
Porting the
Helios I/O Server

Perihelion Software Technical Report No. 14

Bart Veer

December 1988



Perihelion Software Limited
The Maltings

Charlton Road
Shepton Mallet

Somerset
BA4 5QE
England

Telephone +44 749 4203
Fax. +44 749 4977

Copyright (c) 1988,1989 Perihelion Software Ltd.

Permission to copy this technical note without fee is hereby granted, provided
that the copyright message and this permission appears in all copies.

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

2



Contents

1 Porting the Helios I/O Server 4

2 Configuring the Server Sources 5

3 The Link I/O Routines 5

4 The Terminal I/O Routines 7

5 Getting the Debugger Up and Running 7

6 Multithreading 8

7 The File Input/Output Routines 8

8 Windows and the ANSI Emulator 9

9 Multitasking Support 9

3



1 Porting the Helios I/O Server

This document is a brief guide to porting the Helios I/O Server onto a
completely new hardware configuration. This task is performed relatively
infrequently, and hence this document is of little or no interest to ordinary
Helios users. It is assumed that the reader has access to the Server sources
and to the related technical notes no. 10 and 11, and that he or she is
reasonably familiar with them. Note that this document provides some
guidelines only and is not a step-by-step guide. Anyone who wishes to
purchase the server sources can do so by contacting Perihelion Software
Ltd.

Porting the Server involves at least five separate stages:

1. setting up the configuration so that the bulk of the Server can be
compiled on the target hardware.

2. writing the link input/output routines.

3. writing the terminal input/output routines. After this stage it should
be possible to debug the transputer and thus test the link input/output
routines.

4. adding support for the multi-threading used inside the Server.

5. adding the local routines needed to support file input/output.

After these stages, it should be possible to boot up the basic Helios system
and run most programs. Hence this is a good time to ensure that the current
version is robust, before attempting to support the more esoteric parts of
the Server such as multi-tasking, RS232 supports, X-Window support and
so on. All the various stages are described below.

Please note that the Server has gone through many iterations and is still
undergoing continuous improvement. Hence it is likely that you will receive
upgrades to the sources at some future stage and that you will need to merge
your changes. When porting the Server it should be necessary to make few
changes to the main Server sources, since most of the porting work involves
local, machine-specific modules. I am happy to try to merge any changes
you need to make to the main sources with the current system, to make
upgrades easier and to make the Server more portable.

4



2 Configuring the Server Sources

The first step in porting the Server is to configure it for the hardware. This
involves modifying two files: the header defines.h and the module files.c.
In the header defines.h you should add an entry for your particular ma-
chine or correct the existing entry. Initially the Server should be configured
for as basic a system as possible (that is, you should not support any of
the devices, multi-tasking, the ANSI emulator and so forth). You should
incorporate the debugger, because this is an important step in the porting
process. In the module files.c you need to provide a set of macros or
external function declarations for the low-level file input/output routines. I
recommend that initially these should all be declared as external functions,
leaving optimisation for a later stage.

Whilst configuring the system you should create a subdirectory for the local
module(s), in keeping with the general organisation of the Server sources,
and modify one of the existing makefiles as required to compile and link
the Server. In theory you can now compile the Server, and get a list of
undefined functions at link time. In most cases these undefined functions
are local routines which are covered in the sections below, and I recommend
looking at the existing set of local routines for, for example, the IBM PC or
the Sun. Also, many of these functions may be #defined to library routines
in the header fundefs.h, for particular configurations.

The Server sources compile fairly happily under a number of different C
compilers and use many of the standard C library routines. However, C
libraries tend to be relatively inefficient and hence lower level routines should
be used in many cases for efficiency. The header file barthdr deals with
many of the incompatibilities between different C compilers, and it may be
necessary to modify it in order to avoid generating certain compiler warnings
and so on.

3 The Link I/O Routines

The Server must be able to interact somehow with the root transputer. To
achieve this you need to write a fairly small number of link input/output
routines, which should be put into local modules. At the very least you need
the following routines:

1. int byte_from_link(byte *) - read a single byte from the link, re-
turning 0 for success or 1 for failure (!!!). If successful, the byte should
be stored at the address specified. This should fail if no byte is ready
for about 500 milliseconds.

5



2. int byte_to_link(int data) - send a single byte of data down the
link, returning 0 for success or 1 for failure.

3. int fetch_block(int count, byte *data, int timeout) - read a
block of data from the link in the timeout specified. The timeout is
pretty well irrelevant, and is usually treated as the number of times
you should go around a polling loop. The routine should return 0 for
success, or the number of bytes it failed to fetch. Note that if it failed
to fetch 0 of the expected number of bytes it succeeded.

4. int send_block(int count, byte *data, int timeout) - similar
to the above but for sending data down the link.

5. int rdrdy(void) - check the link to see if there is any data ready,
returning 0 if there is no data and non-0 otherwise.

6. int wrrdy(void) - check the link to see if the other side is ready
to receive data. This routine is rarely used, and may always return
success if it is difficult to implement.

7. void init_link(void) - this call is used to initialise or reset the link
adapter. It may be called many times.

8. void reset(void) - this call is used to reset the root transputer, and
possibly other bits of the transputer network as well depending on the
hardware.

9. void analyse(void) - this call is used to analyse the root transputer.
Analyse() involves asserting the analyse line on the transputer, a
short delay, asserting the reset line, another delay, releasing the reset
line, and then releasing the analyse line. The timing details may be
found in Inmos documentation.

There are two approaches to implementing these link routines. On the Sun
there is a particular device driver (for example, /dev/MK0, which can be
opened, read from, written to and so on); ioctl calls are used for reset,
analyse, and so on; hence the link routines can be written entirely in C. On
an IBM PC or compatible the link routines interact directly with the link
adapter chip, and hence they are written in assembler.

Given the link input/output routines described above it is possible to con-
struct some higher level ones which are actually called by the Server, such
as the message passing routines. These are written entirely in C, and may
be found in, for example, the Sun or the PC local modules. However, if
the target hardware is not little-endian there may be some further problems
lurking in this area (for example, problems with byte pointers versus int

6



pointers). Note that it may be desirable to implement all of the routines
including the higher level ones in assembler for efficiency, although the link
I/O tends not to be a bottleneck.

4 The Terminal I/O Routines

In the absence of multiple windows or the ANSI terminal emulator, you
should need just two routines to get terminal I/O up and running. The
first routine is void output(char *), which should just output the ’\0’
terminated string to the screen. Ideally it should accept the ANSI escape
sequences, but this is not essential at this stage. The second routine is
int read_char_from_keyboard(int x), which is used to poll for keyboard
input. The argument x should be ignored, and the routine should return -1 if
no character is ready to be read or else it should return the character. Ideally
the keyboard should use the ANSI sequences for the cursor and function keys
and so on; plus the Helios extensions (documented in the Helios manual),
and the routine should support the run-time debugging options such as
CTRL-SHIFT-F10, but this is not essential at this stage.

5 Getting the Debugger Up and Running

It is now time to recompile and relink the Server. There will still be some
missing functions for the coroutine library and for the file I/O routines.
Dummy functions can be used for these for the time being. If there are any
other routines missing (for example, memory allocation), these should be
put in now; they must not be left as dummies because the debugger may
depend on them.

Once the Server has been linked it can be run with the -d option, and you
should have a working debugger. Amongst other things you should be able
to peek and poke the transputer memory, boot the transputer and get a few
messages back, and so on. The debugger is described in the chapter on the
Server in the user part of the manual. An awful lot of things can go wrong
at this stage, particularly with the link routines, and these should be fixed
before going any further. Only when all the debugging routines seem to
work reliably should you attempt to get the Server itself up.

7



6 Multithreading

As described in technical note no. 10, the Server depends on a simple form
of multi-threading. There are two approaches to supporting this. First, you
can produce a standard library consisting of the library calls InitCo(),
CreateCo(), DeleteCo(), WaitCo(), ResumeCo(), and CallCo(). The
Server sources include a 68000 version for the Sun and an 8086 version for the
IBM PC, which can be used as the basis of this library. The Server actually
works in terms of some higher level functions InitColib(), TidyColib(),
NewCo(), Suspend(), and Seppuku(), and usually these are implemented in
terms of the coroutine library. However, the second approach to supporting
the multi-threading is to implement these higher level routines in terms of
whatever is provided by the system, and compiling out (by #ifs) the current
code.

7 The File Input/Output Routines

The final stage in porting the basic Server is to support the file input/output
routines. This requires a number of local routines or macros such as int
object_exists(char *name), described in quite a bit of detail near the top
of module files.c. There is little point in repeating the relevant informa-
tion here.

Incidentally this is probably the right time to implement the full keyboard,
especially the run-time debugging facilities. Finding out what is going on
without a simple means of enabling and disabling debugging, or the ability
to exit or reboot the system quickly, can be quite painful.

After putting in this support, the Server should be able to boot the trans-
puter and start handling the GSP messages. Initially you will be lucky to
get a few messages such as distributes searches for the helios server, but
as you debug the local routines more and more should start to happen un-
til eventually you are faced with a shell prompt and able to type in and
run some commands. If you do not appear to be getting any messages
at all the most likely problem is that the message structure in the header
file iomess.h is incorrect for the byte ordering in use, and you should put
debugging information into the GetMsg routine.

At this stage the most useful tool is a working Helios system with the debug-
ging options enabled to allow comparison. Secondly, if you cannot get it to
work this is the right time to disturb me and I may able to work out what is
going wrong just on the basis of the messages being sent to and from, or the
data arriving from the transputer. After a couple of hours/days of debug-

8



ging you should have a fairly robust albeit rather basic Server, and it may be
time to incorporate some of the other options available. In order of priority
these are likely to be multiple windows and ANSI emulation, multi-tasking,
RS232 and other ports, and X-Windows support. I give brief outlines below
of the work involved in supporting some of these, but for more information
the reader should consult the current sources.

8 Windows and the ANSI Emulator

Unless your hardware supports the ANSI screen escape sequences already
you will need to incorporate the ANSI emulator. This involves modifying
the defines.h header, removing your output() routine from the local mod-
ules, adding some routines to the bottom of module terminal.c for such
jobs as moving the cursor to a particular position on the screen, and re-
compiling. Once you have full ANSI emulation and once you support the
ANSI sequences for cursor keys and the like you can run the Helios version
of microEmacs. To test screen output generally, I have an ansitest program
which you can use.

If your hardware supports multiple windows it is rather desirable that Helios
can make use of them. This involves changing the appropriate configuration
option in defines.h and adding some routines for creating and deleting
windows. In addition, you have to modify read_char_from_keyboard(),
because the argument will actually be the handle of the window: each win-
dow is polled separately for keyboard input. Even if the hardware does not
support multiple windows it is very desirable to implement pseudo-windows,
where each window is drawn on a shadow screen and only one is currently
active. A key sequence, such as ALT-F1, is used to switch between shadow
screens. The main implementation of this so far has been for the IBM PC.

At present the ANSI emulator will not work with real windows, particularly
resizable ones, but the work involved should be relatively minor and I will
do it on request.

9 Multitasking Support

Given a machine such as a Sun or a VAX, it is rather sad if it spends
all its time in the Server’s main polling loop waiting for the user to type
something. Hence the Server contains code, compiled in by setting an option
in the defines.h file, which will make it inform the local modules whenever
it is waiting for input of some sort and whenever it stops waiting for this
input; inside the main loop another local routine is called, which is allowed to

9



suspend the Server until one of the inputs is ready, until a message is waiting
on the link, or until a timeout has expired. Because most input/output is
performed with finite timeouts, the Server cannot be suspended indefinitely.

The relevant routines are InitMultiwait(), TidyMultiwait(), AddMultiwait(),
ClearMultiwait(), and Multiwait(). The main implementation, experi-
mental at the time of writing, is for the Sun. Note that this code is liable
to change in the future when I get more time and suitable hardware.

X Windows is a trademark of MIT

VAX is a trademark of Digital Equipment Corp.

IBM is a registered trademark of International Business Machines, Inc.

Sun refers to Sun Workstation, which is a trademark of SUN, Microsystems, Inc.

10


	1 Porting the Helios I/O Server
	2 Configuring the Server Sources
	3 The Link I/O Routines
	4 The Terminal I/O Routines
	5 Getting the Debugger Up and Running
	6 Multithreading
	7 The File Input/Output Routines
	8 Windows and the ANSI Emulator
	9 Multitasking Support

