
The Helios I/O Server

Perihelion Software Technical Report No. 10

Bart Veer

November 1988

Perihelion Software Limited
The Maltings

Charlton Road
Shepton Mallet

Somerset
BA4 5QE
England

Telephone +44 749 4203
Fax. +44 749 4977

Copyright (c) 1988,1989 Perihelion Software Ltd.

Permission to copy this technical note without fee is hereby granted, provided
that the copyright message and this permission appears in all copies.

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

2

Contents

1 The Helios Input/Output Server 4

2 Introduction 4

3 The Server Sources 5

4 Server Startup 7

5 Booting Up the Transputer 8

6 Multi-Threading and the Main Loop 9

7 A Typical Interaction 11

8 The IOProcessor Device 12

9 Other Servers 13

10 The Debugger 15

3

1 The Helios Input/Output Server

At the time of writing all implementations of Helios run on a transputer
add-on to an existing computer such as an IBM PC or compatible or a Sun
Workstation. Helios input/output is performed by server software running
on the host computer. In most cases this server software is the Helios I/O
Server. The Server is responsible for eliminating as much of the hardware
dependency as possible, allowing the same version of Helios to run on all
the different configurations unchanged.

The Server has to satisfy a number of different requirements. First, it has
to be highly portable so that as little work as possible needs to be done
to port Helios to a different hardware configuration. Second, it has to be
extendible so that new devices can be added fairly easily. Third, it has to be
efficient. Fourth, the code must be easy to understand and maintain since
many different people may want to alter it. Finally it has to be robust.

This document attempts to describe the general structure of the Server.
It is aimed mainly at people who have access to the Server sources and
are trying to understand them before making modifications. Please note
that the Server has gone through many iterations, and is still undergoing
continuous improvement: this document refers to version 3.60 of the Server,
but most of it is appropriate to earlier and later versions. There are two
related technical notes: number 11 deals with adding new devices to the
Server, and number 12 deals with porting the Server to new hardware.

The source code for the I/O server can be purchased from Perihelion Soft-
ware Ltd. Please contact us for further details.

2 Introduction

The Server can be divided into three main components: hooting the trans-
puter; debugging the transputer; and server mode. The first two are fairly
straightforward, unlike the last.

The Server allows the host processor to emulate a node in the transputer
network, usually called /IO or /Cluster/IO. As far as Helios is concerned
this node is no different from any other: it behaves just like a transputer
running Helios. In fact you can even try to run programs in it, though with
little chance of success. Inside this network node there are a number of
servers: there will be a server for every drive in the filing system; there will
be a window or console server; there may be an RS232 server, and so on.
Note the distinction: Server with a capital S refers to the entire program,
which contains Helios servers for a number of devices. Client programs on

4

the transputer side of the network can interact with these servers and, in
most cases, open streams to the corresponding devices.

Interaction between the Server and the transputer network occurs at two
levels. First, the Helios kernel performs fairly regular handshaking between
all links in the hope of detecting when a network node goes down, and the
Server has to support this: the details of this handshaking are of very little
interest to anybody. Secondly, client programs can interact with servers
and open streams by sending Helios messages, usually by calling the system
library directly or indirectly. Most of these messages satisfy the General
Server Protocol or GSP, but for some servers and open streams additional
private protocols may be used. These protocols merely specify the contents
of the message, not the format of the message itself which is fixed.

The bulk of the Server is concerned with receiving Helios messages, working
out which server or stream they are meant for, turning the GSP request into
a local operation (for example, converting a Helios Read into an MS-DOS file
read), and constructing and sending back the GSP reply. Most of this work
is hardware independent: only the local operations and the transferring of
messages differ between implementations. However, even though much of
the code is concerned with encoding and decoding messages, most of the
time is taken up by performing the physical input/output and transferring
the messages.

3 The Server Sources

The Server sources, as distributed to some customers, are spread over a
number of different directories. First there is the Serving directory, contain-
ing the header files iohelios.h, iocodes.h, ioprot.h, iomess.h, iogsp.h,
iosyslib.h, ioattrib.h, ioevents.h, ioconfig.h and ioaddon.h. These
header files define the protocol used between the Server and the transputer
network: they have their equivalents helios.h etc on the transputer side.
Given that the protocol has now steadied down into a stable state it is likely
that these header files will be combined into a single protocol.h header.

Next there is the main Server directory, containing the bulk of the Server.
There should be a number of subdirectories, typically ibm and sun, which
contain the additional code needed to get the Server running on different
configurations. For example, the ibm subdirectory should contain the files
pclocal.h with additional header file information needed by the Server,
pclocal.c and pcasm.asm containing the local routines needed by the
Server, and makefile.pc and link.lnk to allow the Server to be remade
on an IBM PC or compatible.

5

Each file in the Server directory has a particular purpose. The first is
defines.h: when compiling the Server, the command used to compile each
module should contain a -DSUN or /DPC or some similar directive, identifying
the configuration. Inside defines.h this machine identifier is used to set
a large number of manifest constants giving a fairly exact specification of
the hardware configuration and determining what devices will be supported
by the Server in this configuration. For example, the manifest RS232 sup-
ported is set to 1 or 0 indicating whether or not the Server should include an
RS232 device server. Another important hardware dependency is the byte
ordering: if the host machine is little-endian like the transputer everything
is fairly simple, but if it is big-endian (for example, a 68000 the Server has
to do a lot of byte swapping when sending and receiving messages); this also
affects some of the data structures used.

The header file, barthdr, is used to specify some of the stranger macros I
insist on using. In addition it takes care of much of the incompatibilities
between different C compilers. For example, on a Sun the tolower() routine
is not defined if the argument is not an upper case letter, but under Microsoft
C it works for all arguments.

Structs.h contains some data structures used internally by the Server (for
example, the linked lists, plus some manifests). Fundefs.h declares the
routines shared between different modules. Some of this is configuration
dependent; for instance, routine swap() is defined either as a function or as a
null macro depending on the byte ordering. In addition many device routines
are declared as invalid. It is illegal, for example, to delete the console device
so ConsoleDelete is defined as an invalid function. Server.h declares most
of the global variables. It also defines an array of device servers. This array
is used extensively in the Server for efficiency. For example, when a server
receives a delete request it can invoke the appropriate function in its table,
which may be a real function or it may have been defined as a general
purpose function of some sort (for example, one to handle inappropriate
requests). The array also contains some extra functions to initialise and
tidy servers, to check that the device is actually present before creating a
server for it, and to handle private messages. Similar arrays are defined for
streams.

The remaining header file, debugopt.h, is used to control some of the de-
bugging facilities available within the Server, and is of little interest.

Server.c is the main source file. Tload.c is concerned with booting up
the transputer and transferring Helios messages. Files.c takes care of
the Helios side of file input/output. Similarly terminal.c is for termi-
nal input/output (screen + keyboard) and devices.c is for other devices
(RS232, mouse, and so on). Cofuns.c contains the linked list library and

6

the multi-threading library. Debug.c and dbdecode.c contain the code for
the debugging mode. These sources are all described in more detail below.

4 Server Startup

Quite a bit of work is involved setting up the world before anything useful
can be done. Most of this is done directly or indirectly by main(). There are
some configuration dependent bits here such as ignoring the arguments when
running the Server under GEM on a PC because they are not set up correctly.
Then there is an all-important setjmp() to allow other initialisation routines
a clean emergency exit. Then I process the arguments, and read in the
configuration file.

The purpose of the configuration file is to control run-time rather than
compile-time options. Since it can be changed by ordinary users it has to
be simple. Hence configuration file entries are of the form X or X = Y.
Some entries are compulsory, mainly to check that the file is still valid and
has not been overwritten. Some entries are configuration-specific (that is,
they are required by the local modules rather than by the main Server), and
hence I have no way of knowing exactly what entries I may have to store.
To get around this I just store all the entries in a linked list and provide
interrogation routines get_config() and get_int_config() to allow the
list to be examined. get_config() is similar in operation to getenv()
under Unix, and since many configuration entries are numbers of some sort
it is useful to provide an integer version of it.

After reading in the configuration file I call initalise_devices(). This
routine lives up to its name: it has to do any one-off device initialisations
such as taking over interrupt vectors. In a multiple-windowing system its
main job is to set up the Server’s own window, which used to display Server
output, such as debugging messages, or warnings that, for example, a floppy
disc is write protected. In addition, initialise_devices() usually calls a
configuration-specific routine.

The next step is to load the bootstrap program, usually nboot.i. This
program is guaranteed to be ≤ 256 bytes large, because of the way booting
the transputer from a link works. Hence there is no harm in leaving it
permanently loaded. Since it is possible to switch between server mode and
debug mode fairly easily, I initialise the debugger part of the Server here
and leave it initialised.

In theory I now have all the information I need to either boot up the trans-
puter or to start the debugger. There is an infinite loop which does a restart
for the various devices, and runs one of the two modes. On breaking out of

7

this loop, or if one of the initialisations failed and did a longjmp(), I tidy
up the world in the reverse order of initialising it and exit().

5 Booting Up the Transputer

The bootstrap process in module tload.c involves a number of separate
stages. First, the boot program nboot.i and the system image have to
be loaded off disc nboot.i is small so it is kept permanently loaded, but
a system image is typically about 60K which takes up too much of fairly
scarce memory on some configurations. Hence in server mode the system
image is loaded off hard disc and the memory is freed again as soon as the
transputer has been booted. However, in debug mode it is very useful to
keep the image loaded because it contains many system identifiers.

Next I call resetlnk(). This is a no-op on most configurations, but some-
times the link adapter can be in a strange state and needs to be reset. Then
I reset the transputer, to make sure that it is ready to receive a bootstrap.
This is followed by sending the size of the bootstrap program down the link,
which starts up the transputer boot-down-link hardware, and the bootstrap
program itself. The Helios bootstrap, nboot.i, is a fairly clever program
for its size and has a number of facilities such as clearing memory. Each
option is invoked by sending a particular byte down the link, possibly fol-
lowed by arguments. On machines with parity memory, notably the Meiko
Computing Surface, the off-chip memory has to be cleared before it can be
used.

After that little lot I am ready to send the Helios system image down the
link, in several chunks because of possible problems in sending large amounts
of data in one go. This system image contains the kernel, the system, server,
and utility libraries, the processor manager and loader, and an initialisation
program which usually starts up a shell. When the entire system image has
been sent the bootstrap program transfers control to the kernel, which needs
some additional configuration information before it can initialise itself. This
configuration includes details such as the processor names, and the structure
is defined in the header file config.h.

In theory Helios is now up and running, and will start sending some data.
The first data is guaranteed to be a probe request, consisting of a byte
0x00F0 followed by another 11 bytes. In server mode, the infinite loop in
main() will call server_helios() to receive this byte 0x00F0 and reply
appropriately. In debug mode the debugger takes care of receiving this.
Note that probe requests may be sent at any time, not just during start-up.

Module tload.c also contains the message interface between Helios and the

8

Server. During start-up a single message buffer is initialised, and the size
of the data vector is controlled by the configuration file. For the sake of
efficiency this message buffer is used by everything, so that I do not need to
worry about copying the messages to other buffers etc. Also, the message
buffer can account for much of the Server’s memory usage, so having a single
message buffer cuts down on that.

All message passing goes via Request State, and Request_Return(). Request_Stat()
polls for a message with a short timeout, so that the Server is not suspended
indefinitely. If GetMsg() returns 0x00F0, the Server has received another
probe request, which is handled as usual; otherwise it has received a He-
lios message. This may be part of an IOdebug() on the transputer side,
in which case the function code is a particular magic number and the data
vector contains a single character: there is no need to reply to such a mes-
sage. Otherwise the message is for a server or an open stream, and I return
it to a higher level to avoid problems with port tables and so forth in the
kernel, the flag field in the message is cleared, and servers and streams have
to set it if necessary. When a server or stream needs to send a message
back to the transputer, it has to go via Request_Return(). There is a test
for sending a message to NullPort, just in case. If message debugging is
currently enabled, details of the message are output to the screen. If for
some reason the Server is unable to send the message then something has
gone seriously wrong: the transputer should have a link guardian running
at high priority and waiting on the link, so the Server should always be able
to send a message within a fairly short time.

6 Multi-Threading and the Main Loop

Once the transputer has been booted and the kernel is active, main() calls
routine Server() in module server.c. This initialises server mode, runs
MainLoop() until either the user or the transputer has specified that the
Server should exit server mode, and then tidies up server mode.

The main problem in understanding the Server is its use of multi-threading.
The reason for this is essentially the same as for using multiple threads or
processes when programming on a transputer: it makes programming a lot
easier. At the time of writing all the implementations of the Server use
coroutines to implement multi-threading: this has the advantage that only
one thread is active at any one time, which means that I can use global data
including a global message buffer without synchronising via semaphores etc
However, there is no particular reason why coroutines must be used: if the
system provides some cheap multi-threading facility already, which allows
synchronisation so that only one thread is active at any one time, then this

9

can be used perfectly safely instead.

The Server uses separate threads for every device server and for every open
stream. These threads are held in one of two linked lists: if the server or
stream is currently waiting for a message from the transputer (for exam-
ple, the next request), then it is held in WaitingCo; otherwise it is held
in PollingCo, and any attempt by the transputer to send messages to it
will fail because the device is already busy. The MainLoop of the Server
performs the following: wake up any threads held in PollingCo to let them
check whether they should be doing anything; get a message if the transputer
is trying to send one; if this message is for a thread held in WaitingCo that
thread gets woken up; otherwise an error message should be sent. There is
a one to one correspondence between message ports on the Server side and
threads.

Routine Init() initialises the multi-threading library by a call to InitColib(),
and initialises the linked lists WaitingCo and PollingCo. It works out the lo-
cation of the Helios directory in the host’s filing system, usually via the con-
figuration file. Then it creates threads for every device server supported by
the configuration: these are all held in the table defined in header server.h.
A new thread is created by a call to NewCo() in module cofuns.c, which
returns a pointer to a conode structure defined in header structs.h. In
addition, if the host has multiple drives in its filing system these are treated
as separate devices and threads are started for all of them. Once all the
threads have been created they are started up by calls to StartCo(), so
that the various servers can initialise themselves. The Server is now ready
to receive and process messages from the transputer network.

TidyUp() performs the opposite function to Init(). Its main job is to per-
suade all the threads in the Server to kill themselves, Whenever threads
suspend themselves (and they continue running until they suspend them-
selves), as soon as they are woken up again they must check whether or not
they are meant to stop or commit seppuku(). All that TidyUp() needs to
do is tell all threads that they should stop and then wake them up.

All servers are started up in a routine General_Server() in module server.c.
The argument to General Server is a pointer to the conode structure corre-
sponding to that thread, which contains amongst other things a pointer to
an array of handler functions. Hence when General_Server() gets woken
up with an Open request from the transputer, it can call the appropriate
handler function very easily. One of these handler functions is used to ini-
tialise the server, frequently a no-op. The header file fundefs.h defines
which handler functions are no-ops or error handlers, and which ones do
real work. The current thread suspends itself, and will get woken up either
when it is told to die or when a message has arrived for it. If it is a valid

10

message then this message must contain a name, which is converted and
stored in a static buffer. This saves having to convert the name in every
handler function for every device. Then the handler function is invoked, and
the thread suspends itself thus giving control back to MainLoop().

In addition there is a routine General_Stream(), which is similar to General_Server()
but for streams rather than servers. Streams get a different set of requests
from servers and need a different set of handler routines. Also, if a stream
is not used for a long time then it is assumed that the client who opened
that stream has died and the stream thread dies off (unless there is a very
good reason for not doing so). Note that it is very easy for servers to create
new streams, by calling a NewStream() routine in module server.c.

7 A Typical Interaction

To explain the above a bit more dearly, I shall describe a typical example.
Suppose that a program wishes to read the /IO directory. It sends an Open
request to the server for IO. Next time MainLoop() calls Request_Stat(),
this message is read from the link and stored in the main message buffer.
MainLoop() looks at the destination port held in the message and discovers
that it matches the thread identifier associated with the IO server. Hence
this thread gets woken up, inside routine General_Server(). The thread
looks at the message, discovers that it is a valid open request, converts the
name to IO, and calls the appropriate handler function. From the header
files server.h and fundefs.h we can determine that this function is in
fact IOProc_Open(), which happens to be in module server.c as well.
IOProc_Open() determines that the name held in the message is valid,
that the client is not trying to do something silly, and then creates a new
stream. The NewStream() routine creates a new thread, initialises its han-
dler functions, and starts the new thread. This thread starts off in routine
General_Stream(), which initialises the stream by calling a handler func-
tion. Then it sends a reply back to the client, and the stream suspends itself.
This reactivates the parent thread (that is, the server for IO), which returns
to General_Server() where this thread is suspended. Now MainLoop(is
reactivated, and the Server is ready to receive a new message.

When the client gets back the reply message, it will have a message port
for the stream just opened. Hence it can send Read requests to this stream.
Again, these are accepted by MainLoop(), and result in waking up the thread
inside General_Stream(). The Read request is handled by invoking the
appropriate handler function, and eventually control returns to MainLoop.
When the client sends a Close request the stream thread tidies up and
commits seppuku(), thus removing itself from the linked lists WaitingCo

11

and PollingCo and preventing any further messages being sent to it.

As a slight complication, consider a Read request for the console device (that
is, the client wants to know the next key pressed). When the Read request
arrives it is quite likely that the user has not pressed a key, and the thread
has to wait a while before it can send back a reply. Whilst waiting it cannot
handle any new requests: for example, if it received another Read request
and the user pressed a key, the stream would have the difficult job of working
out which client should get the key. However, the other threads are still
active and can handle additional requests coming in. When a thread needs
to wait for something to happen before it can send a reply, it should move
its conode from the WaitingCo list to the PollingCo list. This achieves
two things: first, all threads in PollingCo are woken up regularly by the
MainLoop so that they can check whether or not anything interesting has
happened recently; second, threads held in PollingCo cannot receive new
messages. A complication here is that under Helios most input/output is
performed with timeouts, to achieve limited fault-tolerance. Hence threads
involved in polling need to worry about timeouts as well as other events.
This is done automatically by putting a time limit in the conode structure,
which is checked by MainLoop.

8 The IOProcessor Device

The Server has to emulate a full Helios node running on the host machine.
Hence it must be possible to list /IO to determine what servers are running
on that particular machine. Also, when the network server extends the
current network the Server node will be renamed (for example, from /IO to
/Cluster/IO). Also, as an intelligent network node the Server has to support
distributed search requests. Hence when a client on some remote transputer
tries to access /rs232/default for the first time, this may initiate a search
for a server called rs232 which gets sent to all network nodes, and it is
the IOProc server that will receive this message. Another problem is that
messages may be sent to the IOProc server when they are really meant
for some server within the node. For example, if a client does a locate of
rs232 relative to /IO, the IOProc server will get this request and will need
to forward it internally to the RS232 server. In theory the IOProc server
should also be able to forward requests to servers on the transputer side of
the network, but that is more difficult to achieve.

To see what handlers are required for the IOProc server, look at the header
file fundefs.h. IOProc_InitServer is defined as an external, so this is a
real routine that has to be provided. On the other hand, IOProc_Refine
is #defined as Forward, a function which either forwards the request to

12

another server or sends back an error code indicating inappropriate func-
tion for a particular object. These handlers are all defined in the module
server.c. IOProc_InitServer() builds a linked list containing the vari-
ous entries in the /IO directory (that is, the various servers supported in
the current configuration). Initially all servers are held in the WaitingCo
list and the conode structure contains the name of the server, so there is no
problem about building this list. Once the list has been built it is very easy
to support reading directories. IOProc_Open() creates a new thread for the
stream, using IOProc_Handlers for the handler functions. However, these
handler functions are #defined to be the general-purpose directory reading
functions, also used when reading a directory on disc or when reading the
/rs232 directory. IOProc_TidyServer(), called when leaving server mode,
releases the space taken up by the linked list.

Distributed searches are handled by a private protocol. When General_Server()
or General_Stream() detects a non-GSP message, it will call the handler
function for private messages. In most cases this handler returns an invalid
function error to the client. However, for the IOProc device, the private
protocol message may be a distributed search. If so, the server extracts the
name of the server (for example, rs232), tries to find it in the linked list,
and if successful it returns success together with the port/thread identifier
for the server.

There are the usual handlers to support Create, Locate, and ObjectInfo
requests which have to be supported by all servers. Finally there is the
Rename request. Renaming is nasty, because it involves extracting both the
source and the destination name from the message. A typical Rename would
be from /IO to /Cluster/IO. The reason for supporting this network naming
is that the reply to Open, Create and Locate requests must include the full
name of the object. For example, if a client opens /rs232/default the Open
reply contains the name /Cluster/IO/rs232/default: this makes it easier
to restart the client-server interaction when something goes wrong. The
global variable network name contains the current node name (for example,
/Cluster/IO), and the name conversion routines used in the server leave
the object name (for example, rs232/default), in variable IOname. Hence
constructing the full network name, done in routine FormOpenReply(), is
fairly easy.

9 Other Servers

In addition to the IOProc device the Server contains a number of different
servers, but they all work in much the same way. The header fundefs.h
defines the handler routines, server.h stores them in the table of servers,

13

Init() starts threads for them, and they all start up in General_Server().
Obviously the handler routines differ quite considerably between the differ-
ent servers, as do the local routines invoked by then handlers to do real
work, but the underlying organisation is the same.

On some machines such as Sun Workstations there is a single file server
called /files: on others there are different servers for every disc drive. In
addition there is a file server called /helios. This server exists to provide
the same interface on all the different machines: programs can always access
/helios/lib/cstart.o, and do not have to be recompiled or reconfigured
to access /c/helios/lib/cstart.o or /files/usr/helios/lib/cstart.o.
The filing system is accessed by a number of local routines. For example,
when a file server receives an Open request for a file, the handler routine
Drive_Open() calls the local routine open_file(). To port the server onto
different hardware it is necessary to provide this open_file() routine in the
local module, but the Helios interface can remain unchanged.

After a filing system, the most important device is some sort of terminal
input/output. On some machines multiple windows are available, and a
window server is supported. On others there is only a single window, so
a console device is supported instead a window manager may be run on
the transputer side to provide multiple shells. All Helios terminal streams
must support the ANSI protocols for input and output, and a general ANSI
emulator is provided if necessary. If you use this ANSI emulator, it is possible
to provide multiple windows on a no-windowing system by using different
shadow screens for each: this approach is used in the PC server.

The module devices.c contains some additional devices, mostly optional
ones. The clock device is used to provide a real-time clock. In fact part
of the configuration information sent during bootstrap contains the current
time allowing the transputer to maintain its own dock, so the dock device is
accessed only occasionally. If it is necessary to run X-windows on the trans-
puter side then the Server must support mouse and raw keyboard devices.
There is also code to support RS232, Centronics, Midi, and printer devices:
these tend to work in much the same way, with data coming in down a bit
of wire and data going out down a bit of wire, so they share a lot of code.

The final device is a GEM VDI server, used to provide graphics output on
the PC server and possibly on the ST server at some future stage. This server
is slightly different from most in that a private protocol is used between the
client and open streams rather than the GSP protocol. However, GSP is
used for some of the operations, where it is particularly suitable.

14

10 The Debugger

The Server contains a simple transputer debugger. This is used mainly when
porting the Server to new hardware, to check that the link input/output
routines work as they are supposed to, and to debug the Helios nucleus,
particularly the kernel hence it is of little use to ordinary users, and there
is a defines.h option to leave out the debugger completely.

When running in debug mode, the Server maintains a list of symbols as-
sociated with particular addresses. For example, the debugger knows that
address 0x80000000 is the base of memory, so when you disassemble at that
address MemBase will be displayed alongside the disassembly. In addition
the Helios nucleus contains the names of all the system routines, and there
is a define command in the debugger to allow you to store all these names
in the linked list as well.

The main routine in the debugger, debug(), reads data from the keyboard,
interprets it as commands, and calls the corresponding routines. Some com-
mands are single key, for example, the ’.’ command is used to display the
next frame of memory. Other commands (for example reset), have to be
typed in full. The debug loop reads in the keys. Alphanumeric keys are
stored in a buffer and backspace and delete may be used for editing. Oth-
erwise if the buffer is not empty then it may contain a symbol such as a
routine name, which means that the debugger should move to the corre-
sponding address, or it may contain a number which is interpreted as an
address, or it may contain a built-in command such as reset. If the buffer
is empty then the key is interpreted as a single-key command. The default
action is to display a frame of the transputer memory as a hex dump.

All the built-in commands are held in a table, together with handler rou-
tines. Most of these are fairly simple; for example, the reset command just
involves doing an xpreset() and outputting a message. The go command
is slightly more complicated: it boots up the transputer and then waits for
messages from the transputer, meanwhile allowing the user to send some
messages himself. The main use of this command is to check that the sys-
tem does come up correctly. A related command is cmp, which compares
the system image loaded in the transputer memory with the system image
held on disc. The clear command uses one of the options in the bootstrap
program nboot.i to clear some of the transputer’s memory, very useful be-
fore a go command to make sure that the transputer is in a known state.
The dump command, used after analysing the transputer, should store the
bottom of memory where the transputer holds debug information, and the
info command can be used to examine it. The explore command provides
all this in one go. Finally, the trace command is used to examine the top of
memory where the kernel keeps its trace vector and can store certain debug

15

information.

The module dbdecode.c contains code to disassemble the transputer and
to store the various symbols. Disassembling a transputer is fairly straight-
forward, and details of the instruction set may be found in various Inmos
publications.

GEM and VDI are trademarks of Digital Research, Ice.; Helios is a trademark of Perihe-

lion Software Limited; IBM is a registered trademark of International Business Machines,

Inc.; Inmos is a trademark of the Inmos Group of Companies; Meiko and Meiko Comput-

ing Surface are trademarks of Meiko Limited; MS-DOS and Microsoft are trademarks of

Microsoft Corporation; ST is a trademark of Atari Corporation; Sun refers to Sun Work-

station, which is a trademark of SUN Microsystems, Inc.; Unix is a registered trademark

of AT&T.

16

	1 The Helios Input/Output Server
	2 Introduction
	3 The Server Sources
	4 Server Startup
	5 Booting Up the Transputer
	6 Multi-Threading and the Main Loop
	7 A Typical Interaction
	8 The IOProcessor Device
	9 Other Servers
	10 The Debugger

