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Fig.1 Transputer block diagram 
 
Fig.2 B004 schematic 

4Gbytes physical memory
external to the transputer). 
   The transputer and the
programming language Occam
evolved together. Occam was
designed to simplify the task of
concurrent programming. An
Occam program is made up of a
number of processes which can
be declared to run sequentially
or concurrently. Concurrent
processes, which cannot use
shared resources, communicate
across Occam channels. These
channels are single direction,
point to point connections
between processes, and give
synchronised message com-
munication. 
   Concurrent programming
evolved as it became clear that
many programs could be split
into a number of tasks which
could be operated on
independently and use some
form of message passing for
passing results, parameters and
synchronisation. 
   On standard machines,
implementing concur- 
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The design, implementation and uses of an lnrnos 

Transputer evaluation board when hosted by the IBM 
PC, is described here by Stephen Ghee

   To complement the launch
of the Inmos Transputer in
October 1985, a number of
evaluation boards were
designed to let users assess for
themselves the performance
and ease of use of the
transputer. A number of hosts
to control the boards were
considered, and the IBM
personal computer was chosen
due to its wide usage and large
programming base. In
describing the design,
implementation and uses of the
board, this article covers it
both as an Occam engine in
development of Occam for
transputer systems, and also
the use of the board as an acc-
elerator for computational
intensive tasks that can be
passed to the board from
host programs. 
   The transputer is a complete
computer on a chip. There is a
32bit processor, with a 5Onsec
processor cycle, 2kbytes of fast
(5Onsec cycle) static RAM, four
serial communications `Links'
(for external communica-
tions) and a programmable
memory interface (which
allows up to 
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Fig.3 Memory interface 
configuration (5 processor 
cycles) 
 
Fig.4 Circuit for the 
transputer memory 
 
Fig.5 Schematic of the 
parity generator and 
checker 

rency was solved by making the 
processor share its time between the 
different tasks. This required a com-
plex software `kernel' to be written, 
which would control the switching of 
tasks (including itself) in and out of 
the processor, and handle the passing 
of messages. The time taken to switch 
processes, including saving their cur-
rent states, is quite long (a few 
milliseconds). 
  When developing Occam programs 
on host machines such as the PC, an 
Occam kernel is supplied to implement 
the concurrency and message passing 
via Occam channels. On transputers, 
the kernel has been implemented in 
hardware, giving a 

submicrosecond task switch. Occam 
processes can be mapped onto one 
transputer, which shares its time between 
them, or onto multiple transputers, each 
taking a subset of the processes. The 
Occam channels are mapped onto the 
transputer links for processes on separate 
processors. 

The transputer's links operate at 
10MBaud, full duplex, and each link is 
capable of supporting two Occam 
channels, one into the transputer and 
one out from the transputer. Each link is 
implemented as an autonomous DMA 
(Direct Memory Access) engine, and so 
can perform communications with 
external devices as background tasks to 
the processor 
 

with negligible performance degrada-
tion. 

There are three main elements 
required for the PC board: a trans-
puter, with some external RAM; the 
interface to the PC; and user 
controlled devices to allow the board 
to be used with other similar boards. 
   Let us take the transputer and 
memory first. The first transputer 
available is the T414, a 32bit 
processor capable of 10mips 
throughout. The 32bit multiplexed 
address/data bus allows up to 
4Gbytes physically addressable 
memory, external to the transputer, 
as well as the 2kbytes static RAM on 
board the transputer itself. The 
memory map of the 
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done by specifying the number of
each of these states required to give
the timing needed by the particular
memory device used. The minimum
is one `T state' per section of the
memory cycle, the maximum being
four. There is also a wait input to
the memory interface which can be
used to extend the cycle time by
inserting extra T, states. A package is
included in the transputer
development system for calculating
the configuration. 

Each T state of the memory
interface is 40nsec long (on the
current 80nsec processor cycle part),
and so this is the minimum
resolution to which external
memory cycle can be programmed.
For the 150nsec parts used for the
memory the configuration shown in
Fig. 3 was drawn up. The refresh
interval is set to be 54 processor
cycles and early write is enabled. 

The transputer has a number of
predefined configuration patterns
that can be used, but the
configuration described in Fig. 3
does not match any of these so we
must supply the configuration
from an external device. 

For this particular board a PAL
was chosen due to its small size
and number of functions available,
not only for the configuration but
for other peripherals (described
later). 

The PAL is programmed as a finite
state machine which responds to the
addresses output by the
transputer during the configuration
stage. For each address, a bit is fed
into the MemConfig pin. 

Once the memory interface
has been configured correctly, the
logic for controlling the memory
must be designed. As the memory
interface controller on the transputer
generates all of the signals we need,
the only logic components required
are buffer and latch devices-the
buffers are required for the long
track lengths along the memory
array. 
  The transputer memory bus is a

32bit, multiplexed address/data
bus. As the address is not
present for all of the cycle we must
latch the upper addresses we need for
the DRAMs. Two latches are used to
capture the signals needed, the
latches being enabled by the falling
edge of notMemS0 at the start of T2
At this point we can be sure that the
addresses are stable on the bus. At
the same time we can strobe in the
row address (the 

memory systems, the transputer has an
on board programmable memory
interface. With this interface it is
possible to configure the external
memory cycle of the transputer to be
any width (to suit slow or fast
memories), and a number of
programmable strobes are supplied,
which can be programmed to give
signals such as RAS and CAS for
dynamic memories. Automatic refresh,
over a selectable refresh cycle time,
can also be chosen. This eliminates the
need to design complex timing
generators and so cuts down the
number of devices required on the
board. 

To give up to 2Mbytes of RAM on an
IBM form factor board, 256k x 1
DRAMs were chosen. The memory
interface needs to be configured to suit
the cycle times of these devices. For
evaluation purposes, 150nsec parts
were chosen. 

The external memory cycle is split
into six states. These `T states' are as
follows:- 
1. Address set up  
2. Address hold 
3.Read cycle tri-state/write cycle
data set up 
4. Extended for WAIT states  
5. Read or write data  
6. End tri-state/data hold 
The configuration of the cycle is

transputer is signed, with the internal
RAM starting at the most negative
address (Hex 80000000 to Hex
800007FF). The external memory starts
at Hex 80000800. 

For the PC add-in board, it was
decided to give the user up to 2Mbytes
external  RAM, mapped in to
the negative half of the available
address space. For this amount of
RAM on an IBM f'orm-factor board,
dynamic RAM had to be used. Also for
such a large amount of memory, a
parity checking system also had to be
implemented. 
 
Communication link 

The communication with the host
PC is handled using an Inmos C002
Link Adaptor. This device can convert
serial link data into byte-wide parallel
data, and visa versa. The device allows
simple interfacing with standard bus
architectures, appearing as a memory
mapped peripheral. 

A number of system control signals
are also provided which give the user
the possibility of connecting a number
of transputer boards in the add-
in board via the Inmos links, and to
allow the add-in board to control the
system of transputers. All signals are
software controlled. 

To ease the task of designing 
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low order address bits present on the
bus during T2) to the DRAMs using the
RAS signal derived from notMemS1.
Once the row address has been
latched by the RAM, the column
address must be presented to the RAM
address inputs. 
   When stable, the column address can
be strobed in using the CAS signal
derived from notMemS3. notMemS2 is
used to perform the switching of the
row-column addresses. The circuit for
the memory is shown in Fig. 4. 
   Two banks of 1Mbyte each have
been implemented. The banks are
selected by one of two RAS signals,
these being decoded from the state of
A20 (bank select address bit), and the
refresh signal given out on AD1
(MemNotRefresh). The CAS circuitry
generates a single CAS strobe from
the notMemS3 strobe, which is split,
buffered, and fed to the two memory
banks. The refresh signal (inverted
AD1 for the CAS generator) is used to
disable CAS during refresh cycles. 
   A flip-flop is used to create the non-
overlapping strobe signals needed to
switch the memory address from Row
to Column. The flip-flop is triggered
by the notMemS2 strobe. 
   For such a large amount of dynamic
memory, a parity checking
circuit needs to be included. The
transputer 

parity checker along with the byte
from main memory and parity checking
takes place. If the parity is odd, the
Parity(x) output signal will remain low.
If an even parity situation is found, the
Parity(x) signal will be asserted. This
signal is read by the parity decoding
logic in PAL IC17. 
   On memory read cycles, the four
ParityError signals from the parity
checkers are latched, and if parity is
enabled (ie ParityEnable is asserted),
the signals are decoded to indicate
whether a parity error has occurred, 

Fig.6 Hierarchy of board 
connection 
 
Fig.7 Up, Down 
subsystem schematic 

that are available to the user (these
registers control the Enable/disable
parity, read the parity error flag, and
route parity error to the main board
error line). 
  For each byte in main memory, there
is a parity bit stored in associated
addresses in the parity RAM. On a
memory write cycle, each byte is
converted to odd parity, the 9th parity
bit being written to the parity RAM. On
read, the parity bit for the particular
address is passed into the 

has overall control of the parity
system, as the parity checker exists as
a number of memory mapped locations.
Simple memory accesses from
processes allow parity to be enabled/
disabled, the parity error flag read and
routing of the parity error flag to other
transputers. Fig. 5 shows the
schematic of the parity generator and
checker. 
   The parity control is handled by
IC20. This PAL does the address
decoding and handles the registers 
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Fig.8 Link adapter 
schematic 

transputer evaluation boards, and to
understand the needs for the hardware
to implement these control lines, the
system architecture of the
boards needs to be examined. Fig. 6
shows how a hierarchical network of
boards can be built into a large
system. 
   The Up, Down and Subsystem ports
all carry the same control
signals. These are: notReset;
notAnalyse; and not Error. notReset
and notAnalyse flow down the system
(if the configuration of the system is
considered to be as in Fig. 6), notError
flows upwards. For a single board,
there are two paths we must look at. 

1. The Up and Down ports are used
to daisy chain boards together.
notReset and notAnalyse enter the Up
port, are inverted for the transputer
Reset and Analyse and are passed out to
the Down port as notReset and
notAnalyse. notError enters the
Down port, is combined with
the transputer and parity error flags
for the board and passed out of the Up
port. With this scheme, all boards in
the chain can be reset, or put into
analyse mode by a master controller
which is connected to the Up port of the
top board in the chain, and any board
in the chain can report an error to this
controller. 

2. The Subsystem port allows any
board to be a master controller of a
chain. This port is capable of generat-
ing the notReset and notAnalyse
signals (by software control in the
transputer), and allows user processes
to read the notError signal from the
chain. 
  The architecture allows for any 

and which byte and bank the error
occurred in. The output lines of IC17
chosen for these decoded signals have
tri-state buffers which are enabled by
the notReadParity signal from IC20.
This is asserted when the transputer
does a memory read from the
ParityError register. 
   If parity is enabled, then once a
parity has occurred, its state (ie byte,
bank) will be latched and no further
parity errors will overwrite the first.
Reading a parity error will not reset the
parity latch, so the parity must first be
disabled, a read cycle executed to
clear the latch, then parity re-
enabled. If parity is disabled, no
parity errors will be reported. If a
parity error has occurred (and parity
is enabled), the ParityError output
from IC17 is set. This signal can be
combined with the main board error
signal under instructions from
the transputer. 
 
System control 
   The board architecture was designed
to allow any number of boards
(whether they be Inmos evaluation
boards or other manufacturers'
boards which follow the same arch-
itecture) to be connected together to
make full use of the parallel concept of
the transputer. 
   To meet this need, the four trans-
puter links are buffered and brought
to the rear connector. A number of
control signals are also brought to the
rear of the board to provide control of
the transputer's reset, analyse and
error functions. The system control
signals are standard throughout the

board in a chain to act as a master for
another chain, allowing large systems
to be split up into smaller
subsystems, each with its own local
controller. 

The subsystem signals are handled by
the 22v10 PAL IC20 (which handles the
parity controls also). 
The logic required for the Up,
Down ports is simple. The notUpReset
and notUpAnalyse for the daisy
chaining of boards enter the board
from the Up port, are inverted (IC21)
to give tile correct polarity for the
transputer Reset and Analyse, and are
then inverted again for output at the
Down port. 

The second inverter is used to
provide the drive current required
between boards. Both inputs (from the
Up port) are pulled high with 1k
resistors to prevent spurious resets, etc,
occurring when no external boards are
connected. 
  The notDNError signal enters the

board from the Down port and is fed to
IC20 (again, a 1k pull up resistor is
used to hold the line at the `no error'
state when no other boards are
connected). In IC20, the notDNError
is combined with ParityError (IC17)
and the T4 Error signal from the
transputer and fed out to the
notUpError output of the PAL. This
signal can inform the
controlling board that some form of
error has occurred whether it be a
parity error, transputer error, or an
error from a board further down the
chain. 

The subsystem signals are im-
plemented as registers similar to the
parity control registers. By writing
certain bit patterns to the notSSReset
or notSSAnalyse register, the corres-
ponding signal can be asserted or de-
asserted (depending on the data
written). The notSSError signal from
the subsystem port is also fed into IC20,
where it is latched when the transputer
reads from the register associated
with it. 
 
Interface to the PC 
  The circuit described above gives a
transputer with 2Mbytes of
parity checked memory four links to
the outside world, and control signals.
Although this is now able to com-
municate with any other transputer via
the links, a means of communications
with the host PC is needed. 
   The requirement for the interface 
was to have a parallel bus interface to 
the PC, and this parallel interface 
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signals necessary to build an external
memory system, the design of a
transputer system consists mainly of
buffering address, data and control
lines to provide sufficient drive current
to take board capacitance, etc, into
account. 
   The interface to host machines is
also simplified by the use of the Link
Adaptor, allowing any parallel bus
(not just the PC bus described
here) to be used, with sonic simple
timing alterations. 
 
Using the board 
   As stated at the start, the add-in
board was designed to complement the
PC as an Occam development station.
Any number of evaluation boards can
be connected to the board via the links
(Fig. 9 shows a few examples of large,
parallel processing systems connected
to a PC). 
   Other uses include using the board as
a high-performance number crunching
device, as a slave processor to the
host machine. Here, any application
could be written (or a current
application modified) to pass data to
the board which will perform certain
tasks on that data, before passing it
back to the host machine for displaying,
etc. The interface software sees the
board as a number of memory mapped
devices. For example, a high
performance flight simulator could be
written, the transputer system doing
the complex trigonometry involved
with aircraft position,
windowing, 3D to 2D conversions
and passing vector information to the
host computer for display. By using
Multiple boards, the tasks could be split
between many processors, giving
improvement in performance. 
  Programming the board for

specific applications is done using the
Transputer development systems, using
Occam. In the near future, it will also be
possible to program the transputer
system in 'C', Pascal and Fortran, as
well as Occam. With these language
compliers, it will be possible to take
existing algorithms, and re-compile
them for transputer applications. Also,
by using Occam as the harness to
describe the concurrency of the system,
it is possible to run multiple processes,
which could be written in any of the
four languages. 

at address HEX 150-163 in I/O
address space. 
   Also included at the PC interface are
more system control signals which
operate in the same manner as the
transputer subsystem signals, but
controlled by the PC. This allows the
PC to be the master system controller. 
To allow more than one evaluation
board to he fitted within a host, a
method of selecting only one link
adaptor and system control circuit to
respond to accesses by the host was
required. This selection method would
allow all other boards to have all four
links available for general use. To
satisfy these needs, it was decided to
take the link from the link adaptor to the
rear of the board and to use a jumper
plug to connect a transputer l ink  to
the  l ink  adaptor .  A mechanism
is included which informs the decoding
logic that tile jumper plug is in place and
the board can respond to the PC. The
system control signals (controlled by
the PC) are also taken to the rear
connector, using a jumper plug to
connect to the Up port, and using a
similar selection mechanism to the
links. 
   The selection mechanism involves an
input of the selection PAL (1C22) to be
pulled low if one of the jumper plugs is
inserted. Only if the line is low will the
corresponding select signal (notLADP
or notSYS) be asserted. 
   The notSYS (PC system control is
being accessed) and notLADP (link
adaptor access) signals are used in
conjunction with the IOW, IOR and
Clock signals from the bus to generate
the access timing sequence for the link
adaptor. 
   As the transputer can be pro-
grammed to supply all the timing 

communicating with a transputer.
There were two possible methods:
memory map the bus communication
hardware into the transputer's external
memory; or communicate with the
transputer via one of the serial links. 
   The second method was chosen, as it
maps onto the transputer concept of
communication via Occam channels.
In this case the host computer will
appear as a process at the end of a
channel mapped on one of the
transputer's links. 
  This method, however, means that the
transputer selected to communicate
with the host must use one link solely for
this purpose. 
  To make this sort  of interface
possible, Inmos has also produced
devices which convert parallel data into
serial data, and vica versa, following
the protocol of the Inmos links. 
   The IMSC002 link adaptor has a bi-
directional 8bit bus to allow
easy connection to standard bus
architectures. A number of standard
control lines, such as chip-enable and
read/write, are included. The device
takes parallel data, converts it into
serial form and passes it out of the
`output link'. Incoming serial data is
converted into parallel form, to be read
by the parallel bus. 
   The circuit to perform the commun-
ication with the PC is outlined in Fig. 8.
IC22 is a PAL which handles the
address decoding from the bus. A4 to
A9 are decoded, as well as AEN (when
AEN is active, DMA is active on the PC
bus and so the board must be de-gated
from the bus). Using a PAL for the
address decoding allows the board
address to be altered by changing the
PAL. The board is currently located 

Fig.9 Examples of multi-
boar systems 
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