
transputer
architecture

Reference manual

INMOS

July 1987
72-TRN-048-03

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

2

Contents

Preface 5

1 Introduction 5
1.1 Overview . 6

Transputers and occam 6
1.2 Rationale . 7

1.2.1 System design . 7
Programming . 7
Hardware . 8
Programmable components 8

1.2.2 Systems architecture 9
Point to point communication links 9
Local memory . 9

1.2.3 Communication . 10

2 Occam model 11
The programming model for transputers is defined by
occam. 11

2.1 Overview . 12
2.2 Occam overview . 13

2.2.1 Processes . 13
Assignment . 14
Input . 14
Output . 14

2.2.2 Constructs . 14
SEQ . 15
PAR . 15
Communication . 16
IF . 16
ALT . 17

2.2.3 Repetition . 17
2.2.4 Replication . 18
2.2.5 Types . 18

Primitive types . 18
2.2.6 Declarations, arrays and subscripts 18
2.2.7 Procedures . 19
2.2.8 Expressions . 20
2.2.9 Timer . 20
2.2.10 Peripheral access . 21

2.3 Configuration . 21
PLACED PAR . 22
PRI PAR . 22

3

INMOS standard links 22

3 Error handling 22

4 Program development 23
Logical behaviour . 23

4.1 Performance measurement . 24
4.2 Separate compilation of occam and other languages 25
4.3 Memory map and placement 25

5 Physical architecture 26
5.1 INMOS serial links . 26

5.1.1 Overview . 26
5.1.2 Link electrical specification 26

5.2 System services . 27
5.2.1 Powering up and down, running and stopping 27
5.2.2 Clock distribution . 28

5.3 Bootstrapping from ROM or from a link 28
5.4 Peripheral interfacing . 28

6 Notation conventions 30
6.1 Signal naming conventions . 30

7 Transputer product numbers 31

4

Preface

This manual describes the architecture of the transputer family of products.
The first section gives a brief summary of the major features of the trans-
puter architecture and a rationale. The second section gives an overview
of the programming model. The third section describes the aspects of the
transputer which are common to all members of the transputer family.

Other information relevant to all transputer products is contained in the
occam programming manual (supplied with INMOS software products and
available as a separate publication), and the transputer development system
manual (supplied with the development system).

The examples given in this manual are outline design studies and are in-
cluded to illustrate various ways in which transputers can be used. The
examples are not intended to provide accurate application designs.

1 Introduction

Figure 1: Transputer architecture

5

1.1 Overview

A transputer is a microcomputer with its own local memory and with links
for connecting one transputer to another transputer.

The transputer architecture defines a family of programmable VLSI com-
ponents. The definition of the architecture falls naturally into the logical
aspects which define how a system of interconnected transputers is designed
and programmed, and the physical aspects which define how transputers, as
VLSI components, are interconnected and controlled.

A typical member of the transputer product family is a single chip con-
taining processor, memory, and communication links which provide point to
point connection between transputers. In addition, each transputer prod-
uct contains special circuitry and interfaces adapting it to a particular use.
For example, a peripheral control transputer, such as a graphics or disk
controller, has interfaces tailored to the requirements of a specific device.

A transputer can be used in a single processor system or in networks to
build high performance concurrent systems.

Figure 2: A network of transputers is easily constructed using point-to-point
communication

Transputers and occam

Transputers can be programmed in most high level languages, and are de-
signed to ensure that compiled programs will be efficient. Where it is re-
quired to exploit concurrency, but still to use standard languages, occam
can be used as a harness to link modules written in the selected languages.

To gain most benefit from the transputer architecture, the whole system can
be programmed in occam. This provides all the advantages of a high level
language, the maximum program efficiency and the ability to use the special

6

features of the transputer.

Occam provides a framework for designing concurrent systems using trans-
puters in just the same way that boolean algebra provides a framework for
designing electronic systems from logic gates. The system designer’s task
is eased because of the architectural relationship between occam and the
transputer. A program running in a transputer is formally equivalent to an
occam process, so that a network of transputers can be described directly
as an occam program.

Figure 3: A node of four transputers

1.2 Rationale

1.2.1 System design

The transputer architecture simplifies system design by the use of processes
as standard software and hardware building blocks.

An entire system can be designed and programmed in occam, from system
configuration down to low level I/0 and real time interrupts.

Programming

The software building block is the process. A system is designed in terms
of an interconnected set of processes. Each process can be regarded as an
independent unit of design. It communicates with other processes along
point-to-point channels. Its internal design is hidden, and it is completely

7

specified by the messages it sends and receives. Communication between
processes is synchronized, removing the need for any separate synchronisa-
tion mechanism.

Internally, each process can be designed as a set of communicating processes.
The system design is therefore hierarchically structured. At any level of
design, the designer is concerned only with a small and manageable set of
processes.

Occam is based on these concepts, and provides the definition of the trans-
puter architecture from the logical point of view (see section 2).

Hardware

Processes can be implemented in hardware. A transputer, executing an
occam program, is a hardware process. The process can be independently
designed and compiled. Its internal structure is hidden and it communicates
and synchronizes with other transputers via its links, which implement oc-
cam channels.

Other hardware implementations of the process are possible. For example, a
transputer with a different instruction set may be used to provide a different
cost/performance trade-off. Alternatively, an implementation of the process
may be designed in terms of hard-wired logic for enhanced performance.

The ability to specify a hard-wired function as an occam process provides the
architectural framework for transputers with specialized capabilities (e.g.,
graphics). The required function (e.g., a graphics drawing and display en-
gine) is defined as an occam process, and implemented in hardware with a
standard occam channel interface. It can be simulated by an occam imple-
mentation, which in turn can be used to test the application on a develop-
ment system.

Programmable components

A transputer can be programmed to perform a specialized function, and be
regarded as a ’black box’ thereafter. Some processes can be hard-wired for
enhanced performance.

A system, perhaps constructed on a single chip, can be built from a com-
bination of software processes, preprogrammed transputers and hardware
processes. Such a system can, itself, be regarded as a component in a larger
system.

The architecture has been designed to permit a network of programmable

8

components to have any desired topology, limited only by the number of
links on each transputer. The architecture minimizes the constraints on the
size of such a system, and the hierarchical structuring provided by occam
simplifies the task of system design and programming.

The result is to provide new orders of magnitude of performance for any
given application, which can now exploit the concurrency provided by a
large number of programmable components.

1.2.2 Systems architecture

Point to point communication links

The transputer architecture simplifies system design by using point to point
communication links. Every member of the transputer family has one or
more standard links, each of which can be connected to a link of some other
component. This allows transputer networks of arbitrary size and topology
to be constructed.

Point to point communication links have many advantages over multi-processor
buses:

There is no contention for the communication mechanism, regardless of the
number of transputers in the system.

There is no capacitive load penalty as transputers are added to a system.

The communications bandwidth does not saturate as the size of the system
increases. Rather, the larger the number of transputers in the system, the
higher the total communications bandwidth of the system. However large
the system, all the connections between transputers can be short and local.

Local memory

Each transputer in a system uses its own local memory. Overall memory
bandwidth is proportional to the number of transputers in the system, in
contrast to a large global memory, where the additional processors must
share the memory bandwidth.

Because memory interfaces are not shared, and are separate from the com-
munications interfaces, they can be individually optimized on different trans-
puter products to provide high bandwidth with the minimum of external
components.

9

1.2.3 Communication

Figure 4: Links provide direct communication between processes on indi-
vidual transputers

To provide synchronised communication, each message must be acknowl-
edged. Consequently, a link requires at least one signal wire in each direc-
tion.

A link between two transputers is implemented by connecting a link interface
on one transputer to a link interface on the other transputer by two one-
directional signal lines, along which data is transmitted serially.

The two signal wires of the link can be used to provide two occam channels,
one in each direction. This requires a simple protocol. Each signal line
carries data and control information.

The link protocol provides the synchronized communication of occam. The
use of a protocol providing for the transmission of an arbitrary sequence of
bytes allows transputers of different word length to be connected.

Each message is transmitted as a sequence of single byte communications,
requiring only the presence of a single byte buffer in the receiving transputer
to ensure that no information is lost. Each byte is transmitted as a start
bit followed by a one bit followed by the eight data bits followed by a stop
bit. After transmitting a data byte, the sender waits until an acknowledge is
received; this consists of a start bit followed by a zero bit. The acknowledge
signifies both that a process was able to receive the acknowledged byte, and
that the receiving link is able to receive another byte. The sending link
reschedules the sending process only after the acknowledge for the final byte
of the message has been received.

Data bytes and acknowledges are multiplexed down each signal line. An
acknowledge can be transmitted as soon as reception of a data byte starts
(if there is room to buffer another one). Consequently transmission may be
continuous, with no delays between data bytes.

10

Figure 5: Link protocol

The links are designed to make the engineering of transputer systems straight-
forward. Board layout of two wire connections is easy to design and area
efficient. All transputers will support a standard communications frequency
of 10 Mbits/sec, regardless of processor performance. Thus transputers of
different performance can be directly connected and future transputer sys-
tems will directly communicate with those of today.

Figure 6: Clocking transputers

Link communication is not sensitive to clock phase. Thus, communication
can be achieved between independently clocked systems as long as the com-
munications frequency is the same.

The transputer family includes a number of link adaptor devices which pro-
vide a means of interfacing transputer links to non-transputer devices.

2 Occam model

The programming model for transputers is defined by occam.

The purpose of this section is to describe how to access and control the re-
sources of transputers using occam. A more detailed description is available
in the occam programming manual and the transputer development system
manual (provided with the development system).

The transputer development system will enable transputers to be programmed
in other industry standard languages. Where it is required to exploit con-
currency, but still to use standard languages, occam can be used as a harness

11

to link modules written in the selected languages.

2.1 Overview

In occam, processes are connected to form concurrent systems. Each process
can be regarded as a black box with internal state, which can communicate
with other processes using point to point communication channels. Processes
can be used to represent the behaviour of many things, for example, a logic
gate, a microprocessor, a machine tool or an office.

The processes themselves are finite. Each process starts, performs a num-
ber of actions and then terminates. An action may be a set of sequential
processes performed one after another, as in a conventional programming
language, or a set of parallel processes to be performed at the same time
as one another. Since a process is itself composed of processes, some of
which may be executed in parallel, a process may contain any amount of
internal concurrency, and this may change with time as processes start and
terminate.

Ultimately, all processes are constructed from three primitive processes -
assignment, input and output. An assignment computes the value of an
expression and sets a variable to the value. Input and output are used for
communicating between processes. A pair of concurrent processes commu-
nicate using a one way channel connecting the two processes. One process
outputs a message to the channel and the other process inputs the message
from the channel.

The key concept is that communication is synchronized and unbuffered. If
a channel is used for input in one process, and output in another, com-
munication takes place when both processes are ready. The value to be
output is copied from the outputting process to the inputting process, and
the inputting and outputting processes then proceed. Thus communication
between processes is like the handshake method of communication used in
hardware systems.

Since a process may have internal concurrency, it may have many input
channels and output channels performing communication at the same time.

Every transputer implements the occam concepts of concurrency and com-
munication. As a result, occam can be used to program an individual trans-
puter or to program a network of transputers. When occam is used to pro-
gram an individual transputer, the transputer shares its time between the
concurrent processes and channel communication is implemented by mov-
ing data within the memory. When occam is used to program a network of
transputers, each transputer executes the process allocated to it. Commu-

12

nication between occam processes on different transputers is implemented
directly by transputer links. Thus the same occam program can be im-
plemented on a variety of transputer configurations, with one configuration
optimized for cost, another for performance, or another for an appropriate
balance of cost and performance.

The transputer and occam were designed together. All transputers include
special instructions and hardware to provide maximum performance and
optimal implementations of the occam model of concurrency and communi-
cations.

All transputer instruction sets are designed to enable simple, direct and
efficient compilation of occam. Programming of 110, interrupts and timing
is standard on all transputers and conforms to the occam model.

Different transputer variants may have different instruction sets, depending
on the desired balance of cost, performance, internal concurrency and special
hardware. The occam level interface will, however, remain standard across
all products.

Figure 7: Mapping processes onto one or several transputers

2.2 Occam overview

2.2.1 Processes

After it starts execution, a process performs a number of actions, and then
either stops or terminates. Each action may be an assignment, an input, or
an output. An assignment changes the value of a variable, an input receives
a value from a channel, and an output sends a value to a channel.

At any time between its start and termination, a process may be ready to
communicate on one or more of its channels. Each channel provides a one
way connection between two concurrent processes; one of the processes may

13

only output to the channel, and the other may only input from it.

Assignment

An assignment is indicated by the symbol :=. The example

v := e

sets the value of the variable v to the value of the expression e and then
terminates. For example, x := 0 sets x to zero, and x := x + 1 increases the
value of x by 1.

Input

An input is indicated by the symbol ? The example

c ? x

inputs a value from the channel c, assigns it to the variable x and then
terminates.

Output

An output is indicated by the symbol ! The example

c ! e

outputs the value of the expression e to the channel c.

2.2.2 Constructs

A number of processes can be combined to form a construct. A construct
is itself a process and can therefore be used as a component of another con-
struct. Each component process of a construct is written two spaces further
from the left hand margin, to indicate that it is part of the construct. There
are four classes of constructs namely the sequential, parallel, conditional and
the alternative construct.

14

SEQ

A sequential construct is represented by

SEQ
P1
P2
P3
...

The component processes P1, P2, P3 ... are executed one after another.
Each component process starts after the previous one terminates and the
construct terminates after the last component process terminates. For ex-
ample

SEQ
c1 ? x
x := x + 1
c2 ! x

inputs a value, adds one to it, and then outputs the result.

Sequential constructs in occam are similar to programs written in conven-
tional programming languages. Note, however, that they provide the per-
formance and efficiency equivalent to that of an assembler for a conventional
microprocessor.

PAR

A parallel construct is represented by

PAR
P1
P2
P3
...

The component processes P1, P2, P3 ... are executed together, and are called
concurrent processes. The construct terminates after all of the component
processes have terminated. For example,

PAR
c1 ? x
c2 ! y

15

allows the communications on channels c1 and c2 to take place together.

The parallel construct is unique to occam. It provides a straightforward way
of writing programs which directly reflects the concurrency inherent in real
systems. The implementation of parallelism on a single transputer is highly
optimized so as to incur minimal process scheduling overhead.

Communication

Concurrent processes communicate only by using channels, and communi-
cation is synchronized. If a channel is used for input in one process, and
output in another, communication takes place when both the inputting and
the outputting processes are ready. The value to be output is copied from
the outputting process to the inputting process, and the processes then pro-
ceed.

Communication between processes on a single transputer is via memory-to-
memory data transfer. Between processes on different transputers it is via
standard links. In either case the occam program is identical.

IF

A conditional construct

IF
condition1
P1

condition2
P2

...

means that P1 is executed if condition1 is true, otherwise P2 is executed if
condition2 is true, and so on. Only one of the processes is executed, and
then the construct terminates. For example

IF
x = 0
y := y + 1

x <> 0
SKIP

increases y only if the value of x is 0.

16

ALT

An alternative construct

ALT
input1
P1

input2
P2

input3
P3

...

waits until one of input1, input2, input3 ... is ready. If inputs first becomes
ready, inputs is performed, and then process P1 is executed. Similarly,
if input2 first becomes ready, input2 is performed, and then process P2
is executed. Only one of the inputs is performed, then its corresponding
process is executed and then the construct terminates. For example:

ALT
count ? signal
counter := counter + 1

total ? signal
SEQ
out ! counter
counter := 0

either inputs a signal from the channel count, and increases the variable
counter by 1, or alternatively inputs from the channel total, outputs the
current value of the counter, then resets it to zero.

The ALT construct provides a formal language method of handling exter-
nal and internal events that must be handled by assembly level interrupt
programming in conventional microprocessors.

2.2.3 Repetition

WHILE condition
P

repeatedly executes the process P until the value of the condition is false.
For example

WHILE (x - 5) > 0
x := x - 5

17

leaves x holding the value of (x remainder 5) if x were positive.

2.2.4 Replication

A replicator is used with a constructor to replicate the component process a
number of times. For example, a replicator can be used with SEQ to provide
a conventional loop.

SEQ i = 0 FOR n
P

causes the process P to be executed n times.

A replicator may be used with PAR to construct an array of concurrent
processes.

PAR i = 0 FOR n
P1

constructs an array of n similar processes P0, P1, ..., Pn-1. The index i
takes the values 0, 1, ..., n-1, in P0, P1, ..., Pn-1 respectively.

2.2.5 Types

Every variable, expression and value has a type, which may be a primitive
type, array type, record type or variant type. The type defines the length
and interpretation of data.

Primitive types

All implementations provide the types shown in table 1.

2.2.6 Declarations, arrays and subscripts

A declaration T x declares x as a new channel, variable, timer or array of
type T. For example

INT x:
P

18

CHAN of protocol Each communication channel provides communica-
tion between two concurrent processes. Each chan-
nel is of a type which allows communication of data
according to the specified protocol.

TIMER Each timer provides a clock which can be used by
any number of concurrent processes.

BOOL The values of type BOOL are true and false.
BYTE The values of type BYTE are unsigned numbers n

in the range 0 ≤ n < 256.
INT Signed integers n in the range −231 ≤ n < 231.
INT16 Signed integers n in the range −215 ≤ n < 215.
INT32 Signed integers n in the range −231 ≤ n < 231.
INT64 Signed integers n in the range −263 ≤ n < 263.
REAL32 Floating point numbers stored using a sign bit,

8 bit exponent and 23 bit fraction in ANSI/IEEE
Standard 754-1985 representation.

REAL64 Floating point numbers stored using a sign bit,
11 bit exponent and 52 bit fraction in ANSI/IEEE
Standard 754-1985 representation.

Table 1: Types

declares x as an integer variable for use in process P.

Array types are constructed from component types. For example [n] T is
an array type constructed from n components of type T.

A component of an array may be selected by subscription, for example v[e]
selects the e’th component of v.

A set of components of an array may be selected by subscription, for example
[v FROM e FOR c] selects the c components v[e], v[e + 1], ... v[e + c - 1].
A set of components of an array may be assigned, input or output.

2.2.7 Procedures

A process may be given a name. For example

PROC square (INT n)
sqr := n * n

:

defines the procedure square. The name may be used as an instance of the
process. For example

19

square (x)

is equivalent to

n IS x:
n := n * n

2.2.8 Expressions

An expression is constructed from the operators given in table 2, from vari-
ables, numbers, the truth values TRUE and FALSE, and the brackets (
and).

Operator Operand types Description
+ - * / REM integer, real arithmetic operators
PLUS MINUS TIMES AFTER integer modulo arithmetic
= <> any primitive relational operators
> < >= <= integer, real relational operators
AND OR NOT boolean boolean operators
/\ \/ >< ~ integers bitwise operators:

and, or, xor, not
<< >> integer shift operators

Table 2: Operators

For example, the expression

(5 + 7) / 2

evaluates to 6, and the expression

(#1DF /\ #FO) >> 4

evaluates to #D (the character # introduces a hexadecimal constant).

A string is represented as a sequence of ASCII characters, enclosed in double
quotation marks ,. If the string has n characters, then it is an array of type
[n]BYTE.

2.2.9 Timer

All transputers incorporate a timer. The implementation directly supports
the occam model of time. Each process can have its own independent timer,
which can be used for internal measurement or for real time scheduling.

20

A timer input sets a variable to a value of type INT representing the time.
The value is derived from a clock, which changes at regular intervals. For
example

tim ? V

sets the variable v to the current value of a free running clock, declared as
the timer tim.

A delayed input takes the following form

tim ? AFTER e

A delayed input is unable to proceed until the value of the timer satisfies
(timer AFTER e). The comparison performed is a modulo comparison.
This provides the effect that, starting at any point in the timer’s cycle, the
previous half cycle of the timer is considered as being before the current
time, and the next half cycle is considered as being after the current time.

2.2.10 Peripheral access

The implementation of occam provides for peripheral access by extending the
input and output primitives with a port input/output mechanism. A port
is used like an occam channel, but has the effect of transferring information
to and from a block of addresses associated with a peripheral.

Ports behave like occam channels in that only one process may input from
a port, and only one process may output to a port. Thus ports provide a
secure method of accessing external memory mapped status registers etc.

Note that there is no synchronization mechanism associated with port input
and output. Any timing constraints which result from the use of asyn-
chronous external hardware will have to be programmed explicitly. For
example, a value read by a port input may depend upon the time at which
the input was executed, and inputting at an invalid time would produce
unusable data.

During applications development it is recommended that the peripheral is
modelled by an occam process connected via channels.

2.3 Configuration

Occam programs may be configured for execution on one or many trans-
puters. The transputer development system provides the necessary tools for

21

correctly distributing a program configured for many transputers.

Configuration does not affect the logical behaviour of a program (see section
four, Program development). However, it does enable the program to be
arranged to ensure that performance requirements are met.

PLACED PAR

A parallel construct may be configured for a network of transputers by
using the PLACED PAR construct. Each component process (termed a
placement) is executed by a separate transputer. The variables and timers
used in a placement must be declared within each placement process.

PRI PAR

On any individual transputer, the outermost parallel construct may be con-
figured to prioritize its components. Each process is executed at a separate
priority. The first process has the highest priority, the last process has the
lowest priority. Lower priority components may only proceed when all higher
priority components are unable to proceed.

INMOS standard links

Each link provides one channel in each direction between two transputers.

A channel (which must already have been declared) is associated with a link
by a channel association, for example:

PLACE Link0Input AT 4 :

3 Error handling

Errors in occam programs are either detected by the compiler or can be
handled at runtime in one of three ways.

1. Cause the process to STOP allowing other processes to continue.

2. Cause the whole system to halt.

3. Have an arbitrary (undefined) effect.

22

The occam process STOP starts but never terminates. In method 1, an er-
rant process stops and in particular cannot communicate erroneous data to
other processes. Other processes will continue to execute until they become
dependent on data from the stopped process. It is therefore possible, for ex-
ample, to write a process which uses a timeout to warn of a stopped process,
or to construct a redundant system in which several processes performing
the same task are used to enable the system to continue after one of them
has failed.

Method 1 is the preferred method of executing a program.

Method 2 is useful for program development and can be used to bring trans-
puters to an immediate halt, preventing execution of further instructions.
The transputer Error output can be used to inform the transputer devel-
opment system that such an error has occurred. No variable local to the
process can be overwritten with erroneous data, facilitating analysis of the
program and data which gave rise to the error.

Method 3 is useful only for optimising programs which are known to be
correct!

When a system has stopped or halted as a result of an error, the state of all
transputers in the system can be analysed using the transputer development
system.

For languages other than occam, the transputer provides facilities for han-
dling individual errors by software.

4 Program development

The development of programs for multiple processor systems can involve ex-
perimentation. In some cases, the most effective configuration is not always
clear until a substantial amount of work has been done. For this reason,
it is desirable that most of the design and programming can be completed
before hardware construction is started.

Logical behaviour

An important property of occam in this context is that it provides a clear
notion of ’logical behaviour’; this relates to those aspects of a program not
affected by real time effects.

It is guaranteed that the logical behaviour of a program is not altered by
the way in which the processes are mapped onto processors, or by the speed

23

of processing and communication. Consequently a program ultimately in-
tended for a network of transputers can be compiled, executed and tested
on a single computer used for program development.

Even if the application uses only a single transputer, the program can be
designed as a set of concurrent processes which could run on a number of
transputers. This design style follows the best traditions of structured pro-
gramming; the processes operate completely independently on their own
variables except where they explicitly interact, via channels. The set of con-
current processes can run on a single transputer or, for a higher performance
product, the processes can be partitioned amongst a number of transputers.

It is necessary to ensure, on the development system, that the logical be-
haviour satisfies the application requirements. The only ways in which one
execution of a program can differ from another in functional terms result
from dependencies upon input data and the selection of components of an
ALT. Thus a simple method of ensuring that the application can be dis-
tributed to achieve any desired performance is to design the program to
behave ’correctly’ regardless of input data and ALT selection.

4.1 Performance measurement

Performance information is useful to gauge overall throughput of an appli-
cation, and has to be considered carefully in applications with real time
constraints.

Prior to running in the target environment, an occam program should be rel-
atively mature, and indeed should be correct except for, interactions which
do not obey the occam synchronization rules. These are precisely the exter-
nal interactions of the program where the world will not wait to communicate
with an occam process which is not ready. Thus the set of interactions that
need to be tested within the target environment are well identified.

Because, in occam, every program is a process, it is extremely easy to add
monitor processes or simulation processes to represent parts of the real time
environment, and then to simulate and monitor the anticipated real time
interactions. The occam concept of time and its implementation in the
transputer is important. Every process can have an independent timer en-
abling, for example, all the real time interactions to be modelled by separate
processes and any time dependent features to be simulated.

24

4.2 Separate compilation of occam and other languages

A program portion which is separately compiled, and possibly written in a
language other than occam, may be executed on a single transputer.

If the program is written in occam, then it takes the form of a single PRoc,
with only channel parameters. If the program is written in a language other
than occam, then a run-time system is provided which provides input/output
to occam channels.

Such separately compiled program portions are linked together by a frame-
work of channels, termed a harness. The harness is written in occam. It
includes all configuration information, and in particular specifies the trans-
puter configuration in which the separately compiled program portion is
executed.

Transputers are designed to allow efficient implementations of high level
languages, such as C, Pascal and Fortran. Such languages will be available
in addition to occam.

At runtime, a program written in such a language is treated as a single occam
process. Facilities are provided in the implementations of these languages
to allow such a program to communicate on ’occam’ channels. It can thus
communicate with other such programs, or with programs written in oc-
cam. These programs may reside on the same transputer, in which case the
channels are implemented in store, or may reside on different transputers,
in which case the channels are implemented by transputer links.

It is therefore possible to implement ’occam’ processes in conventional high
level languages, and arrange for them to communicate. It is possible for
different parts of the same application to be implemented in different high
level languages.

The standard input and output facilities provided within these languages
are implemented by a well-defined protocol of communications on ’occam’
channels.

The development system provides facilities for management of separately
compiled occam.

4.3 Memory map and placement

The low level memory model is of a signed address space.

Memory is byte addressed, the lowest addressed byte occupying the least
significant byte position within the word.

25

The implementation of occam supports the allocation of the code and data
areas of an occam process to specific areas of memory. Such a process must
be a separately compiled PROC, and must not reference any variables and
timers other than those declared within it.

5 Physical architecture

5.1 INMOS serial links

5.1.1 Overview

All transputers have several links. The link protocol and electrical charac-
teristics form a standard for all INMOS transputer and peripheral products.

All transputers support a standard link communications frequency of 10
megabits per second. Some devices also support other data rates. Main-
taining a standard communications frequency means that devices of mixed
performance and type can intercommunicate easily.

Each link consists of two unidirectional signal wires carrying both data and
control bits. The link signals are TTL compatible so that their range can
be easily extended by inserting buffers.

The INMOS communication links provide for communication between de-
vices on the same printed circuit board or between printed circuit boards via
a back plane. They are intended to be used in electrically quiet environments
in the same way as logic signals between TTL gates.

The number of links, and any communication speeds in addition to the
standard speed of 10 Mbits/sec, are given in the product data for each
product.

5.1.2 Link electrical specification

The quiescent state of the link signals is low, for a zero. The link input
signals and output signals are standard TTL compatible signals.

For correct functioning of the links the specifications for maximum variation
in clock frequency between two transputers joined by a link and maximum
capacitive load must be met. Each transputer product also has specified
the maximum permissible variation in delay in buffering, and minimum per-
missible edge gradients. Details of these specifications are provided in the
product data.

26

Provided that these specifications are met then any buffering employed may
introduce an arbitrary delay into a link signal without affecting its correct
operation.

5.2 System services

5.2.1 Powering up and down, running and stopping

At all times the specification of input voltages with respect to the GND and
VCC pins must be met. This includes the times when the VCC pins are
ramping to 5 V, and also while they are ramping from 5 V down to 0 V.

The system services comprise the clocks, power, and signals used for initial-
ization.

The specification includes minimum times that VCC must be within spec-
ification, the input clock must be oscillating, and the Reset signal must be
high before Reset goes low. These specifications ensure that internal clocks
and logic have settled before the transputer starts.

When the transputer is reset the memory interface is initialised (if present
and configurable).

The processor and INMOS serial links start after reset. The transputer
obeys a bootstrap program which can either be in off-chip ROM or can be
received from one of the links. How to specify where the bootstrap program
is taken from depends upon the type of transputer being used. The program
will normally load up a larger program either from ROM or from a peripheral
such as a disk.

During power down, as during power up, the input and output pins must
remain within specification with respect to both GND and VCC.

A software error, such as arithmetic overflow, array bounds violation or
divide by zero, causes an error flag to be set in the transputer processor.
The flag is directly connected to the Error pin. Both the flag and the pin
can be ignored, or the transputer stopped. Stopping the transputer on an
error means that the error cannot cause further corruption.

As well as containing the error in this way it is possible to determine the
state of the transputer and its memory at the time the error occurred.

27

5.2.2 Clock distribution

All transputers operate from a standard 5MHz input clock. High speed
clocks are derived internally from the low frequency input to avoid the prob-
lems of distributing high frequency clocks. Within limits the mark-tospace
ratio, the voltage levels and the transition times are immaterial. The limits
on these are given in the product data for each product. The asynchronous
data reception of the links means that differences in the clock phase between
chips is unimportant.

The important characteristic of the transputer’s input clock is its stability,
such as is provided by a crystal oscillator. An R-C oscillator is inadequate.
The edges of the clock should be monotonic (without kinks), and should not
undershoot below -0.5 V.

5.3 Bootstrapping from ROM or from a link

The program which is executed after reset can either reside in ROM in the
transputer’s address space or it can be loaded via any one of the transputer’s
INMOS serial links.

The transputer bootstraps from ROM by transferring control to the top two
bytes in memory, which will invariably contain a backward jump into ROM.

If bootstrapping from a link, the transputer bootstraps from the first link to
receive a message. The first byte of the message is the count of the number of
bytes of program which follow. The program is loaded into memory starting
at a product dependent location MemStart, and then control is transferred
to this address.

Messages subsequently arriving on other links are not acknowledged until the
transputer processor obeys a process which inputs from them. The loading
of a network of transputers is controlled by the transputer development
system, which ensures that the first message each transputer receives is the
bootstrap program.

5.4 Peripheral interfacing

All transputers contain one or more INMOS serial links. Certain transputer
products also have other applicationspecific interfaces. The peripheral con-
trol transputers contain specialized interfaces to control a specific peripheral
or peripheral family.

In general, a transputer based application will comprise a number of trans-

28

puters which communicate using INMOS links. There are three methods of
communicating with peripherals.

The first is by employing peripheral control transputers (eg for graphics
or disks), in which the transputer chip connects directly to the peripheral
concerned (figure 8). The interface to the peripheral is implemented by
special purpose hardware within the transputer. The application software
in the transputer is implemented as an occam process, and controls the
interface via occam channels linking the processor to the special purpose
hardware.

The second method is by employing link adaptors (figure 9). These de-
vices convert between a link and a specialized interface. The link adaptor
is connected to the link of an appropriate transputer, which contains the
application designer’s peripheral device handler implemented as an occam
process.

The third method is by memory mapping the peripheral onto the memory
bus of a transputer (figure 10). The peripheral is controlled by memory
accesses issued as a result of PORT inputs and outputs. The application
designer’s peripheral device handler provides a standard occam channel in-
terface to the rest of the application.

Figure 8: Transputer with peripheral control transputers

Figure 9: Transputer with link adaptors

The first transputers implement an event pin which provides a simple means
for an external peripheral to request attention from a transputer.

29

Figure 10: Memory mapped peripherals

In all three methods, the peripheral driver interfaces to the rest of the ap-
plication via occam channels. Consequently, a peripheral device can be
simulated by an occam process. This enables testing of all aspects of a
transputer system before the construction of hardware.

6 Notation conventions

The bits in a byte are numbered 0 to 7, with bit 0 the least significant.
The bytes in words are numbered from 0, with byte 0 least significant. In
general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with
the least significant component numbered 0. Where values are stored in
memory, the least significant component value is stored at the lowest (most
negative) address. Similarly, components of arrays are numbered starting
from 0, and stored in memory with component 0 at the lowest address.

Where a byte is transmitted serially, it is always transmitted least signifi-
cant bit (0) first. In general, wherever a value is transmitted as a number
of component values, the least significant component is transmitted first.
Where an array is transmitted serially, component 0 is transmitted first.
Consequently, block transfers to and from memory are performed starting
with the lowest (most negative) address and ending with the highest (most
positive) one.

In diagrams, the least significant component of a value is to the right hand
side of the diagram, component 0 of an array is at the bottom of the diagram
and memory locations with more negative addresses are also to the bottom
of the diagram.

6.1 Signal naming conventions

The signal names, identifying the individual pins on a transputer chip, have
been chosen to avoid being cryptic, giving as much information as possible.

All transputer signals described in the text of this manual are printed in

30

bold.

The majority of transputer signals are active high. Those which are active
low have names commencing with not.

7 Transputer product numbers

All INMOS products - both memories and transputers - have a number of
the form

IMS xxxx-xx

The main field identifies the product, and the field after the hyphen is used
for speed variants, etc. Extra letters are sometimes introduced, eg for mili-
tary quality products.

The initial character of the main field is a digit for memory products, a
letter for transputer products. The particular letter indicates the type of
transputer product (table 3). Support products are numbered as shown in
table 4.

IMS Cxxx Communications adaptors
IMS Gxxx Graphics transputers
IMS Mxxx Mass storage transputers
IMS Txxx Transputers

Table 3: Transputer products

IMS Bxxx Module level product
IMS Dxxx Development system
IMS Lxxx Literature
IMS Pxxx Occam programming system
IMS Sxxx Software product

Table 4: Transputer support products

31

	 Preface
	1 Introduction
	1.1 Overview
	 Transputers and occam

	1.2 Rationale
	1.2.1 System design
	 Programming
	 Hardware
	 Programmable components
	1.2.2 Systems architecture
	 Point to point communication links
	 Local memory
	1.2.3 Communication

	2 Occam model
	 The programming model for transputers is defined by occam.
	2.1 Overview
	2.2 Occam overview
	2.2.1 Processes
	 Assignment
	 Input
	 Output
	2.2.2 Constructs
	 SEQ
	 PAR
	 Communication
	 IF
	 ALT
	2.2.3 Repetition
	2.2.4 Replication
	2.2.5 Types
	 Primitive types
	2.2.6 Declarations, arrays and subscripts
	2.2.7 Procedures
	2.2.8 Expressions
	2.2.9 Timer
	2.2.10 Peripheral access

	2.3 Configuration
	 PLACED PAR
	 PRI PAR
	 INMOS standard links

	3 Error handling
	4 Program development
	 Logical behaviour
	4.1 Performance measurement
	4.2 Separate compilation of occam and other languages
	4.3 Memory map and placement

	5 Physical architecture
	5.1 INMOS serial links
	5.1.1 Overview
	5.1.2 Link electrical specification

	5.2 System services
	5.2.1 Powering up and down, running and stopping
	5.2.2 Clock distribution

	5.3 Bootstrapping from ROM or from a link
	5.4 Peripheral interfacing

	6 Notation conventions
	6.1 Signal naming conventions

	7 Transputer product numbers

