The IMS T810

A Preliminary Survey

Guy Harriman

January 1989

tirlanis
plujt]e[r

njelt|

You may not:

1. Modify the Materials or use them for any commercial purpose, or any public
display, performance, sale or rental;

2. Remove any copyright or other proprietary notices from the Materials;

This document is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

INMOS, IMS, OCCAM are trademarks of INMOS Limited.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

Contents

IMS T810 Preliminary Specification
Introduction
Process

CPU . .

EMI .. oo

FPU . . .

Phase-Locked Loops
CPU Specification
New instructions
Internal RAM Specification
External Memory Interface Specification

The Interaction Of Internal And External Memory
Introduction
Operation e

IMS T810 Instruction Streamer
Introduction
Logical Operation
Summary e e

IMS T810 Instruction Timings
Introduction Lo
Primary Instructions L.
Secondaries
Example Code Sequence With Timings.

IMS T810 Preliminary Specification

Guy Harriman
January 13, 1989

Introduction

The IMS T810 will be processed on the shrunk transputer CMOS process,
and therefore speed distribution should extend beyond 30MHz.

The IMS T810 will reuse, unaltered from the T800, as much of the logic as
possible. Hence the objective is to reuse the FPU and the internal RAM
without alteration, and only alter the links to increase the data rate (if that
is possible).

Process

The process to be used is the 0.8X shrunk transputer process. This process
features one level of metal, and one level of silicide, and has been used
successfully since 1985 at Duffryn.

The 0.8X shrunk transputer process has been in development with the T800e
since May 1988. It is expected that working silicon might be produced by
March 1989. This silicon is to be used to characterise the shrunk process,
and the results of this characterisation will determine what can be done on
the T810 to increase its speed relative to the T800d.

Packaging

The initial package to be used for the T810 will be either a 121 pin PGA or
a 144 pin PGA. These packages have an area of 1.1 inch by 1.1 inch, and
1.2 inch by 1.2 inch respectively, representing a modest increase in area over
the T801 PGA package (an area of 1 inch by 1 inch). The advantage of
the PGA package is that it can be easily be” assembled and handled, and
is ideal for prototyping and small-scale manufacturing (for example, for the
Inmos boards group). Experience of problems in qualifying transputers in
non-PGA packages since 1985 has been so bad that it is not sensible to try
to sample customers with a plastic, non-cavity package.

It is expected that the new JEDEC standard Quad Flat Pack, which has gull-
wing leads on 0.025 inch pitch, and is an area-efficient cavity package, will
become the package of choice by the mid 1990’s. If Inmos can demonstrate

the ability to assemble and handle this package, then the T810 would be a
good candidate for the Quad Flat Pack for higher manufacturing volumes.
The standard JEDEC sizes include 132 and 164 pins.

CPU

The CPU has been enlarged from the T800 to take into account the ex-
tra control logic and datapath area required for single cycle ldl, Ib, and sb
instructions. Extra area has been allowed for improving the scheduler mi-
crocode. Area has been reserved for reimplementing functions such as the
instruction prefetch mechanism to improve its speed.

Multiplier

The array multiplier itself is about 3mm by 3mm, with another 2mm by
3mm allowed for control logic and routing. This fits outside the CPU, and
does not impact the cycle time of the CPU. The multiplier is driven from
the A and B registers directly, to maximise the speed of the multiplier.

EMI

The EMI has a complex function, with banks of addresses being compared
against the memory access address. The datapath style of design is likely
to result in an area of 2mm by 2mm, although some of the control logic for
the EMI may have to be located in the CPU.

The multiple bank design of the EMI will result in a regular, repeated,
structure. This will ensure that the silicon layout will be efficient, and
relatively quick to implement.

Links

There will be eight links; this will take twice the area of the four links on the
T800, and will fit below the CPU (as on the T800). The datapath, steering
logic, handshake logic, round robins, byte level logic, sub-byte level logic,
and sub-bit level logic are all layout out to a height of 600 microns (at 1X).
Therefore eight links will require a height of 4,800 microns.

There will be a single transfer engine, but the space will be available to have
more than one Event channel.

The provision of eight links allows direct connection of up to eight trans-
puters, which is sufficient for many embedded system applications. Eight
links also allows an order eight hypercube to be constructed (256 nodes).
Furthermore, the data rate can be doubled by using two links instead of one
for a mesh topology. In order to remove the software overhead from sharing
messages on a number of links it will be necessary to allow links to be shared
by a single process.

The link data rate will be made as high as possible; this will be determined by
engineering investigation of the current generation transputers. The target
is a link data rate of 30MBaud or 40MBaud.

Internal RAM

There will be 16KBytes of internal static RAM. The purpose of having this
amount of RAM is ensuring that the local workspaces of even the largest
programs will fit. This has a significant effect on performance, as has been
demonstrated on previous transputers. A much larger number of highly
parallel programs would fit entirely in 16KBytes than in 4KBytes, making
it more attractive to sell arrays of transputers without external memory.
The redundancy incorporated in the internal RAM will allow a good yield
to be maintained, in spite of the area taken.

The 16KBytes will be organised as four 4KByte static RAMs; the data and
address buses will be shared between them. These RAMs will have the same
redundancy circuitry as the T414 and T800 internal RAMs, although it has
been demonstrated that the row redundancy achieves very little compared
with column redundancy. The cost of removing the row redundancy, with
the associated risk of changing the circuitry, is too high, as the area saved
would be very small.

FPU

The FPU will be the same as the FPU on the T800, and will fit above the
internal RAMs. It is intended that no new design work is spent on the FPU,
unless it is shown from the characterisation of the T800e (the 0.8X shrunk
transputer) that critical paths exist in it which are not present on the T800d
(1X transputer).

Clocks

Clock distribution will be critical on the T810, in order to achieve the best
speed possible on the device. Unlike the T800, where the clock generator
is in the pad ring, the T810 will have a much larger clock generator, and
it will be situated in the centre of the die. This minimises the clock skew
between any parts of the die, which will be crucial to maximising the speed
of the T810.

Phase-Locked Loops

The phase-locked loops will be upgraded to the standard of the G300 phase-
locked loop, to provide a wider range of operating frequency and lower jitter.

CPU Specification

e Object Code Compatible with IMS T800.

The T810 will have all the instructions present on the T801 and T805
transputers, with the same entry points. The compilers for the T800
transputer family will not have to be altered in order to execute pro-
grams on the T810.

e Faster CPU with Optimised Microcode.

The majority of the design work on the T810 will be spent on improv-
ing the speed of operation of the CPU. Extra hardware in the control
logic and datapath will be used where possible to speed up instruction
execution, as long as that hardware does not slow the cycle time of
the CPU down.

e Single Cycle (Execution and Memory Access) ldl, stl.

An important goal of the T810 design is to reduce the time taken to
execute ldl, as this is dynamically the most important instruction. The
same hardware mechanism will be used to reduce the execution time
of stl.

e Other Primary Instructions Speeded Up.

More logic will be added to the instruction streamer to speed up the
most important instructions. In particular, predecoding hardware will
be used to reduce the number of cycles taken in as many primary
instructions as possible.

e Enhanced Instruction Buffer.

The instruction buffer will have 16 words of instructions, and the user
will have control of the number of words of prefetch. The larger num-
ber of words allows unused memory cycles to be taken advantage of.

The instruction buffer will present two instructions rather than one as
on previous transputers, to allow some instructions to be executed in
hardware, in parallel with instructions executed in the datapath.

Hardware Predecode of pfiz and nfiz.

The prefix instructions pfiz and nfiz will be decoded and executed in
hardware. A prefix instruction will be executed in parallel with the
previous instruction, and so take no time to execute. This means that
it will be equally efficient to access any local variable in the first 256
workspace locations (compared with the first 16 on previous transput-
ers), and that long literals will be assembled in the operand register
in half the number of cycles. The other effect of having the prefix in-
structions executed in hardware is that the prefixed (long) secondary
instructions will be decoded in the same time as the short secondary
instructions. Note that for two prefix instructions in sequence, the
first prefix instruction will be executed in hardware while the second
is executed in the datapath at the same time.

Single Cycle b and sb.

The speed of single byte access is particularly important for graphics
and character handling. Although block move is efficient for handling
contiguous groups of bytes, individual byte manipulation is too slow
on previous transputers (4 and 5 cycles).

Single cycle execution of sb will be implemented. The b instruction
will take two cycles to execute, including the memory read cycle.

Fast Multiply and Shift Instructions.

One of the key features of the T810 is that it will include a single cycle
multiplier. The multiplier architecture will be the fastest possible, as
the speed of the array is more important than the size. The array
multiplier will be used to implement all the multiply instructions in
the instruction set (mul, prod, and Imul). The mul instruction will
take two cycles to execute, as it must evaluate the overflow condition.
The prod instruction does not evaluate overflow, and will therefore
execute in a single cycle. The Imul instruction uses the 64 bits of the
multiplier result, which must be added to the initial value in the C
register. The Imul instruction will execute in two cycles.

The most important requirement in multiplication for the new gen-
eration of microprocessors (particularly in DSPs) is that it should be

performed in floating point. The array multiplier will be used to per-
form the mantissa part of the multiplication. The exponent addition
for the multiplication will be performed by a separate 8 bit adder. The
floating point multiplication will be single length, conforming to IEEE
754.

The shift instructions will also utilise the multiplier array, by taking
the binary exponent of the shift length n to form a number 2" which is
used as a multiplier. The shift left (shl) instruction is implemented by
multiplying by 2", and the shift right (shr) instruction is implemented
by multiplying by 27" and taking the more significant word of the
result. Both the single length instructions will execute in two cycles.
The double length shift instructions will perform a conditional word
shift in the CPU stack before using the multiplier array; it will execute
in four cycles.

Faster Scheduling; More User Flexibility in Scheduling.

The scheduling microcode will be optimised to take advantage of any
added hardware in the CPU.

One of the major problems which has led to the failure of the trans-
puter being used in high volume real-time systems is the lack of a
standard, popular, real-time kernel such as VRTX from Ready Sys-
tems Inc. It is not possible to implement VIRX with the microcoded
scheduler on the transputer, as there is no way for a kernel process to
know that a user process has been scheduled. Therefore, the schedul-
ing microcode must be altered to add 'hooks’ for the user. The 'hooks’
consist of indirections through user routines. The indirection is per-
formed using the context swap mechanism of the breakpointing sup-
port, to make it consistent with breakpointing. The kernel places the
code which manages the process queue in the context swap location.
Note that VRTX allows precisely the same to be done itself - the user
can place his own code in the scheduling points of VRTX.

Internally Controlled Microcode Rom Dump to Register.

In order to improve the testability of the T810 in a p.c.b., it is desirable
to to be able to do a check of the microcode rom contents without the
need for external test logic. It is intended that this facility will be
added to the T810, if timescales permit.

Error State per Process.

The Error state will be held in the unused bit of the workspace de-
scriptor (WDesc[1]). This is required because in previous transputers,
Error was global to the processor, and this prevented the user from
handling errant low priority processes with a high priority supervisor

process. There will not be a sixteen bit version (which does not have
an unused bit in the workspace descriptor) of the T810, as there is no
economic rationale for such a device.

New instructions

o [dhw - Half-Word Load

Load A register with half-word value; executes in 2 cycles.

e sthw - Half-Word Store

Store half-word value from A register; executes in 1 cycle.

e macc - Integer Multiply-Accumulate

Multiply and accumulate integer result; executes one multiply and one
addition in two cycles (achieves 15 MOPS on T810-30), in parallel with
accessing the data and coefficient words. Sustains this MOPS rating
as long as data and coefficient are in internal RAM.

e fpmacc - Floating Point Multiply-Accumulate

Multiply and accumulate single length IEEE 754 floating point result;
executes one multiply and one addition in three cycles (achieves 20
MFLOPS on T810-30), in parallel with accessing the data and co-
efficient words. Sustains this MFLOPS rating as long as data and
coefficient are in internal RAM.

e zprod - Integer Cross Product

Multiply two integer values and store result; executes one multiply
and one store in three cycles, in parallel with accessing the data and
coefficient words. Sustains this speed as long as data and coefficient
and result vectors are in internal RAM.

e fpxprod - Floating Point Cross Product

Multiply two single length values and store result; executes one multi-
ply and one store in four cycles, in parallel with accessing the data and
coefficient words. Sustains this speed as long as data and coeflicient
and result vectors are in internal RAM.

e delay - Delay

Wait for A register cycles; this is required because the shift instructions
on the T810 do not perform that function, as they do on previous
transputers.

10

e dislinkinth - Disable of High Priority Link Interrupts
Prevent high priority links from rescheduling after completion of link
data transfer.

o dislinkintl - Disable of Low Priority Link Interrupts
Prevent low priority links from rescheduling after completion of link
data transfer.

e enlinkinth - Enable of High Priority Link Interrupts
Allow high priority links to reschedule after completion of link data
transfer.

e enlinkintl - Enable of Low Priority Link Interrupts
Allow low priority links to reschedule after completion of link data
transfer.

e distimesl - Disable Timeslicing

Prevent timeslicing of low priority processes.

e entimesl - Enable Timeslicing

Allow timeslicing of low priority processes.

e pause - Pause Process

Force process to be rescheduled (placed at the back of the process
queue).

e checkaddr - Check If Address In Internal RAM.

Test if the A register holds an address which is in one of the internal
RAMs. Returns TRUE or FALSE in the A register.

Of the above instructions, ldhw and sthw require support in C compilers
for the T810. The mace, fpmace, xprod, and fpxprod instructions can be
accessed from assembler satisfactorily, although the provision of simple pre-
defined procedures (which merely invoke the instructions, as in the Move2D
predefined procedures for the T800), would be tidier.

The purpose of the dislinkinth, dislinkintl, enlinkinth, enlinkintl, distimesl,
and entimesl instructions is to complement the timerenableh, timerenablel,
timerdisableh, and timerdisablel instructions of the T425, T801, and T805,
in allowing the user to implement atomic (noninterruptable) functions such
as memory allocation and semaphores. The pause instruction gives the user
more control of the scheduling of processes, particularly in an environment
where timeslicing has been disabled. These instructions can be accessed in

11

assembler adequately, as they are low level functions of no interest to the
average programimer.

The checkaddr instruction supports the use of the relocatable internal RAMs,
and is provided to make the allocation of the internal RAMs by system ser-
vice routine more efficient. This instruction can be accessed in assembler
adequately, as it is a low level function.

Internal RAM Specification

The 16KByte internal RAM will be organised as four independent 4KByte
RAMs each operating with the same timing, and having a cycle time of one
processor cycle.

The major use is to allow the location of the RAMs to be altered dynamically
by the programmer; this gives the C programmer a "heap’ of single cycle
memory in 4KByte blocks which can be independently allocated and freed.
In particular, the internal RAMs could be used to hold the local variables
of the dynamically most common procedures, by placing them in the stack
area.

Fach RAM has a register to define the address of the least significant location
in the memory, and a register to define the address of the most significant
location in the memory. For each memory address provided by the CPU,
the four internal RAMs compare that address with the values in their two
registers, to determine whether the address lies within their range. A mem-
ory can be disabled by setting the least significant address register to the
same value as the most significant address register.

It will be possible for the internal RAMs to be accessed while external mem-
ory is in use; this will significantly improve performance with slow external
memory.

External Memory Interface Specification

The external memory interface (EMI) of the T810 will have two modes,
externally selectable by a pin. The simple mode will be identical to the T801
non-multiplexed, non-programmable memory interface, with the addition of
user selectable static column mode. One purpose of the non-mux mode is to
provide the user with the ability to interface to any type of memory system,
no matter how complex, without any timing constraint. Another purpose of
the non-mux mode is to provide the fastest and simplest interface to static
RAMs.

The second EMI mode is a high performance, highly programmable inter-

12

face to DRAMS or mixed systems including DRAMs, VRAMs, SRAMs, and
EPROMSs. This mux mode is primarily intended for embedded system and
cost sensitive applications, where zero external logic is an important require-
ment. The mux mode is targeted primarily at DRAMs, while not penalising
the interface to SRAMs. The mux mode takes advantage of static column
mode, which is provided on all DRAMs of the 1MBit and above generations.

The following features are the main points of the mux mode:

e 32 Data Pins, 16 Address Pins.

e Multiplexed RAS and CAS Addresses.

e 7Virtual Caching” in DRAM Pages.

e 4 Independent DRAM banks.

e Bank Address Allocation And Memory Protection.
e VRAM Support.

e 2 Cycle Access At -30.

e Static Column Mode For Fast Access.

e Configuration via Memory-Mapped Registers.

The term ”virtual caching” refers to the ability to have four separate pages
of DRAMs selected in static column mode, in the four banks. Each bank
of DRAMs has its own RAS and CAS pin, so that, independently, each
bank can be held in static column mode with RAS low. The provision of
four banks allows the programmer to allocate, for example, a bank to the C
stack or local workspaces, a bank to the heap or vector space, a bank to code,
and a bank to link buffer space. This effectively localises the sequential flow
of memory accesses, which are a mix of these types of accesses, and orders
them. This localisation will tend to maximise the usage of static column
mode, although the proportion of static column accesses to random accesses
will be program dependent.

The user can allocate the banks of external memory space in the same way
as for internal memory that is through the configuration registers. Each
bank will have a register to hold the address of the top of the bank, and a
register to hold the address of the bottom of the bank. The addresses will
be selectable down to a word boundary.

As a result of allowing the user to select areas of the address space for the
banks, it is necessary to handle the resulting exceptions which can arise. The

13

two error conditions which can occur are accesses to a non-existent address,
and accesses to more than one bank (which can occur as a result of mis-
programming the bank address registers). The exception will be handled by
interrupting the CPU in the same way as the links and timers interrupt on
previous transputers, and using the context-swap mechanism to execute a
user-provided exception routine.

Memory protection is naturally implemented by moving the address bound-
aries of the banks to exclude areas of memory which are to be protected. Any
subsequent access to a protected part of memory will invoke the exception
handler.

The VRAM support will be provided by having a reserved location in mem-
ory in the address space of the memory-mapped configuration registers which
will initiate a memory cycle for the bank selected which performs a VRAM
shift register access cycle.

The following is a list of pins for the EMI:

’ mux mode ‘ non-mux mode ‘ number of pins
Data[31:0] Data[31:0] 32
Address[20:2] | Address[20:2] 19
RASI[3:0] Address[31,28,25,22] | 4
PS[3:0] Address[30,27,24,21] | 4
CASJ[3:1] Address[29,26,23] 3
CASI0] CS 1
WE[3:0] WEI3:0] 4
Refresh Refresh 1
Wait Wait 1
BusReq BusReq 1
BusAck BusAck 1
EMI Mode EMI Mode 1

] \ 72

Where

RAS is RowAddressStrobe
PS is ProgrammableStrobe
CAS is ColumnAddressStrobe
CS is ChipSelect

WE is WriteEnable

14

The Interaction Of Internal And External Memory

Guy Harriman
January 24, 1989

Introduction

The T810 can access internal memory while external memory is being used,
in order to increase the total bandwidth to the memory seen in executing
typical, large, application programs.

Operation

The T810, like the T800, has a single address bus and single data bus con-
necting the CPU to the memory. The address of a .memory access is decoded
to determine where the access will be made. There are four internal RAMs,
and four external RAM banks.

The types of memory access which can be performed are:

1. Link data access
2. CPU data access (including access on behalf of FPU)

3. Code fetch

These three types of access are evaluated in parallel, but are sequentialised
at the coordinator, which prioritised in the order shown above (link data
access at highest priority). The coordinator is a part of the CPU control
logic which interfaces with the memory.

The T810 coordinator will allow an access of one type to external memory
to go ahead, and then permit one of the other independent access types to
attempt to use the memory. If this second memory access is to internal
memory, then it will be permitted to occur; otherwise it will be marked as
pending, and the third access type permitted to attempt to access memory.
It will take one cycle to mark an access type as pending, during an external
access to another access type.

No overlapped accesses to internal memory will be possible during an ex-
ternal access which has marked both other access types as pending. After
the completion of the external access, the highest priority access will follow
immediately, without a wasted cycle.

15

While one access type is using the external memory, the access types which
are not marked as pending are allowed to continue accessing internal mem-
ory; priority to the memory is arbitrated as above if more than one access
type is not marked pending.

External write cycles will appear to take a single cycle, as far as address and
data bus utilisation are concerned. This is because the external memory
interface (EMI) on the T810 will latch address and write data in the first
cycle of the access. The remaining cycles in the external write are available
for use by the internal memory.

External read cycles will appear to take two cycles, as far as address and
data bus utilisation are concerned. The first cycle is used to pass the address,
and the last cycle to pass the read data back. The remaining cycles in the
middle of the external read can be used by the internal memory.

The typical speed of external memory in static column mode will be two
cycles. Therefore external writes, but not external reads, will free 50% of
the memory bandwidth. This will result, in particular, in block moves from
internal memory to external memory operating at one word transferred per
cycle. This is the same speed as block moves from internal to internal
memory.

With any external memory speed slower than two cycles, the extra cycles
will be available as bandwidth to internal memory.

16

IMS T810 Instruction Streamer

Guy Harriman
January 24, 1989

Introduction

The Instruction Streamer on the T810 has a 16 word instruction buffer, with
the capability of jumping back within the buffer to be done without flushing
the decode and execution pipeline.

Logical Operation

There is a circular buffer of 16 words. There are three pointers into the
buffer:

1. FetchedBehind - points to the valid word furthest behind IPtr
2. IPtr - points to the next instruction to be executed

3. FetchedAhead - points to the valid word furthest ahead of IPtr

The instruction streamer is flushed on exiting from the start instruction
after reset or analyse, on any jump back which is outside the buffer, and on
any jump forward. When the instruction streamer is flushed, FetchedAhead
and FetchedBehind are forced to point to the same word as IPtr.

The instruction streamer can fetch words ahead of IPtr until it has fetched
up to 2 words. Each word fetched causes the FetchedAhead pointer to be
incremented. FetchedBehind is incremented when (Fetched Ahead - Fetched-
Behind) = 15 and a word in the buffer is emptied.

As words of instructions are executed, they are left in the buffer. A pre-
viously executed word is reused when the FetchedBehind pointer is incre-
mented beyond it; this is equivalent to the front of the instruction buffer
wrapping around to that buffer location again. If a jump back is performed
which lies within the buffer, then the FetchedAhead pointer may be more
than two words ahead. The buffer is described as ’full’ if the FetchedAhead
pointer is equal to, or greater than, two words ahead of IPtr.

A code fetch can be made in the following cases:

1. The buffer is not full in this cycle and not about to become full as a
result of a previous code fetch completing.

17

2. The buffer was full in the previous cycle, and one word has become
empty.

3. The buffer has been flushed in this cycle.

Summary

The T810 instruction streamer allows loops of up to 63 bytes of instructions
to be executed, without any code fetches being made after the first time
through the loop.

The benefit of the instruction buffer is that loops can be executed without
flushing the instruction decode and execution pipeline, on backward jumps
within the buffer. The reduction in the number of code fetches made, due
to loops of this type, results in more memory bandwidth becoming available
for data and link accesses. The effect of increasing memory bandwidth is
most noticeable with slow external memory.

18

IMS T810 Instruction Timings

Jon Beecroft & Guy Harriman
January 23, 1989

Introduction

The following document describes the timing for the important transputer
instructions. Hardware will be added to the T810 CPU to execute certain
dynamically important instructions in hardware, in parallel with instructions
executed in the microcode controlled datapath. This document assumes a
good understanding of the current transputer instruction set.

Primary Instructions

Unlike the design of previous transputers, in which the timings of the pri-
mary instructions are constant, the timings of the primary instructions of
the T810 may depend on the type and timing of the previous instruction.
The hardware decoder in the instruction streamer looks at two instructions
simultaneously. Some of the primaries can be executed completely in par-
allel with the final cycle of the previous instruction. For example, the first
cycle of the [dl instruction can be executed in parallel with the final cycle
of the previous instruction.

The term reduced cycle instruction refers to an instruction which is executed
in one cycle fewer than the same normal cycle instruction. A normal cycle
count instruction is executed by the microcode. A reduced cycle count
instruction has its first cycle executed by the instruction streamer control
logic, in parallel with the last cycle of the previous instruction.

There are three reasons why an instruction may not be executed in parallel
(and therefore speeded up by one cycle) when it is detected by the hardware
decoder of the instruction streamer. These are:

e A - The previous instruction’s cycle count was reduced to zero.

e B - The previous instruction inhibits a reduced cycle instruction.

e C - The previous instruction requests memory in its final cycle of

execution.

These restrictions do not apply to all the reduced cycle instructions.

19

The table below lists the cycle count of all the primary instructions for
reduced and normal execution times in columns 1 and 2. If none of the
restrictions in column 3 are generated by the previous instruction, and the
instruction can be reduced (as shown in column 1), then that instruction
will be executed as a reduced cycle count instruction. Otherwise the in-
struction will be executed as a normal cycle count instruction. Column 4
lists the restrictions which will be imposed by the current instruction on the
next instruction, if the current instruction is executed as a reduced cycle
count instruction. Column 5 lists the restrictions which will be imposed by
the current instruction on the next instruction, if the current instruction is
executed as a normal cycle count instruction.

Primary Reduced | Normal | Reduced | Next Inst Next Inst

Instruction Cycle Cycle Unless | Restrictions | Restrictions

Name Count Count | Last Inst | - Reduced - Normal
Of Type | CycleCount | CycleCount

pfix 0 1 A A

nfix 0 1 A A

lde 0 1 A B A

ldl 1 2 B, C

stl 0 1 A, B, C A C C

ldlp 0 1 , B A

adc N/A 1

eqc N/A 1

J in buffer N/A 2

7 not in buffer N/A 3

CJ taken, in buffer 2 3 B

CJ taken, not in buffer 3 4 B

Cj not taken 1 2 B

ldnl N/A 2

stnl N/A 1 B, C

ldnlp N/A 1

call N/A 5 C

ajw 0 1 A B A B

The jump instructions j and ¢j in the table are shown for the cases when
the target instruction of the jump is within the instruction buffer. A jump
taken on the T810 does not cause the instruction buffer to be flushed if the
target instruction is present in the buffer, and therefore does not empty the
instruction decode pipeline.

20

Secondaries

The table below shows the dynamically important secondary instructions
that have been speeded up on the T810. Note that all long (prefixed) sec-
ondary instructions are usually speeded up by one cycle because of the effect

of speeding up the pfiz instruction.

The instructions which have been speeded up by the addition of extra hard-
ware are listed below. The cycle count of all other instructions is the same
as the T800 instruction cycle count, and imposes no restrictions on the next
instruction. The instruction streamer reduced cycle restrictions for the next

instruction have also been included.

Secondary Cycle | Restrictions
Instruction Count | On Next Inst
Name

mul (at least one operand +ve) 2

mul (both operands -ve) 2 B
prod 1 B

shl 2

shr 2

gt 1

lend jump taken 5 C

lend jump not taken 8

wsub 1

move 2w+-6 C

Ib 2

sb 1 B, C
lhw (load half word) 2

shw (store half word) 1 B, C
Imul 2

Ishl 2

Ishr 2

21

Example Code Sequence With Timings

The following compiled code sequence has been used to give an example
comparison of a T800 and a T810 transputer, using internal memory for
both code and data.

T800 Cycles T810 Cycles

6B BB -- ajw -181 2 1

41 -— ldc 1 1 1

DO -——stl O 1 0

41 -— ldc 1 1 1

D1 -- stl 1 1 0

40 --1ldc O 1 1

D2 -- stl 2 1 0

22 40 -- ldc 32 2 1

D3 -—stl 3 1 1

-- Li1:

70 -—1ldl O 2 2

71 --1ldl 1 2 1

25 F2 —-— sum 2 1

72 -— 1ldl 2 2 1

15 -— 1ldlp 5 1 0

FA -- wsub 2 1

EO -- stnl O 2 1

70 -—1ldl O 2 2

41 -— 1ldc 1 1 0

24 F1 -- shl 4 3

DO -—stl O 1 0

70 -—1ldl O 2 2

D1 -—stl 1 1 0

12 -- 1ldlp 2 1 1

21 44 -— ldc 20 2 1

22 F1 -- lend L11 11 loop / 6 exit 5 loop / 7 exit

1222 cycles 680 cycles

22

W)

R -

N e e

/ﬁ///u///m NN

NN /r/// RNA /W
N N\

N\
N

(Onmne

AT O-% 5

PLOT OF [DESIGN.T4XX.T810A]T810A AT 10X K 26-0CT-88

Figure 1

23

	 IMS T810 Preliminary Specification
	 Introduction
	 Process
	 Packaging
	 CPU
	 Multiplier
	 EMI
	 Links
	 Internal RAM
	 FPU
	 Clocks
	 Phase-Locked Loops
	 CPU Specification
	 New instructions
	 Internal RAM Specification
	 External Memory Interface Specification

	 The Interaction Of Internal And External Memory
	 Introduction
	 Operation

	 IMS T810 Instruction Streamer
	 Introduction
	 Logical Operation
	 Summary

	 IMS T810 Instruction Timings
	 Introduction
	 Primary Instructions
	 Secondaries
	 Example Code Sequence With Timings

