractors who have significant demand for the particular device. Together they initiate an SMD proposal which the Defense Electronics Supply Center (DESC) screens and approves. Accepted SMDs are then circulated by DESC to industry vendors and consumers to obtain multiple sources and registered users.

INMOS fully supports the Standard Military Drawing Program and the DESC efforts to expand its usage.

Appendix B, which details cross reference information, lists each approved INMOS product by its SMD number and the corresponding INMOS part number.

A Military Qualification

Appendix B

cross reference

B.2

CY7C147-45M

IMS1203-45M

B.1 Product Cross Reference

AMD	INMOS	CYPRESS	INMOS	FUJITSU	INMOS
AM2147-35	IMS1203-35	CY7C148-25C	IMS1223-25	MB81C67A-25	IMS1403-25
M2147-45	IMS1203-45	CY7C148-35C	IMS1223-35	MB81C67-35	IMS1403-35
M2147-45M	IMS1203-45M	CY7C148-45C	IMS1223-45	MB81C67-45	IMS1403-45
M2147-55M	IMS1203-45M	CY7C148-35M	IMS1223-35M	MB81C67-55	IMS1403-55
		CY7C148-45M	IMS1203-45M		
M2148/9-35	IMS1223-35			MB81C68A-25	IMS1403-25
M2148/9-45	IMS1223-45	CY7C164-25	IMS1620-25	MB81C68-35	IMS1403-35
M2148/9-55	IMS1223-45	CY7C164-35	IMS1620-35	MB81C68-45	IMS1403-45
M2148/9-70	IMS1223-45	CY7C164-45	IMS1620-45	MB81C68-55	IMS1403-55
M2148/9-45M	IMS1223-45M	CY7C164-35M	IMS1620-35M		
M2148/9-55M	IMS1223-45M	CY7C164-45M	IMS1620-45M	MB81C71-25	IMS1600-25
M2148/9-70M	IMS1223-45M			MB81C71-35	IMS1600-35
		CY7C166-25	IMS1624-25	MB81C71-45	IMS1600-45
M2167-35	IMS1403-35	CY7C166-35	IMS1624-35	MB81C71-55	IMS1600-55
M2167-45	IMS1403-45	CY7C166-45	IMS1624-45		
M2167-55	IMS1403-55	CY7C166-35M	IMS1624-35M	MB81C74-25	IMS1620-25
M2167-70	IMS1403-55	CY7C166-45M	IMS1624-45M	MB81C74-35	IMS1620-35
M2167-45M	IMS1403-45M			MB81C74-45	IMS1620-45
M2167-55M	IMS1403-55M	CY7C167-25C	IMS1403-25	MB81C74-55	IMS1620-55
		CY7C167-35C	IMS1403-35		
M2168/9-35	IMS1423-35	CY7C167-45C	IMS1403-45	MB81C75-25	IMS1624-25
M2168/9-40	IMS1423-35	CY7C167-35M	IMS1403-35M	MB81C75-35	IMS1624-35
M2168/9-45	IMS1423-45	CY7C167-45M	IMS1403-45M	MB81C75-45	IMS1624-45
M2168/9-50	IMS1423-45			MB81C75-55	IMS1624-55
M2168/9-55	IMS1423-55	CY7C168-25C	IMS1423-25	L	
		CY7C168-35C	IMS1423-35		
M2168/9-70	IMS1423-55	CY7C168-40C	IMS1423-35	HITACHI	INMOS
M2168/9-45M	IMS1423-45M	CY7C168-45C	IMS1423-45		
M2168/9-55M	IMS1423-55M	CY7C168-35M	IMS1423-35M	UMG147 05	INC 1000 05
M2168/9-70M	IMS1423-55M	CY7C168-40M	IMS1423-35M	HM6147-35 HM6147-45	IMS1203-35 IMS1203-45
		CY7C168-45M	IMS1423-45M	HM6147-45	IMS1203-45
YPRESS	INMOS			HIM0147-55	111/31/203-45
		CY7C186-45M	IMS1630-45M	HM6148-35	IMS1223-35
Y2147-35C	IMS1203-35	CY7C186-55M	IMS1630-55M	HM6148-45	IMS1223-45
Y2147-45C	IMS1203-45	CY7C186-45LM	IMS1630L45M	HM6148-55	IMS1223-45
Y2147-55C	IMS1203-45	CY7C186-55LM	IMS1630L55M	11110140 00	101220 40
Y2147-45M	IMS1203-45M	0)/70/07 050		HM6167-45	IMS1403-45
Y2147-55M	IMS1203-45M	CY7C187-25C	IMS1600-25	HM6167-55	IMS1403-45
		CY7C187-35C	IMS1600-35	110107-33	10131403-33
Y2148/9-35C	IMS1223-35	CY7C187-45C	IMS1600-45	HM6267-25	IMS1403-25
Y2148/9-45C	IMS1223-45	CY7C187-35M	IMS1600-35M	HM6267-25	IMS1403-25
Y2148/9-55C	IMS1223-45	CY7C187-35LM	IMS1601L35M	HM6267-45	IMS1403-35 IMS1403-45
Y2148/9-45M	IMS1223-45M	CY7C187-45M	IMS1600-45M	11110207-43	11/13/14/03-45
Y2148/9-55M	IMS1223-45M	CY7C187-45LM	IMS1601L45M	HM6168-45	IMS1423-45
		L		HM6168-55	IMS1423-45
Y7C147-25C	IMS1203-25				
Y7C147-35C	IMS1203-35			HM6168-70	IMS1423-55
Y7C147-45C	IMS1203-45				
Y7C147-35M	IMS1203-35M				

HITACHI	INMOS	. IDL
HM6287-25	IMS1600-25	IDT7164-45
HM6287-35	IMS1600-35	IDT7164-55
HM6287-45	IMS1600-45	IDT7164-70
HM6287-55	IMS1600-45	1017104-70
		IDT7164L-4
HM6287L-25	IMS1601L-25	IDT7164L-5
HM6287L-35	IMS1601L-35	IDT7164L-7
HM6287L-45 HM6287L-70	IMS1601L-45 IMS1601L-55	IDT7187-25
HIVI0207L-70	INIS 160 1L-55	IDT7187-35
HM6288-25	IMS1620-25	IDT7187-45
HM6288-35	IMS1620-25	IDT7187-55
HWI0288-35	10131620-35	IDT7187-55
	INMOS	IDT7187L-2
		IDT7187L-3
HY61C67-25	IMS1403-25	IDT7187L-4
HY61C67-35	IMS1403-35	IDT7187L-5
HY61C67-45	IMS1403-45	IDT7187L-7
HY61C67-55	IMS1403-55	
		IDT7187-35
HY61C68-25	IMS1423-25	IDT7187-45
HY61C68-35	IMS1423-35	IDT7187-55
HY61C68-45	IMS1423-45	IDT7187-70
HY61C68-55	IMS1423-55	IDT7187L-3
HY62C87-35	IMS1600-35	IDT7187L-4
HY62C87-45	IMS1600-45	IDT7187L-5
HY62C87-55	IMS1600-55	IDT7187L-7
HY62C88-35	IMS1620-35	IDT7188-25
HY62C88-45	IMS1620-45	IDT7188-35
HY62C88-55	IMS1620-55	IDT7188-45
		IDT7188-55
		IDT7188-70
IDT	INMOS	IDT7188-35
IDT6167-25	IMS1403-25	IDT7188-45
IDT6167-35	IMS1403-35	IDT7188-55
IDT6167-45	IMS1403-45	IDT7188-70
IDT6167-55	IMS1403-55	
IDT6167-70	IMS1403-55	IDT7188L-3
		IDT7188L-4
IDT6167-35B	IMS1403-35M	IDT7188L-5
IDT6167-45B	IMS1403-45M	IDT7188L-7
IDT6167-55B	IMS1403-55M	
IDT6167-70B	IMS1403-70M	IDT7198-25
		IDT7198-35
IDT6168-25	IMS1423-25	IDT7198-45
IDT6168-35	IMS1423-35	IDT7198-55
IDT6168-45	IMS1423-45	IDT7198-70
IDT6168-55	IMS1423-55	
IDT6168-70	IMS1423-55	IDT7198-35
		IDT7198-45
IDT6168-35B	IMS1423-35M	IDT7198-55
IDT6168-45B	IMS1423-45M	IDT7198-70
IDT6168-55B	IMS1423-55M	
IDT6168-70B	IMS1423-70M	IDT7198L-3
		IDT7198L-4
		IDT7198L-5
		IDT71981-7

. IDT	INMOS
IDT7164-45B	IMS1630-45M
IDT7164-55B	IMS1630-55M
IDT7164-70B	IMS1630-70M
IDT7164L-45B IDT7164L-55B IDT7164L-70B	IMS1630L55M
IDT7187-25	IMS1600-25
IDT7187-35	IMS1600-35
IDT7187-45	IMS1600-45
IDT7187-55	IMS1600-55
IDT7187-70	IMS1600-55
IDT7187L-25	IMS1601L-25
IDT7187L-35	IMS1601L-35
IDT7187L-45	IMS1601L-45
IDT7187L-55	IMS1601L-55
IDT7187L-70	IMS1601L-55
IDT7187-35B	IMS1600-35M
IDT7187-45B	IMS1600-45M
IDT7187-55B	IMS1600-55M
IDT7187-70B	IMS1600-55M
IDT7187L-35B	IMS1601L35M
IDT7187L-45B	IMS1601L45M
IDT7187L-55B	IMS1601L55M
IDT7187L-70B	IMS1601L55M
IDT7188-25	IMS1620-25
IDT7188-35	IMS1620-35
IDT7188-45	IMS1620-45
IDT7188-55	IMS1620-55
IDT7188-70	IMS1620-55
IDT7188-35B	IMS1620-35M
IDT7188-45B	IMS1620-45M
IDT7188-55B	IMS1620-55M
IDT7188-70B	IMS1620-70M
IDT7188L-35B	IMS1620L35M
IDT7188L-45B	IMS1620L45M
IDT7188L-55B	IMS1620L55M
IDT7188L-70B	IMS1620L70M
IDT7198-25	IMS1624-25
IDT7198-35	IMS1624-35
IDT7198-45	IMS1624-45
IDT7198-55	IMS1624-55
IDT7198-70	IMS1624-55
IDT7198-35B	IMS1624-35M
IDT7198-45B	IMS1624-45M
IDT7198-55B	IMS1624-55M
IDT7198-70B	IMS1624-70M
IDT7198L-35B	IMS1624L35M
IDT7198L-45B	IMS1624L45M
IDT7198L-55B	IMS1624L55M
IDT7198L-70B	IMS1624L70M

INTEL	INMOS
P2147-35M	IMS1203-35M
P2147-45M	IMS1203-45M
P2147-55M	IMS1203-55M
P2148-35M	IMS1223-35M
P2148-45M	IMS1223-45M
P2148-55M	IMS1223-55M
P2167-45M	IMS1403-45M
P2167-55M	IMS1403-55M
P2168-45M	IMS1423-45M
P2168-55M	IMS1423-55M
P2168-70M	IMS1423-70M

LATTICE	INMOS
SR16K4-35	IMS1423-35
SR16K4-45	IMS1423-45
SR16K4-55	IMS1423-55
SR16K4-45M	IMS1423-45M
SR16K4-55M	IMS1423-55M
SR64E4-35	IMS1624-35
SR64E4-45	IMS1624-45
SR64E4-55	IMS1624-55
SR64E4-45M	IMS1624-45M
SR64E4-55M	IMS1624-55M
SR64K1-35	IMS1600-35
SR64K1-45	IMS1600-45
SR64K1-55	IMS1600-55
SR64K1-45M	IMS1600-45M
SR64K1-55M	IMS1600-55M
SR64K4-35	IMS1620-35
SR64K4-45	IMS1620-45
SR64K4-55	IMS1620-55
SR64K4-45M	IMS1620-45M
SR64K4-55M	IMS1620-55M
SR64K8-45M	IMS1630-45M
SR64K8-55M	IMS1630-55M

B Cross Reler	ence
M-HARRIS	INMOS
HM65747-25	IMS1203-25
HM65747-35	IMS1203-35
HM65747-45	IMS1203-45
HM65748-25	IMS1223-25
HM65748-35	IMS1223-35
HM65748-45	IMS1223-45
HM65767-25	IMS1403-25
HM65767-35	IMS1403-35
HM65767-45	IMS1403-45
HM65261-60	IMS1403-55
HM65261-70	IMS1403-55
HM65261-80	IMS1403-55
HM65768-25	IMS1423-25
HM65768-35	IMS1423-35
HM65768-45	IMS1423-45
HM65787-35	IMS1600-35
HM65787-45	IMS1600-45
HM65788/9-35	IMS1620-35
HM65788/9-45	IMS1620-45
HM2064-2/-8-15	IMS1630-70M
MICRON	INMOS
MT5C1601-25	IMS1403-25
MT5C1601-35	IMS1403-35
MT5C1604-25	IMS1423-25
MT5C1604-35	IMS1423-35
MT5C6401-25	IMS1600-25
MT5C6401-35	IMS1600-35
MT5C6401-45	IMS1600-45
MT5C6404-25	IMS1620-25
MT5C6404-35	IMS1620-35
MT5C6404-45	IMS1620-45
MT5C6405-25	IMS1624-25
MT5C6405-35	IMS1624-35
MT5C6405-45	IMS1624-45

M5M21C67P-35 M5M21C67P-55 IMS1403-35 IMS1403-45 IMS1403-55 M5M21C68P-35 M5M21C68P-35 IMS1423-35 IMS1423-45 IMS1423-45 M5M5165P-70 M5M5165P-15 IMS1630-55 IMS1630-55 M5M5165P-70 M5M5165P-12 IMS1630-55 IMS1630-55 M5M5165P-12 IMS1600-25 IMS1630-55 M5M5187AP-25 M5M5187P-35 IMS1600-25 IMS1600-35 M5M5188AP-25 M5M5188P-45 IMS1620-25 IMS1620-45 M5M5188AP-35 IMS1620-35 M5M5188P-45 IMS1620-35 M5M5188P-45 IMS1620-45 M56167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-35 IMS1423-45 MS6287-45 IMS1600-45 MS6288-45 IMS1600-55 MS6288-45 IMS1620-45 MS6288-45 IMS1620-45 MS6288-45 IMS1620-45 MS6288-45 IMS1620-45 MS6288-45 IMS1620-45 </th <th>MITSUBISHI</th> <th>INMOS</th>	MITSUBISHI	INMOS
M5M21C67P-45 M5M21C68P-35 M5M21C68P-45 M5M21C68P-55 IMS1423-35 IMS1423-45 IMS1423-55 M5M5165P-70 M5M5165P-12 IMS1630-55 IMS1630-55 M5M5165P-70 M5M5165P-12 IMS1600-25 IMS1630-55 M5M5165P-70 M5M5187AP-25 M5M5187P-35 IMS1600-25 IMS1600-45 IMS1600-45 M5M5187P-45 M5M5187P-55 IMS1600-45 IMS1600-45 M5M5187P-45 M5M5188P-55 IMS1600-45 IMS1620-45 IMS1620-45 M5M5188AP-35 M5M5188P-55 IMS1620-25 IMS1620-45 IMS1620-45 M5M5188AP-35 M5M5188P-55 IMS1620-45 IMS1620-35 M5M5188P-45 M5M5188P-45 IMS1620-45 IMS1620-35 M56167-35 IMS1403-35 IMS1403-35 MS6167-35 IMS1403-35 IMS1403-55 MS6167-35 IMS1403-55 MS6167-35 IMS1403-55 MS6167-35 IMS1403-55 MS6167-35 IMS1403-55 MS6167-35 IMS1423-55 MS6168-35 IMS1423-55 MS6168-35 IMS1600-55 MS6287-45 IMS1600-55 MS6287-70 IMS1620-45 MS6288-45 IMS1620-45 MS6288-55 IMS1620-45 MS6288-45 IMS1223-45	M5M21C67P-35	IMS1403-35
M5M21C68P-35 M5M21C68P-45 M5M21C68P-55 IMS1423-35 IMS1423-55 M5M5165P-70 M5M5165P-12 IMS1630-55 IMS1630-55 M5M5165P-12 IMS1600-25 IMS1630-55 M5M5165P-12 IMS1600-25 IMS1630-55 M5M5187AP-25 M5M5187P-35 IMS1600-25 IMS1600-45 M5M5187P-55 IMS1600-45 M5M5187P-55 IMS1620-25 IMS1620-35 M5M5188AP-25 M5M5188P-45 IMS1620-35 M5M5188P-35 IMS1620-35 M5M5188P-45 IMS1620-35 M5M5188P-35 IMS1620-35 M5M5188P-35 IMS1620-35 M5M5188P-35 IMS1620-35 M56167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-35 IMS1600-45 MS6287-45 IMS1600-55 MS6287-70 IMS1620-55 MS6288-75 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1223-45 MCM6147AP-55 IMS1203-45 MCM2114P20 <td></td> <td></td>		
M5M21C68P-45 M5M21C68P-55 IMS1423-45 IMS1423-55 M5M5165P-70 M5M5165P-12 IMS1630-55 IMS1630-55 M5M5165P-12 IMS1630-55 M5M5165P-12 IMS1600-25 IMS1630-55 M5M5187P-35 M5M5187P-45 IMS1600-25 IMS1600-35 M5M5187P-45 IMS1600-35 M5M5188AP-25 IMS1620-25 M5M5188AP-35 IMS1620-35 M5M5188P-45 IMS1620-35 M5M5188P-45 IMS1620-35 M5M5188P-35 IMS1620-35 M56167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6167-45 IMS1403-55 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-35 IMS1600-45 MS6287-45 IMS1600-55 MS6287-45 IMS1600-55 MS6287-45 IMS1600-55 MS6288-45 IMS1620-45 MS6288-45 IMS1620-55 MS6288-70 IMS1620-45 MS6288-45 IMS1223-45 MCM6147AP-55 IMS1223-45	M5M21C67P-55	IMS1403-55
M5M21C68P-55 IMS1423-55 M5M5165P-70 IMS1630-55 M5M5165P-12 IMS1630-55 M5M5165P-12 IMS1600-25 M5M5187P-35 IMS1600-25 M5M5187P-35 IMS1600-25 M5M5187P-35 IMS1600-25 M5M5187P-35 IMS1600-35 M5M5187P-45 IMS1620-25 M5M5188AP-35 IMS1620-35 M5M5188P-45 IMS1620-35 M5M5188P-55 IMS1620-45 M5M5188P-55 IMS1620-45 M5M5188P-55 IMS1620-45 M5M5188P-55 IMS1620-45 M56167-35 IMS1403-35 MS6167-45 IMS1403-55 MS6167-55 IMS1403-55 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6287-45 IMS1600-45 MS6287-45 IMS1600-45 MS6287-55 IMS1600-55 MS6288-70 IMS1620-45 MS6288-70 IMS1620-45 MS6288-70 IMS1620-45 MS6288-70 IMS1223-45	M5M21C68P-35	IMS1423-35
M5M5165P-70 IMS1630-55 M5M5165P-12 IMS1630-55 M5M5165P-12 IMS1600-25 M5M5187P-35 IMS1600-35 M5M5187P-45 IMS1600-35 M5M5187P-45 IMS1600-35 M5M5187P-45 IMS1600-35 M5M5187P-45 IMS1600-35 M5M5188AP-25 IMS1620-25 M5M5188AP-35 IMS1620-35 M5M5188P-45 IMS1620-45 M5M5188P-55 IMS1620-45 M5M5188P-55 IMS1620-45 M56167-35 IMS1403-35 MS6167-45 IMS1403-55 MS6167-55 IMS1403-55 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-45 IMS1423-55 MS6287-55 IMS1600-455 MS6287-55 IMS1600-55 MS6287-55 IMS1600-55 MS6288-70 IMS1620-45 MS6288-70 IMS1620-45 MS6288-70 IMS1620-45 MS6288-70 IMS1203-45 MCM6147AP-50 IMS1223-45		
M5M5165P-15 M5M5165P-12 IMS1630-55 M5M5165P-12 IMS1600-25 IMS1600-35 M5M5187P-35 M5M5187P-55 IMS1600-35 M5M5187P-45 IMS1600-35 M5M5187P-55 IMS1600-35 M5M5187P-55 IMS1600-35 M5M5188AP-25 M5M5188AP-35 IMS1620-25 M5M5188AP-35 IMS1620-35 M5M5188P-45 IMS1620-35 MS6167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6167-35 IMS1403-55 MS6167-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-35 IMS1600-45 MS6287-45 IMS1600-55 MS6287-70 IMS1600-55 MS6288-75 IMS1620-45 MS6288-75 IMS1620-45 MS6288-70 IMS1620-55 MS6288-70 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2167-55 <td< td=""><td>M5M21C68P-55</td><td>IMS1423-55</td></td<>	M5M21C68P-55	IMS1423-55
M5M5165P-12 IMS1630-55 M5M5187AP-25 IMS1600-25 M5M5187P-35 IMS1600-35 M5M5187P-45 IMS1600-45 M5M5187P-55 IMS1600-55 M5M5187P-55 IMS1620-25 M5M5188AP-25 IMS1620-35 M5M5188AP-35 IMS1620-35 M5M5188AP-35 IMS1620-35 M5M5188P-45 IMS1620-35 M5M5188P-45 IMS1620-35 M5M5188P-55 IMS1620-35 M5M5188P-45 IMS1620-35 M5M5188P-55 IMS1620-35 M56167-35 IMS1403-35 MS6167-35 IMS1403-35 MS6167-35 IMS1403-45 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-35 IMS1600-45 MS6287-45 IMS1600-55 MS6287-70 IMS1600-55 MS6288-75 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1223-45 MCM6147AP-55 IMS1223-45		
M5M5187P-35 IMS1600-35 M5M5187P-45 IMS1600-45 M5M5187P-55 IMS1600-55 M5M5188AP-25 IMS1620-25 M5M5188AP-35 IMS1620-45 M5M5188P-45 IMS1620-45 MSM5188P-55 IMS1620-55 MOSEL INMOS MS6167-35 IMS1403-35 MS6167-45 IMS1403-55 MS6167-55 IMS1403-55 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-35 IMS1423-45 MS6287-45 IMS1600-45 MS6287-45 IMS1600-55 MS6287-70 IMS1600-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-45 MCM6147AP-55 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM168-2		
M5M5187P-35 IMS1600-35 M5M5187P-45 IMS1600-45 M5M5187P-55 IMS1600-55 M5M5188AP-25 IMS1620-25 M5M5188AP-35 IMS1620-45 M5M5188P-45 IMS1620-45 MSM5188P-55 IMS1620-55 MOSEL INMOS MS6167-35 IMS1403-35 MS6167-45 IMS1403-55 MS6167-55 IMS1403-55 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-35 IMS1423-45 MS6287-45 IMS1600-45 MS6287-45 IMS1600-55 MS6287-70 IMS1600-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-45 MCM6147AP-55 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM168-2		
M5M5187P-45 M5M5187P-55 IMS1600-45 IMS1600-55 M5M5188AP-25 M5M5188AP-35 M5M5188P-45 IMS1620-25 IMS1620-35 IMS1620-45 M5M5188P-55 MOSEL INMOS MS6167-35 IMS1403-35 IMS1403-55 MS6167-45 IMS1403-55 MS6167-55 IMS1403-55 MS6168-35 IMS1403-55 MS6168-35 IMS1423-35 MS6168-35 IMS1403-55 MS6168-35 IMS1423-35 MS6168-35 IMS1600-45 MS6287-45 IMS1600-45 MS6287-55 IMS1600-55 MS6288-45 IMS1620-45 MS6288-70 IMS1620-55 MS6288-70 IMS1620-45 MS6288-70 IMS1620-45 MCM6147AP-55 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 <		
M5M5188AP-25 M5M5188AP-35 M5M5188P-45 M5M5188P-45 M5M5188P-55 IMS1620-25 IMS1620-35 IMS1620-35 IMS1620-35 MOSEL INMOS MS6167-35 IMS1403-35 IMS1403-35 MS6167-45 IMS1403-35 IMS1403-35 MS6167-35 IMS1403-35 IMS1403-55 IMS1403-35 MS6167-35 IMS1403-55 MS6167-35 IMS1403-55 MS6167-35 IMS1403-55 MS6167-35 IMS1403-55 MS6168-35 IMS1423-35 MS6168-35 IMS1620-45 MS6287-45 IMS1600-55 MS6287-70 IMS1600-55 MS6288-45 IMS1620-55 MS6288-55 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM16168-25 IMS1423-45 <tr< td=""><td></td><td></td></tr<>		
M5M5188AP-35 M5M5188P-45 M5M5188P-55 IMS1620-35 IMS1620-45 IMS1620-55 MOSEL INMOS MS6167-35 IMS1403-35 IMS1403-35 MS6167-45 IMS1403-35 IMS1403-45 IMS1403-55 MS6167-35 IMS1403-55 IMS1403-55 IMS1403-55 MS6168-35 IMS1423-35 IMS1403-55 IMS1423-35 MS6168-35 IMS1423-55 IMS1423-55 MS6168-55 IMS1423-55 IMS1423-55 MS6168-55 IMS1600-45 IMS1620-55 IMS1600-55 MS6287-70 IMS1600-55 IMS1620-45 IMS1620-55 MS6288-45 IMS1620-55 IMS1620-55 IMS1620-45 MS6288-70 IMS1620-45 IMS1620-55 MC6288-70 IMS1203-45 IMS1223-45 MCM6147AP-55 IMS1223-45 IMS1223-45 MCM2114P20 IMS1223-45 IMS1223-45 MCM2114P20 IMS1223-45 IMS1423-55 MCM2167-45 IMS1403-55 IMS1403-55 MCM2167-45 IMS1403-55 IMS1403-55 MCM2167-45 IMS1403-55 IMS1403-55 MCM6168-25 IMS1423-35 MCM6168-35	M5M5187P-55	IMS1600-55
M5M5188P-45 M5M5188P-55 IMS1620-45 IMS1620-55 MOSEL INMOS MS6167-35 IMS1403-35 MS6167-45 IMS1403-45 IMS1403-45 MS6167-55 IMS1403-55 MS6167-55 IMS1403-55 MS6168-35 IMS1423-35 MS6168-45 IMS1423-45 MS6168-55 IMS1423-55 MS6168-55 IMS1423-55 MS6168-55 IMS1423-55 MS6287-45 IMS1600-45 MS6287-70 IMS1600-55 MS6288-45 IMS1620-45 MS6288-55 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MCM6147AP-55 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1423-45 MCM2167-45 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-45 IMS1403-55 MCM2167-45 IMS1423-35 MCM6168-25 IMS1423-35 MCM6168-55	M5M5188AP-25	IMS1620-25
M5M5188P-55 IMS1620-55 MOSEL INMOS MS6167-35 IMS1403-35 MS6167-45 IMS1403-45 MS6167-55 IMS1403-55 MS6167-55 IMS1403-55 MS6167-55 IMS1403-55 MS6167-70 IMS1403-55 MS6168-35 IMS1423-35 MS6168-45 IMS1423-45 MS6168-55 IMS1423-55 MS6188-45 IMS1423-55 MS6287-45 IMS1600-45 MS6287-70 IMS1600-55 MS6288-45 IMS1620-45 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-45 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-45		
MOSEL INMOS MS6167-35 IMS1403-35 MS6167-45 IMS1403-45 MS6167-55 IMS1403-55 MS6167-70 IMS1403-55 MS6168-35 IMS1423-35 MS6168-45 IMS1423-45 MS6168-55 IMS1423-55 MS6287-45 IMS1600-45 MS6287-45 IMS1600-55 MS6287-70 IMS1600-55 MS6288-45 IMS1620-45 MS6288-45 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-35 MCM6168-55 IMS1423-55		
MS6167-35 IMS1403-35 MS6167-45 IMS1403-45 MS6167-55 IMS1403-55 MS6167-50 IMS1403-55 MS6167-70 IMS1403-55 MS6167-70 IMS1403-55 MS6168-35 IMS1423-35 MS6168-35 IMS1423-35 MS6168-55 IMS1423-55 MS6287-45 IMS1600-45 MS6287-70 IMS1600-55 MS6287-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1423-45 MCM6168-25 IMS1423-55 MCM6168-55 IMS1423-55 MCM6168-45<	1010101007-00	1020-55
MS6167-45 IMS1403-45 MS6167-55 IMS1403-55 MS6167-70 IMS1403-55 MS6168-35 IMS1423-35 MS6168-45 IMS1423-45 MS6168-55 IMS1423-55 MS6168-55 IMS1423-55 MS6287-45 IMS1600-45 MS6287-70 IMS1600-55 MS6288-45 IMS1620-45 MS6288-55 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MCM6147AP-55 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P30 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-45 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-35 MCM6168-55 IMS1423-55	MOSEL	INMOS
MS6167-45 IMS1403-45 MS6167-55 IMS1403-55 MS6167-70 IMS1403-55 MS6168-35 IMS1423-35 MS6168-45 IMS1423-45 MS6168-55 IMS1423-55 MS6168-55 IMS1423-55 MS6287-45 IMS1600-45 MS6287-70 IMS1600-55 MS6288-45 IMS1620-45 MS6288-55 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MCM6147AP-55 IMS1203-45 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P30 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-45 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-35 MCM6168-55 IMS1423-55	MS6167-35	IMS1403-35
MS6167-70 IMS1403-55 MS6168-35 IMS1423-35 MS6168-45 IMS1423-45 MS6168-55 IMS1423-55 MS6287-45 IMS1600-45 MS6287-55 IMS1600-55 MS6287-70 IMS1600-55 MS6288-45 IMS1620-45 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MCM6147AP-55 IMS1203-45 MCM6147AP-70 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1423-45 MCM6168-25 IMS1423-35 MCM6168-55 IMS1423-55	MS6167-45	
MS6168-35 IMS1423-35 MS6168-45 IMS1423-45 MS6168-55 IMS1423-55 MS6168-55 IMS1423-55 MS6287-45 IMS1600-45 MS6287-55 IMS1600-55 MS6287-70 IMS1600-55 MS6288-70 IMS1620-45 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-55 IMS1423-35 MCM6168-55 IMS1423-55		
MS6168-45 IMS1423-45 MS6168-55 IMS1423-55 MS6287-45 IMS1600-45 MS6287-55 IMS1600-55 MS6287-70 IMS1600-55 MS6287-70 IMS1600-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MC6147AP-55 IMS1203-45 MCM6147AP-70 IMS1203-45 MCM2114P25 IMS1223-45 MCM2114P25 IMS1223-45 MCM2114P25 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-55 IMS1423-35 MCM6168-35 IMS1423-45 MCM6168-45 IMS1423-55	MS6167-70	IMS1403-55
MS6168-55 IMS1423-55 MS6287-45 IMS1600-45 MS6287-55 IMS1600-55 MS6287-70 IMS1600-55 MS6288-70 IMS1620-55 MS6288-55 IMS1620-55 MS6288-70 IMS1620-55 MOTOROLA INMOS MCM6147AP-55 IMS1203-45 MCM6147AP-70 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-55 IMS1423-55		
MS6287-45 IMS1600-45 MS6287-55 IMS1600-55 MS6287-70 IMS1600-55 MS6287-70 IMS1620-55 MS6288-45 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MC6288-70 IMS1620-55 MCM6147AP-55 IMS1203-45 MCM6147AP-70 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2114P20 IMS1223-45 MCM2167-55 IMS1403-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-55 IMS1423-55		
MS6287-55 IMS1600-55 MS6287-70 IMS1600-55 MS6288-45 IMS1620-45 MS6288-55 IMS1620-55 MS6288-70 IMS1620-55 MOTOROLA INMOS MCM6147AP-55 IMS1203-45 MCM6147AP-70 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-45 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-45 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-55 IMS1423-35 MCM6168-55 IMS1423-55	M30100-33	11151423-55
MS6287-70 IMS1600-55 MS6288-45 IMS1620-45 MS6288-55 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MOTOROLA INMOS MCM6147AP-55 IMS1203-45 MCM6147AP-70 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P25 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-45 MCM6168-55 IMS1423-55		
MS6288-45 IMS1620-45 MS6288-55 IMS1620-55 MS6288-70 IMS1620-55 MS6288-70 IMS1620-55 MOTOROLA INMOS MCM6147AP-55 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P25 IMS1223-45 MCM2114P30 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-55 IMS1423-55		
MS6288-55 MS6288-70 IMS1620-55 IMS1620-55 MOTOROLA INMOS MCM6147AP-55 MCM6147AP-70 IMS1203-45 IMS1203-45 MCM2114P20 MCM2114P25 IMS1223-45 MCM2114P30 IMS1223-45 IMS1223-45 MCM2167-45 MCM2167-55 IMS1403-55 IMS1403-45 IMS1403-55 MCM6168-25 MCM6168-35 IMS1423-35 MCM6168-45 IMS1423-35 IMS1423-25 IMS1423-35 IMS1423-55		
MS6288-70 IMS1620-55 MOTOROLA INMOS MCM6147AP-55 IMS1203-45 MCM6147AP-70 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P25 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-45 IMS1403-45 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM2167-55 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-35 IMS1423-35 MCM6168-55 IMS1423-55		
MOTOROLA INMOS MCM6147AP-55 IMS1203-45 MCM6147AP-70 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P25 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-45 IMS1403-45 MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-55 IMS1423-55		
MCM6147AP-55 MCM6147AP-70 IMS1203-45 IMS1203-45 MCM2114P20 MCM2114P25 IMS1223-45 IMS1223-45 MCM2114P30 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-55 IMS1403-45 MCM2167-70 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-55 IMS1423-55		
MCM6147AP-70 IMS1203-45 MCM2114P20 IMS1223-45 MCM2114P25 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-55 IMS1403-45 MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-55 IMS1423-35	MOTOROLA	INMOS
MCM2114P20 IMS1223-45 MCM2114P25 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-55 IMS1403-45 MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-55 IMS1423-35	MCM6147AP-55	IMS1203-45
MCM2114P25 IMS1223-45 MCM2114P30 IMS1223-45 MCM2167-45 IMS1403-45 MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-55 IMS1423-35 MCM6168-55 IMS1423-55	MCM6147AP-70	IMS1203-45
MCM2114P30 IMS1223-45 MCM2167-45 IMS1403-45 MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-55 IMS1423-55		
MCM2167-45 IMS1403-45 MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-45 IMS1423-45 MCM6168-55 IMS1423-55		1
MCM2167-55 IMS1403-55 MCM2167-70 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-45 IMS1423-45 MCM6168-55 IMS1423-55	MCM2114P30	IMS1223-45
MCM2167-70 IMS1403-55 MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-45 IMS1423-45 MCM6168-55 IMS1423-55		
MCM6168-25 IMS1423-25 MCM6168-35 IMS1423-35 MCM6168-45 IMS1423-45 MCM6168-55 IMS1423-55		
MCM6168-35 IMS1423-35 MCM6168-45 IMS1423-45 MCM6168-55 IMS1423-55	MCM2167-70	IMS1403-55
MCM6168-45 IMS1423-45 MCM6168-55 IMS1423-55		
MCM6168-55 IMS1423-55		
MCM6168-70 IMS1423-55		
	MCM6168-70	IMS1423-55

MOTOROLA	INMOS
MCM6287-25	IMS1600-25
MCM6287-35	IMS1600-35
MCM6287-45	IMS1600-45
MCM6287-55	IMS1600-55
MCM62L87-25	IMS1601L-25
MCM62L87-35	IMS1601L-35
MCM62L87-45	IMS1601L-45
MCM62L87-55	IMS1601L-45
MCM6288-25	IMS1620-25
MCM6288-35	IMS1620-35
MCM6288-45	IMS1620-45
MCM6288-55	IMS1620-55
MCM6290-25	IMS1624-25
MCM6290-35	IMS1624-35
MCM6290-45 MCM6290-55	IMS1624-45 IMS1624-55
14101410290-55	11101024-33
NATIONAL	INMOS
NMC1600-C25	IMS1600-25
NMC1600-C35	IMS1600-35
NMC1600-C45	IMS1600-45
NMC1600-C55	IMS1600-55
NMC1600-C70	IMS1600-55
NMC1600-M55	IMS1600-55M
NMC1600-M70	IMS1600-70M
NMC1601-C45	IMS1601L-45
NMC1601-C55	IMS1601L-55
NMC1601-C70	IMS1601L-55
NMC1601-M55	IMS1601L-55M
NMC1601-M70	IMS1601L-70M
NMC1620-C25	IMS1620-25
NMC1620-C35	IMS1620-35
NMC1620-C45 NMC1620-C55	IMS1620-45 IMS1620-55
NMC1620-C55	IMS1620-55
NMC1620-M55	IMS1620-55M
NMC1620-M70	IMS1620-70M
NMC1621-45M	IMS1620L-45M
NMC2147H	IMS1203-35M
NMC2147H-1	IMS1203-35
NMC2147H-2	IMS1203-45
NMC2147H-3	IMS1203-45
NMC2147H-3	IMS1203-45M
NMC2147H-3L	IMS1203-45
NMC2148H-2	IMS1223-45
NMC2148H-3	IMS1223-55

NEC	INMOS	
uPD2147-25	IMS1203-25	
uPD2147-35	IMS1203-35	
uPD2147-45	IMS1203-45	
uPD4311-35	IMS1403-35	
uPD4311-45	IMS1403-45	
uPD4311-55	IMS1403-55	
uPD21467-55	IMS1403-55	
uPD21467-70	IMS1403-55	
uPD4314-35	IMS1423-35	
uPD4314-45	IMS1423-45	
uPD4314-55	IMS1423-55	
uPD4316-40	IMS1600-35	
uPD4316-45	IMS1600-45	
uPD4316-55	IMS1600-55	
uPD4316-70	IMS1600-55	
uPD4362-45	IMS1620-45	
uPD4362-55	IMS1620-55	
uPD4362-70	IMS1620-55	

PERFORMANCE	INMOS
P4C188-25	IMS1620-25
P4C188-35	IMS1620-35
P4C188-45	IMS1620-45
P4C188-55	IMS1620-55
SONY	INMOS
CXK5164-35	IMS1600-35
CXK5164-45	IMS1600-45
CXK5164-55	IMS1600-55
CXK5464-35	IMS1620-35
CXK5464-45	IMS1620-45
CXK5464-55	IMS1620-55
TOSHIBA	INMOS
TC55416-25	IMS1620-25
TC55416-35	IMS1620-35
TC55417-25	IMS1624-25
TC55417-35	IMS1624-35
TMM315	IMS1203-45
TMM315-1	IMS1203-45
TC5561-55	IMS1600-55
TC5561-70	IMS1600-70
TMM5562-35	IMS1620-35
TMM5562-45	IMS1620-45
TMM5562-55	IMS1620-55
TMM2068A-25	
TMM2068-35	IMS1423-35
TMM2068-45	IMS1423-45
TMM2068-55	IMS1423-55

B Cross Reference		
VITELIC	INMOS	
CXK5164-35	IMS1600-35	
CXK5164-45	IMS1600-45	
CXK5164-55	IMS1600-55	
CXK5464-35	IMS1620-35	
CXK5464-45	IMS1620-45	
CXK5464-55	IMS1620-55	
VLSI	INMOS	

VT20C50-25	IMS1423-25
VT20C68-25	IMS1423-25
VT20C68-35	IMS1423-35
VT20C68-45	IMS1423-45
VT20C69-25	IMS1423-25
VT20C69-35	IMS1423-35
VT62K54-25	IMS1620-25
VT62K54-35	IMS1620-35
VT62K54-45	IMS1620-45
VT62K54-55	IMS1620-55

B.2 Standard Military Drawing Reference

SMD Number	INMOS Part Number		SMD Number	INMOS Part Number	
4K x 1 (IMS1203)]	64K x 1 (IMS1600/IMS1601L)		
5962-8751301VC	SMD1203S-25M		5962-8601503XC	SMD1600S-45M	
5962-8751301XC	SMD1203A-25M		5962-8601503ZA	SMD1600N-45M	
5962-8751302VC	SMD1203S-35M		5962-8601504XC	SMD1601S-45LM	
5962-8751302XC	SMD1203A-35M		5962-8601504ZA	SMD1601N-45LM	
5962-8751303VC	SMD1203S-45M		5962-8601505XC	SMD1600S-55M	
5962-8751303XC	SMD1203A-45M		5962-8601505ZA	SMD1600N-55M	
		4	5962-8601506XC	SMD1601S-55LM	
1K x 4 (IMS1223)			5962-8601506ZA	SMD1601N-55LM	
	· · · · · ·	4	5962-8601507XC	SMD1600S-70M	
5962-8751304VC	SMD1223S-25M		5962-8601507ZA	SMD1600N-70M	
5962-8751304XC	SMD1223A-25M		5962-8601508XC	SMD1601S-70LM	
5962-8751305VC	SMD1223S-35M		5962-8601508ZA	SMD1601N-70LM	
5962-8751305XC	SMD1223A-35M				
5962-8751306VC	SMD1223S-45M		16K x 4 (IMS1624)		
5962-8751306XC	SMD1223A-45M				
		4	5962-8685911LC	SMD1624S-70LM	
16K x 1 (IMS1403)			5962-8685911XA	SMD1624N-70LM	
		1	5962-8685912LC	SMD1624S-70M	
8413202RC	SMD1403S-45M		5962-8685912XA	SMD1624N-70M	
8413202YA	SMD1403N-45M		5962-8685913LC	SMD1624S-55LM	
8413205RC	SMD1403S-35M		5962-8685913XA	SMD1624N-55LM	
8413205YA	SMD1403N-35M		5962-8685914LC	SMD1624S-55M	
8413208RC	SMD1403S-55M		5962-8685914XA	SMD1624N-55M	
8413208YA	SMD1403N-55M		5962-8685915LC	SMD1624S-45LM	
		-	5962-8685915XA	SMD1624N-45LM	
4K x 4 (IMS1423)			5962-8685916LC	SMD1624S-45M	
		1	5962-8685916XA	SMD1624N-45M	
5962-8670512RC	SMD1423S-35M				
5962-8670512XA	SMD1423N-35M		8K x 8 (IMS1630)		
5962-8670512ZC	SMD1423Y-35M			··· ··· ··· ··· ··· ··· ··· ··· ··· ··	
5962-8670513RC	SMD1423S-45M		5962-8552504XC	SMD1630S-70M	
5962-8670513XA	SMD1423N-45M		5962-8552504YA	SMD1630N-70M	
5962-8670513ZC	SMD1423Y-45M		5962-8552505XC	SMD1630S-55M	
5962-8670514RC	SMD1423S-55M		5962-8552505YA	SMD1630N-55M	
5962-8670514XA	SMD1423N-55M		5962-8552510XC	SMD1630S-55LM	
5962-8670514ZC	SMD1423Y-55M		5962-8552510YA	SMD1630N-55LM	
5962-8670515RC	SMD1423S-70M		5962-8552511XC	SMD1630S-70LM	
5962-8670515XA	SMD1423N-70M		5962-8552511YA	SMD1630N-70LM	
5962-8670515ZC	SMD1423Y-70M				

Lead Finish Cross Reference

	DIP	LCC	Flat Pack
A = Hot solder dipped	К	N	B/T
C = Gold plated	S	-	A/Y
X = Vendor option	S	-	A/Y
	-	-	

Appendix C

quality and reliability

C.2

C Quality and Reliability

The INMOS quality programme is set up to be attentive to every phase of the semiconductor product life cycle. This includes specific programmes in each of the following areas:

- Total Quality Control (TQC)
- Quality and Reliability in Design
- Document Control
- New Product Qualification
- Product Monitoring Programme
- Production Testing and Quality Monitoring Procedure

C.1 Total quality control (TQC) and reliability programme

Our objective to continuously build improved quality and reliability into every INMOS part has resulted in a comprehensive Quality/Reliability Programme of which we are proud. This programme demonstrates INMOS' serious commitment to supporting the quality and reliability needs of the electronics marketplace.

INMOS is systematically shifting away from a traditional screening approach to quality control and towards one of building in Experimental Design quality through Statistical Process Control (SPC). This new direction was initiated with a vigorous programme of education and scientific method training.

In the first year of the programme approximately 80 INMOS employees worldwide received thorough SPC training. This training has been extended to cover advanced SPC and experimental design. Some of the courses taught are listed below:

- Experimental Design Techniques
- Statistical Process Control Methods
- Quality Concepts
- Problem Solving Techniques
- Statistical Software Analysis Techniques

Today INMOS utilizes experimental design techniques and process control/monitoring throughout its development and manufacturing cycles. The following TQC tools are currently supported by extensive databases and analysis software.

- 1. Pareto charts
- 6. Correlation Plots
- 2. Cause/Effect Diagrams
 - Control Charts
 Experimental Design
- Process Flow Charts
 Run Charts
- 9. Process Capability Studies
- 5. Histograms

C.2 Quality and reliability in design

The INMOS quality programme begins with the design of new INMOS products. The following procedures are examples from the INMOS programme to design quality and reliability into every product.

Innovative design techniques are employed to achieve product performance using, whenever possible, state of the art techniques. For example, INMOS uses 300 nm gate oxides on its high performance graphics, SRAM and MICRO products to obtain the reliability inherent in the thicker gate oxide. In addition, circuit design engineers work hand in hand with process engineers to optimise the design for the process and the process for the product family. The result is a highly reliable design implemented in a process technology

achievable within manufacturing.

INMOS products are designed to have parametric margins beyond the product target specifications. The design performance is verified using simulations of circuit performance over voltage and temperature values beyond those of specified product operation, including verification beyond the military performance range. In addition, the device models are chosen to ensure tolerance to wide variations in process parameters beyond those expected in manufacture.

The design process includes consideration of quality issues such as signal levels available for sensing, reduction of internal noise levels, stored data integrity and testability of all device functions. Electro-static damage protection techniques are included in the design with input protection goals of 2K volts for MIL-STD-883 testing methods. Specific customer requirements can be met by matching their detailed specifications against INMOS designed in margins.

The completion of the design includes the use of INMOS computer aided design software to fully check and verify the design and layout. This improves quality as well as ensuring the timely introduction of new products.

C.3 Document control

The Document Control Department maintains control over all manufacturing specifications, lot travellers, procurement specifications and drawings, reticle tapes and test programmes. New specifications and changes are subject to approval by the Engineering and Manufacturing managers or their delegates. Change is rigorously controlled through an Engineering Change Notice procedure, and QA department managers screen and approve all such changes.

An extensive archiving system ensures that the history of any Change Notice is readily available.

Document Control also has responsibility for controlling in-line documentation in all manufacturing areas which includes distribution of specifications, control of changes and liaison with production control and manufacturing in introducing changed procedures into the line.

Extensive use is made of computer systems to control documentation on an international basis.

C.4 New product qualification

INMOS performs a thorough internal product qualification prior to the delivery of any new product, other than engineering samples of prototypes to customers.

Care is taken to select a representative sample from the final prototype material. This typically consists of three different production lots. Testing is then done to assure the initial product reliability levels are achieved. Product qualifications are done in accordance with MIL-STD-883, methods 5004 and 5005, or CECC/BS9000.

The initial INMOS qualification data, and the ongoing monitor data can be very useful in the user qualification decision process. INMOS also has a very successful history of performing customer qualification testing in-house and performing joint qualification programmes with customers. INMOS remains committed to joint customer/vendor programmes.

C.5 Product monitoring programme

At the levels of quality and reliability performance required today (low PPM and FIT levels), it is essential that a large statistically significant, current product database be maintained. One of the programmes that INMOS uses to accomplish this is the Product Monitoring Programme (PMP).

The PMP is a comprehensive ongoing programme of reliability testing. A small sample is pulled from production lots of a particular part type. This population is then used to create the specific samples to put on the various operating and environmental tests. Tests run in this programme include extended temperature operating life, THB and temperature cycle. Efforts are continuing to identify and correlate more accelerated

C Quality and Reliability

tests to be used in the PMP.

C.6 Production testing and quality monitoring procedure

C.6.1 Reliability testing

INMOS' primary reliability test method is to bias devices at their maximum rated operating power supply level in a 140° C ambient temperature. A scheme of time varying input signals is used to simulate the complete functional operation of the device. The failure rate is then computed from the results of the operating life test using Arrhenius modelling for each specific failure mechanism known. The failure rate is reported at a temperature that is a typical worst case application environment and is expressed in units of FITs where 1 FIT = 1 Fail in 10E9 device hours, (100 FIT = 0.01%/1000 Hrs). The current database enables the failure rate to be valid over various environmental conditions.

The failure rate goal for INMOS products is 100 FITs or less at product introduction with a 50 FIT level to be attained within one year.

For plastic packaged product, additional testing methods and reliability indices become important. Humidity testing is used to evaluate the relative hermeticity of the package, and thermal cycling tests are used principally to evaluate the durability of the assembly (e.g. die/bond attach).

The Humidity Test comprises of temperature, humidity, bias (THB) at 85°C, 85% Relative Humidity, and a 5V static bias configuration selected to maintain the component in a state of minimum power dissipation and enhance the formation of galvanic corrosion. INMOS reliability goals have always been to meet or better the current 'industry standards' and a target of less than 1% failures through 1000 hours of THB at 90% confidence has been set.

The Thermal Cycling tests are performed from -65° C to + 150 °C for 500–1000 cycles, with no bias applied. Thermal Shock tests using a liquid to liquid (Freon) method are cycled between -55° C and + 125 °C. The INMOS Reliability qualification and monitoring goal for the above tests is less than 1% failures at 90% confidence.

C.6.2 Production testing

Electrical testing at INMOS begins while the devices are still in wafer form before being divided into individual die. While in this form, two different types of electrical test are performed.

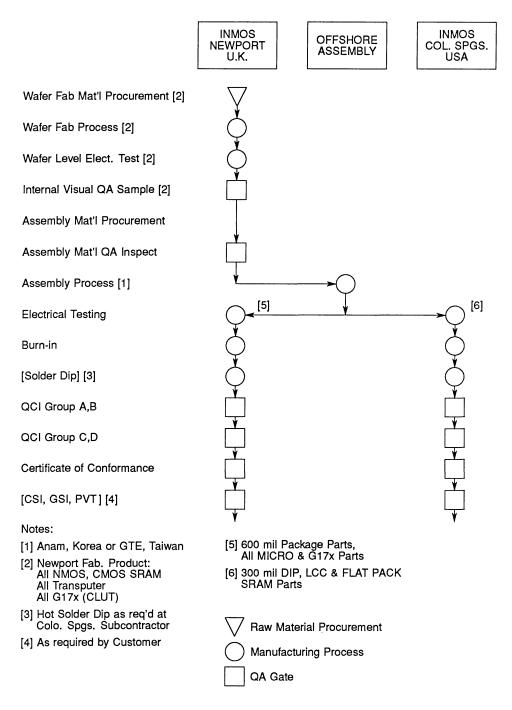
The Parametric Probe test is to verify that the individual component parameters are within their design limits. This is accomplished by testing special components on the wafer. The results of these tests provide feedback to our wafer fab manufacturing facilities which allows them to ensure that the components used in the actual devices perform within their design limits. This testing is performed on all lots which are processed, and any substandard wafers discarded. These components are placed in the scribe streets of the wafer so they are destroyed in the dicing operation when they are not of any further use. By placing them there, valuable chip real estate is saved, thereby holding down cost while still providing the necessary data.

The Electrical Probe test performed on all wafers is the test of each individual circuit or chip on every wafer. The defective dice are identified so they may be later discarded after the wafer has been separated into individual die. This test fully exercises the circuits for all AC and DC datasheet parameters in addition to verifying functionality.

After the dice have been assembled into packages they are again tested in our Final Test operation. In a mature product the typical flow is:

- Preburn-in test
- Burn-in at 140°C
- Final test

- PDA (Percent Defect Allowed)
- Device Symbolisation
- QA Final Acceptance

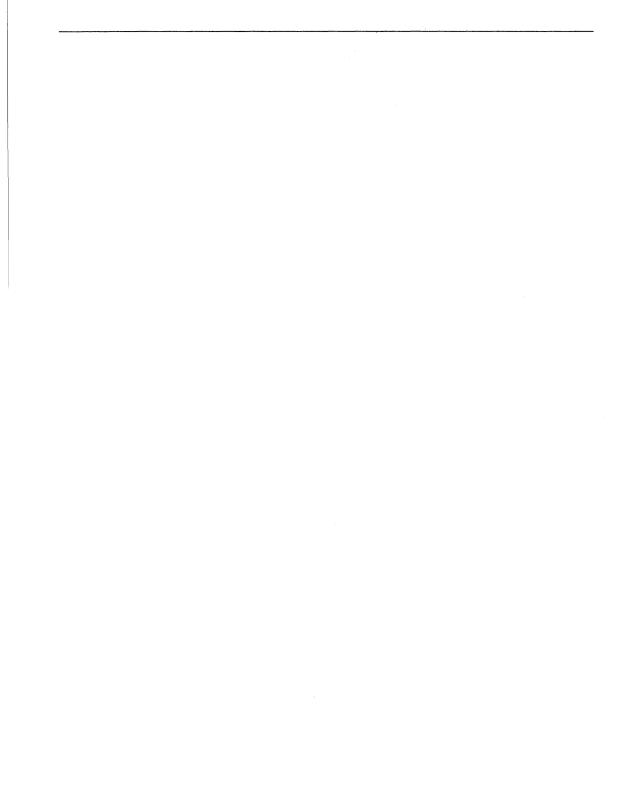

The temperature setting used for hot testing is selected so that the junction temperature is the same as it would be after thermal stabilisation occurred in the specified environment. This is calculated using the hot temperature power dissipation along with the thermal resistance of the package used. All INMOS product is electrically tested and burned-in prior to shipment. Historically, the industry has selected burn-in times using the MIL Standards as a guide (when the market would support the cost) or on a 'best guess' basis dominated by cost considerations. Whereas INMOS invoke a burn-in reduction exercise to ensure the reduced time has no reliability impact.

C.6.3 Quality monitoring procedure

In the Outgoing Quality Monitoring programme, random samples are pulled from lots, that have been successfully tested to data sheet criteria. Rejected lots are 100% retested and more importantly, failures are analysed and corrective actions identified to prevent the recurrence of specific problems.

The extensive series of electrical tests with the associated Burn-in PDA limits and Quality Assurance tests ensure we will be able to continue to improve our high quality and reliability standards.

INMOS MIL-STD-883C/MIL-I-45208 MATERIAL PROCUREMENT & PRODUCT FLOW


C Quality and Reliability

Appendix D

Inmos

general information

D General Information

D.1 Thermal considerations

D.1.1 Thermal resistance

An electronic circuit can be characterised by its resistance (impedance), potential differences, current sources, capacitance and time constants. A thermal circuit can be expressed in terms of thermic resistance, thermic differences, heat sources, thermic capacitances and thermic time constants.

The ability of the device package to conduct heat from the chip to the environment is expressed in terms of thermal resistance. The term normally used is Theta ja, written θ_{ia} . It is often separated into two components:

The thermal resistance from the Junction to Case θ_{ic} ,

and

The thermal resistance from Case to Ambient θ_{ca} .

 θ_{ia} represents the total resistance to heat flow from the Chip to Ambient. It is expressed as follows:

$$\theta_{jc} + \theta_{ca} = \theta_{ja}$$

D.1.2 Junction temperature

Junction Temperature (T_j) of a powered integrated circuit is the temperature measured at the substrate diode. When the chip is powered, the heat generated causes the T_j to rise above the ambient temperature (T_a). T_j is calculated by by multiplying the power dissipation of the device by the thermal resistance of the package and adding the ambient temperature to the result.

$$Tj = (Pd.\theta_{ja}) + Ta$$

D.1.3 K-Factor and θ_{ja} Measurement

There is a simple way of measuring the thermal resistance of θ_{ia} of any package. The basic idea is to use the forward voltage drop of a calibrated diode to measure the change in junction temperature due to a known power dissipation. The thermal resistance can be calculated using the following equation:

$$\theta_{ja} = \frac{\Delta T j}{P d} = \frac{T j - T a}{P d}$$

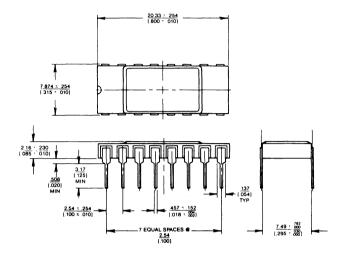
Now, If the current through the diode is constant and the temperature changes, we can calculate the temperature coefficient (also called the K-Factor) using the following equation:

$$K = \frac{T_2 - T_1}{V_{F2} - V_{F1}}$$

 $\begin{array}{l} \mathsf{K} = \text{temperature coefficient (}^{\circ}/\mathsf{mV}) \\ T_2 = \text{higher temperature test (}^{\circ}\mathsf{C}) \\ T_1 = \text{lower temperature test (}^{\circ}\mathsf{C}) \\ V_{F2} = \text{forward voltage at } T_2 \\ V_{F1} = \text{forward voltage at } T_1 \end{array}$

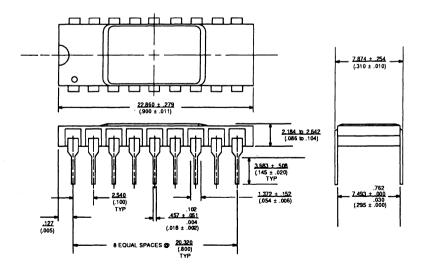
D.1.4 Factors affecting θ_{ja}

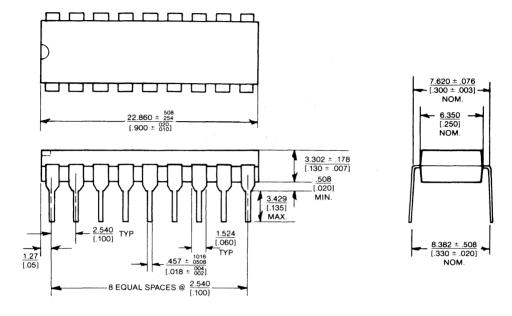
There are several factors which affect the thermal resistance of any IC package. Effective thermal management requires a sound understanding of all these variables. Package variables include the leadframe design and materials, the plastic or the ceramic used to encapsulate the device and to a lesser extent other variables such as the die and die attach methods. Other factors that have a significant impact on θ_{ia} include the substrate upon which the IC is mounted, the density of the layout, the air gap between the package and the substrate, the number and length of traces on the board, the use of thermally conducting epoxies and external cooling methods.


The following list is a summary of θ_{ja} , θ_{jc} , and θ_{jx} for the current range of device types and corresponding package styles where data exists. Thermal resistance is expressed in degC/*Watt*.

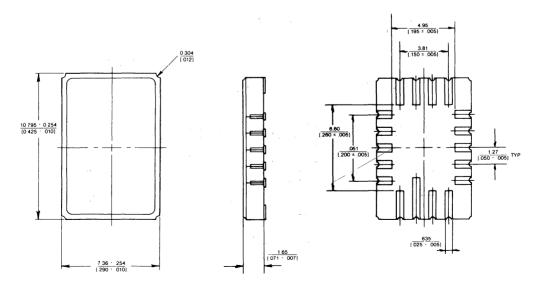
Note: θ_{jx} takes into account the 400 linear ft/min moving air measurement condition often specified/required by customers. It is obtained by multiplying θ_{ja} by 0.6. θ_{jc} is measured from the hottest part of the case.

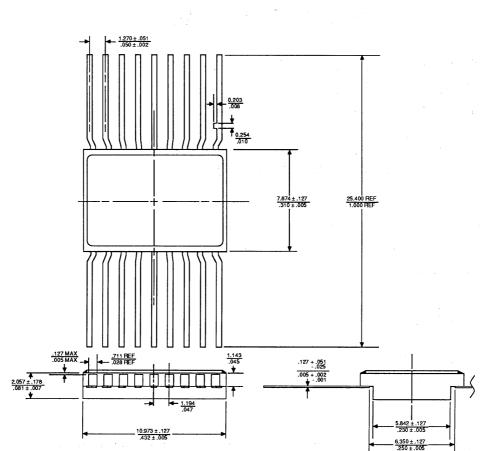
Pin Count	Pin Pitch	Device Types	Pkg	θ_{ja}	θ_{jc}	θ_{jx}
16	0.3"	2600	S	63.1	1.3	37.9
16	-	2600	N	-	-	-
16	-	2600	ĸ	— ·	-	-
18	0.3"	1203 1223	P	-	-	-
18	0.3"	1203 1223	S		-	
18	-	1203 1223	A	-	-	-
]_)	
20	0.3"	1400 1420 1403 1423	P	95.0	17.7	56.4
20	0.3"	1400 1420 1403 1423	S	57.6	5.7	31.7
20	-	1400 1420 1403 1423	Y	85.7	8.1	46.9
20	-	1400 1420 1403 1423	N	63.5	-	38.1
20	-	1400 1420 1403 1423	w	-	-	-
20	-	1400 1420 1403 1423	E	-	-	-
				05.4		
22	0.3"	1600 1601 1620	P	85.4	14.9	50.2
22	0.3"	1600 1601 1620	S	47.2	4.5	25.9
22	-	1600 1601 1620	W	-	-	-
22	-	1600 1601 1620	E	-		-
04	0.3"	1624	Р			
24	0.3"	1624	S	-	-	-
24	0.3	1624		- 52.6	5.1	31.3
24	-	1624	N E	52.6	5.1	51.5
24	-	1024		-	-	-
28	0.6"	1630	s	48.8	3.7	29.3
28	_	1630	N			
		1000			L	


Note: measurements are made on Eutectic attached die with RTV overcoat.


D.2 Packaging information

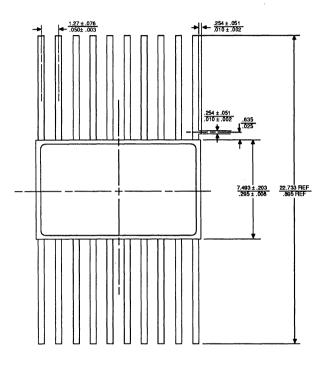
16 PIN CERAMIC DUAL-IN-LINE

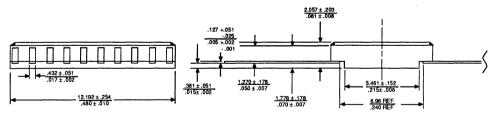

18 PIN CERAMIC DUAL-IN-LINE



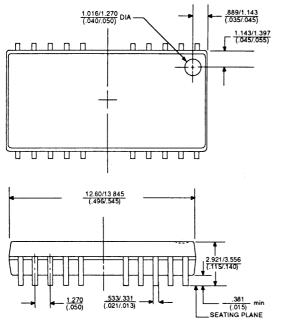
18 PIN PLASTIC DUAL-IN-LINE

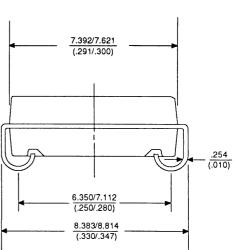
18 PIN CERAMIC LEADLESS CHIP CARRIER

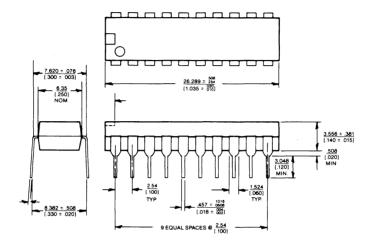


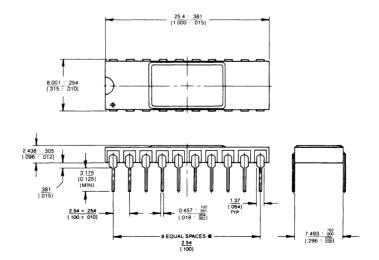


18 PIN FLAT PACK

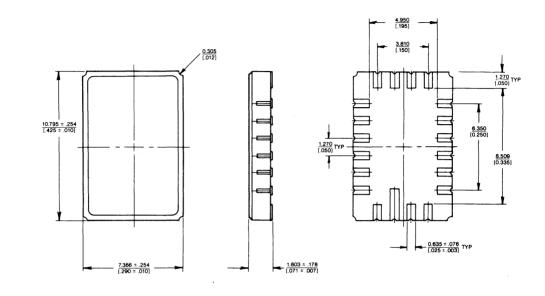

D General Information


20 PIN FLAT PACK

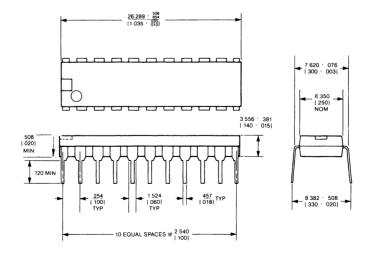

20 PIN PLASTIC J-LEADED SMALL OUTLINE

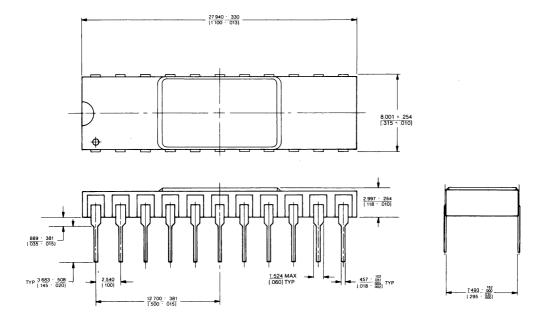


D

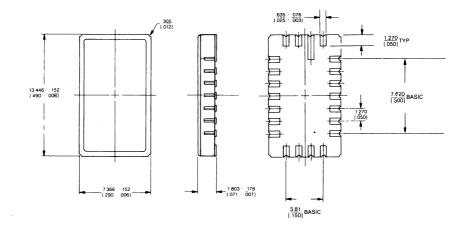

20 PIN PLASTIC DUAL-IN-LINE

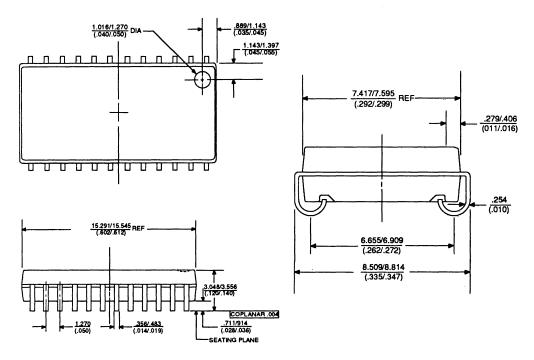
20 PIN CERAMIC DUAL-IN-LINE



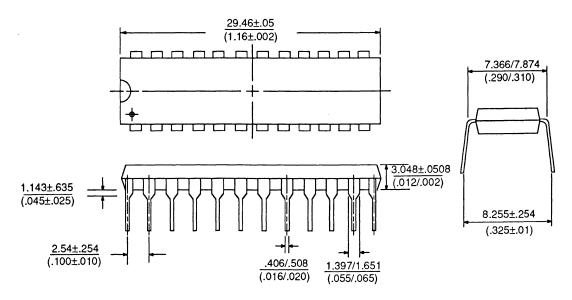

D

20 PIN CHIP CARRIER

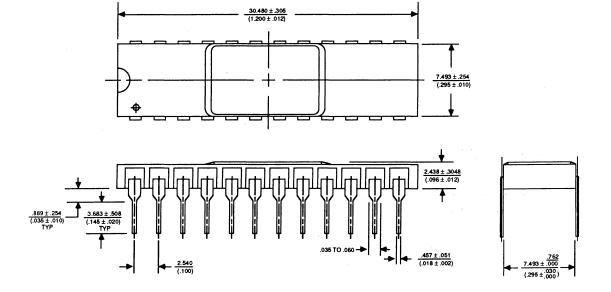

22 PIN PLASTIC DUAL-IN-LINE



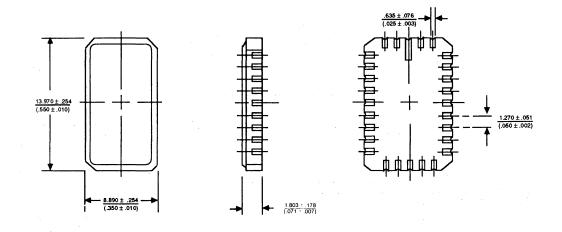
22 PIN CERAMIC DUAL-IN-LINE


22 PIN CHIP CARRIER

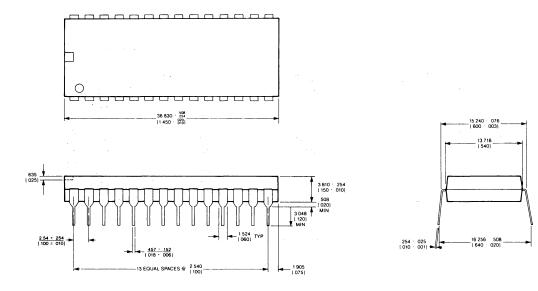
24 PIN PLASTIC J-LEADED SMALL OUTLINE



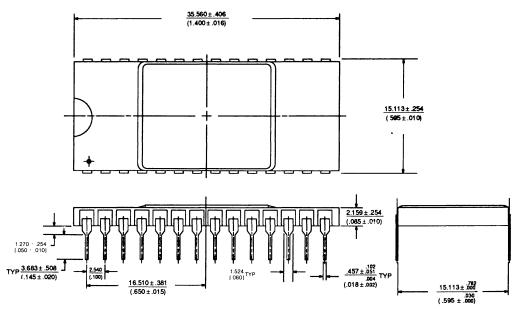
24 PIN PLASTIC DIP


D

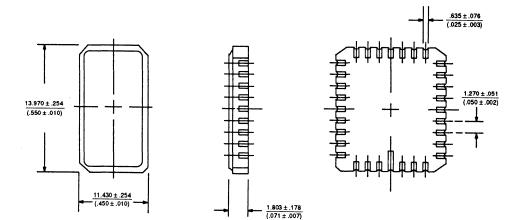
D

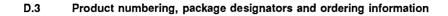


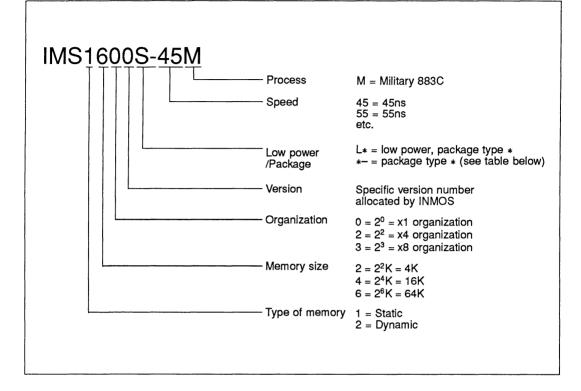
24 PIN CERAMIC DUAL-IN-LINE


28 PIN CERAMIC LEADLESS CHIP CARRIER

28 PIN PLASTIC DUAL-IN-LINE


28 PIN CERAMIC DUAL-IN-LINE




32 PIN CERAMIC LEADLESS CHIP CARRIER

s,

١

Туре	Package	Lead finish
A	Formed flat-pack	gold
B	Formed flat-pack	solder
C	LCC	gold
D	Cerdip	solder
E	Small outline, J-bend	solder
G	PGA	gold
н	Small outline, Gull wing	solder
J	PLCC, J-bend	solder
ĸ	Sidebraze ceramic DIP	solder
N	Ceramic LCC	solder
Р	Plastic DIP	solder
S	Sidebraze ceramic DIP	gold
Т	(Skinny) Flat-pack	solder
w	Ceramic LCC	gold
Y	(Skinny) Flat-pack	gold