
The Helios RS232 Device

Perihelion Software Technical Report No. 6

Bart Veer

December 1988



Perihelion Software Limited
The Maltings

Charlton Road
Shepton Mallet

Somerset
BA4 5QE
England

Telephone +44 749 4203
Fax. +44 749 4977

Copyright (c) 1988,1989 Perihelion Software Ltd.

Permission to copy this technical note without fee is hereby granted, provided
that the copyright message and this permission appears in all copies.

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

2



Contents

1 Introduction 4

2 Incoming and Outgoing Data 5

3 Baud rates 5

4 Flow Control 6

5 Parity 7

6 Break Signals 8

7 Modem Interrupts 9

8 The Default Configuration 9

3



1 Introduction

It should be relatively simple to take some bytes of data, send them down a
bit of wire, and turn them back into the same bytes of data at the receiving
end. Unfortunately an RS232 device is anything but simple, and under
Helios they tend to be even worse than normal. This is because under Helios
the device may be connected directly to a transputer, it may be inside an
IBM PC (or compatible) which is being used as an I/O processor, or inside
another type of I/O processor, all of which will be using different chips and
hence will behave in a slightly different way. To get around this, Helios
defines a single interface between clients and all RS232 servers, irrespective
of the underlying hardware, and the server has to support this interface to
the best of its ability.

Typically an RS232 server needs to cope with more than one port. For exam-
ple, a common add-on card for a transputer system would have eight RS232
lines to connect to dumb terminals. Hence the /rs232 server is implemented
as a directory containing a number of ports, which can be viewed with the
Is command just like any other directory. There will always be one entry
in the directory, called default. Hence an application program can always
open /rs232/default, without needing to know what the ports are actually
called. If the server supports more than one port (for example, com1 and
com2), then there will be three entries in the directory called default, com1
and com2. There will be some way of configuring the RS232 server so that
default maps onto either com1 or com2. Also, it is possible to rename either
com1 or com2 to default to change the default port.

For example, a user runs the public domain communications utility kermit to
connect to a remote machine. Kermit opens the device /rs232/default unless
instructed otherwise, and the RS232 server has been configured to map
default onto com2: hence the user attempts to connect via com2. However,
if it is necessary to connect through com1 occasionally then the user can
write a shell script which renames com1 to default, runs kermit, and then
renames com2 to default again to restore the system.

Once an application has opened a stream to an RS232 port, the port can be
reconfigured to suit particular needs. There are two parts to configuring a
port. First there is the event mechanism, which will ensure that the applica-
tion is woken up asynchronously when particular events occur. Second there
is the attributes mechanism used to control the behaviour of the port. The
event mechanism is used with the system call EnableEvents(), and the
attribute mechanism is used with the system calls GetAttributes() and
SetAttributes() or the posix library termios calls. Full details of these
mechanisms may be found in the Helios manual, together with examples of
their use.

4



It should be noted that the terminology used to describe the Helios RS232
device can be rather confusing. Briefly a client program or application in-
teracts with an RS232 server, which is the only program that has access
to the physical RS232 hardware: the application program usually runs on
a separate processor. The RS232 server can send data down a bit of wire
and receive data from a bit of wire. At the other end of this wire there
may be another Helios RS232 server, or there may be some non-transputer
hardware such as a dumb terminal.

The remainder of this document describes the attributes and events used
for the RS232 device.

2 Incoming and Outgoing Data

Data is sent and received in units of characters which may vary in size from
5 to 8 bits. This size excludes the optional parity bit, described below.
The attributes for controlling the size are: RS232 Csize 5, RS232 Csize 6,
RS232 Csize 7, and RS232 Csize 8. Should you find it necessary to change
the current size, you must first RemoveAttribute() the current size and
then AddAttribute() the new size. To determine the current size may
involve up to four calls to IsAnAttribute(). The usual character sizes are
8 bits without parity or 7 bits with parity.

Data is transmitted as a single start bit, followed by the character, an op-
tional parity bit, and either one or two stop bits. To choose between one
and two stop bits, you should use the RS232 Cstopb attribute: if set, the
server will use two stop bits; otherwise it will use only one.

3 Baud rates

RS232 lines can operate at a number of different speeds or baud rates. In
theory an RS232 line should cope with different baud rates for sending and
receiving data, but not all hardware can support this. For example, the
8250 UART chip used in the IBM PC and compatibles can cope with only
a single baud rate for both input and output. In such a case only the input
speed is used, and the output speed is ignored.

The GetInputSpeed() and GetOutputSpeed() routines may be used to de-
termine the current baud rate. This should be one of RS232 B50, RS232 B75,
RS232 B110, RS232 B134, RS232 B150, RS232 B200, RS232 B300, RS232 B600,
RS232 B1200, RS232 B1800, RS232 B2400, RS232 B4800, RS232 B9600,
RS232 B19200, or RS232 B38400. SetInputSpeed() and SetOutputSpeed()

5



may be used to modify the baud rates. Not all hardware can cope with all
the baud rates, particularly 19200 baud and 38400 baud, and if an attempt
is made to set the baud rate to an illegal value then the server will use some
default instead. To detect this, the application should perform another
GetAttributes() after reconfiguring the port.

4 Flow Control

Flow control has to be used between the sending and receiving ends of an
RS232 line to control the rate at which data is sent. The recommended
approach to flow control is XON/XOFF. When the sender is transmitting
data too quickly and the receiver is unable to process it quickly enough,
usually because its client is not reading the data, the receiver must suspend
the sender for a while to avoid overflowing its buffer. This is done by sending
a single XOFF character. When the receiver is ready for more data, it should
send an XON character. After sending the XOFF character, there may be
some delay before the sender gets a chance to process it so the receiver must
be able to buffer at least another 128 characters.

To control XON/XOFF flow control there are two attributes. First, RS232 IXON
controls XON/XOFF on output. If this attribute is set and the application
is writing down the serial line, then the other side can suspend the write by
sending an XOFF character. If the attribute is not set then the XON/XOFF
characters may be read by the application. Note that there may be some
considerable delay between the server receiving the XON/XOFF character
and the application reading it, so applications should not normally perform
their own XON/XOFF handling. The second attribute is RS232 IXOFF
and controls XON/XOFF on input. If this attribute is set and the server
is receiving data faster than the application is reading it, then the server
can send XOFF characters to the other side. If the attribute is not set then
the server may overflow its buffers, and data will be lost irretrievably. Data
may also be lost irretrievably if the other side is ill-behaved and continues
to send data after an XOFF.

The alternative approach to handshaking is to use the modem status lines.
If the attribute RS232 Clocal is set then these lines are ignored. If the
attribute is not set, then the server will use the handshake lines to the
best of its ability. However, the exact operation of these handshake lines
is not well-defined and different pieces of hardware are likely to disagree
about their interpretation. Under Helios the Data Terminal Ready (DTR)
line should be kept high whilst there is an outstanding read to be satisfied,
allowing the other side to continue to send data; also, while there is an
outstanding write the Request To Send (RTS) line should be kept high, and

6



the server will send data when the other side asserts the Clear To Send
(CTS) line. However, RS232 servers are free to interpret these handshaking
lines in different ways or ignore them completely, if this is appropriate for
the hardware. Hence using hardware handshaking rather than XON/XOFF
for flow control is strongly discouraged.

5 Parity

No less than six attributes control the parity behaviour of an RS232 line.
The first attribute is RS232 ParEnb: if this attribute is set then the server
will use either odd or even parity on both input and output. Note that it is
not possible to use parity on input but not on output or vice versa, because
little if’ any hardware supports it. If the attribute is not set then no parity
is used, which means that the application does not have to worry about the
various parity errors.

The next attribute is RS232 Istrip. If this attribute is set then all data
received from the RS232 line is stripped to the bottom seven bits. This is
very useful if the application is unsure whether the other side is using seven
bits with parity or eight bits without parity, because it ensures that at least
seven bits are correct assuming no transmission errors. If the attribute is
not set then the top bit is not stripped.

The RS232 ParOdd attribute is useful only if parity has been enabled: if
set, odd parity will be used; otherwise even parity is used.

The remaining parity attributes control the detection of parity errors on
input. Note that the server cannot take any action if there are parity errors
on output because this can be detected only at the other side, and higher
levels of protocol have to take recovery action. The attribute RS232 InPck
controls whether it is the client or the server that should notice parity er-
rors: if the attribute is not set then any data received with parity errors is
sent to the application program as usual (in effect, the server ignores the
parity error); otherwise the server takes some recovery action depending on
attributes RS232 IgnPar and RS232 ParMrk. If the RS232 IgnPar attribute
is set and the server detects a parity error then the data received in error is
discarded; otherwise some special characters are placed in the read stream,
depending on the remaining attribute RS232 ParMrk. If that attribute is
not set then the data received in error will be replaced by a single byte 0x00,
and it is upto the application to work out whether this 0x00 is the result of
a parity error or some real data. If the RS232 ParMrk attribute is set then
a parity’ error will generate two bytes, a byte 0xFF followed by a byte 0x00;
this can lead to ambiguity if a character 0xFF is received correctly, possible
only if the RS232 Istrip attribute is not set, so in that case a character 0xFF

7



received correctly is placed in the read stream as two bytes 0xFF 0xFF.

Consider the following example: an RS232 port is configured with 7-bit char-
acters, RS232 ParEnb, RS232 ParOdd, RS232 InPck, RS232 ParMrk, not
RS232 IgnPar, and not RS232 Istrip; the data received is the byte 00111001.
Parity is enabled so the first bit (that is, a 0 is the parity bit). However,
odd parity is in use and there are an even number of is in the byte, so a par-
ity error of some sort has occurred. RS232 InPck is enabled, so the parity
error should be handled by the RS232 server rather than by the applica-
tion. Since RS232 IgnPar is not set, the data received should not be thrown
away, but instead placed in the read stream as a special sequence. Because
RS232 ParMrk is set the data placed in the read stream will be two bytes,
0xFF followed by 0x00. When the application discovers a byte 0xFF in the
read stream, and the next byte is an 0x00 rather than an 0xFF, this means
that a parity error has occurred and it can take whatever recovery action is
appropriate.

There is a related error code: if the RS232 server is kept sufficiently busy
that it cannot handle the incoming data as it arrives, and some data is lost
before the server had a chance to buffer it, an overrun error has occurred;
this is indicated to the application as the sequence 0xFF 0x01.

6 Break Signals

A break signal occurs when the voltage on the RS232 line drops to 0 for
a time, and is usually generated when one of the sides wishes to drop the
connection. First, the application must be able to generate a break signal.
There are two ways to do this: it can set the baud rate to RS232 BO (the
output baud rate if separate baud rates arc supported on input and out-
put, otherwise the input baud rate), in which case the server will reset the
baud rate to its default value afterwards; alternatively, if the RS232 HupCl
attribute is set and the stream to the RS232 port is closed then the server
will generate a break signal automatically.

The second problem is detecting when a break signal has occurred. There
are two attributes to control this. The first is RS232 IgnoreBreak: if this
is set any break signals are ignored completely, otherwise the behaviour is
determined by the next attribute. If RS232 BreakInterrupt is not set then
a break signal will cause a byte 0x00 to be inserted in the read stream, and
it is up to the application to distinguish this byte 0x00 from a transmitted
byte 0x00 or a byte 0x00 generated by parity errors given the appropriate
attributes. If RS232 BreakInterrupt is set, the server will send a break event
to an event handler if the application has installed one;; if the application
has not installed an event handler, the break is ignored. To install such

8



an event handler the application should use an EnableEvents() call with
Event RS232Break as one of the arguments. Break events are treated as
one-off events, and there is no need to Acknowledge() or NegAcknowledge()
them.

7 Modem Interrupts

One of the lines specified in the RS232 protocol is Ring Indicator (RI). This
is used mainly by dial-up modems, to inform an application that somebody
is trying to dial in. To detect such events, the application should install an
event handler by calling EnableEvents() with Event ModemRing as one
of the arguments. Modem rings are one-off events, and there is no need to
Acknowledge() or NegAcknowledge() them.

8 The Default Configuration

The default configuration for a Helios RS232 port is as follows: 9600 baud
for both input and output; 8 bits per character, and one stop bit; parity
and Istrip disabled; XON/XOFF flow control enabled on both input and
output with hardware handshaking disabled; break interrupts enabled, but
the client has to install an event handler; HupCl disabled. This configuration
should work correctly on all implementations.

IBM is a registered trademark of international Business Machines, Inc.

Posix library refers to a library of calls used by Helios that largely conform to the IEEE

Std. 1003.1-1988, IEEE Standard Portable Operating System Interface for Computer

Environments.

9


	1 Introduction
	2 Incoming and Outgoing Data
	3 Baud rates
	4 Flow Control
	5 Parity
	6 Break Signals
	7 Modem Interrupts
	8 The Default Configuration

