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Preface

�ut desint vires
tamen est laudanda voluntas�

Ovid

A couple of months ago� I was asked the following puzzle by A� Ferscha� a sta member of the
Institut f�ur Statistik und Informatik at the University of Vienna to �nd a graph on �	 nodes� with
the restriction that every node has at most � edges so that the number of edges that must be passed
when going from one node to another becomes minimum� Since I have always been interested in
puzzles� I started at once drawing a lot of graphs� and soon I have found one� where the maximum
distance between all pairs of nodes was �� But was this the minimum� How could I be sure� that
there are no better graphs� These questions set up my interest in the �eld of graph theory� especially
in the problem of �nding graphs with minimumdiameter �which is de�ned as the maximumdistance
between any two nodes�� I have found some articles� dealing with similar problems �maximizing the
number of nodes in a graph of given diameter�� and in �Erdo 
�� I �nally found the proof� that there
is no graph of �	 nodes� with � edges per node� and a diameter less than ��
But what has this problem of graph theory to do with computer science� This question can

be answered when analysing the origin of the puzzle� The Institut f�ur Statistik und Informatik
is equipped with a transputer based parallel processing system consisting of �	 processors� each
having � communication links to interconnect processing elements� In the above puzzle� the �	
nodes represent the processing elements� and the edges correspond to the links in the transputer�
The problem was to �nd an interconnection topology for the transputer� which enables shortest
possible communication paths among the processing elements �diameter in the network��
Encouraged by the success in searching for an optimum topology� I spent more time in searching

topologies and read a lot of articles on related topics� When studying the literature� I discovered�
that there is an enormous amount of topologies proposed for interconnection networks� but there is
a lack of a detailed survey and comparison of topologies� So I decided to write my thesis about this
topic�
I found much support by A� Ferscha� who helped me in �nding literature and always found time

to discuss the problems� that occured when writing this work� I thank him very much� I would
also like to thank Prof� G� Haring� who was so kind to assess my work� I spent a lot of time at
the institute doing �gures and calculations for the tables� and would like to thank all the sta for
supporting me in my work� Special thanks are expressed to M� Johnson� who did a lot of thinking
about my topology search programs written in Pascal ��nally rewriting them to C�� and to M�
Schmiedl� who always helped me patiently with printer problems�
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Chapter �

Introduction

The growing demand for more computing power at increasing speed in many scienti�c and engineer�
ing applications made it necessary to develop advanced computer architectures based on the concept
of parallel processing� In general a parallel computer system consists of various processing and mem�
ory units and other �shared� resources� A critical issue in design and analysis of parallel systems is
the way in which the system components are connected together� since this interconnection network
determines the performance of the whole system �Bhuy 
���
A wide spectrum of parallel systems exists nowadays�� some of them have been designed for

speci�c applications� others are so called general purpose architectures� In order to specify the de�
mands posed on an interconnection network� we �rst must classify the parallel architectures� because
dierent architectural concepts re�ect in dierent demands� The most famous classi�cation scheme
was proposed by Flynn �Flyn 		� distinguishing between MIMD �multiple instruction multiple data�
and SIMD �single instruction multiple date� machines� In the MIMD category we distinguish two
main concepts�

� shared memory systems and
� distributed memory systems��

In a shared memory architecture the processors communicate with each other via a common
memory� In such multi�processor systems �Ensl 
�� the interconnection network should guarantee
that each processor has access to every memorymodule� The interconnection network should further
guarantee� that there will be no con�icts among the processing elements� which want to access
memory �nonblocking networks��
In distributed memory architectures each processing element has its own local memory� In such

multi�computer system �Atha 

� the interconnection network should provide a �not necessarily
direct� connection between every pair of processing elements �compare �gure �����
The network topology� de�ned as the abstract representation of the connections in the network

�Hein 
��� is a key factor in determing a suitable architectural structure� We distinguish between
two types of topologies �Feng 
���

� dynamic topologies� where the connections are established time dependently� either via com�
mon busses or via a switching network and

� static topologies� where there are dedicated links between the processing elements�
In this work we will review static topologies� mainly proposed for message passing distributed

memory systems� We will explicitely rule out dynamic topologies of our discussion for two reasons�

�In �Ande ���� �Hwan ���� �Hobb ��� or �Trel ��� Trel ��� surveys of parallel computers can be found	
�A comparison between shared and distributed memory systems can be found for instance in �Bail ���

�
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Figure ���� �a� Multiprocessor System �b� Multicomputer System

First� the comparison of both� static and dynamic topologies �which are mainly used in shared mem�
ory systems to interconnect processing and memory modules�� is di�cult� because of the dierent
requirements posed on the network in shared and distributed memory systems� Second� there is
already a lot of literature surveying and comparing dynamic topologies ��
This work consists of two main parts� the �rst part �Chapters �� � and �� deals with a presen�

tation and analysis of static topologies� We will start with establishing criteria for interconnection
topologies �Section ��� which shall serve as a basis for the presentation and comparison of the
topologies� Those criteria include aspects of communication delays� connection costs� reliability and
message passing � in this work discussed under the term routing� In the next chapter ��� we will
present topologies� which have been proposed in the literature for interconnection networks� I am
aware of the impracticability to present all topologies� that have ever been suggested� so I want
to focus in this work on the construction principles for the most important topologies� to give the
reader a general idea of the variety in this research area� Extensive references will guide him to
speci�c details and properties of topologies if desired� In Chapter � we will rate the topologies
presented in the previous section according to some criteria of Chapter ��
In the second part of my work I will discuss two special issues� namely the problem of �nding

topologies with minimum communication delays �Chapter �� and the problem of routing in static
networks �Chpater 	�� In Chapter � I will refer to developments in this research �eld� and propose
Extended Chordal Rings as a good solution to this problem� When dealing with aspects of routing� I
will consider several special communication demands �i�e� point�to�point routing� broadcasting and
gossiping� and analyse the requirements posed on the topology and the routing algorithm in order
to support e�cient �fast� routing� Besides this general considerations� I will also develop routing
algorithms for Extended Chordal Rings�

�The interested reader might be referred to �Agra ���� �Adam �
�� �Agra ���� �Bhuy ���� �Wu ���� �Hwan ����
�Ragh ���� �Gilo ���� or �Sche ��� which deal all with switching networks� topologies for bus oriented networks can be
found in �Agra �����Fink ���� or �Fink ���	
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Chapter �

Network Characteristics

�est modus in rebus
sunt certi denique �nes�

Horaz

A convenient model for the interconnection topology of multicomputers is a graph G � �V�E�
where V is the set of nodes representing the processing elements �PE� in the network and E is the
set of edges representing links connecting processing elements� A network with bidirectional links is
modelled by an undirected graph� and an edge between nodes x and y x� y � V will be denoted by
e � �x� y� � E� If the links in the multi�computer system are unidirectional we will use a directed
graph� an arc from node x to node y is shown as �x �� y��
Based on this model interconnection network characteristics can be found by interpreting prop�

erties of graphs�� We will call this type of characteristics static measures since the network is
investigated from a static point of view �for example no aspects of routing behaviour are consid�
ered�� Those measures are used for comparing the size of a network� the connection costs �measured
in the number of links�� symmetry properties� but also as a �rst rough estimation of communication
delays expressed in terms of the number of links between two PE�s�
An important property for multi�computer systems are short communication delays� We need

therefore dynamic measures� which will help us in analysing the network�s communication behaviour�
We are interested in short communication paths between processing elements �average distance��
and in equally utilization of the PEs and links when routing a message in order to avoid congestures�
The corresponding measures are visit ratio and worst through routing load�
The communication delays do not only depend on the number of links between PEs� but also

on the eort for calculating the path between any two nodes in the network� We will discuss the
problem of sending a message from one node to another under the term routing � and establish several
criteria� that make up a �good� routing algorithm�
Another important feature in the design of parallel computers is the reliability and availability of

the system components� We will present deterministic and probabilistic measures based on dierent
criteria for acceptable network operation� We can either de�ne a network to be operable� if there
exists a path between any pair of processing elements in spite of faulty components �connectivity��
or� more restrictive� if the failure of links and nodes will not lead to a large increase in communi�
cation delays �persistance�� When considering probabilistic criteria� we will assign a certain failure
probability to each system component �PEs and links�� and determine the probability� that the
whole network is reliable �again measured in the existance of a path between any two nodes�� We
will see that the calculation of those probabilistic criteria is much more di�cult than the analysis
with deterministic criteria�

�In �Hara �
� or �Berg �
� a good survey of graph invariants �properties� can be found	
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Figure ���� Regularity in graphs

Extensibility � i� e� the ability to increase the system capability� is a further aspect in the design
of a parallel system� In instances� where a speci�c design has to be con�gured for a variety of
applications� it is often desirded to change the number of system components �processing elements�
according to the computational requirements of the particular problem� It should be possible to
increase the number of system components in an existing topolgy without beeing forced to rearrange
the whole network�

��� Static Measures

Node number N The node number is the cardinality of the node set V or the number of processing
elements �PE�s� in the network� also called size of the network or order of a graph�

De�nition � The node number� denoted by N � is de�ned as

N � jV j

where V denotes the set of nodes�

The number of PE�s in a multicomputer system is sometimes used as a classi�cation scheme
distinguishing between small �N � ���� medium �N � ����� and large systems �N � �����
�Seit 
���

Degree d The degree is the maximum number of edges incident to any node� It represents the
maximum number of links or communication channels per PE�

De�nition � The degree of a node node degree� denoted by di� is the number of nodes adjacent
to node i�

The maximum of all node degrees is the degree of the graph denoted by d

d � max
i
fdig

A topology is called regular if every node has the same node degree otherwise it is called
irregular �see �gure �����

If we neglect the case of disconnected graphs or graphs with multiple edges� then there are two
extremal values for d yielding two extremal topologies� In the �rst case d equals �N � �� so
each node is connected to all others� This topology is a complete graph on N nodes� denoted
by K�N �� The other extreme is to have only d � � edges per node connecting it with its two
neighbours� The resulting structure is a ring R�N � of N nodes�

�



Since the degree is usually bounded by hardware restrictions� it is often desirable and necessary
that the degree does not grow when extending the size of a network�

Total Number of Links L The total number of links is the cardinality of the set of edges E� It
is a measure for connection costs�

De�nition � The total number of links� denoted by L� is de�ned as

L �

�
�
PN��

i�� di��� in irregular topologies
Nd�� in regular topologies

The regular graph in �gure ��� has L � ��� whereas the irregular graph has L � ��� and
therefore lower connection costs�

In order to keep connection costs as small as possible� the total number of links should only
grow linearly with the total number of PE�s �which corresponds in regular topologies to a
constant degree�� In the worst case L grows quadratically with N �completely connected
networks��

Connectedness C �Fers ��a� The connectedness is a measure for strength of coupling among the
processing elements� comparing the number of edges actually in the network to the number of
edges that would be necessary to establish a complete network K�N ��

De�nition � The connectedness� denoted by C� is de�ned as

C � L�LK�N�

where L denotes the number of edges in the network and LK�N� denotes the number of edges
in a complete network of the same order�

If the connectedness is smaller than ��N the graph must be disconnected� if it is larger than �
there exists at least one multiple edge between one pair of nodes�� A small value of C indicates
that there are relatively few links in the network� i� e� the processing elements are loosely
coupled� a value close to one corresponds with high connection costs�

Symmetry �Fost ��� A desirable feature for interconnection networks is symmetry� since a high
degree of symmetry in general simpli�es routing and leads to general purpose networks� The
optimum is a completely symmetric structure where the network looks exactly the same viewed
from an arbitrary node�

De�nition � Two nodes x and y in a graph G are similar� if for some automporphism� � of
G� ��x� � y with x� y � V �

Two edges �x�� y�� and �x�� y�� in a graph G are similar� if for some automporphism � of G�
���x�� y��� � �x�� y�� with �x�� y��� �x�� y�� � E�

A graph is called node�symmetric� if every pair of nodes is similar�

A graph is called edge�symmetric� if every pair of edges is similar�

A graph is called symmetric� if it is node� and edge�symmetric�

�For instance the transputer has d � �	
�Those bounds are obtained by using the line as structure with the smallest possible number of edges for a

connected graph �L � N � ��� and the complete network �L � N�N � ��� as the other extreme	
�An automorphism is a ��� mapping of a graph onto itself �permutation�	

�
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Figure ���� Symmetry in graphs

Figure ��� shows a node�symmetric graph which is not edge�symmetric �a� and an edge�
symmetric graph which is not node�symmetric �b��

De�ntion � only allows us to say whether a graph is �node��edge�� symmetric or not� But it
would be useful to quantify the degree of symmetry� i� e� to distinguish between more or less
not symmetric graphs� We will therefore give the following de�nition�

De�nition � A graph G�V�E� is said to be s�symmetric if the number of nodes can be divided
into s subsets V�� V�� � � � � Vs with

Ss
i�� Vi � V and

Ts
i�� Vi � � and in each subset Vi every

pair of nodes must be similar �analogous for edges��

The graphs �a� and �b� in �gure ��� are ��symmetric� A ��symmetric graph is equivalent to a
symmetric graph �see �gure ��� �c� �� �d� shows a ��symmetric structure� and an N �symmetric
graph �also called asymmetric� is shown in �gure ��� �e��

Diameter k The diameter is a worst case measure for the length of a path between any two nodes
in the network� measured in the number of edges that have to be passed going from one node
to another� The diameter is also called maximum internode distance �Span 
���

De�nition 
 The diameter� denoted by k� is de�ned as

k � max
i�j

fki�jg

where ki�j denotes the distance between node i and node j�

	



In message passing multicomputer systems� the communication paths should be short� so the
interconnection network should have a small diameter� The optimum topologies with respect
to diameter are complete networks �k � ��� but they have prohibetively high connection costs
�a degree of N �� and a total number of N �N ��� links�� If we look at the line as a structure
with minimum connection costs� we have a diameter of N �� �the length of the path from the
�rst node to the last� and one might conjecture� that there is a trade o between degree and
diameter� i� e� a higher degree corresponds to a lower diameter and vice versa� In fact� such a
relation does exist and was found by E� F� Moore� The so called Moore Bound establishes an
upper bound for the total number of nodes under given degree and diameter��

Nmax �

�
�k� � if d � �
d�d���k��

d�� if d � �
�����

and resolving this equation with respect to k yields a lower bound for the diameter in a network
with given N and d�

kmin �

�
�N���

� if d � �
logd���N�d���	��

d
if d � �

�����

So our conjecture has turned out to be true� there is a tradeo between degree and diameter
and it is not possible to design a network which minimizes both� d and k for a given number
of nodes� Usually d is the given parameter and the problem is either to maximize the number
of nodes for a given degree and diameter �see Section ���� or to �nd a network with minimum
diameter for given N �see Section �����

If we want to compare the diameter of graphs with dierent degrees� it seems not fair to look
merely at diameter� because it is easy to obtain a low diameter when allowing a higher degree�
So it would be better to use for comparison either the product of the degree by the diameter


dk� or the deviation of the diameter from the minimum diameter �k � kmin� �Cont 
��� Let
us consider the graphs in �gure ��� �c� and �d� as an example� both are of diameter �� but
the �rst one has degree �� whereas the other one has degree �� so the second graph is better�
when using dk for comparison� If we calculate the minimum diameter for N � �� and d � �
�kmin���� �� � �� and for d � � �kmin���� �� � �� we can see that both graphs dier by � from
the minimum diameter� so none of them is optimum�

��� Dynamic Measures

This sections deals with measures that characterize the network�s communication behaviour� We
are interested in communication delays �average distance� and in utilization of links and processing
elements� Dynamic measures depend on the communication requests among the PE�s� Besides from
special requests resulting from a speci�c program structure we can distinguish between the following
distributions �Reed 
�b� Reed 
�a��

� Uniform message routing� where the probability that a PE wants to send a message to another
PE is the same for all pairs of PE�s�

� sphere of locality message routing� i� e� every PE has a small number of PE�s with whom
it communicates at high probability� whereas communication to PE�s outside this sphere of
locality is less probable�

�In Appendix A	� the derivation of the Moore Bound is shown	
�This measure is sometimes called cost factor � �Bhuy ���	

�



� decreasing probability message routing� i� e� the probability for communication requests be�
tween PE�s decreases with their distance�

We will restrict our investigations to the case of uniform message routing distribution for two
reasons� on the one hand� we are interested in general purpose architectures so it seems reasonable
to assume uniform distribution� and on the other hand dynamic measures are easier to calculate if
equally distributed communication requests are assumed� However� there are some topologies which
�t well to other routing distributions� and we will mention them when discussing the topologies
�section ���

Average Distance � �Prad 
�� The average distance is the number of links which have to be
crossed on average for communication between any two processing elements�

So the value for average distance depends on the frequency at which PE�s whish to communi�
cate with each other �as mentioned above uniform distribution will be assumed�� and on the
routing algorithm� where we will assume that the shortest path between any PE�s will always
be chosen�

De�nition � The average �internode� distance�� denoted by �� is de�ned as

� � �
kX
i��

iPi���N
� �N �

where Pi denotes the number of shortest paths of lengths i between all pairs of distinct nodes�

If we consider again the graphs of �gure ��� �c�� �d� and �e� we can see that the �rst graph
has an average distance of � � ��		�� the two others have � � ��

�� so the communication
delays in the �rst graph will be shorter on average although all structures have the same
communication delays in worst case �k � ���

As for the diameter it is also possible to derive a lower bound for the average distance from
the Moore Bound��

�min �

Pkmin
i�� i d �d� ��i�� � kmin�Nmax � N �

N � � �����

If the topology is symmetric it is su�cient to calculate the average distance for a single node
according to the following equation yielding the same result as in de�nition 
�

�j �

Pk
i�� iNi

N � �
where Ni denotes the number of nodes at distance i from node j �Agra 
	�� If the investigated
topology is only s�symmetric �see de�nition 	� the calculation of the average distance will yield
dierent results depending on the starting node j� So �j has to be calculated for one node in
every symmetry class and then

� �

Ps
j�� �jSj

s

�Prior �Prio �� gives a slightly di�erent de�nition for the average distance� called mean internode distancemid �

�
Pk

i��
iPi��N�	 The mean internode distance will always be smaller then the average distance� because mid also

counts the paths from a node to itself with length � which increases the denominator	
�The derivation is shown in Appendix A	�	
	Since the e�ort for calculation grows with s �the number of symmetry subsets�� one might be satis�ed with an

estimation of � based on a subset of starting nodes for calculation	






will give the same result as de�nition 
� where Sj denotes the number of nodes in symmetry
class j�

In Appendix A�� the calculation of average distance is shown for some structures by example�

Normalized Average Distance �norm �Agra 
	���Raab 

� A problem with the average distance
arises in comparing topologies with dierent degree� A higher degree would cause the average
distance to decrease and the topology with higher degree would be estimated better than the
one with lower degree� The normalized average distance tries to eliminate this incomparability�

De�nition  The normalized average distance� denoted by �norm� is de�ned as

�norm � �d

where � denotes the average distance of a topology and d denotes the degree�

When comparing the graphs of �gure ��� �c� and �d�� we should better use the normalized
average distance� The �rst graph �c� is of degree � and has �norm � 	�		
� the other �d� is of
degree � and has �norm � ��		�� the comparison based on � has shown an opposite result�

Visit ratio V �Reed 
�b���Prio ��� The visit ratio is a measure for the average utilization of a link�
quantifying how often a single link will be used on average when routing a message from one
PE to another PE�

De�nition �� The visit ratio� denoted by V � is de�ned as

V � ��L

where � denotes the average distance and L denotes the total number of edges�

A visit ratio value close to � indicates that a message will have to pass nearly all links when
beeing routed from one PE to another� A lower bound for V is obviously given by ��L�

The graph in �gure ��� �c� has V � ���
� �which exceeds the lower bound by 		 �� and �d�
and �e� have V � ����	 �which exceeds the lower bound by 
� ��� Take for a comparison the
visit ratio in a binary tree of � nodes� which has V � ���
 �which exceeds the lower bound by
��
 ����

A low visit ratio indicates a low probability for the occurance of additional delays due to
�congested� links when routing many messages concurrently in the network and vice versa�
So we see that the �tra�c� in a binary tree is comparatively high but we do not now whether
some links are more often used than others� In order to analyse the load distribution we will
de�ne worst case measures in the following�

Worst Through Routing Load � �Prio ��� The worst through routing load is de�ned as the
largest number of routes�� that pass through any node �respectively edge���� So it is also a
measure for utilization of PE�s and links but in contrast to the visit ratio it determines the
visits to each link seperately�

De�nition �� The worst through routing load for nodes� denoted by �node� is de�ned as

�node � max
i
f�nodei g

where �nodei denotes the number of routes passing through node i�

�
A route is a path from one node to another node where no edges or nodes will be visited twice	
��The worst through routing load for links is also called most�loaded link load �Prio ��	

�
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Table ���� Worst through routing loads in a binary tree

��



type � type � type � type � type � type 	 type � type 


�� yes yes yes yes no no no no
�� yes yes no no yes yes no no
�� yes no yes no yes no yes no

Table ���� Routing types

De�nition �� The worst through routing load for edges� denoted by �edge� is de�ned as

�edge � max
i
f�edgei g

where �edgei denotes the number of routes passing over edge i�

The total number of routes in the network is given by N �N � �� �one route for each pair
of distinct nodes� and we can establishe an upper bound for the worst through routing load
� � N �N � ��� It would be a desirable feature of an interconnection network that the com�
munication load is equally distributed among PE�s so

�nodeopt �
N �N � ��

N
� �N � ��

and analogously for links

�edgeopt �
N �N � ��

L

Table ��� shows the worst through routing loads for nodes and edges in a binary tree of �
nodes� labelled from � to 	 �as shown beside the table�� The �rst column of this table lists all
routes in the tree as a sequence of the node labels� the next three columns indicate whether
node i is used in this route for transmission �we can omit the leaf nodes since they will never
have to pass on any messages�� A � in position �i� j� denotes� that the node �edge� in column
j lies on the route in row i� In the last two rows the routing load for every node �nodei and

edge �edgei is calculated �by adding up the ones in the column� and the maxima in these rows
determine the worst through routing loads� shown in the last two columns�

��� E�cient Routing

For processing elements in multicomputer systems that communicate via message passing an e�cient
routing strategy is an essential necessity� In Section 	 we will discuss dierent types of routing re�
quirements �one�to�one routing� broadcasting� gossiping� and analyse the requirements for networks
and appropriate routing functions�
For the survey and comparison of topologies �sections � and � we will concentrate on simple

one�to�one routing� i� e� one �arbitrarily chosen� PE wants to send a message to another �arbitrarily
chosen� PE�
In order to support fast one�to�one communication the network must have small values for

diameter and average distance and the determination of a path between two processing elements
should be done locally with minor computational eorts and memory requirements �the PE�s should
not have to store an allocation table containing the whole network�� The routing algorithm should
also be applicable in the case of PE or link failures�
We de�ne the desirable properties of a routing algorithm for one�to�one communicationas follows�

�� It is not necessary to explicitely store the whole topology in every node�

��



�� The shortest path between any two PE�s is taken�

�� If there exists a path between any two nodes this path is found despite of the failure of PE�s
or links�

The �rst property is ful�lled optimum by computational routing algorithms� where the path
between two nodes is found by comparison of the source and destination addresses�
We can classify a routing algorithm by speci�ying which properties are ful�lled or not and de�ne

the �types of routing� as shown in table ��� �the numbers in the leftmost column refer to the
properties stated above and �yes� or �no� indicates whether this property is ful�lled or not��
When discussing the topologies Chapter � we will not always give a detailed description of

the routing algorithm but rather specify the routing type and refer the interested reader to the
corresponding literature�

��� Reliability

A reliable network is able to remain functioning in spite on failures in links or processors� That
means that it is still possible for the remaining �non faulty� PE�s to communicate with each other�
In order to do this� there must be mechanisms for detection and location of failures �fault diagnosis
�Arms 
��� �Bhat 
��� and the possibility to bypass faulty components �fault tolerance��
The ability of fault tolerance requires redundant paths between pairs of PE�s� The worst case

is that the network becomes disconnected because of link or PE failures� The �rst measure that
we will present is based on graph�theoretic ideas of connectivity de�ned as the minimum number of
nodes whose removal seperates the graph into at least two components� Some attempts have been
made to generalize this ideas �generalized connectivity and persistence� �Boes ���� �Skil 
��� In all
those deterministic measures we only consider the worst case� Those measures are sometimes called
vulnerability measures ��Fran ���� �Seng 
��� �Berm 
���� because they show� how easy or di�cult it
is� to destroy �disconnect� the topology�
In a probabilistic approach every link and PE is assigned a certain failure probability and the

goal of the analysis is to determine the probability that the whole network is operational� i� e� not
disconnected �Tain �	�� The analysis is quite simple if the network can be represented as a series�
parallel graph� otherwise more sophisticated analysis methods are necessary� In �Hwan 
�� a survey
of the literature dealing with reliability analysis techniques can be found� Those techniques are very
time consuming �they usually belong to the class of NP�hard problems� and are thus not feasible
for large networks� So it is necessary to make assumptions which simplify the analysis and to de�ne
criteria based on approximative calculations�

����� Deterministic Measures

Connectivity and Cohesion ��� �Boes ��� Connectivity and cohesion measure the �di�culties
for disrupting� the system by removing nodes and edges�

De�nition �� The node�connectivity� denoted by �� is the minimum number of nodes whose

removal results in a disconnected or trivial �� graph� where removing a node means to remove
the node itself and all edges adjacent to it�

A graph is called n�connected if � � n�

De�nition �� The edge�connectivity or cohesion� denoted by 	� is the minimum number of
edges whose removal results in a disconnected or trivial graph�

A graph is called n�edge�connected if 	 � n�

��A trivial graph has exactly one node

��



By de�nition� the connectivity of a graph will never be larger than its cohesion� Clearly the
cohesion is bounded by the minimum node degree in the graph which is in turn bounded by
the average node degree�� and so the following inequality holds �see �Whit ��� for a proof��

� � 	 � dmin �
�
� for L � N � �
b�L�Nc for L � N � �

A graph with 	 � �L�N is optimum and is called super�	 �Huan 
���

Whitney �Whit ��� discovered and proved the following criterion for connectivity�

Theorem � A graph is n�connected if and only if there are at least n node disjoint�� paths
between any pair of nodes�

The analogous theorem for edge�connectivity could not be proven until �� years after by Ford
and Fulkerson �Ford 	���

Theorem � A graph is n�edge�connected if and only if there are at least n edge disjoint��

paths between any pair of nodes�

These two theorems are important for analysing the connectivity of networks� If we assign a
weight of value � to every edge in the network the value of 	 is equivalent to the minimum
over all minimum cuts between any two nodes in the network� So the problem is to �nd the
minimum cuts for all pairs of nodes which can be done by the algorithm of Ford an Fulkerson
�Ford 	��� The determination of � is analogous after transforming the network �splitting the
nodes resulting in a network with �N nodes and L � N edges�� Frisch �Fris 	����Fris 	�� has
developed an algorithm which allows the calculation of � without transformation� Several
other algorithms can be found in �Gomo 	����Klei 	�� and �Frec ����

Connectivity and cohesion only give a very �rst view of the networks failure behaviour� They
only tell us� whether the system will stand the failure of a certain number of nodes �respectively
links� or not� We know neither� what will happen� if less failures occur �will this leed to an
increase in diameter��� nor� how harmful the failure of � nodes �or 	 links� is �will only be
a single node seperated or nearly half of the system��� Inspite of these drawbacks� those
measures are often used for comparing the fault tolerance of networks� because algorithms for
their calculation are known �see the previous paragraph��

Generalized Connectivity and Cohesion ��x����x� �Boes ��� More general measures of net�
work reliability based on cutsets are generalized connectivity and generalized cohesion� They
measure the number of nodes �respectively edges� whose removal separates a graph with x
nodes from the original graph�

De�nition �� Let x be an integer with � � x � bN��c�
The Generalized connectivity� denoted by ��x�� is de�ned as the minimum number of nodes
whose removal seperates a subgraph of order less than or equal x and all remaining parts of
the graph are of order not less than x�

The Generalized cohesion denoted by 	�x� is de�ned as the minimum number of edges whose
removal seperates a subgraph of order less than or equal x and all remaining parts of the graph
are of order not less than x�

��The average node degree is the number of edges that a node has on average� calculated by dividing the total
number of edges by the total number of nodes L�N 	 Since each edge is incident to two nodes� we must double L�N
in order to obtain the average node degree	
��Two paths are said to be node disjoint� if there exists no node which occurs in both paths	
��Two paths are said to be edge disjoint� if there exists no edge which occurs in both paths	

��
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Figure ���� Generalized Connectivity and cohesion in a Binary tree with �� nodes

It follows from the de�nition that x must be in a range of ��� N� ��

Generalized connectivity and cohesion allow to discriminate between the isolation of a single
node and the separation of larger parts of the network and are helpful in detecting parts
of the graph that are not tightly connected to the remainder� So generalized connectivity�


and generalized cohesion�� allow a more detailed look at the network than connectivity and
cohesion� If we have determined ��x�� it is easy to �nd �� because � is de�ned as the minimum
number of nodes whose removal seperates the graph �into components of arbitrary order� and
the generalized connectivity shows the minimum number of nodes required for separating
components of all possible orders� and therefore � � minxf��x�g� The same relation is true
for cohesion and generalized cohesion�

The disadvantage of these measures is a higher eort for calculation� no explicit algorithms
are known�

Figure ��� shows the generalized connectivity and cohesion for a binary tree on �� nodes� It is
always possible to seperate a complete subtree by deleting a single node or edge �	��i � �� �
���i � �� � ��� A subgraph of size � is obtained by deleting � nodes �� and �� for example� or
� edges ���� and ��� Note that it is not possible to seperate subgraphs of sizes ��� and 	 by
deleting edges because the remaining parts of the tree would be smaller�

Persistence and Edge�Persistence � Wilkov �Wilk ��� and Bollob�as �Boll �
� have investigated
the minimum number of nodes �and edges� whose removal causes diameter to increase up to
a certain bound k�� We want to follow the terms and de�nitions from Boesch �Boes 
�� and
Exoo �Exoo 
�� where k� � k � �� an increase in the diameter of the graph by one�

De�nition �� The persistence� denoted by 
node� is the minimum number of nodes whose
removal cause an increase in diameter�

De�nition �
 The edge�persistence� denoted by 
edge� is the minimum number of edges whose
removal causes an increase in diameter�

It is obvious that 
node � � and 
edge � 	 and one might conclude that 
node �
edge� equals the
minimum of the maximumnumber of node��edge��disjoint paths with length not greater than

��called connectivity function c�x� in �Skil ��
��al so called minimumm�degree ��m� in �Boes ���

��



k between every pair of nodes� This assertion was made and proven by �Boes 
��� but Exoo
�Exoo 
�� has shown that this is only true for graphs with diameter � � k � � for persistence
and � � k � � for edge�persistence�
Persistence and edge persistence seem to be the most useful deterministic measures� because an
increase in diameter corresponds to an increase in communicationdelays� If the communication
delays become too large� it might be better �faster� to use traditional computers instead of
parallel systems�

����� Probabilistic Measures

Reliability and Unreliability Function R�U If we want to determine the probability of a graph
beeing connected �disconnected� under the assumptions that all nodes are perfectly reliable
�i� e� their failure probability is �� and all edge failures occur independently with the same
probability� we can calculate the reliability function of the graph �Kelm 	���

De�nition �� The reliability function� denoted by R� is de�ned as

R �
LX

i�N��
Si��� p�ipL�i

and the unreliability function� denoted by U � is de�ned as

U �
LX
i��

Dip
i��� p�L�i

where p denotes the failure probability of a single edge� Si denotes the number of spanning
subgraphs�� containing i edges and Di denotes the number of disconnected spanning subgraphs�

containing �L � i� edges�

The formula for reliability is obtained from the following considerations� We can calculate the
probability that exactly i edges are non faulty �and consequently that L � i are faulty� by
���p�ipL�i �since the edge failures are assumed to occur independently�� We know� that more
than N � � faulty nodes will always result in a disconnected graph� therefore at least N � �
edges must be non faulty and at most all L links can be non faulty� Since there are in general
several possibilities for removing L � i edges without disconnecting the graph� we need the
number of all possible spanning subgraphs containing i edges� Si� for i � N � �� N� � � � � L� and
obtain a closed form for R� similar to the binomial distribution� by weighting the probability
for the occurance of i nonfaulty node with Si� Similar considerations lead to U � Note only�
that it is su�cient to start with the removal of 	 links� since the removal of less links would
not disconnect the graph�

Since both� R and U are probabilities� their de�nition range is � � R � � and � � U � �� and
the following equation holds� R � �� U �
The calculation of R or U belongs to the group of NP�hard problems �because it is necessary
to determine all spanning subtrees� but can be approximated �Prov 
���

��A graph Gsub�Vsub� Esub� is called a spanning subgraph of G�V�E� if Gsub is connected and Vsub � V and
Esub � E	
�	A graph Gsub�Vsub� Esub� is called a disconnected spanning subgraph of G�V�E� if Gsub is disconnected and

Vsub � V and Esub � E	

��
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Figure ���� Spanning subtrees for reliability analysis

R �
�

SN���� � p�N�� if p is close to �
��D�p

� if p is close to �

In the design of reliable multicomputer systems one is interested in maximizing the value of R
and it has been shown by Bauer et al� �Baue 
�� that this optimization problem is equivalent
to

� �nding a graph with a maximum number of spanning trees if p is large or
� �nding a graph with maximum 	 and a minimum number of disconnected spanning
subgraphs �exactly D� � min� if p is small�

Figure ��� shows all spanning subtrees for a small example graph �the left one in the �rst row�
in the �rst three rows �S� � ��� S� � 	� S
 � �� and all disconnected spanning subtrees with
� �L� 	� edges in the last row �D� � ��� In table ��� the exact and approximative values for
R are shown for a low and a high failure probability�
Frank �Fran 	�� has investigated network reliability under the opposite assumptions� i� e� all
edges are perfectly reliable and the nodes are assigned to a certain failure probability q� Here

U �
NX
i��

Niq
i�� � q�N�i

�	



p � ���� p � ����

R exact ������	 ������	�
�
R approx� �����	 ������	
��

Table ���� Reliability function

where Ni denotes the number of disconnected subgraphs �components� resulting from the
removal of i nodes and � is the connectivity of the graph� It is also possible to approximate
U by the �rst term of the sum if q is su�ciently small� U � N�q

��

When comparing topologies �sections � and �� we will mainly concentrate on edge connectivity
�in terms of the existence of redundant paths between any two nodes� as a measure of fault tolerance
since the evaluation of all the other measures would be to expensive�

��� Extensibility

A desirable property� unfortunately possessed by only a few topologies� is ease in extensibility� Ex�
tending a topology means adding more nodes to the network� without changing the basic properties
and characteristics of the topology� An example shall illustrate this� if we add a node via a new
link to one of the two �end� nodes� the topology is still a line� and we have extended the number
of nodes� If we add a node by connecting it to any other node in the line� the resulting structure is
no longer a line� the basic properties are changed� A network is optimum extensible if it possesses
the following properties�

�� An increase in the number of nodes does not cause an increase in the network degree�

�� It is possible to add nodes without the necessity of rearranging the existing structure�

�� It is possible to extend the structure to arbitrarily values of N �

The �rst property becomes most important when the degree is limited by hardware restrictions�
If a graph possesses the second property it will be called hierarchical � if it possesses the last property
then the graph is extendible by increment � �Reed 
�a��
We can classify the topologies according to these demands by de�ning the following categories

�the numbers in the leftmost column refer to the properties stated above and �yes� or �no� indicates
whether this property is ful�lled or not��

type � type � type � type � type � type 	 type � type 


�� yes yes yes yes no no no no
�� yes yes no no yes yes no no
�� yes no yes no yes no yes no

Table ���� Extensibility types

We will use this classi�cation in the Chapter � when discussing the topologies�

��



Chapter �

Survey of Topologies

�quis� quid� ubi� quibus auxiliis�
cur� quomodo� quando�

Sallust

A lot of topologies for static link oriented interconnection networks have been proposed in the
literature� When a �survey� of topologies is given� usually only the �classical� structures� such as
trees� rings or hypercubes� are mentioned �Witt 
�� Dunc ����
I have tried to give a systematic presentation helping the reader to obtain a general view of

the variety of topologies� One classi�cation proposed by Feng �Feng 
�� seperates the topologies
according to the dimension necessary for layout� or in terms of graph theory� whether the graph is
planar ��� or ��dimensional� or not �n�dimensional�� This classi�cation is not useful� since it is very
di�cult to decide whether a graph is planar or not �Hara ���� Furthermore most of the topologies
are not planar� and the classi�cation becomes meaningless if �almost� all topologies are in the same
class�
I want to suggest systematics based on the construction method of the topology� First it is

possible to use well known simple structures as interconnection networks such as ring� line or tree�
This method will be referred to as simple connection structures� The next family of topologies are
graphs on alphabets� where the node addresses are words of speci�c length in a speci�c alphabet� a
subgroup of this family are hypercube structures� Also some methods from group theory �Cayl �
�
can be used in constructing static networks� the resulting graphs are called Cayley Graphs� In
any graph which is not complete it is possible to decrease message delays and to improve fault
tolerance by establishing additional links� Since the adding of links will increase connection costs it
is advantageous to start with graphs which possess a low connectedness �trees� rings�� An extension
of the additional link concept are Generalized Chordal Rings� where links are added according to
certain symmetry rules to a initially disconnected set of nodes� By the method combination of
basic modules copies of �simple� structures are linked or merged� into more complex ones� The use
of either identical or nonidentical subparts is possible� Another possibility for constructing more
complex graphs out of some given ones are boolean operations on graphs� In the last section some
random methods for constructing graphs are investigated�
When discussing a topology we will �rst give a �more or less� formal de�nition of the structure

and then try to �gure out the properties of the topology� mainly concentrating on

� connection costs� expressed in the total number of links�
� communication delays� in terms of diameter and average distance�
�To link structures means to establish links according to certain rules between the nodes of the subgraphs whereas

merging stands for putting together subgraphs so that they share a set of nodes	

�




(a) Line (b) Ring (c) Star (d) Complete Graph
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Figure ���� Simple connection structures

� fault tolerance� characterized by connectivity and cohesion�
� regularity and symmetry�
� ease of routing and
� extensibility�

If measures of the characteristics have a closed form �depending on the parameters of the topol�
ogy�� then those closed forms will be shown in a table at the end of every section comparing the
topologies discussed in the section� �

��� Simple Connection Structures

Line L�N� The simplest way to connect N nodes is to arrange them in a line and connect neigh�
bours� This results in lowest possible connection costs but also in highest possible commu�
nication delays� The fault tolerance is also poor� since the failure of a single node or link
disconnects the complete structure� Routing and extensibility are trivial�

The practical use for multicomputer systems is limited to special purpose architectures �i� e�
Pipelining�� But the low fault tolerance poses a severe problem�

Ring C�N� �Agra 
	� If the �rst and the last node in a line are connected �i� e� building a ring��
we can achieve a reduction in communication delays �diameter ��� and average distance
����� but the growth of diameter and average distance is still linear with the total number of
nodes and becomes unacceptable for large values of N � However� if the degree is restricted to
�� lines and rings are the only possible topologies�

Routing is still simple and new nodes can be added anywhere in the ring� so we have good
extensibility� The existence of � disjoint paths �one clockwise and on counter clockwise�
between any two nodes increases the fault tolerance� rings are super�	�

A further improvement �reduction in diameter and higher fault tolerance� can be achieved by
adding links between distant nodes in a ring� A family of topologies using this construction
technique are Chordal Rings� which will be discussed in section ����

�A comparison and summary of all topologies is given in Section �	

��



(a) Full Tree (b) maximum tree (c) two-rooted tree
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Figure ���� Tree topologies� T full��� ��� Tmax��� ��� T ���� ��

Completely Connected network K�N� If we establish a direct link between all pairs of pro�
cessing elements� we obtain lowest possible communication delays and optimum fault tol�
erance� but the connection costs �L � N �N � ����� limit the practical use of completely
connected networks�

Tree T�B�h� A lot of dierent types of trees have been de�ned� causing some confusion about the
terminology� so we want to give the following de�nitions�

De�nition � A tree with B branches and height h� denoted by T �B� h�� is a graph with a
special node called root� containing no cycle�� every nonleaf node has at most B children and
the leaves are at most at distance h from the root node�

A tree T �B� h� is called balanced� denoted by T bal�B� h�� if all leaves are exactly at distance h
from the root node�

A tree T �B� h� is called complete �or full�� denoted by T full�B� h�� if it is balanced and if every

nonleaf node has exactly B children��

A tree T �B� h� is called maximum� denoted by Tmax�B� h�� if it is balanced and every nonleaf
node has a nodes degree of B � ��

A tree is called m�rooted� denoted by Tm�B� h�� if it consists of m subtrees and the root nodes
of all subtrees are connected in a complete graph of m nodes�

The diameter in trees is determined by the sum of the distances from the two most distant
leaves to the root� so in balanced trees k is given by �h� So it seems advantageous to use
balanced trees because they will have smaller communication delays than an unbalanced tree
of the same order�

Trees are hierarchical structures so they can easily be extended by adding new nodes next to
the leaves �extensibility type ���� The other possibility for increasing the number of nodes
consists in adding more branches which has the advantage that the communication delays will
remain small but for the costs of an increase in degree �extensibility type ��� In complete or
maximum trees it is only possible to add a complete new level or branch �extensibility type �
or 	��

The total number of links in a tree is given by N � �� so we have low connection costs� but
we have to notice that trees are irregular structures and the node degree for nonleaf nodes
grows with B�

�A cycle in a graph is a path �an alternating sequence of nodes and edges� starting at node x and ending at node
x� where no edge occurs twice	

�That means that all levels are full	
�Note that the tree will become unbalanced	

��



N d L k symmetry

L�N � N � N � � N � � dN� e
C�N � N � N bN� c �

T full�B� h� Bh����
B�� B � � N � � �h h� �

Tmax�B� h� Bh�B	����
B�� B � � N � � �h h� �

S�N � N N � � N � � � �

K�N � N N � � N�N���
� � �

� �norm extensibility routing 	
type type

L�N � N	�
�

�N	�
� � � �

C�N �
N odd
N even

N	�
�

N�

�N��

N	�
�

N�

�N��
� � �

T full�B� h�
�Bh���h��� �

B��
	 �h

Bh��
�

Bh���� �B � ��� � or 	 � �

S�N � ��N���
N

��N����
N � � �

K�N � � �N � �� � � N � �

Table ���� Simple connection structures

The major disadvantages of trees are their poor fault tolerance �since there exists exactly
one path between any two nodes� the topology can easily be disrupted�� and the high message
tra�c density at the nodes next to the root and at the corresponding links 
� and decreases
towards the leaves� In order to come up with these two problems several topologies have been
proposed where additional links are established� for example between the nodes within a level
�see Section �����

For routing a message in a tree it is only neccessary to now the destination address of the
message� A node receiving a message has to compare its address to the destination address�
If they match the destination is reached� otherwise the node has to determine whether the
destination node is in one of its subtrees or not� In the �rst case the message is routed
downwards to the subtree containing the destination node� otherwise upwards� An appropriate
labelling scheme for nodes enables fast comparison and subtree determination� In �Horo 
�� a
labelling scheme and a corresponding routing algorithm for binary trees is given�

The X�tree machine �Desp �
�� the DAC machine �Horo ��� or the P�tree machine �Harr ���
are examples for using binary trees in the design of multiprocessor systems�

Star S�N� A star can be seen as an extremal tree with h � � and B � N � �� The diameter of
the structure is independent of the size of the network �k � ��� but the high node degree of
the root node �N � �� and the high number of messages passing through it poses a severe
limitation on the size of this network�

Table ��� compares those simple structures� In trees it is possible to draw a tradeo between
degree and diameter� whereas in all other structures one parameter is independent of N and the
other grows linear with N � When comparing communication delays we should use the normalized
average distance since the topologies have dierent degrees�
Only rings and completely connected networks are regular ��symmetric� and optimum fault

tolerant �super�	�� We can see that all topologies oer an optimum routing algorithm�

��node � ��Bh������

B�� and �link � ��B�h���Bh���
B��

��



��� Graphs on Alphabets

In this construction method the nodes are labelled by words of length n over an alphabet of b letters�
A connection rule de�nes when to establish a link between two nodes� For all graphs on alphabets
a similar routing algorithm can be derived based on a comparison of node addresses �computational
routing�� The main idea is to view routing as a sequence of communication steps equivalent to a
sequence of changes made to the source address label to become the destination address label� A
change in the address corresponds to the selection of a link for transmission� Since there is in general
more than one possible path betweeen any two nodes� it is necessary to apply speci�c knowledge of
the individual properties of the topology� in order to guarantee that the shortest path between any
two nodes is found� We will not give explicit routing algorithms for the topologies in this section�
but show routing in Boolean n�cubes by example in the next section� The Boolean n�cube belongs
to the family of hypercube structures� which are graphs on alphabets� too� but will be discussed in
a seperate section ����� because of their special properties�

Odd Graph OG�d� Akers �Aker 	�� has proposed Odd Graphs as a network with a large number
of nodes for small degree and diameter �see Section �����

De�nition �� An Odd Graph� denoted by OG�d�� consists of N �

�
�d� �
d

�
nodes� d

denotes the number of ��s in the ��d � ���bit binary node address �d � ��� where node u is
connected to node v if and only if

� they have exactly one � in a common position�

When constructing an Odd Graph� we �rst must choose the degree d� Then all nodes are
labelled with those binary numbers of length �d� �� which contain exactly d ��s �For d � �
there would be �� nodes� as shown in �gure ��� �a��� An edge is then drawn between each
pair of nodes� whose assigned numbers have precisely one � in a common position� So it is
guaranteed that each node has exactly d neighbours� This construction results in a regular
and symmetric graph�

The diameter in an OG is given by d� � and a computational routing algorithm �nding this
shortest path is given in �Aker 	���

The only possibility to increase the number of nodes in an Odd Graph consists in increasing
the degree and since OGs are not hierarchical� they are of extensibility type 
� Since the
degree grows with N � the connection costs must grow faster than linear with N �

de Bruijn Graph BG�n�b� � de Bruijn Graphs have been rediscovered since �
�� �Sain ��� sev�
eral times using dierent approaches �see �Rals 
�� for a detailed presentation�� We want to
follow the graph theoretic model proposed by de Bruijn �Brui �	�� and further investigated by
Pradhan and Reddy �Prad 
���

De�nition �� A de Bruijn Graph� denoted by BG�n� b�� consists of bn nodes� where n denotes
the length of the node address in radix b representation �n � �� b � ��� where node u is
connected to node v if either

� the �rst n� � digits of u are the last n� � digits of v or

� the �rst n� � digits of v are the last n� � digits of u�
�De Bruijn Graphs are also known under the name shift connected vectors �Cont ��� or shu�e networks �Prio ��	

��



The construction of de Bruijn Graphs requires the following steps� �rst we must choose upon
b� the size of the alphabet� with the following limitation� b must not be less than � �otherwise
the BG would be disconnected�� We must further consider that the degree is determined by
d � �b� so if we have a restriction on d� b must not exceed d��� The second parameter n
�denoting the length of the words or node addresses� determines diameter k � n� Two nodes
are connected� if the node address of one can be transformed into the node address of the
other by a shift of one position� either to the left or to the right� The �empty� �rightmost or
leftmost� position may be �lled with any digit of the alphabet�

Due to this� the node degree is not constant for every node in the graph� In fact there are N�b�
nodes with node degree �b� b nodes with node degree �b�� and b�� b nodes with node degree
�b � � and the structure is � symmetric since all nodes with the same node degree also have
the same connection pattern� The total number of links is given by L � Nb� �b� � b����
The diameter of the graph equals to n�

The line connectivity is determined by the lowest node degree in the de Bruijn Graph therefore
	 � �b� �� Extension of the graph can either be done by increasing the word length or the
size of the alphabet� Clearly the �rst method increases diameter whereas the second one
increases degree� Both methods require a restructuring of the existing network� A type �
routing algorithm is given in �Prad 
���

Figure ��� �b� shows a BG��� ��� and although BGs are ��symmetric it was pretty di�cult to
arrange the nodes so that at least a little bit of symmetry can be seen�

Kautz Graph KG�n�b� �Kaut 	
� A Kautz Graph KG�n� b� is derived from a de Bruijn Graph
with the same parameters BG�n� b� by deleting letters with identical elements as neighbours�
So the number of nodes in a KG�n� b� is smaller the N in a BG�n� b�� both are of diameter n�
but the KG has a smaller degree d � ��b� ���
Kautz Graphs have the same possibilities of extension as BGs and I suppose that it should be
possible to derive an analogous routing algorithm� but I have not found one in the literature�

In �gure ��� a KG��� �� is shown�

Moebius Graph MG�n� �Lela 
��

De�nition �� A Moebius Graph� denoted by MG�n�� consists of �n nodes� where n denotes
the length of the binary node address� where node u is connected to node v if

� u�u� � � � un�� � v� � � � vn��v� or

� u�u� � � � un�� � vnv� � � � vn�� or

� u�u� � � � un�� � v� � � � vn��vn��vn��� �

In contrast to the other graphs on alphabet described so far� Moebius Graphs have a constant
degree of �� The nodes are labelled with binary addresses and arranged in a ring� Two nodes
are connected� if their node addresses can be transformed into each other by a cyclic shift to
the left �right� and changing the rightmost �leftmost� digit into its complement ��rst � rules��
or if their addresses dier exactly in the last two digits �third rule��

According to the �rst two rules� two twisted loops are formed �that is why the structure is
called Moebius Graph�� shown by the black and by the grey line in �gure ��� �d��� According
to the third rule an edge is drawn between those pairs of nodes whose addresses dier exactly
in the rightmost two digits �black dashed lines��

According to Leland �Lela 
�� no exact closed form for diameter can be given� it is only known
that k � b�n��c� Although the diameter is small� the lack of a routing algorithm �nding the
shortest path between any two nodes deteriorates communication delays�

��



(a) Odd Graph

(b) de Bruijn Graph

(c) Kautz Graph

(d) Moebius Graph
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Figure ���� Graphs on alphabets� OG���� BG��� ��� KG��� ���MG���
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Odd Graph

�
�d� �
d

�
d dN

� d� � �

deBruijn bn �b� � � di � �b Nb� b�	b
� n �

Kautz b�b� ��n�� di � ��b� �� n

Moebius �n � ���n
� � b�n� c �

Table ���� Graphs on alphabets

There are a lot of other graphs on alphabeths� We have chosen these � graphs as representatives�
because they show the variety of possible constructions for graphs on alphabets�
Moebius and Odd Graphs are regular� whereas the two others are irregular� Moebius Graphs are

cubic graphs �graphs of degree ��� The Kautz and de Bruijn Graphs oer the possibility to choose
two parameters� one determing the degree� and the other determing the diameter� Odd Graphs
posses only one parameter� determining both� degree and diameter�
The connection costs are lowest in Moebius Graphs and maximumin Odd Graphs� the advantage

of those graphs is their regularity and symmetry �see table �����

��� Hypercube Structures

This section deals with construction methods based on an n�dimensional hypercube� Every node is
identi�ed via its coordinates in the positive quadrant of an n�dimensional Euclidean space� Note
that these topologies are graphs on alphabets� but I have chosen to devote them a seperated section
because of their importance�

����� Binary Hypercubes

All topologies in this section consist of N � �n nodes� arranged in a hypercube of dimension n and
dier from each other in having dierent connection rules� These dierent connections result in
dierent values for diameter and average distance�
All binary hypercubes are regular of degree n and have therefore a total number of L � N log� N

�
links� so the connection costs grow more than linear with N � All binary hypercubes are optimum
fault tolerant �super�	��

Boolean n�cube Q�n� �� �Witt �	���Peas ��� The most popular structure for multicomputer inter�
connection is probably the Boolean n�cube� favoured because of its regularity and symmetry
and high potential for exploiting parallelism�

A rich literature deals with the anlysis of Boolean n�cubes� ��Sull ���� �Witt 
��� �Efe ����
fault diagnosis ��Arms 
��� �Yang 

�� and routing ��Ho 
	�� �Chen ����� Some existing parallel
machines use this structure as interconnection network �Cosmic cube �Seit 
���� � ���

De�nition �� A Boolean n�cube� denoted by Q�n�� consists of �n nodes� where u is a n�digit
binary node address� where node u is connected to node v if and only if

� their node addresses di	er in exactly one digit� ��

�ui denotes the i�th digit of the binary node address and ui denotes the binary complement	
	Unfortunately� I was not able to draw the graph in a way which shows the symmetry	
�
This structure is often discussed under the name �hypercube�� which we use as generic term here	
��A more elgant recursive de�nition is given in Section �	�	
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(a) Boolean  n-cube (c) Multiple Twisted Cube(d) Twisted Cube
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Figure ���� Binary hypercubes� Q���� TQ���� MQ���

Diameter and degree in a Q�n� are given by n� so when increasing the size of a Q�n� both
parameters grow at the same rate� The Boolean n�cube is often favoured for its low commu�
nication delays� but if we also take the high connection costs into account� it becomes less
attractive� Nevertheless� it is frequently used as interconnection topology� because a lot of
parallel algorithms can be �and have been� easily implemented on hypercubes�

Routing in Boolean n�cubes requires only the knowledge of the source and destination ad�
dresses� Those addresses are compared� and if they match� the destination is reached� Other�
wise the message is sent into the �rst dimension� where a mismatch occured� The number of
mismatches �diering digits� determines the length of the path� The following example shows
the routing sequence �list of node addresses�� when routing a message in a Q��� from node
������� to node ��������

� � � � � � � mismatch at the �st position
� � � � � � � � mismatch at the �nd position
� � � � � � � � mismatch at the last position
� � � � � � � � destination reached

An improvement in diameter of n�cubes can be achieved by breaking their symmetry �i� e� not
every node is connected to its direct neighbours�� In the following two structures in this section
links are rearranged according to certain rules �twist operation� in order to reduce diameter�

Twisted Cube TQ�n� �Esfa 

� Esfahanian discovered the ability of reducing the diameter in a
Boolean n�cube by performing only one single twist operation between any two node disjoint
edges on a shortest cycle in a hypercube�

De�nition �� An n�dimensional Twisted Cube� denoted by TQn� is made of a Boolean n�
cube by replacing the edges �x�� x�� and �y�� y��� which must be two disjoint edges on a shortest
cycle�� in a Q�n�� by the edges �x�� y�� and �y�� x���

It is su�cient to exchange the two edges of any lateral surface� as shown in �gure ���� in order
to reduce diameter by � �k � n� ��� The disadvantage of the reduction in diameter is a loss
in symmetry which complicates routing�

Multiply�twisted Cube MQ�n� �Efe 

���Hilb 
��

��Any four edges in a Q�n�� which form a square� are a shortest cycle	

�	



N d L k symmetry extensibility routing
Type Type

Q�n� �n n
N log� N

� n � � �

TQ�n� �n n N log� N
� n� � N

� � �

MQ�n� �n n
N log� N

� dn	�� e n� � � �

Table ���� Binary hypercubes

De�nition �� A one�dimensional multiply�twisted Cube� denoted by MQ�� consists of two
nodes 
 and � with one edge between them�

In a MQn two multiply�twisted Cubes of dimension n � � �MQ�
n�� and MQ�

n��� are linked
according to the following rule� �un�� � � �u� �MQ�

n�� is adjacent to �vn�� � � �v� �MQ�
n�� if

and only if

� un�� � vn�� if n is even and

� for � � i � bn��� c � u�i	�u�i 	 v�i	�v�i

�x 	 y� denotes two pair related binary strings� where �x 	 y� if and only if �x� y� �
f���� ���� ���� ���� ���� ���� ���� ���g�

An MQ�n� can be recursively constructed of two MQ�n � ��� similar to Boolean n�cubes�
but on one side the edges are twisted as shown in �gure ���� An MQ�n� achieves even more
reduction in diameter than the TQ�n�� k � dn	�� e�
A routing algorithm �nding the shortest path between any two nodes is given in �Efe 

��

The major drawback of all binary hypercubes is� that the degree increases when the network
size is increased� which results in poor extensibility� although the topologies are hierarchical �see
table ����� The MQ has the smallest communication delays� but routing is a little bit more compli�
cated�

����� Generalized Binary Hypercubes

Binary hypercubes are often favoured for their low values in diameter and average distance� But
the major drawback is an increase in degree of order log�N � Values for normalized average distance
are substantially worse compared to other topologies� And if the degree is limited� also the number
of nodes in the binary hypercubes is bounded� The following two structures try to cope with this
problem by replacing a single node in a binary hypercube by a ring of nodes� so the total number of
links is given in both structures by N � R�n where R denotes the number of nodes within a ring�

Cube�Connected�Cycles CCC�n� �Prep 
����Carl 
��

De�nition �� A Cube�Connected�Cycles network of dimension �� denoted by CCC���� con�
sists of � nodes �cycle� of length �� with one link between them�
A CCC�n� is made of � CCC�n� �� by inserting exactly one node in every ring at the same
position and linking the two CCC via a link between each pair of the corresponding new nodes�

Figure ��� shows the recursive construction of a CCC� The nodes are addressed by a pair �rji�
where r is called the ring address and i is the node address� All links connecting nodes with
addresses ��ji� are called sheaf i� A CCC is regular with constant degree � and node symmetric�
Diameter and other measures are analysed in �Raab 

� and �Agra 
	�� the results are shown
in table ����

��



•

•

•
•

•
• •

•

• •

• •

••
• •

• •••
• •••

• •••

• •

• •

•

•

•
•

•
• •

•

• •

• •

••
• •

• •••
• •••

• •••

• •

• •

n=3 connections

n=2 connections

n=1 connections

n=4 connections

Figure ���� Construction of a CCC���

When routing a message in a CCC� the source and destination addresses are compared� The
number of diering digits in the ring addresses indicate� how often the rings must be changed
�at most n times� the length of the ring address�� The position of the diering digit indicates�
which sheaf link must be used in order to change to the next ring� When ever the destination
node is not in this sheaf� it is necessary to change sheafs� too� ��

A generalization has been made in order to allow other values for N by adding nodes to each
ring without increasing the dimension of the CCC�

De�nition �
 A Generalized Cube Connected Cycles network of dimension n� denoted by
�GCCn�� has N � R�n nodes� R denotes the number of nodes in every ring� R � n� �rji�
is the node address with r as an n�digit binary ring address and i denotes the number of the
node in the ring� Node �rji� is connected to node �sjj� if and only if

� r � s and i
R � � j �connection within a ring� or

� i � n and i � j and the ring addresses di	er only in the i�th bit �connection between the
rings��

A GCC is irregular with d� � � for all nodes with addresses �rji � n� and d� � � for all other
nodes �rji � n��

A comparison between CCC�s and Shu e�Exchange graphs can be found in �Leng 
��� Jain
�Jain 

� has shown an isomorphism between CCC and HCSN���

Generalized Boolean n�cube GQ�R�n� �Huan 

� In Generalized Boolean n�cubes it is possi�
ble to draw tradeo between degree and diameter� because the topology is speci�ed by two
parameters� one determing the degree of the structure� the other determing its diameter�

De�nition �� A Generalized Boolean n�cube� denoted by GQ�R�n�� consists of N � R�n��

nodes� where �rji� denotes the node address with r as an n � � digit binary ring address and
i � �� �� � � � � R� � denoting the number of the node in the ring� where node �rji� is connected
to �sjj� if and only if

� r � s and i
R � � j or

� i � j and the ring addresses di	er in exactly one bit�

��A detailed description of this routing algorithm can be found in �Raab ���	
��A HCSN is a Homogeneous Circular Shu�e Network proposed by �Trip ���	

�
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Figure ��	� Generalized Boolean n�cube

As we can see this structure is very similar to CCC�s� It is regular of degree n � � �� links
to the neighbours in the ring and n � � links to nodes in other rings�� A GQ is completely
node symmetric and oers a maximum connectivity �see �Huan 
�� for a detailed analysis of
reliability��

����� Variation of W

We now want to investigate hypercube�like topologies with radix W � �� The extension to a higher
radix allows an increase in the number of nodes without an increase in the dimension �node degree��
There are two dierent rules for connecting nodes�

�� A node is connected to those nodes whose n�digit node addresses dier in only one digit by �
�Meshes� Tori��

�� A node is connected to those n � �Wi� nodes whose n�digit node addresses dier exactly in the
i�th digit �W �ary n�cube� Generalized Hypercubes��

Mesh M�W�n� �Bhat 
��

De�nition � An n�dimensional mesh� denoted by M �W�n�� consists of Wn nodes� where �u
denotes the coordinates of a point in an n�dimensional coordinate system with ui � �� �� � � � �W�
�� where node �u is connected to node �v if and only if

� vi � ui � � in dimension i and vj �� vj in all other dimensions�

If the addition is taken modulo W then also node � is connected to node W � �� resulting in
a mesh with wrap around links� also called Torus �Seit 
��� �Dall 
	��

Meshes are irregular� since the nodes at the border have a smaller node degree than inner
nodes� Tori are regular and have furthemore smaller communication delays� Routing is in
both structures similar to routing in Boolean n�cubes�

W �ary n�cube HC�W�n� �Hawk 
��� �Dall ���

De�nition �� A W �ary n�cube� denoted by HC�W�n�� consists of Wn nodes� where u is an
n�digit radix W node address� where node u is connected to node v if and only if

��
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Figure ���� Hypercube�like structures� M ��� ��� HC��� ��� GHC���� �� ���

� vi � ui 
W w in dimension i for any w � f�� �� � � �� r � �g and vj �� vj in all other
dimensions

This de�nition is a generalization of the Boolean n�cube� Insterad of using binary node
addresses� radix W labels are used� The connection costs are higher d � �W � ��n� the
diameter is determined by k � n just as in Boolean n�cubes� The topology is regular and
node symmetric �see also table �����

Generalized Hypercube GHC��m� �Bhuy 
��� �Bhuy 
�� In a GHC the number of nodes on each
coordinate axes are allowed to vary� so the name �hyperquader� would be more appropriate�
��

De�nition �� A Generalized Hypercube� denoted by GHC��m�� consists of N �
Qn
i��mi

nodes� where mi denotes the number of nodes in the i�th dimension and u is a n�digit node
address with ui denoting the i�th digit of u with � � ui � �mi � ��� where node u is connected
to node v i	

� they have exactly one di	ering digit�

This structure is regular of degree d �
Pn

i���mi��� and node symmetric� values for diameter
and average distance are shown in table ���� The topology remains connected unless more
then d� � links fail and is therefore super�	�
Since there are several dierent partitionings for a given number of nodes one might be in�
terested in �nding an optimum structure� One optimization is to minimize the total number
of links for given diameter� which is achieved if all mi are as close as possible to

n
p
N �see

�Bhuy 
�� for a proof�� Another approach tries to minimize the product of diameter and degree
in order to �nd a compromise between degree and diameter�

A point�to�point routing algorithm and a single�source broadcast algorithm are given in
�Bhuy 
���

��This structure is also known under the name Alpha network �Agra ���	

��
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CCC�n� n�n � �N
� b�n��� c �

GCC�R�n� R�n � ��R� n��n�� R

GQ�R�n� R�n�� n� � R�n� ���n�� bR� c � n� � �

HC�W�n� Wn �W � ��n �W���nWn

�
n �

GHC��m�
Qn

i��mi

Pn
i���mi � �� N

P
n

i��
�mi���
� n � n

M �W�n� Wn �n � nWn n�W � �� Wn��

� 	 extensibility routing
Type Type

CCC�n� �n
� � � � n	�

�n�� d � �
GCC�R�n� d� � � �

GQ�R�n�
�n��R�R	�n���

�R�n����� for even R
�n���R�	��n���R��

R�n���� for odd R
d � or 
 �

HC�W�n�
nWn��

��N��� for even W
nWn�����W���

��N��� for odd W
d 	 �

GHC��m� d � or 	 �
M �W�n� d� n � or 	 �

Table ���� Hypercubes

��� Cayley Graphs

In this section we examine a large and versatile family of graphs� called Cayley Graphs �Cayl �
�
or group graphs �Aker 
��� Those graphs oer an �almost� unlimited variety for constructing inter�
connection topologies on the one hand� but can all be de�ned in precisely the same way by simply
speci�ying a set of basic transformations� We will �rst give a formal de�nition and discuss general
properties� possessed by all Cayley Graphs�

De�nition �� The nodes of a Cayley Graph�
� denoted by CG� are the elements of a �nite group
G� where node g is connected to node g  �� ! denotes the set of generators � for G with � � ! if
and only if ��� � ! and the identity element of G is not in !�  is the group multiplication�

A Cayley Graph results� when we select a set of n symbols and a set of rules �elements of !� by
which one permutation of the symbols can be changed into another� The nodes are labelled with
permutations on the n symbols and an edge is drawn between two nodes if there is a rule by which
the label of one node can be changed into the label of the other� The rules �or transformations� are
permutations themselves�
A simple example is the following� consider a set of symbols fA�B�C�D�Eg� and a single

transformation rule � � �bcdea� �and ��� � aedcb�� a cyclic shift� �� The resulting structure is a
ring of � nodes� If the set of transformation rules is equal to G �i� e� all permutations are allowed��
the resulting structure is a complete graph��
Arden found the following properties� which are inherent to all Cayley Graphs �Arde 
���

� Cayley Graphs are undirected���
��also called Group graphs in �Aker ���	
��We will denote symbols by capital letters� permutations by lower case letters	
��If ��� is not in � the resulting graph would be directed	

��



� Cayley Graphs are connected�
� Cayley Graphs are node symmetric�
� A node will not be connected to itself� �

� The number of nodes is bounded by the number of possible permutations N � n��

� The degree is given by the number of generators� d � k!k�
� Routing in Cayley Graphs consists in sorting a given permutation �the address of the source
node� into another one �address of the destination node��

Most of the node symmetric structures can be described in terms of Cayley graphs� Among
those structures are Boolean n�cubes� Generalized Boolean n�cubes �as shown in �Huan 
��� or
Cube�Connected�Cycles �as shown in �Carl 
���� A famous node symmetric structure that cannot
be represented as a Cayley graph is the Petersen graph �Ho 	���
In the sequel� special permutations �swaps� �ips and cyclic shifts� and the corresponding Cayley

Graphs will be investigated� We will only show the permutations �� an will keep in mind that also
��� is an element of !�

����� Swaps

A special type of a permutation is a swap� the exchange of two single symbols� The set of swaps
can be represented as a graph on n nodes and a link between two nodes if and only if the exchange
of these two symbols is allowed� �� This graph is called a transposition tree �Aker 
	��

Star Graph SG�n� �Aker 
��� �Akl ��� In Star Graphs the swap of the �rst element to any of the
n � � other elements is allowed� It is called Star Graph since its transposition tree is a star�
We can use the following algorithm for routing� which tries to swap the symbol on the leftmost
position in the source address to its position in the destination address� If the position in
the destination address is also the leftmost then the algorithm is blocked and we have to
make a wasteful step by exchanging this symbol to any other symbol which is not at its �nal
place� Then the algorithm can continue� We will show as an example the route from node
FABCDGE to node BCDAFEG in a SG����

F A B C D G E swap F and D
� D A B C F G E swap D and B
� B A D C F G E swap B and A �redundant��
� A B D C F G E swap A and C
� C B D A F G E swap C and B
� B C D A F G E swap B and G �redundant��
� G C D A F B E swap G and E
� E C D A F B G swap C and B
� B C D A F E G destination reached�

Bubble Sort graph BSG�n� �Aker 
��� �Aker 
	� In a BG the exchange of any two adjacent sym�
bols is allowed� so the transposition tree of a BSG is a line of length n� ��
A path from one node to any other node in a BSG is a sequence of adjacent transpositions and
the routing algorithm for BG�s is based on the well known bubble sort algorithm �modi�ed
slightly in order to sort a given permutation into another arbitrary permutation instead of an
increasing sequence�� Let us consider as an examplef a message from node ABCD to node
BCDA in a BSG����

�	Since the identity element of G is not in �	
�
Note that this graph is not the topology� but merely a representation of its construction	

��
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(b) Bubble Sort Graph(a) Star Graph (c) Pancake Graph

Figure ��
� Cayley Graphs� SG���� BSG���� PG���

A B C D swap A and B
� B A C D swap A and C
� B C A D swap A and D
� B C D A destination reached�

����� Flips

Pancake Graph PG�n� �Aker 
�� Pancake Graphs arise from the pancake �ipping problem� an
old combinatorial problem which consists in ordering �by size� a stack of pancakes by �ipping
top substacks with a spatula� The number of pancakes corresponds to the number of symbols
n and the generators are the f��ips���

Finding the diameter of a Pancake Graph is equivalent ot the problem of �nding the minimum
number of �ips necessary to sort a stack of pancakes� This problem has been discussed for
instance in �Gate ���� but has not been solved yet� In table ��� bounds for best values found
so far are shown �taken from �Aker 
	���

A recursive routing algorithm can be derived easily� We start with two node addresses of
length n and check whether the rightmost symbol in the destination address is at the rightmost
place of the source address� If so� then this symbol is deleted from both addresses and the
recursion continues with addresses of length n��� If not� we will �nd the symbol at any other
position in the source address� and at most two �ips are necessary in order to bring it at the
rightmost position� and we can continue the recursion as in the �rst case� It is easy to show
that the number of routing steps will be at most ��n� ��� Take for an example the path from
node ABDEC to node BCEDA�

A B D E C ���ip
� C E D B A ���ip
� D E C B A ���ip
� B C E D A destination reached�

����� Cyclic Shifts

A cyclic shift moves all symbols about one position and the out slipping symbol on one end is
inserted at the released position on the other end� Allowing only a left� or right cyclic shift will

��Performing a f ��ip means to turn over a substack containig leftmost ��top�� f elements	

��
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Figure ���� Cayley Graphs� SOSn���� SOSn�����

result in a simple ring structure� The combination of shifts and swaps yields more interesting results�

SOSn�n� �Aker 
�� In a SOSn�n� graph �swap or shift� it is allowed to swap the two left most
symbols or to perform a cyclic shift of all n symbols either to the right or to the left� The
resulting structure is shown in �gure ��� �a��

SOSn���n� �Aker 
�� If only the rightmost n � � symbols are shifted �to the left or right� and
the leftmost symbols may be swapped� we can achieve a reduction in diameter� The resulting
structure is shown in �gure ��� �b��

Cayley Graph have the advantage of beeing node symmetric� This means� that routing algo�
rithms can be de�ned more easily� although these algorithms will not always �nd the shortest path
between any two nodes� Another important feature is their optimum fault tolerance� But further
research in this area is required� including the development of fault tolerant routing algorithms for
Cayley Graphs in order to make use of their high fault tolerance�
The two SOS graphs are regular of degree � and have therefore lower connection costs� than

the others� But diameter in Pancake and Star Graphs is smaller�
The extensibility is poor� for BG� PG and SG since the degree must be increased�

��� Additional Links

If we take an arbitrarily topology and add edges to it� it will usually be possible to reduce commu�
nication delays and to increase fault tolerance� The disadvantage is an increase in the connection
costs� So it is advantageous to use topologies with small degree or irregular topologies� The adding
of links to those nodes in irregular structure with smaller node degree� will remain the degree d
unchanged unless the number of additional links to node i with node degree di will not exceed
d� di�
In the following we will show several structures� trying to improve trees� rings and hypercubes�

��
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BSG n� n� � �n� ��n���
�

n
�

�
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PG n� n� � �n� ��n��� ��n��	 � k � ��n� ���� node

SOSn n� � �n���

�
n
�

�
node
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�
n� �
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n
�

�
node

SG n� n� � �N � ��n��� d��n� ����e node

� � extensibility routing
Type Type

BSG�n� n� � 
 �
PG�n� n� � 
 �
SOSn�n� � 
 �
SOSn���n� � 
 �

SG�n�
n� ��n�Hn � �

Hn � � �n�th Harmonic Number
n� � 	 �

Table ���� Cayley Graphs

Hypertree HT�h� Goodman �Good 
�� proposed a topology based on binary trees with additional
links among nodes within the same level�

De�nition �� A Hypertree� denoted by HT �h�� is a binary tree T full��� h�� with an addi�

tional link between node u and node v�� if and only if

� u and v are in the same level l and

� their node addresses di	er exactly in digit i � l
�z��	 �

�

�

z denotes the number of consecutive trailing zeros in l �� � l � h� and i denotes the i�th bit
in a node address �starting with the leftmost bit as zero��

The construction of a hypertree starts with choosing the height of the tree� After the tree
connection have been established� additional links between nodes at the same level are estab�
lished� starting at the �rst level� Since the goal is a reduction in diameter� we will connect
those nodes� which are most distant so far� This is guaranteed by the second condition in the
de�nition�

By de�nition the root node and all leaf nodes have a node degree of �� all other nodes have
di � �� so the connection costs are higher than in a binary tree� which is the price for
the reduction in communication delays� There is a reduction in diameter of about ��� in
contrast to a binary tree and also the fault tolerance is improved� because even a faulty root
node will not disconnect the structure�

A routing algorithm combining the ideas of routing in trees �messages are rooted upwards
until the the destination is a direct descendent of the current position� and in hypercubes
�comparison of node addresses� which will always be able to �nd the shortest path between
any two nodes has been derived �Good 
���

��The usual labelling scheme for binary trees is used where all nodes have binary addresses� the root node has
address �� the left child of node u has label u� and the right child has label u�	
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Figure ����� Trees with additional links� HT ���� ST ���

The extension of a hypertree is simply done by adding a new level �increasing h�� The existing
structure need not be disrupted� since the additional links are only established between nodes
in the same level�

Sneptree ST�h� �Li 
	�� �Mart ��� In contrast to hypertrees� the additional links in a sneptree may
be established to any other node in the tree� which ful�lls the condition� that its node degree
di is smaller then the degree of the topology�

De�nition �� A Sneptree� denoted by ST �h�� consists of a binary tree T full��� h� and �� di
additional links at node i where di denotes the node degree of node i in T full �

There is no explicit rule given which nodes have to be connected with the additional links and
it can be shown that there are about ���h�� � ����� dierent connection patterns �Li 
	�� The
only restriction is� that every node must become full� i� e� have node degree d�

If the additional links are chosen in a way� that there are two disjoint spanning cycles �� in the
tree� one containing only left links� the other containing only right links �see �gure ���� �b�� ���
then the sneptree is called cyclic� A cyclic sneptree has the advantage of beeing symmetric and
easier to extend� When adding a new level� only the links of the last level must be rearranged�

The communication delays are smaller than in binary trees� and also the fault tolerance
is improved� the connection costs grows only linearly with N �

Chordal Ring CR�w� �Arde 
��� �Skil 
��

De�nition �� A Chordal Ring� denoted by CR�w�� consists of a ring of N nodes C�N � with
nodes labelled ��� �� � � � � N � ��� where w is an odd number called the chord length� and an
additional edge �chord� between node i and node j if and only if

� j �
�

i �N w if i mod � � �
i 
N w if i mod � � �

So the degree of this topology is constant d � �� the connection costs are comparable small�
It is on the one hand possible to calculate the diameter as a function of N and w� or to

��A cycle in a topology is spanning� if it contains all nodes of the topology	 Two cycles are disjoint� if they have no
links in common	
��A left link leads to a node in the left subtree �the dashed lines in �gure �	�� �b��� a right link to a node in the

right subtree �grey lines�	

�	



CR (5)

(a) Chordal Ring

DCR (5,7; -5,-7)
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Figure ����� Additional links on rings

calculate the maximumnumber of nodes and the corresponding optimum chord length for any
given diameter on the other hand �see Section �����

An increase in the number of nodes is done by adding nodes to the ring but all chords have to
be changed� so we have an extensibility type of �� A routing algorithm is given by Arden
and Lee �Arde 
��� This algorithm calculates a path between any two nodes by determing
a sequence of ring and chord traversals� i� e� using an ring edge or an additional edge for
transmission� In order to determine this path� it is su�cient to know the source and destination
address� N and w�

A Chordal Ring on �	 nodes is shown in �gure ���� �a�� with w � ��

Extended Chordal Ring ECR�W� �Doty 
��� �Doty 
�� As we can see in the Chordal Ring there
are two dierent connection patterns� one for all even nodes and one for all odd nodes� Doty
has extended this model to p dierent patterns where p is called the period of the ring� where
all nodes in the same residue class �modp� have the same connection pattern� ECR�s are
furthermore de�ned for any degree d � ��

De�nition �� An Extended Chordal Ring� denoted by ECR�W �� is a ring of N nodes� where
W is a �p � �d � ��� ch ord matrix with elements ij� and p� d are integers with d � ��
� � p � N��� N mod p � �� and d� � additional edge between node x an d node y if and only
if

� x mod p � i and y � x
N wij for j � �� �� � � � � d� ��

When constructing an ECR we �rst have to choose upon its degree d and its period p� When
choosing the edges between pairs of nodes �assigning values to the elements of the chord
matrix�� we have to consider� that adding a chord wij to node i also adds a chord to node
i 
N wij� which results in an entry in the chord matrix in row i 
p wij with value �wij � So
there are only p�d���

� chords which we can choose freely� the others are �xed�

ECR�s might serve very well as an interconnection network� They are regular and p�symmetric�
optimally fault tolerant and the connection costs increase only linear with N �

��
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Figure ����� Additional links on a mesh� MDMW ����

There exists a type � routing algorithm for Generalized Chordal Ring �see Section ��	�� that
can be applied for ECRs� Furthermore ECR�s possess small communication delays �see
Chapter ��� ��

Figure ���� �c� shows an Extended Chordal Ring with degree ��

Double�Chordal Ring DCR�w��w�� �Jin 
��

De�nition �
 A Double�Chordal Ring� denoted by DCR�w��w�� is an ECR with N mod � �
� nodes and W �

�
w� w�

�w� �w�

�
where w� and w� are odd numbers with w� � w� � N���

Jin and Yang �Jin 
�� have tried to �nd formulas for diameter analogous to Arden �Arde 
���
but were less succesfull� They actually presented a closed form for calculating optimum chord
lengths for a given diameter� but their results are wrong� �


Furthermore� there is no reason for restricting wi to odd numbers� If we use even numbered
chord lengths� we obtain DCRs with lower diameter and average distance �see Section �����

Figure ���� �b� shows a Double Chordal Ring�

Minimum Distance Mesh with Wrap aroud Links MDMW�N� �Beiv 
�a� Beiv 
�b� In con�
trast to a torus� where the �rst and last nodes of the same rows and columns are connected�
links between nodes in dierent columns are added in a MDMW in order to minimize diameter�

De�nition �� In a Minimum Distance Mesh with Wrap around Links MDMW �N � N

nodes are arranged in a �h � v��grid ��� and links are added according to the following rules�

� the lowest node in column j � � j � v is connected to the highest node in column
�j � b� �� mod v for all rows �vertical wrap around links�

� the �rst node is connected to the last node in every row i � � i � h �horizontal wrap
around links�

��Nevertheless� this topology has not been used in any existing parallel computer� maybe because of less popularity	
Even in a speci�c recon�gurable system� whose vendors claim that it is possible to con�gure all possible topologies�
ECR�s cannot be build	
��I have found a lot of contradictory examples to their results	
��If N � hv then a leftmost upper rectangle of dimension �r� �v � b� ��� is discarded from the grid	

�




with
b � d

p
N�� e�

r � dN�beb �N�
h � b� r�
v � dN�be � r�

Figure ���� shows a MDMW of �� nodes�

This topology is regular� and has only linearly growing connection costs �constant degree
d � ��� The diameter is given by k � b � d

p
N��e� which is a considerable improvement

to an ordinary mesh� A MDMW is extensible to all values of N � but it is necessary to
rearrange most of the links�

A routing algorithm �implemented in OCCAM �� is given in �Arru ���� The basic idea is that
a message is �rst sent b�times in horizontal direction and then b�� times in vertical direction�
where an appropriate labelling scheme enables to calculate� whether the message should be
sent east or west in horizontal moves� and north or south in vertical moves respectively�

Banyan Hypercube BQ�h�n� s� �Yous ��� A Banyan network is a multistage interconnection net�
work �Adam 
��� its topology is a directed graph with a unique path from every base to every
apex�� where normally the bases and apexis represent processors or memorymodules� whereas
all other nodes are switching cells �see �Goke ��� or �Sieg ��� for a more detailed discussion
of Banyan networks�� In a regular Banyan network the indegree s �number of ingoing links�
equals the outdegree� and there are sn nodes within each level�

In a Banyan Hypercube all nodes in the Banyan network represent processing elements� con�
nected via bidirectional links� and there are additional links between nodes in the same label
forming a Boolean n�cube�

De�nition � A Banyan Hypercube� denoted by BQ�n� s�� consists of �n � ��sn nodes� n�s
are integers� s is a power of two� �ljx� denotes the address of node x �in a n�digit radix s
representation� in level l �� � l � n��
Node �ljx� is connected to �mjy� if and only if

� l � n� � and m � l � � and y � xn�� � � �xl	�axl�� � � �x� for a � �� �� � � � � s� ��
� l � � and m � l � � and y � xn�� � � �xlaxl�� � � �x� for a � �� �� � � � � s� ��
� l � m and x and y di	er exactly in one digit�

When constructing a BQ�n� s� one starts with arranging the �n� ��sn nodes in n� � levels�
each containing exactly sn nodes� The nodes within each level are labelled by n�digit radix s
numbers� All nodes �except those at the last level� are now connected to their s �successors�
in the previous level� which are those nodes that have either the same address or dier only in
the l�th digit �l is the level number�� These connections form a rectangular banyan network
�the black full lines in �gure ���� show the banynan connections�� Now the additional links
are established among the nodes in the same level forming a Boolean n�cube �the dashed lines
in �gure ���� �g��

Since the nodes in the �rst and last level have less edges than the inner nodes� BQ�s are
irregular� The nodes in level � and n have a node degree of s � n log� s� whereas all other
nodes have di � �s�n log� s� Diameter and average distance have only a closed form for
s � � and s � � �see �Yous ��� for a proof�� and are shown in table ��	� For other values of s
the authors have not found a closed form�

BQ�s have comparably high connection costs� A recursive construction rule can be given
showing the extensibility�

��A node is a base� if there are no incident arcs into it� a node is an apex� if there are no incident arcs out of it	

��



(b) Folded Hypercube (a) Banyan Hypercube

0000 0001

0010 0011

0100 0101

0110 0111

1000
1100

1001
1101

11111110
1010 1011• •

• •• •
•• ••

•• ••
• •

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

Figure ����� Additional links on hypercubes� BQ��� �� ��� FQ���

�� A BQ��� s� is a single node�

�� A BQ�n� s� can be constructed from s copies of BQ�n � �� s� by connecting the corre�
sponding nodes�

So BQ�s have inherited the hierarchical structure of Banyan Networks and hypercubes�

A routing algorithm is given by Youssef and Narahari in their article� The message is �rst
sent to the destination level using the banyan edges� and then to the destination itself using
n�cube edges� We have already presented the routing algorithm for n�cubes �section �����
and must now specify which of the banyan edges are chosen when changing levels� If the
destination level l� is above the current level l� the message is routed to this node� which has
the same digit at the l�th position as the destination address� If the destination level l� is
beneath the current level l� the message is routed to this node� which has the same digit at
the �l � ���th position as the destination address� This guarantees� that a minimum number
of n�cube routing steps will be necassary�

Folded Hypercubes FQ�n� �El A ���

De�nition �� A Folded Hypercube� denoted by FQ�n�� of dimension n is a Boolean n�cube
with an additional link between node u and v if and only if

� their binary addresses di	er in all bits�

The additional links are shown in �gure ���� as dashed light lines�

An FQ is symmetric and regular of degree n��� the connection costs are somewhat higher
than in a Q�n�� The reduction in communication delaysmight justify the comparable small
increase in degree� However if the number of links per PE is restricted by hardware� the size
of the largest possible FQ is only half of the size of the largest possible Boolean n�cube�

The routing is similar to routing in hypercubes� a node compares its address with the des�
tination address using a binary �xor� operation� If the number of ��s in the result is greater
than n�� the message is routed via the additional link otherwise ordinary hypercube routing
takes place�

The hierarchical structure of hypercubes is lost in a FQ� i� e� if we want to extend the
structure to higher dimensions� it is necessary to rearrange the additional links�

��
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Among the structures presented in this section� ECR�s and hypertrees seems the most impor�
tant ones for interconnection networks� Both are regular and oer a high degree of symmetry �see
tabel ��	�� The hypertree has the advantage� that it is easier to extend �because of the hierarchical
tree structure�� but has higher communication delays� ECR�s have lower diameter� but the dis�
advantage� that it is not possible to determine the optimum chord lengths� except by exhaustive
search�
Folded Hypercubes and Banyan Hypercubes suer from their high connection costs� which make

them inattractive for large systems�

��� Generalized Chordal Rings

Generalized Chordal Rings �Berm 
	� are based on the idea of Chordal Rings proposed by Arden
and Lee� but weakening the restriction that all nodes have to lie on a ring�

De�nition �� A Generalized Chordal Ring� denoted by GCR�W �� consists of N nodes �numbered
from 
 to N � ��� p is a divisor of N called the period of the GCR� W is the chord matrix with
elements wij� Node i is connected to node j if and only if

� node i 
N p is connected to j 
N p�

The nodes are divided into p residue classes and all chord lengths are kept in a �p � d� chord
matrix W � The value of p corresponds to the symmetry of the topology �GCR�s are p�symmetric�
and the set of chord lengths determines the diameter�
A Generalized Chordal Ring is constructed as follows�

�� Find an appropriate period p with � � p � N and N mod p � ��
�� For every period� �nd values wij � � i � p � �� � � j � d� with � � wij � N � �� so that

di � d for any node i��

For a given number of nodes� there exists a great variety of GCRs� which show great variations
in diameter� average distance and other measures� The construction neither guarantees that the
GCR is regular� nor that it is connected�
Arden �Arde ��� has developed a recursive routing algorithm for point�to�point communication

in Generalized Chordal Rings� In a �rst step �which must be executed only once� �distance tables�
are established for the nodes �� �� � � �� p � � �as representatives of their residue classes�� A node
appears in level i in the distance table of node j� if it is at distance � �i from the representative j in
this residue class� �� The tables for all other nodes in the same residue class are obtained easily by
adding the node label to all node addresses �modulo N � in the original table of the corresponding
period� When routing a message� the path search starts at the lowest level l� If the source and
destination node are root and leaf in the same table� the recursion is continued at the next level
l� �� Otherwise a common node �� is searched at level l in the source table and at level l� � of the
destination table� If this search fails� level l in the destination table is investigated��� The problem
is then split into two subparts� �rst searching a path from the source to the common node� second
searching a path from the common node to the destination� both at the next higher level �l � l����
A special type of Generalized Chordal Rings are Circulant graphs �Boes 
�� with period p � ��

so the chord matrix consists of a single row� here called jump sequence�

�	Note that only pd�
 chord lengths has to be found since the allocation of any w to node i �xes a chord length of
node i�N w to �w	
�
The tables are redundant half�trees� and can be stored e�ciently �using less space� in a bit vector representation	
��A common node is a node which appears in both tables	
��This search must be successfull� because the maximum distance between any two nodes is not larger than 
l	

��



(a) Generalized Chordal Ring (b) Circulant 
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Figure ����� Generalized Chordal Rings� GCR��� ����� ���������������� CG��� ��

N d L k symmetry extensibility routing
GCR N d dN�� p � �

CG��� n�� N � �N d
p
�N����

� e � � �

Table ���� Generalized Chordal Rings

De�nition �� A Circulant graph denoted by CG�n�� n�� � � � � nj� comprises N nodes� where n�� n�� � � � � nj
are integers with � � n� � � � � � nj � �N � ���� called the jump sequence� such that node x is con�
nected to node y if and only if

� y 
N ni � x or

� y �N ni � x�

Circulant graphs are regular of degree �j� values for diameter vary strongly for dierent jump
sequences� In �Boes 
�� a lower bound for the diameter in circulant graphs is given but the problem
of determining that jump sequence reaching this bound has so far only been solved for d � �
circulant graphs� In this subclass the CG��� dp�N � �e��� is optimum with respect to diameter
�k � dp�N � �e�� This optimum degree � circulant will be used in table ��� for comparison�

��� Combination of Basic Modules

The topologies dealt within this chapter are constructed by connecting graphs �basic modules� to a
higher level graph� The connection can either be done by merging nodes or by linking them together�
Both methods causes an increase in the degree of the nodes used for connection� It is advantageous
to use irregular structures as basic modules and connect them by using the d � di �free� links of
nodes with smaller node degree in order to make them regular� That is why trees are frequently
used as basic modules�

����� Merging Methods

F�tree FT�B�h� Friedman �Frie 		� ��

��Note that this Circulant is also an ECR	
��In this article no explicit name for the topology was given so I decided to call it F�tree	

��
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Figure ����� Merging of trees� FT ��� ��� KT ��� ��

De�nition �� An F�tree� denoted by FT �B� h�� combines B�� copies of a Tmax�B� h� �com�
ponent trees� by merging their leaf nodes�

A maximum tree Tmax�B� h� is of degree d � B � �� so B edges can be added to every leaf
node without increasing the degree of the tree and it is therefore possible to merge B � �
maximum trees� resulting in a regular graph with degree d � B � �� The total number of
nodes is given by

N �
��B � ���Bh � ��

B � �

The diameter of a FT is given by k � �h� i� e� twice the height of the component tree�

There are d redundant paths between any pair of nodes so the fault tolerance is improved
signi�cantly compared to ordinary trees� But the problem of high tra�c density near the root
nodes still exists�

The structure can either be extended by increasing the number of branches or levels� The
�rst possibility leads to an increase in degree whereas the latter increases diameter� Both
methods require restructuring of the existing F�tree and it is not possible to add an arbitrary
number of nodes�

No routing algorithm is given in �Frie 		� for F�trees� but since they are tree based structures�
an algorithm can be derived easily if the nodes are identi�ed by their position in the component
tree and by the number of the component tree� A node receiving a message has to decide
whether the destination node is in the same component tree or not� If so� then ordinary tree
routing takes place �see Section ����� Otherwise the message has to be sent downwards to the
leaves and then to the destination component tree�

K�tree KT�B�h� �Korn 	�� K�trees are based on the idea of Friedman with the only dierence
that maximum ��rooted trees are used�

De�nition �� A K�tree� denoted by KT �B� h�� combines B � � copies of a T ��max�B� h� by
merging their leaf nodes�

The total number of nodes is given by

N �
���Bh	� � �B � ��

B � �

��



(a) Nonidentical Hinging Graph (b) Nonidentical Blocking Graph
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Figure ���	� Merging of trees� NHG��� �� �� ��� NBG��� �� �� ��

with degree B � � and diameter k � �h � �� Routing and extensibility are analogous to
F�trees� The only dierence of the two structures is that F�trees always have even diameter�
whereas the diameter in K�trees is always odd�

Nonidentical Hinging and Blocking graph N�G�d� l�m��m�� �Stor ���

De�nition �� A Nonidentical Hinging graph� denoted by NHG�d� l�m��m��� combines d��
copies of a Tm� and one Tm� by merging their leaf nodes�

A Nonidentical Blocking graph NBG�m��m�� l� d� combines m��d�m�����d���l�� subgraphs
of type Tm� in a way that their leaf nodes are the columns of a grid� The nodes in the �rst
row are also the leaves of d� � hinged Tm�

subgraphs� and all other rows are also the leaves
of d� � hinged Tm�

subgraphs�

Tm� denotes a m� rooted maximum tree with l levels �height l���� labelled from ��� �� � � � � l���
and degree d with l � � and � � m� � d� ��
Tm� denotes a m� rooted subtree with l � � levels and � � m� � d� �� all leaf nodes have a
node degree of �� all nodes in level l�� have a node degree � � di � d� and for all other nodes
di � d�
The number of leaves in Tm�

equals that in Tm�
�

Figure ���	 illustrates the construction of an NHG and an NBG� All white planes represent
the �rst component tree Tm� � each grey planes stand for a copy of Tm� �

Both structures are irregular since some of the nodes in the l�th level of Tm� must have a node
degree less than d in order to ful�ll the requirement that both subtrees have the same number
of leaf nodes which is guaranteed by the following equation�

m��d�m� � �� � m��d�m� � �� � m��d�m� � ���d� ��

Extensibility is of type � if the number of levels is increased or even worse of type 
 if the
degree is increased� Values for diameter and N can be given in a closed form of d�l�m� and
m��

��
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kNHG �

����
���
�l � �� m� � �� m� � �
�l � �� m� � �� m� � �
�l � �� m� � �� m� � �
�l� m� � �� m� � �

NNBG �
m�

��d�m� � ���d� ��l��
d� � �d�m� � �� � ��d�m� � ���d� ��h���

�
m��d� ��
d� � �m� � � � �d�m� � ���d� ��l���

� m��d� ��
d� � �m� � � � �d�m� � ���d� ��l���

kNBG �

����
���
�l � �� m� � �� m� � �
�l � �� m� � �� m� � �
�l � �� m� � �� m� � �
�l � �� m� � �� m� � �

In Section ��� a table with maximumNHG�s and NBG�s will be given�

I could not �nd a routing algorithm for an NHG or NBG in the literature�

Orthogonal tree network OT�h� �Nath 
�� An OTN consists of binary trees� where every tree
is connected to some others via a speci�c common leaf node�
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N d L k

FT �B� h� ��B	���Bh���
B�� B � � �B � ��N�� �h

KT �B� h� ���Bh����B	���
B�� B � � �B � ��N�� �h� �

NBG�d� l�m��m�� � � di � d

NHG�d� l�m��m�� � � di � d ��d� ��LS� � LS� ���
OT �h� ��h � �h	���h � �� � � di � � �h��h	� � �� �h

symmetry extensibility routing
type type

FT �B� h� h� � � or 
 �
KT �B� h� h� � � or 
 �
NBG�d� l�m��m�� �h � or 
 �
NHG�d� l�m��m�� �h � or 
 �
OT �h� h � �

Table ��
� Merging Methods

De�nition �� An Orthogonal tree network� denoted by OTN �h�� is a grid of �h � �h �base�

nodes and �h	���h � �� �internal� nodes� where the �h�� nodes in every row and column are
the leaf nodes of a binary tree of height h�

The total number of nodes in an OTN �h� is given by N � ��h � �h	���h � ��� arranged in
�h	� binary trees� where each leave is shared by two trees� The roots and the leaves have a
node degree of �� the inner nodes have a node degree of �� so the topology is irregular�

An OTN �h� is h� ��symmetric and a hierarchic structure since � OTN �h� can be combined
to an OTN �h � �� by linking corresponding old root nodes via new root nodes as shown in
�gure �����

The constructions of Friedman and Korn result in regular structures� whereas all others are
irregular �compare table ����� The OTN has the lowest connection costs� the hinging and blocking
graphs have smallest communication delays out of this group of graphs�
I have not found routing algorithms for those structures in literature� but all structures are based

on trees� so it should be possible to derive algorithms based on tree routing� The extensibility
for hinging and blocking graphs is of type �� if a new level is added� and type 
 if the number of
branches is increased� Only the OTN has a better extensibility� because of its hierarchical structure�

����� Linking Methods

Hypernet Hnet�B� e�G�h� �Hwan 
�� Hypernets are hierarchical compositions of basic modules
characterized by � parameters� the set of basic modules B� the number of links leading to
other basic modules �external links� �e� the number of links between any two basic modules
�global connectivity G� and the number of hierarchy levels h� Any arbitrary structure can be
used as basic module� with the only restriction that every node in the basic module must have
at least one external link so the number of nodes in the basic module is bounded by �e�

De�nition �
 A Hypernet� denoted by Hnet�B� e�G� ��� of level � is a basic module with �e

external links� A hypernet of level h Hnet�B� e�G� h� connects �e���G nets of level h� � such
that there are exactly G links between any two subnets�

��



Figure ���
� Linking of cubes� Hnet�Q�� �� �� ��

The construction will be demonstrated for a level � hypernet� based on a Boolean ��cube with
G � �� Hnet�Q���� �� �� �� �see �gure ���
� taken from �Hwan 
���� The construction starts
with a level � net� a Q���� Then� �d���G basic modules are combined to a level � net� so we
need � cubes� each connected with G links to every other �in our example� G � �� there is a
single link between every pair of Q���s�� For the next level� we need 
 level�� nets� which are
shown as circles� and again establish G links between every pair of subnets� Whenever G � ��
the higher level net will be a complete graph with the subnets as nodes�

Values for diameter and average distance depend on the types of basic modules� If identical
basic modules are used the diameter is given by

k � �h���k� � ��� �

and the average distance is given by

� � �h����� � ��� �

where k� denotes the diameter and �� the average distance in the basic module�

The hierarchical structure of hypernets allows to increase the size of the network without
restructuring the existing parts� So extensibility is of type ��

In �Hwan 
�� a routing algorithm is given�

D�tree DTm�B� h�K� p� �Ramk 

� AD�tree consists of single�rooted �m��� or two�rooted �m���
maximum trees�� of arbitrary degree and height connected via their leaves�

De�nition �� A DK�tree denoted by DTm�B� h�K� p� contains p copies of Tm�max�B� h� and
all leaves with label i are connected as a regular graph of degree B of order p and diameter K�
where the leaves in a subtree are labelled from � to �h���

��We will denote a m rooted maximum tree by rootedmaximumTm�max	 Such a tree has m root nodes and all
non leaf nodes are of degree B � �	

�




(a) D-tree (b) Multitree
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Figure ����� Linking of trees� DT ���� �� �� ���MTS��� �� ��

Figure ���� shows a single rooted D�tree of degree �� the graph used for leaf interconnection
is a ring of � nodes� In Section ��� a detailed construction algorithm is given� trying to �nd a
DT with minimum diameter�
D�trees are regular of degree d � B � � � Communication delays depend on the graph
chosen for leaf interconnection� so these should be chosen to be optimum with respect to
diameter� in order minimize the diameter of the complete structure� In a D��tree� the graph
used for leaf interconnection must be complete� and therefore p � d�

The total number of nodes in a DK�tree is given by

N � pd�d���h��
d�� if m � �

� �p�d���h����
d�� if m � �

DK�trees are regular� h�symmetric and their diameter is given by

k � ��h�K� if m � �
� ��h�K � �� if m � �

Although DK�trees have optimum fault tolerance measured in cohesion� the failure of a link
causes a signi�cant increase in diameter so their persistence is poor�

Multitree Structured graphs MTS�m�d�h� �Arde �
�

De�nition � A Multitree Strucutred graph� denoted by MTS�m� d� h�� consists of m copies

of T��
 �also called component trees�� whose root nodes are arranged in a cycle� where each
leafnode is connected to d� � other leafnodes forming at least one cycle�

��T� denotes a subtree with h levels� a root node with node degree �� and all other nonleaf nodes with node degree
d	

��



(a) Torus (b) C1 Graph
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Figure ����� Linking of rings� Tor��� 
� �� ��� C���� ��

Figure ���� �b� shows a multitree� made up of � subtrees of height � and degree ��

The total number of nodes is given by

N � m�� �
�d� ��h�� � �

d� � �

values for diameter depend on the chosen leaf connection� It has neither been possible to
de�ne connection rule� which would result in a graph of minimum diameter� nor to give a
closed form for diameter as a function of m� d and h�

No routing algorithm is given by the authors�

Torus Tor�m� r�pup�pdown� �Cont 
��

De�nition �� A torus� denoted by Tor�m� r� pup� pdown�� consists of rm nodes� m denotes
the number of nodes in a ring� r denotes the number of rings� pup� pdown are integers relative
prime to m� �ijj� denotes the node address with � leqi � r and � � j � m� Node �i� j� is
connected to node �k� l� if and only if

� i � k and j � l 
m � or j � l �m � �connections within the ring� or

� k � i 
m � and l � i � pup modm or

� k � i �m � and l � i � pdown modm�

A torus consists of r cycles� each containing m nodes� Each node has a node degree of �� two
of its edges are used for connection within the ring� one is used for the upward� the other for
the downward connection�

Figure ���� �a� shall illustrate the construction of a Tor��� 
� �� ��� First� m � � rings� each
containing r � 
 nodes are arranged above each other� Then� either the upward or the
downward connections are established �each upward link corresponds to a downward link��
connecting the nodes in one level to the nodes in the neighbouring levels �the �rst and the last
level are said to be neighbours� too��

A torus is regular of degree � �this is guaranteed� since m and pup as well as m and pdown are
relative prime�� values for diameter and average distance depend on the values chosen for
pup and pdown� some good results will be shown in Section ����

If pup � pdown � � then the structure is equivalent to a wrap around mesh� if r � � it is an
Extended Chordal Ring �de�nition �	��

��
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DT ��B� h� p�K� p �B	��B
h��

B�� B � � Nd�� �h�K

Hnet�Q���� �� �� h� ��
h��	h	� � �h	� � �

MTS�m�B� h� m�� � Bh��

B�� � B � � N�B	��
�

C��d�m� m�d���m�� d mdm�m�� m for m � �
m � dm��� e � � otherwise

Tor�r�m� pup� pdown� rm � rmd��

symmetry extensibility routing
type type

DTn�B� h� p�K� h ��� or 
 �
Hnet�Q���� �� �� �� � � �
MTS�m� d� h� h� � � �h�� varies
C��d�m� node � or 

Tor�r�m� pup� pdown� �

Table ���� Linking methods

A modi�cation can be made in order to obtain a degree of � by replacing every node in a
torus by a pair of nodes� where one edge connects the pair� the two remaining edges of one
node are used for the connections within the level� and the edges of the other are used for the
connections to other levels�

C� Graph C��d�m� �Memm 
��

De�nition �� A C� Graph� denoted by C��d�m�� consists of mr nodes� d mod � � �� m � �
denotes the number of nodes in a ring� r � �d���m�� is the number of rings� �ijj� denotes the
node address with � � i � r and � � j � m� Node �ijj� is connected to �kjl� if and only if

� k � i 
m �

� l � x
r
d
� �j � �� for x � �� �� � � � � d���

In a C� graph the nodes are arranged in the same way as in a torus� but the connection rule is
dierent� Instead of connecting the nodes in the same level� all d links are used for connections
to nodes in the neighbour levels� Furthermore� all even numbers are allowed for d� but it is
not possible to choose the parameters for connection �as in Torus networks��

This has the advantage� that it is possible� to give a closed form for diameter�

k �

�
m for m � �
m � dm���

e � � for m � �

All structures presented in this section are regular� and with the exception of torus networks�
where the degree is either � or �� and the cube based hypernet �d � ��� the degree can be chosen
freely �see table �����
Hypernets are suitable for very large networks� because of their hierarchical construction� Torus

networks should better be used for smaller systems �N � ����� because on the one hand it becomes
computationally infeasible to try out all possible combinations of the parameters �m� r� pup� and
pdown�� in order to obtain a network with the desired properties �e� g� small diameter�� On the other
hand von Conta ��Cont 
��� conjectures� that torus networks will not perform well with respect to
communication delays� when N becomes large�

��
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Figure ����� Boolean operations with G� � K� and G� � C�

D�trees� Torus entworks and C� graphs possess comparably low communication delays� there
will be further discussion in Section ����
The multi�tree might also be an interesting structure� but we know only a few of its properties�

Neither a routing algorithm� nor explicit construction rules nor values for diameter are known�

��	 Boolean Operations on Graphs

Now we want to investigate topologies which are the result of a boolean operation on two graphs�
In general a boolean operation G� �G� results in a graph G with V � V��V�� the cartesian product
of the node sets from graph G� and graph G�� A node in G is labelled �u�ju�� with ui � Vi and
the set of edges E of G is expressed in terms of the edges in E� and E�� depending on the boolean
operation applied�

Conjunction G� �G� �Weic 	���Ore 	�� The conjunction of two graphs is perhaps the simplest
operation� Two nodes �u�ju�� and �v�jv�� in G are connected only if �u�� v�� is and edge of
G� and �u�� v�� is an edge ofG�� It can be viewed as the �and�connection� of two graphs�

Figure ���� �a� shows the conjunction of a line and a cycle on � nodes�

In �McAn 	�� and �Brua 	�� the conjunction is modi�ed and applied on directed graph�

Disjunction G� �G� �Hara 	�� The disjunction can be viewed as the �or�connection� of two
graphs� Two nodes �u�ju�� and �v�jv�� are connected if �u�� v�� is and edge of G� or �u�� v��
is an edge of G��

��



Symmetric di�erence G� �G� �Hara 	�� The symmetric dierence of two graphs is constructed
by the �exclusive�or�conenction�� Two nodes �u�ju�� and �v�jv�� are connected if either �u�� v��
is an edge of G� or �u�� v�� is an edge of G� �bot not both��

Rejection G� nG� �Hara 	�� The rejection can be viewed as the �nor�connection� of two graphs�
Two nodes �u�ju�� and �v�jv�� are connected if neither �u�� v�� is an edge of G� nor �u�� v�� is
an edge of G��

Cartesian Product G� �G� �Sabi 	��� �Catt ��� The cartesian product can be viewed as the
�sum� of two graphs� Two nodes �u�ju�� and �v�jv�� are connected if either u� and v� are
identical and �u�� v�� is an edge in G� or if the second components are identical �u� � v�� and
the �rst components are an edge of G��

Some structures that we already know� can be described by the cartesian product� The
Boolean n�cube is the cartesian product of a line and a Boolean n � ��cube Q��� � K� and
Q�n� � K� � Q�n � ��� a torus �wrap around mesh� can be seen as the cartesian product of
two cycles WM �b� h� � Cb � Ch�

In �gure ���� the cartesian product of a line and a ring is shown�

Generalized Product G� G� �Berm 
�� In the Generalized Product G� must be a directed
graph with Edir

� denoting the sets of arcs� For each arc �u� �� v�� � Edir
� it is necessary

to de�ne a function f�u� ��v���u��� a �self�bijective� �mapping� function assigning each node
u� � E� to a node f�u�� � E�� ��

G�  G� can be viewed as formed by j V� j copies of G� where two copies generated by the
nodes u� and v� are joined if �u� �� v�� is an arc of G� according to the mapping function�

Bermond �Berm 
�� has investigated the generalized product of a line �with orientation �� ��
��� and a cycle� G � K�  C�a�	�a	� with a � � and f�� �����u�� � ��a� �� � u� mod n� This
graph is regular of degree � and it is possible to calculate its diameter�

k �

�
� if a � �

a� � if a � �

If a � � this construction produces the famous Petersen graph �see �gure ���� �b� and Chap�
ter ���

An extension allows the use of any directed graph G� with degree d�� diameter k� and a
given orientation Edir

� instead of K�� yielding a graph G�  C�a�	�a	� and f�� �����u�� �
��a � ��u� mod n� This graph is of degree d � d� � � and diameter k� � a�

Composition G��G�� �Hara ���� �Gome 
�� Two nodes �u�ju�� and �v�jv�� are connected if either
�u�� v�� is an edge in G� or if the �rst components are identical �u� � v�� and the second
components are an edge of G�� The composition of a line and a ring is shown in �gure �����

Table ���� summarizes the notations and construction rules for the boolean operations� It is
important to note that boolean operations are in general not commutative� i� e� G� �G� �� G� �G��
Most of the boolean operations can be described by operations on the adjacency matrices�� of

G� and G�� In the last column of table ���� it is shown how the adjacency matrix of G � G� � G�

is calculated��

��If f�u� �v���u�� � u� for all arcs �u�� v�� then the generalized product is simply the cartesian product	
��The adjacency matrix of A � A�G� � �aij � of a graph G is the boolean N � N matrix with

aij �

n
� if there is an edge between ui and uj
� otherwise

�	I denotes the N � N identity matrix� J denotes an N �N matrix containing only ��s	 A �B denotes the tensor
�or Kronecker� product	 A�B � �aij �� bij� denotes the addition �modulo 
� of A and B	 �A � A� I � J� denotes
the complement of a boolean matrix	

��



Name Notation �u�ju�� adj �v�jv�� i� A�G� �G��
Conjunction G� �G� ��u�� v�� � E�� and A� � A�

��u�� v�� � E��
Cartesian
Product G� 	G� ��u� � v�� and ��u�� v�� � E��� or �A� � IN� � 
 �IN� � A��

��u� � v�� and ��u�� v�� � E���
Generalized
Product G� � G� ��u� � v�� and ��u�� v�� � E��� or

��v� � f�u� ��v��
�u��� and ��u�� v�� � Edir

� ��

Composition G��G� � ��u�� v�� � E�� or �A� � JN� � 
 �IN� � A��
��u� � v�� and ��u�� v�� � E��

Symmetric G� �G� ��u�� v�� � E�� xor �A� � JN� � 
 �JN� �A��
di�erence ��u�� v�� � E��
Disjunction G� �G� ��u�� v�� � E�� or �A� � JN� � 
 �JN� �A��

��u�� v�� � E�� 
�A� � A��
Rejection G� nG� ��u�� v�� � E�� and A� � A�

��u�� v�� � E��

Table ����� Boolean operations on Graphs

Operation Degree of point �ijj� L
G� �G� d�d� �L�L�
G� �G� d� � d� L�N� � L�N�

G�  G� d� � d� L�N� � L�N�

G��G�� d�N� � d� L�N
�
� � L�N�

G� �G� d�N� � d�N� � �d�d� L�N
�
� � L�N

�
� � �L�L�

G� �G� d�N� � d�N� � d�d� L�N
�
� � L�N

�
� � �L�L�

G� nG� �N� � d� � ���N� � d� � ��
�

N
�

�
� L�N

�
� � L�N

�
� � �L�L�

Table ����� Connection costs

In order to guarantee that boolean operations result in a connected graph� the graphs G� and
G� must have certain properties �Hara 		��

� The conjunction is connected if and only if G� or G� contain an odd cycle�

� The cartesian product is connected if and only if G� and G� are both connected�

� The generalized product is connected if and only if G� and G� are both connected�

� The composition is connected if and only if G� is connected�

� The symmetric dierence is connected if and only if G� or G� is connected�

� The disjunction is connected if and only if G� or G� is connected�

� The rejection is connected if and only if G� or G� are disconnected�

The number of nodes in a graph G � G� � G� is always N � N�N�� The node degree and the
total number of edges can be calculated as shown in table ������� G� �G� is regular� only if G� and
G� are regular� but I am not sure whether the same relation is true for symmetry�
The composistion and the conjunction have the highest connection costs� the rejection has the

lowest���
The G�  G� graph seems to be an interesting candidate for an interconnection network� It

provides on the one hand a small degree �d � d� � d��� and on the other hand it is possible to

�
d� denotes the node degree of node i � G�� d� denotes the node degree of node j � G� 	 L� and L� denote the
total number of links in G� and G� respectively	
��No wonder� since it is usually disconnec ted	

��



achieve low diameter by choosing an appropriate mapping function� The only disadvantage is that
there are no routing algorithms for G� �G� graphs in the literature�
All structures are not extensible�

��
 Random Graphs

A Random graph is the result of a well de�ned probabilistic experiment� The probability space is a
set of graphs and the probability for the occurence of a certain graph is determined by the conditions
of the experiment �Tinh 
���
In the simplest model the probability space contains all possible graphs with N nodes and L

links and each graph is assigned the same probability� Such a random graph can be constructed by
starting with a set of N isolated nodes and succesively adding edges at random� If the resulting
graph does not ful�ll the desired properties �e� g� the graph is disconnected� it will be discarded and
the construction process starts again�
This method has been used by Prior et al� �Prio ��� with a few restrictions in order to achieve

certain properties of the resulting graph� First they restrict the construction to a given degree d�
If a node is �full� �i� e� has already d adjacent nodes� then no further links may be assigned to this
node�
In order to prevent the production of disconnected graphs� the authors suggest to start with a

Hamiltonian Cycle of length N instead of N isolated nodes� this also decreases the size of probability
space� The resulting structure is called a Hamiltonian graph and can be seen as a degenerated
Extended Chordal Ring �see de�nition �	 on page ��� with period p � N �
Once some good graphs have been found it is possible to improve their properties �decrease

diameter or increase fault tolerance� for instance�� Two methods for improvement are suggested�

� Genetic algorithms� A population of graphs is produced by the mechanisms of crossing parents
with preferential selection and simple mutations �Norm 

��

� ��opt� This method tries to improve a graph with respect to certain criteria by exchanging
pairs of links� If no further improvement can be achieved the graph is called ��opt�

A lot of other models of Random graphs can be found in �Tinh 
��� Bollobas �Boll 
�� has in�
vestigated the problem of determing the properties of random graphs and de�ning a probability
space so that a graph chosen of this space will be very likely to possess a desired property� The
results achieved so far are of minor practical use for multicomputer systems� Some examples with
good results on Random graphs can be found in �Norm 
��� Those results have shown that ran�
domly constructed graphs can outperform �classical� structures such as hypercubes� trees and so on�
They show in general better values for diameter and average distance �see for detail the �gures in
�Prio ���� but their practical use is doubtly� On the one hand the lack of explicit rules for connecting
nodes makes it di�cult to construct� build or analyse such topologies� and on the other hand the
asymmetric structure poses a severe problem for routing� mapping and for the design of e�cient
algorithms�

��



Chapter �

Comparison of Topologies

�si parva licet componere magnis�

Vergil

We now want to compare the strengths and weaknesses of the topologies by determing the
rates of increase of two key factors as N increases� These factors are connection costs �measured
again in the total number of links� and communication delays �measured in diameter�� A similar
classi�cation sc heme was used in �Witt 
��� but only a few topologies were considered �ring� tree�
star� hypercube� mesh� Cube�Connected�Cycles and completely connected networks��
Tables ��� and ��� summarize the dependencies of L and k upon the network size N � If the

size of a network N is determined by more than one parameter� there are several possibilities to
increase N � which may result in dierent dependencies� In those cases we will show the change in
the measures� when only one parameter is increased in order to increase N and the others remain
constant�
It seems less useful to show the exactly quanti�ed change in the measures� On the one hand

we already gave closed forms for calculating the measures in the previous section whenever it was
possible� on the other hand these tables are devoted to show the most outstanding features at a �rst
glance� Only the order of the dependencies upon N will be shown�
The total number of links increases only linear with N in the optimum� and with N� in the

worst case� It is most desirable� to have the diameter independent from N �denoted by ��x� in the
tables�� in the worst case diameter grows at an order of N ��

In addition� tables ��� and ��� shall serve as a brief survey and reference list� In the �rst column
the abbreviation of the topology is shown �see Appendix B�� for explanations�� In the second column
a page reference is given� where the reader can �nd a discussion of the topology in this work� and
in the third column a reference to the literature is given�

�For some topologies it is not possible to predict the exact values of diameter� so it was necessary to estimate the
order of magnitude of the dependence	 We will use the symbol ��� to indicate that the real order of magnitude is
larger than the given one� and a ��� to indicate that the real order of magnitude is smaller	
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reference to order of dependence for
page literature N L K

BG�b� n� �� �Rals 
�� bn

if b varies N
p
N �x

if n varies N logN
BQ�n� s� �� �Yous ��� �n� ��sn

if n varies N logN logN

if s varies N
p
N � �x

BSG�n� �� �Aker 
�� n� � N � �x
C�N � �� N N N

C��d�m� �� �Memm 
�� m�d���m��

if d varies N
p
N �x

if m varies N logN
CCC�n� �� �Prep 
�� n�n N logN

CR�w� �	 �Arde 
�� N even N
p
N

DTm�B� h� p�K� �
 �Ramk 

� p �B	��B
h��

B��
if B varies N

p
N �x

if h varies N logN

DCR�w�� w�� �
 �Yang 

� N even N
p
N

ECR�W � �� �Doty 
�� N N �
p
N

FQ�n� �� �El A ��� �n log�N log��N���

FT �d� h� �� �Frie 		� ��B	���Bh���
B��

if d varies N
p
N �x

if h varies N logN

GCR�W � �� �Berm 
	� N N �
p
N

GHC��m� �� �Bhuy 
��
Qn
i��mi N

p
N

GQ�R�n� �
 �Huan 

� R�n��

if R varies N N
if n varies N logN logN
HC�W�n� �� �Hawk 
�� Wn

if W varies N
p
N �x

if n varies N logN logN
HT �h� �� �Good 
�� �h N logN
K�N � �� N N� �x
KG�b� n� �� �Kaut 	
� b�b� ��n��
if b varies N

p
N �x

if n varies N logN

KT �d� h� �� �Korn 	�� ���Bh����B	���
B��

if d varies N
p
N �x

if h varies N logN

Table ���� Connection costs and Communicaton delays ���
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reference to order of dependence for
page literature N L K

L�N � �� N N N
M �W�n� �� Wn

if W varies N N��n

if n varies N logN logN

MDMW �N � �
 �Beiv 
�b� b��b� h� N
p
N��

MG�n� �� �Lela 
�� �n N � logN

MQ�n� �� �Efe 

� �n N logN logN
�

MTS�m�B� h�� �� �Arde �
� m�� � Bh��

B�� �
if m varies N not known

if B varies N
p
N �x

if h varies N logN not known
NBG�d� l�m��m�� �� �Stor ��� f�d� l�m��m��

if d varies N
p
N �x

if l varies N logN
NHG�m��m�� d� h� �� �Stor ��� f�d� k�m��m��

if d varies N
p
N �x

if l varies N logN

OG�d� �� �Aker 	��

�
�d� �
d

�
� N � logN

OT �h� �	 �Nath 
�� ��h � �h	���h � �� N logN
PG�n� �� �Aker 
�� n� � N not known
Q�n� �� �Peas ��� �n N logN logN
S�N � �� N N �x

SG�n� �� �Aker 
�� n� � N �
p
N

SOSn�n� �� �Aker 
�� n� N �
p
N

SOSn���n� �� �Aker 
�� n� N �
p
N

ST �h� �	 �Li 
	� �h � � N logN

T full�B�H� �� Bh��
B��

if B varies N
p
N �x

if h varies N logN
Tor�m� r� pup� pdown� �� �Cont 
�� mr

if m varies N �
p
N

if r varies N �
p
N

TQ�n� �	 �Esfa 

� �n N logN logN

Table ���� Connection costs and Communicaton delays ���
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We will now rate the topologies according to their

�� regularity� the topology is rated with

� if it is regular� and with

� otherwise�

�� symmetry�

�� indicates a completely symmetric structure�

� indicates a structure which is symmetric to a very high extent�

� indicates medium symmetry�
� is given for structures with less �or no� symmetry��

�� extensibility�

�� is given� if the topology is of extensibility type � �i� e� the topology possesses all three
desired properties for extensibility��

� indicates� that the topology possesses two out of three �types ��� or ���

� indicates that the topology ful�lls only one of them �types ��	� or���
� stands for a topology� which possesses none of the three properties �type 
��

�� routing algorithms� with an analogous rating scheme to extensibility

�� is given� if there is a type � routing algorithm known �i� e� the topology possesses all three
desired properties for routing��

� indicates� that the topology possesses two out of three �types ��� or ���

� indicates that the topology ful�lls only one of them �types ��	� or���
� stands for a topology� which possesses none of the three properties �type 
��

�I admit that this classi�cation is subjective	

��



regularity symmetry extensibility routing

BG�b� n� � � ��� �
BQ�n� s� � � � ��
BSG�n� � � � �
C�N� � �� �� ��
C��d�m� � � ��� �
CCC�n� � �� � ��
CR�w� � � � �
DTm�B�h� p�K� � � ��� �
DCR�w�� w�� � � � �
ECR�W � � � � �
FQ�n� � �� � ��
FT �d� h� � � ��� �
GCR�W � ��� � � �
GHC�	m� � � � �
GQ�R� n� � � � �
HC�W�n� � � ��� �
HT �h� � � � ��
K�N� � � � �
KG�b� n� � � ��� �
KT �d�h� � � ��� �
L�N� � � �� ��
M�W�n� � � ��� �
MDMW �N� � � � �
MG�n� � � � �
MQ�n� � � � �
MTS�m�d� h�� � �
NBG�m��m�� d� h� � � ��� �
NHG�m��m�� d� h� � � ��� �
OG�d� � �� � �
OT �h� � � ��� �
PG�n� � � � �
Q�n� � � � �
S�N� � � � ��
SG�n� � � � �
SOSn�n� � � � �
SOSn���n� � � � �
ST �h� � � � �
T full�B�H� � � ��� ��
Tor�m�r� pup� pdown� � � � �
TQ�n� � � � �

Table ���� Regularity� Symmetry� Extensibility and Routing
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Chapter �

The Moore Bound� an �unreachable�
Challenge

�ignoramus et ignorabimus�

Du Bois�Reymond

In Section ��� we have presented the Moore Bound de�ning an upper bound for the order of a
graph with given degree and diameter� We have also transformed this inequality in order to obtain
a lower bound for diameter and it is also possible to establish a lower bound for the degree� So we
can pose the following three problem formulations�

�� Find a graph G of maximum order for given degree and diameter�

�� Find a graph G with minimum degree for given N and k�

�� Find a graph G with minimum diameter for given N and d�

Clearly all formulations describe the same problem but from a dierent point of view� There
is only a few literature dealing with the problem of minimizing diameter �e� g� �Ples 
��� �Imas 
��
Imas 
��� and even less dealing with the last problem�� but a lot of articles deal with the problem of
maximizing the number of nodes in a network with given degree and diameter ��Lela 
����Memm 
��
or �Berm 
	� for example�� So we will �rst give a survey of the investigations in this research area
�Section �����
In Section ��� we will retransform the results of the previous section in order to obtain construc�

tion methods for minimum diameter networks for some speci�c combinations of d and N and will
on the other hand try to �nd some constructions which are de�ned for �nearly� arbitrarily values
of N �incremental extensible topologies�� We will also take the average distance into consideration
because it is important that a multicomputer system does not only have short communication delays
in the worst case but also on average�
In the last section we will discuss the issue of minimizing the degree of a network�

��� Maximum Node Number

The problem of �nding a graph of maximumorder �rst posed by Elspas �Elsp 	�� has been discussed
in the literature under the name �d� k� problem� A �d� k� graph is de�ned as a graph of diameter
k whose nodes have degree d at most� The problem is to �nd a construction method which yields

�I have found only one article� with the related problem of minimizing the number of edges in a graph with given
degree and diameter �Fure ���
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largest possible values for N � We will denote the number of nodes that can be achieved by using a
certain construction method by Nmethod�d� k�� where �method� identi�es the construction�
In Section ��� we have presented the Moore Bound as an upper bound for the number of nodes

and we will �rst investigate for which combinations of �d� k� this bound can be reached�
In the following we will discuss some construction methods�� where we will distinguish � dierent

types of construction�

� special constructions� i� e� Nmethod is only de�ned for one speci�c pair �d� k�

� one�parameter constructions� i� e� Nmethod is a function of one parameter �d or k� and the other
parameter is either constant or also determined by the �rst parameter� i� e� only a subset of
�d� k��combinations is possible

� general constructions� i� e� Nmethod is a function of d and k� de�ned for all possible pairs �d� k�

In the last section we will show the present state of the art and show the progress that has been
made in this �eld�

����� Moore Graphs

A graph is called a Moore graph if it reaches the Moore Bound�

NMoore �

�
�k � � if d � �
d�d���k��

d�� if d � �

and a graph which comes close to this bound will be called dense� i� e� there might still exist better
graphs although not yet found�
It was shown by Homan and Singleton �Ho 	�� that Moore graphs can only exist for the

following �d� k��combinations �see �gure �����

� Nopt�d� �� � d� �� complete graphs�

� Nopt��� k� � �k � �� rings�

� Nopt��� �� � ��� Petersen graph�

� Nopt��� �� � ��� Singleton graph�

� and possibly� Nopt���� �� � �����

Though it has been proven that the Moore Bound is unattainable for most combinations of d
and k� no better upper bound has been found yet� Only for k � � Erd"os� Fajtlowicz and Homan
�Erdo 
�� have shown that N �d� �� � d� for d � � and d �� �� Graphs which reach this bound will
be called maximum graphs� i� e� although the Moore Bound is not reached there cannot exist any
graph with more nodes� For d � � and d � � these maximum graphs have already been found�

� N ��� �� � �� is reached by a graph product �K�  C�� �Berm 
�� or by an Extended Chordal
Ring �Fers ��b� with

W �



BBBB�

� ��
� ��
� �

�� ��
�� �

�
CCCCA

� N ��� �� � �� is reached by a graph product �K�  X�� �Berm 
�a��

�Since we have already presented most of the construction methods in Section �� we will not explain the methods
again but compare the values for N as a function of d and k	

�It was neither possible to construct this graph nor to proof its nonexistence	
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(a) complete graph (b) ring

(e) Singleton graph

(c) Petersen graph

Figure ���� Moore graphs

����� General combinations

Friedman �Frie 		� gave the �rst construction method for arbitrary combinations of d and k �see
page ����

NFriedman�d� k� �
��d�d� ��bk��c � d�

d� �
and Korn �Korn 	�� was able to �nd an improvement for odd diameter �see page �� for the

construction��

NKorn�d� k� �
����d� ��b�k	����c � d�

d� �
It can be shown� that NKorn � NFriedman only if k is odd �see Appendix A����
By combining those methods Storwick �Stor ��� was able to create denser graphs� He proposes

two dierent methods namely the NHG and the NBG �see page ���� Unfortunately no rule is given in
his article when to use which construction in order to reach maximum values for N � However� it can
be shown that NNBG � NNHG only if k mod � � �� Since the total number of nodes is determined
by the number of roots �m� and m�� in each subtree� we have to �nd for every �d� k��combination
those values for m� and m� which maximize NNHG if k mod � �� � and NNBG if k mod � � �� This
is a problem of nonlinear discrete optimization�
Maximum N values for d � �� �� � � � � �� and k � �� �� � � �� �� are shown in table ���� I have

obtained those results by a search procedure�
Comparing Storwick�s results to those of Friedman we observe that NFriedman � NStorwick only

if k mod � � � and that NStorwick � NKorn�
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k � � � 
 � �  ��
d
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 ����� ����� �����
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��� ��� �
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��� ���
�� �
���

Table ���� Dense NBG and NHG

Memmi and Raillard �Memm 
�� found further improvements with two construction methods�
The �rst one is called C� and discussed in Section ������ the second one is called C� �only de�ned
for odd diameter� resulting in a graph equivalent to a D��tree �see de�nition �
 on page �
� with
single�rooted subtrees of height h � bk��c�

NC� �

��
�

�d��� if k � �
�k	�
� �d�����k	���� if k mod � � �

�k	�
� �d�����k	���� if k mod � � �

NC� �
d

d� ��d�d� ��
bk��c � ��

Comparing both constructions shows that NC� � NC� if d � � and d even k � � and k mod � �� ��
Furthermore NC� � NNHG if d � � and k � ��
The introduction of Extended Chordal Rings �Doty 
�� leads to a great progress in the �d� k�

problem� Many values could be improved by ECRs and for some combinations of d and k they are
still unsurpassed �see table ���� The disadvantage of ECRs is that there is no closed form for the
number of nodes for given degree or diameter� neither is there a rule for determing the optimum
chord matrix� The ECRs in table ��� have been found by random search�� so there might still be
even better ECRs� The values in the parenthesis show the corresponding chord matrices�
Delorme �Delo 
�� Delo 
�� achieved some good results with boolean operations on graphs and in

�Carl 
�� a generalization of Cube connected Cycles is proposed� which are still among the densest
known graphs �compare table ��	��
An interesting structure proposed by Ramkumar �Ramk 

� are DK�trees� As we see from the

de�nition of DK�trees �see page �
� the number of nodes in a DK�trees depends on the subgraph
used for leaf interconnection� This graph consists of p nodes with diameter K and degree d � � so
the problem of �nding a maximum DK�tree consists in �nding a maximum graph for degree d� �
and diameterK� which we will denote by p�d���K�� The number of nodes also depends on whether
single or double rooted subtrees are used� In the case of single rooted subtrees the diameter of a
DK�tree is given by k � �h�K and therefore the possible values for K for a given diameter are in
a range of � � K � k � � and if k is even then also K must be an even number �analogously for
odd numbers�� If double rooted subtrees are used instead� the diameter is given by k � �h�K � �
and we have � � K � k � � and if k is even �odd� K must be odd �even��
I was not able to �nd analytically those K which maximize the number of nodes for any given

conbination of �d� k�� So I have applied exhaustive search instead� the results are shown in table ����
where I have used the values in table ��� for p� The values in parenthesis show the corresponding
optimum K� It is easy to see that all those D�trees are made of single rooted subtrees �remember
the even�odd relation mentioned above�� the double rooted ones have always been smaller�

�Some results are taken from �Doty ���� some results have been found by myself	
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Table ���� Dense Extended Chordal Rings
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Table ���� Dense DK�trees
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Table ���� Dense Extended Chordal Rings of degree �

����� One Parameter Constructions

Most of the one�parameter constructions have been proposed for cubic graphs �graphs of degree ���
Those graphs are of special interest because of their low connection costs�
The Cube Connected Cycles network is a cubic graph with

NCCC��� d�n� �
�

e� � n�n

for n � ��
Orthogonal tree networks are restricted to k mod � � � and k � � with

NOTN ��� k� � �
k�� � ��	k����k�� � ��

Another construction for cubic graphs of diameter k � � or k � � was proposed by Bermond
et�al� �Berm 
�� �see Section ��
� with

NBermond��� k� �

�
�� if k � �

���k� � 	k � �� if k � �

In �Arde 
�� Chordal Rings of period p � � are investigated under the problem of maximizing
the number of nodes for given values of diameter and d � �� The maximum number of nodes and
the corresponding optimum chord length are given as functions of diameter�

NArden��� k� �

������
�����

	 if k � � with w � �
�� if k � � with w � �

k� � �k� � if k � � or k � 	 with w � k � �
k� � �k� 	 if k � � and odd with w � k � �
k� � �k � �� if k � 
 and even with w � k � �

Experimental results have shown that there are even larger Chordal Rings �compare the column
p � � in table ���� which shows densest Chordal Rings found by myself�� but I have not been able
to �nd the corresponding formulas for calculating those rings�
The extension to higher periods �see table ��� will bring a further improvement� but again no

closed form for calculating the number of nodes and the corresponding chord lengths reaching this
maximum could be found� It is only possible to try out all possibilities in order to �nd a graph with
mimimum diameter�
A further improvement can be achieved by Generalized Chordal Rings where the restriction that

all nodes lie on a cycle is weakened� But the number of possible rings grows rapidly with p and k
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Figure ���� Subtrees for cubic graphs
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Table ���� Dense cubic graphs

and exhaustive search becomes soon computationally infeasible � I also suspect� that the increase in
the number of nodes is not signi�cant� For instance� the maximumECR with period � and diameter
	 consists of �� nodes and the optimum GCR with p � � and k � 	 consists of �
 nodes� both rings
are of degree ��
Alegre �Aleg 
	� proposed a construction for cubic graphs with diameters ���� and 
� The graphs

are obtained from maximum binary trees whose leaves� are linked according to certain rules as
shown in the table in �gure ����� The ��� �� graph is made of � subtrees of height �� the ��� �� graph
consists of � subtrees of height �� and the graph with diameter 
 is made of �� subtrees of height ��
In table ��� we will compare the order of all those cubic graphs� CCC and OTN seem to be

very poor� but if we look at the asymptotic behaviour of N for increasing k� those constructions
are superior because N grows at a power of �� whereas the number of nodes in CRs and in the
construction of Bermond only grows quadratically with k� The construction of Alegre is only de�ned
for � values of k� but those � graphs are much larger than the other cubic graphs with equal diameter�
Extended Chordal Rings also show comparably good results but the lack of an explicit construction
rule is a disadvantage since it is necessary to �nd an optimum ECR by exhaustive �or random�
search�

����� State of the art

Table ��	 summarizes the progress in the �d� k� problem in the last �� jears� We can see that there
is a great progress in this �eld but the results are still far away from the Moore Bound� Most of the

�The leaves are labelled with the letters A� and B� the �rst index denotes the number of the subtree� the second
index denotes the number of the leaf within a subtree	
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Table ��	� Progress in maximizing the number of nodes
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Table ���� Current Densest graphs

densest graphs known today are the results of boolean operations on graphs� But the practical use
of those graphs for multicomputer networks is doubtly� On the one hand there is minor research
done on investigating properties other than the diameter� so we do know a few about the fault
tolerance and other important measures� On the other hand no routing strategies for those graphs
have been proposed� and the use of routing tables �see Section ���� is inpracticable for networks
with more then ���� nodes� So it might be more important to develop e�cient routing schemes �see
Chapter 	� for existing topologies than to invent even larger and more complex graphs�
In table ��� a table of largest known �d� k� graphs is given taken from �Berm ��a�� Unfortunately�

I was not able to receive an updated version of this table�

��� Minimum Diameter

In the previous section we have shown constructions for �nding maximum �densest� graphs� Most
of these graphs are extensible only in large steps� i� e� there are huge gaps in the range of N if we
want to use those constructions for determing a network with minimum diameter� In this section
we want to close these gaps by some other constructions which are not as good as the ones from
the previous section� but have the advantage that they are applicable for �nearly� arbitrary values
of N �
As mentionend at the beginning of this section we will also look at the average distance in the

networks� A network of order N and degree d with minimum diameter k does not automatically
have minimum average distance if N � NMoore�d� k�� i� e� there might be several graphs which have
the same optimum diameter but dierent values for average distance� There are also some rare
examples where a network with a larger value for diameter will have a smaller average distance
��Cont 
���� However� we will in general neglect those exceptional cases and try to �nd networks
with minimum diameter and will use the average distance as a second criterion to choose among
networks with the same diameter�
Toueg and Steiglitz �Toue ��� have found some good results by using a local search algorithm�

This algorithm starts with an arbitrary graph which is then successively improved� So it is rather a
tuning method than a construction� The improvement is done by performing a twist operation on
two disjoint edges �called X�change� and the criteria for improvement is either diameter or average
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� Graphs with minimum diameter and average distance found by local search
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Table ���� Extended Chordal Rings with minimum k and � for degree �
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Table ����� Extended Chordal Rings with minimum k and � for degree �
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Table ����� Torus networks for d � � and d � �

distance
� The disadvantages of this method are that the resulting structure will be asymmetric�
that no e�cient routing algorithm can be given� and that it becomes computationally infeasible for
larger values of N �N � ����� The results for degree � and � taken from �Toue ��� are given in
table ��
�
A better method for tuning is oered by Generalized or Extended Chordal Rings� It is possible

to decrease diameter and average distance for a given number of nodes by increasing the period of
the ring� and choosing appropriate chord lengths� so one can make a tradeo between symmetry and
diameter� The problem is to calculate the optimum chord lengths� because the number of possible
GCRs grows rapidly with N � d and p�
For degree � and � and small values of N �� ���� and p �� �� it is computationally feasible to

evaluate all possible Extended Chordal Rings� I have done this for values of N in steps of ��� the
results are shown in tables ��� and ���� �� I have chosen the increment of ��� because it guarantees�
that N will be a multiple of all periods p � ��
Conta �Cont 
�� has proposed a method for graphs of degree � and � �see de�nition �� on page ����

The maximum number of nodes for given diameter is determined by � parameters �m�r�pup�pdown�
and the only possibility for determing the optimum values for those parameters is exhaustive search�
i� e� trying out all possible combinations� Table ���� lists the diameter for some torus networks�
with the values in parenthesis showing the � parameters� those results are taken from �Cont 
���

��� Minimum degree

A lower bound for the degree is given by the following relation�

�� �N � dmin�dmin � ��� N

which can be evaluated for a network of given order N and diameter k�

�If � is used as the improvement criteria the algorithmwill be able to �nd those exceptional cases mentioned above
where a network with smaller � will have a larger value for diameter	 But among the graphs investigated in �Toue ��
no such abnormality has occured	

�with the restriction that the period must be a divisor of N �see the de�nition of GCRs on page �
	
�The corresponding chord matrices are WT � the transponed of W �i	 e	 element wij is the chordlength for the i�th

link in period j�	

��



The problem of �nding a network with minimumdegree is of less practical use when con�guring
an existing system because the degree will be limited by hardware restrictions� For hardware de�
signers it might be interesting to know how many links per PE are necessary in order to connect a
given number of processing elements without exceeding a given bound on diameter� However� there
is no literature dealing with this problem� For some speci�c values of N and k it is possible to use
the results of the previous section� For example� the Extended Chordal Ring on �� nodes� which is
maximum� is also a graph with a minimum degree for N � �� and k � ��
A related problem consists in minimizing the total number of links �i�e� the connection costs�

in a network of a given order with the restrictions that neither diameter nor degree must exceed a
certain value� The minimization of L will lead to irregular structures and to lower fault tolerance�
So I do not think� that it is advantageous to minimize L in a multi�computer network topology�

��



Chapter �

Routing in Static Networks

�panta rhei�

Heraklit

When executing a parallel program on a multi�computer system� the processing elements will
have to exchange information� a process which we call routing� According to the number of commu�
nication partners we distinguish the following types of routing �Vali 
���

� point�to�point routing� i� e� one node wants to send a message to another node
� broadcasting� i� e� one node �called originator distributes a message to all others�

� gossiping� i� e� each sends a message to all others by simultaneously receiving the messages
from all others

When analysing the routing requirements of a speci�c algorithm� it is also important to know
the frequency at which routing requests occur� If� for instance� two nodes want to broadcast a
message at the same time� it is necessary to know in advance about possible congestions �on links
or nodes�� and to implement mechanisms to avoide these congestions �e� g� taking an alternative
path�� In our discussion we will neglect the frequency of routing requests� and focus on the three
basic communication problems mentioned above�
Within each problem class we can further distinguish according to the assumptions made upon

what a PE can do concurrently�

� A PE can either send one message to� or receive a message from one of its direct neighbours�
�half duplex mode��

� A PE can send �receive� a message to �from� one of its direct neighbours �full duplex� single
link availability �Bert �����

� A PE can send one and the same message to all of its direct neighbours and concurrently
receive a message from all of its direct neighbours�

� A PE can send distinct messages to all of its direct neighbours and receive a message from all
of its direct neighbours �multiple link availability �Bert �����

We will in the following try to develop general communication schemes for all those routing
problems� A communication scheme is de�ned as a pair �G�R� where G is the graph model of
the network and R is a routing function de�ning the path from node i to node j for all nodes

�A node i is called a direct neighbour to node j if and only if there is a link connecting both i with j	

��



in the network �Upfa 
��� A general communication scheme speci�es the desired properties� that
a graph must possess in order to allow routing in a minimum amount of time� and a routing
strategy� describing the routing requirements and outlining the basic principles for solving the routing
problem� In Section 	�� we will start with determing lower bounds on the time necessary for routing�

under the assumptions of single and multiple link availability� Afterwards we will de�ne general
�topology independent� routing strategies and discuss the properties that a graph must possess in
order to enable routing in minimum time �general communication schemes�� In section 	�� we will
apply those general routing techniques to Extended Chordal Rings and develop routing algorithms
for broadcasting and gossiping in ECRs �communication schems for G � ECR��

��� Topology independent routing

The basic process in all communication problems is the transmission of a message from one node
to one of its direct neighbours� The amount of time T required for this basic process depends on a
latency necessary for establishing the connection between node i and node j �start up time �ij�� on
the bandwidth of the link � �

�ij
� and on the size of the message �M �� We will assume that all links

have the same bandwith ��ij � � � and that the start up times �ij � � are constant for every pair
of nodes obtaining T � � �M� for the amount of time necessary to transmit a message of size M
from any node i to its neighbour j�
If all messages are of the same size� T becomes constant and we can simplify the time analysis�

The transmission of a single message from any processing element Pi to one of its neighbours Pj
takes exactly one unit of time then� If the links are bidirectional Pj can � while receiving from Pi
� concurrently send one message to Pi� We will refer to this exchange of information as a call � A
step consists of one or more calls that can be done concurrently and we are interested in minimizing
the number of steps necessary for solving a communication problem� We will denote the minimum
number of steps by �i�j � where i and j speci�es the number of communication partners� � � � stands
for point�to�point routing� � � N denotes broadcasting� and N � N denotes gossiping�

����� Point�to�point�routing

Point�to�point communication from node i to node j can be split into a sequence of kij direct
neighbour communications� where kij denotes the distance �number of links� between node i and
node j� The amount of time required for sending a message of length M from node i to node j is
given by T � kij�� �M� � or� in the simpli�ed terminology� kij steps are necessary for sending a
message from node i to node j�
If the two communication partners are assumed to be arbitrarily chosen� the average distance

in the network has to be minimum� In the worst case the sending node and the receiving node are
at distance k �diameter of the network� from each other� therefore the minimum number of routing
steps ���� in a given network of size N and degree d is given by the diameter of the network� which
is in turn bounded by the minimum diameter�

���� � k � kmin

So we have to �nd a topology G which minimizes both� average distance and diameter for given
degree and N �
The demands posed upon the routing algorithm have already been discussed in Section ���

�computational� shortest path routing and capability of failures��

�We use here the term routing as a generic name for all communication problems listed above	

��



����� Broadcasting

Wewill �rst assume that a node can only send and receive one message to �from� one of its neighbours
within one step �single link availability�� So the number of nodes knowing the message can at most
double in each step and therefore the minimum number of routing steps is bounded by

���N � dlog�Ne
If we assume� that a node can send one message to its d neighbours concurrently �multiple link

availability�� then the minimum number of routing steps is the diameter of the network�

���N � k � kmin

The routing strategy must �nd paths from the originator �sending node� to all other nodes and
in order to prevent from redundancies each node should appear exactly once in this set of paths�
This is in fact the de�nition of a spanning tree so the routing problem consists in embedding a
spanning tree into the topology� The root node is the originator and each link corresponds to a call
�sending a message from one node to one of tis neighbours�� If we assume multiple link availability�
the height of the tree determines the number of routing steps� In order to minimize the number of
routing steps� we must �nd a spanning tree of minimum height�
For small graphs with low degree it should be possible �nd all spanning trees� since the number

of possible spanning trees in graph G is given by ����i	jkMk� the cofactor of a matrix M which
is obtained from the negative adjacency matrix �A of the graph by replacing each diagonal entry
by the degree of the corresponding node �Wils ���� For graphs with higher degree the number of
possible spanning trees becomes too large� and it is necessary to �nd search procedures which take
advantage of the special features of the topology �see Section 	����

����� Gossiping

Gossiping �Rich 

� Hede 

� is a problem which arises for instance in compute�aggregate�broadcast
algorithms� where a node cannot proceed with its calculations �compute� until it has not received
the messages from all other nodes and sent his message to all others �broadcast��
For the case of this complete message exchange we can �nd a lower bound by counting the

maximumnumber of messages that any node can receive within one step� Every node has to receive
N � � messages totally� If a node can only send and receive a message over one link� then the
minimum number of steps is simply given by the number of messages that any node has to receive�
namely N � ��
If we assume that all nodes can send concurrently a message to all of their neighbours then any

node can receive at most d dierent messages in the �rst step and at most �d � ���r � �� dierent
messages in all the other �r��� steps� where r denotes the number of routing steps� In the optimum�
no redundant messages are sent� e�g� the d messages received in the �rst step and the d�� messages
received in all following steps must sum up to the total number of N � � messages that each single
node has to receive� We can therefore establish the following relation between the minimumnumber
of routing steps �N �N � the number of nodes in the network N and the node degree d�

N � � � d� �d� ����N �N � ��

If we transform this equation with respect to �N �N we obtain the minimum number of routing
steps�

�N �N �
N � �
d� �

��
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Figure 	��� Gossiping with and without congestion

If a node can send and receive d dierent messages �one over each of its d links� the minimum
number of steps is somewhat less and given by

�N �N �
N

d

We can see from this equation that topologies with larger degree will perform better� But it is
not possible to give a measure for a topology of given degree� by which we can tell whether it will be
possible to perform gossiping in a minimumnumber of steps or not� We can only say� that irregular
graphs will perform worse than regular ones� because a node with smaller node degree will not be
able to send the d messages concurrently�
In gossiping every node has to broadcast its message� We can derive a routing strategy by

applying the broadcast algorithm on every node� Note� that this algorithm can only reach the �rst
bound �N �N �

N��
d�� � We have to �nd a forest of N spanning trees �every node is the root of exactly

one tree� in the graph� but it is not assured that the minimum number of steps is reached since it
can occur that a node would have to send two messages at the same time� Figure 	�� shows the
spanning trees for gossiping in a small example graph of order � and degree �� It should be possible�
to perform gossiping in a minimum number of � steps� therefore we have to �nd spanning trees of
height �� The graphs in the �rst row of �gure 	�� are a solution� which does not reach the optimum�
because node � cannot send concurrently the messages from � and � �analogous for all other nodes
in the second levels�� The graphs in the second row of �gure 	�� �b� are an optimum solution� In
order to cope with this problem� we must pose further restrictions upon the spanning tree ensuring
that no node will be used twice within the same step�

�� The number of non leaf nodes in tree i is denoted by ni�

�� A node in tree i is labelled �x� s�� where x denotes the name �or address� of the node in the
investigated topology and s � f�� �� � � �� nig denotes its number in the tree�

�	



�� The root node of tree i is labelled �i� ���

�� No node has an s�label greater than its parent node�

�� No node has the same s�label in any tree�

	� The maximumnumber of non leaf nodes determines the number of steps necessary for complete
message exchange� � � maxifnig

In order to perform routing every node x has to store a vector �Rx with � elements where the
value of the i�th element Rx

i denotes the tree in which x has label i� The routing algorithm is
straightforward� every node x sends in step i the message from Rx

i � In a node symmetric graph the
problem reduces to �nding one spanning tree and restriction � can be ommitted�
In the next section we will apply this routing strategy to Extended Chordal Rings� where we

will show� how it is possible to use the symmetry properties of ECRs for routing�

��� Topology dependent routing

����� Point�to�point�routing

We have already discussed various routing algorithms for point�to�point routing when reviewing
the topologies �Chapter ��� We only want to note� that graphs on alphabets possess a very useful
labelling scheme for nodes� which enables computational routing� Routing in Cayley Graphs is also
interesting� because it corresponds to sorting the symbols of the source address into the destination
address� In all tree based structures it should be possible to develop a routing algorithm based on
routing in trees� with a little additional eort in order to make use of the topology speci�c properties
�e� g� e�ciently using the additional links in a Hypertree�� The routing algorithm for Generalized
Chordal Rings has the advantage that it is also applicable for CR�s� DCR�s and ECR�s� but the
disadvantage that it is not guaranteed� that the shortest path will always be found� Future research
should try to �nd a routing algorithm for Extended Chordal Rings able to �nd the shortest path�

����� Broadcasting

As we have pointed out in the previous section� the problem of broadcasting consists in �nding a
spanning tree of minimumheight in the topology� and the optimum is reached if the tree is of height
k�
A broadcasting algorithm for Boolean n�cubes was found by Ho and Johnsson �Ho 
	�� Based

on this algorithm� El�Amawy and Lati� �El A ��� present an algorithm for broadcasting in Folded
Hypercubes� In �Berm ��b� an algorithm for broadcasting in de Bruijn Graphs can be found and in
�Bhuy 
�� a braodcasting algorithm for Generalized Hypercubes is given�

����� Gossiping

In �Berm ��b� an algorithm for gossiping in de Bruijn Graphs can be found� Bertsekas et al� have
studied the problem of gossiping in Boolean n�cubes �Bert ��� and in �Kund ��� the problem of
gossiping in meshes and tori is analysed�

Gossiping in Extended Chordal Rings For gossiping in ECR�s we assume that a node can
concurrently send one message to all of its neighbours and simultaneously receiving messages from
all of its neighbours� The minimum number of routing steps is therefore given by �N �N �

N��
d�� �

Since ECR�s are p�symmetric� we have to �nd a spanning tree for every residue class� The
spanning tree for an arbitrary node x is obtained by adding x to all nodes in the corresponding
spanning tree� The procedure for �nding the p spanning trees tries to minimize the number of

��
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Figure 	��� Spanning trees in an ECR

nonleaf nodes� which correspond to the number of routing steps �see Section 	���� by maximizing
the number of leaf nodes� We will start our explanation with the simple case of p � �� We must start
with the �class representative�� who will send his message to all of its neighbours� which become
its d children in the spanning tree ��rst routing step�� In the next step one of these nodes must be
chosen for further distribution of the message�� and we will choose this node� which has the highest
number of neighbours� not knowing the message from the representative so far� Those neighbours
are added to the tree as children of the chosen node and become themselves candidates for passing
on the message in the next step �in addition to all other leaf nodes so far in the tree�� This procedure
continues until all nodes appear in the tree�
We will illustrate this procedure with an ECR on �� nodes with degree � and W � �������

Table 	��� shows the construction of the spanning tree with node � as root node� In the �rst row of
the table all nodes are listed� The next rows show the situations before each routing step� an entry
in the row indicates� that this node is already in the tree and therefore able to send the message�
the value of the entry indicates the number of adjacent nodes� that do not know the message so far
�are not in the tree yet�� At the beginning� only node � is able to send its message and � nodes will
be added to the tree as its children� In the next step we can choose any of ��s children� because
each of them will send the message to � new nodes� In such a situation� an arbitrary node will be
chosen �assume for example node ��� After two further steps� all nodes appear in the tree �the last
row has an entry � in each column�� The spanning tree for any other node x is obtained by adding
the node address x to all nodes in the tree� Figure 	�� shows the spanning trees for nodes �� and
� as an example� So we have been able to complete gossiping in a minimum number of � routing
steps�

Conjecture � In any Extended Chordal Ring with degree d � �� period p � � and a chord matrix

W �

�
�N �N � �

��N �N � �

�
an optimum spanning tree consists of �N �N consecutive nodes on the ring as

non leaf nodes and their adjacent nodes as leaves�

The extension to higher periods requires the construction of p spanning trees� We can apply the
same procedure� namely choosing always the node with the maximumnumber of adjacent nodes not
reached so far in every period� But it is necessary to pose a further restriction in order to guarantee�
that no node will be used at the same time in more than one tree� namely the chosen nodes must

�Since the spanning trees for all other nodes are obtained by addition of the node addresses� every node would
need two nodes� sending its message in the next step� which is impossible	

�




node number
� � � � � � 	 � 
 � �� �� �� �� sending node

� �
� � � � � �
� � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � � � � ready

Table 	��� Gossiping in an ECR������ on �� nodes

belong to dierent residue classes� So it is necessary to choose the sending nodes simultaneously for
all periods�

��



Chapter 	

Conclusions and Prospects

�acta est fabula�

Augustus

The major aims of this work were to give a comparative survey of static interconnection topolo�
gies� and to discuss their properties with respect to their use as interconnection topologies in message
passing multi�computer systems� To this end it was necessary to recall relevant measures on graphs
from graph theory� like for example the average distance� the network diameter or the visit ratio�
and requirements from the parallel processing area� like the reliability or extensibility� Special em�
phasis has been given to present the construction rules for various graphs� because these seemed #
along with the network characteristics # most relevant for interconnecting processing elements in
recon�gurable multi�computer systems� Critical to applications in these kind of parallel systems is
the possibility of exchanging local data among cooperating processing elements� so some space has
also been devoted to the representation of the communication behaviour and the resulting routing
demands�
According to the prede�ned measures it was possible in this work to point out those topologi�

cal structures� that reach �or are close to� the theoretical optimum� showing that interconnection
topologies currently used in parallel processing systems are often far from being $best�� and on the
other hand that there are a lot of graphs meeting the speci�c requirements in parallel processing�
which have not been used in this �eld so far� Hopefully this work is a contribution to bring these
two disciplines closer to each other by either stimulating the investigation of graph theoretic results
when deciding upon the interconnection network of a multi�computer system� or by directing the
attention of researchers in graph theory to the demands �and restrictions� in parallel computation�
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Appendix A

Derivations

A�� Moore Bound and Minimum Diameter

An upper bound for the maximum number of nodes in a graph with given degree and diameter can
be derived by the following considerations� For one node it is possible to reach at most d nodes in
one step� d�d� �� nodes in the second step and so on� If we draw this reachability graph we will a
maximum tree of height k and degree d otherwise� and the total number of nodes in this tree gives
a bound for the maximumnumber of nodes in the network� If d � � the tree is degenerated �a line�
and the maximum number of nodes is given by

Nmax � � � �k

otherwise �d � �� the maximum number of nodes is given by

Nmax � � � d� d�d� �� � d�d� ��� � � � �� d�d� ��h�� �

� � �
kX
i��

di�d� ��i�� �

�
d�d� ��k � �

d� �

The lower bound for diameter is obtained by transforming those equations�

N � � � �kmin

kmin � �N � ����

and for d � � we have

N �
d�d� ��kmin � �

d� �
N �d� �� � � � d�d� ��kmin

logd���N �d� �� � ���d� � logd���d� ��kmin
kmin � logd���N �d� �� � ���d


�



A�� Bound on Average Distance

Analogous considerations will lead to a lower bound for average distance under given N and d� We
will again consider a maximum tree and calculate the average distance for the root node� where the
height of the tree is given by the minimum diameter for N and d and we have to consider the fact
that the last level will not be full if N � Nmax�

�min � ��  d� �  d�d� �� � �  d�d� ��� � � � ��
�kmin  �d�d� ��kmin�� � �Nmax � N ����N � �� �

�

Pkmin
i�� i d �d� ��i�� � kmin�Nmax � N �

N � �

A�� Proofs

We want to show� that NFriedman�d� k� � NKorn�d� k� only if k is odd�

NFriedman�d� k� �
��d�d� ��bk��c � d�

d� �
NKorn�d� k� �

����d� ��b�k	����c � d�

d� �

Since k is odd we obtain

��d�d� ���k������ d�

d� � �
����d� ���k	���� � d�

d� �
d�d� ���k����� � ��d� ���k	����

d

�
�

�d� ���k	����
�d� ���k�����

d

�
� d� �

d � �

If the diameter is even� we obtain

��d�d� ��k�� � d�

d� � �
����d� ��k�� � d�

d� �
d�d� ��k�� � ��d� ��k��

d

�
�

�d� ��k��
�d� ��k��

d � �

So� NFriedman � NKorn if k is even and NKorn � NFriedman if k is odd and d � �� which is true
for all K� and F �trees�
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A�� Average Distance

Line The topology is irregular but we only have to calculate �i for nodes i � �N ����� because of
symmetry�

Average distance for node i with � � i � N	�
� �

�i �
�

N � ��
i��X
j��

j �
N�iX
j��

j� �

�
�

N � ��
i�i � ��
�

�
�N � i��N � i� ��

�
� �

�
i� � i� N� �Ni �Ni � i� � N � i

��N � ��

�
N� � N � �i�N � �� � �i�

��N � ��

For even N �

� �
�

N
�

N��X
i��

�i �

�
�

N

�

��N � ����N
� �N �N�� � �

N �N�� � ���N � ��

	
� ��N � ��N �N � ����� �

�
N � �

�

For odd N �

� �
�

N
��

�N�����X
i��

�i � ��N	����� �

�
N � �

�

Ring Since the topology is regular and node symmetric it is su�cient to calculate the average
distance for a single point in the ring where we only have to distinguish between an even or
an odd number of nodes�

For even N �

� �
�

N � ��
�N�����X
i��

�i�N��� �

�
�

N � ��
N

�
�
�N � ��
�

N

�
� �

�
N�

��N � ��
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For odd N �

� �
�

N � ��
�N�����X
i��

�i� �

�
�

N � ��N � ���N � ���


�
N � �

�

Star The topology is irregular� we therefore have to calculate �i for the root and only for one leaf
and can calculate the average distance as follows�

�root � �

�leaf �
�  � � �  �N � ��

N � � �
�N � �
N � �

� �
�root � �N � ���leaf

N
�
�N � �
N
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Appendix B

Symbols and abbreviations

B�� Mathematical Symbols


N � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � addition modulo N
�N � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � subtraction modulo N
bxc � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � largest integer not larger than x
dxe � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � smallest integer not less than x

B�� Abbreviations for Measures

C � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � connectedness
d � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � degree
�link � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � most�loaded link load
�node � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � worst through routing load
k � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � diameter
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � connectivity
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